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ABSTRACT: 

Automation of 3D LiDAR point cloud processing is expected to increase the production rate of many applications including automatic 

map generation. Fast development on high-end hardware has boosted the expansion of deep learning research for 3D classification and 
segmentation. However, deep learning requires large amount of high quality training samples. The generation of training samples for 
accurate classification results, especially for airborne point cloud data, is still problematic. Moreover, which customized features should 

be used best for segmenting airborne point cloud data is still unclear. This paper proposes semi-automatic point cloud labelling and 

examines the potential of combining different tailor-made features for pointwise semantic segmentation of an airborne point cloud. We 
implement a Dynamic Graph CNN (DGCNN) approach to classify airborne point cloud data into four land cover classes: bare-land, 
trees, buildings and roads. The DGCNN architecture is chosen as this network relates two approaches, PointNet and graph CNNs, to 

exploit the geometric relationships between points. For experiments, we train an airborne point cloud and co-aligned orthophoto of the 

Surabaya city area of Indonesia to DGCNN using three different tailor-made feature combinations: points with RGB (Red, Green, 
Blue) color, points with original LiDAR features (Intensity, Return number, Number of returns) so-called IRN, and points with two 

spectral colors and Intensity (Red, Green, Intensity) so-called RGI. The overall accuracy of the testing area indicates that using RGB 
information gives the best segmentation results of 81.05% while IRN and RGI gives accuracy values of 76.13%, and 79.81%, 

respectively.   

 

 

1. INTRODUCTION 

Up to now, automatic object classification of large-scale point 
cloud data is still challenging due to high variations in object 
shape, size, color, and texture. Airborne point clouds and aerial 

photos have been used as main input data for various 3D mapping 
activities, as both provide high-resolution earth surface data. 
LiDAR point clouds and aerial photos have different 
characteristics and capabilities. The combination of 3D point 

clouds and aerial photos is believed to increase the degree of 
automation as well as object detection accuracy. Spectral 
information from photos provides essential features for 
classification, while highly detailed 3D information provided by 

LiDAR point clouds will increase the results accuracy.  
 
PointNet, proposed by Qi et al., (2016), pioneered pointwise deep 
learning approaches for point cloud classification and 

segmentation. This high computationally effective and efficient 
network still suffers from a lack of capability to make use of local 

information on the point sets [Jiang and Ma, 2019]. For 
segmentation, the local context is crucial for labelling the 

categories semantically. Qi et al. (2017) next presented 

PointNet++ to improve the basic model by adding a hierarchical 
neural network to capture local geometric features. 
Acknowledging that encoding geometric relations between a 

single point to its nearby points is still a problem in PointNet++, 

Wang et al. (2018) proposed Dynamic Graph CNN (DGCNN) by 
incorporating a graph-based CNN approach to capture the local 
geometry of points by an edge convolution operation on a k-nn 

graph which is iteratively updated by the nearest neighbors. We 

used such a DGCNN, as this network architecture achieves state-
of-the-art performance on semantic analysis. 
 

Previous work on semantic segmentation of airborne 3D point 
cloud data includes Soilan et al. (2019) that classified the Actueel 
Hoogtebestand Nederland (AHN) airborne point cloud data into 
three land cover classes: ground, vegetation, and buildings in a 

PointNet architecture. However, though the classification 
accuracy result achieved 87.77%, there is high confusion 
between vegetation and building classes. Wicaksono et al. (2019) 

used a similar architecture to this study, DGCNN, to classify 

building and non-building points using two different feature 
combinations: with color and without color features. Based on 
their results, they stated that color features do not improve results 
but even affects the semantic segmentation results. In contrast, 

using so-called sparse manifold CNN, Schmohl and Soergel 
obtained a 0.8% higher overall accuracy when using additional 

spectral information on their test set segmentation. Xiu et al. , 
(2019) also implemented PointNet using Intensity (depth) and 
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spectral (RGB) features obtained by fusing a LIDAR point cloud 
with an orthophoto. By applying this data fusion, overall 

accuracy increased by 2%, from 86% to 88%. Poliyapram et al.  
(2019) examined something similar by comparing the use of 
intensity features with the combination of intensity and color 
features (RGB) on PointNet on point cloud data of Osaka City, 

Japan. The results show that simply applying data fusion at the 
observation level can improve overall accuracy from 65% to 
79%. Even with the characteristics of the city of Osaka, which is 
a complex urban area with dense buildings, the use of a 

combination of Intensity and RGB features can provide improved 
performance in identifying buildings by 4%. 
 
Based on the various results of the aforementioned works when 

using different feature combinations, it is essential to provide 
more research on the use of various tailored features for semantic 
segmentation of airborne point clouds. Furthermore, labelling 3D 
training samples using 2D data is worth to examine. Thus, this 

paper addresses two contributions as follows: 
1. to provide a method for creating high-quality free 

training samples for 3D semantic segmentation of new 
airborne point cloud data using existing 2D GIS base 

maps for 4 land cover classes: bare-land, buildings, trees, 
and roads; 

2. to exploit different combinations of discriminat ive 
features from off-the-shelf features of airborne LiDAR 

point clouds and airborne photos for 3D pointwise 
semantic segmentation. 

 

 

2. DATASET AND STUDY AREA 

A set of airborne LiDAR point cloud data and aerial photos 
acquired at the same time are used in this study. The airborne 
LiDAR point cloud, obtained by an Optech Orion H300 

instrument, has an average point density of about 30 points/m², 
while the aerial photos captured by a tandem camera have a 
ground sampling distance of 8 cm. Both LiDAR point cloud and 
aerial photos are acquired at the same time in 2016. The LiDAR 

point cloud used for our research has a total number of 
354.197.545 points. 
 
Two base map versions are used in this study. First, the 1:5.000 

base map extracted by manual delineation from 
WorldView2satellite images acquired in 2012 and the 1:1.000 
base map Year 2017 generated by manual stereo-plotting from 
the same aerial photos used in this study. 

 
 

 

 

(a) Airborne orthophoto of the 
study area covering the four 

indicated 1:5000 map sheets. 

(b) The 1:1000 base map 
Buildings in orange, the 

road in red, water in blue, 

and bare-land in grey. 

 
Figure 1. The study area in the city of Surabaya, Indonesia. 

 

The urban landscape selected for the study area is located in 
Surabaya city, Java Island, Indonesia. This city has a typical 

metropolitan character with dense and complex high-rise 
buildings.  The study area covers 21.5 km². According to 
Indonesian 1:5000 base map index, the study area consists of four 
map sheets: 1408-4149A, 1408-4149B, 1408-4149C, and 1408-

4149D, as shown in Figure 1. 
 

 

3. METHODOLOGY 

This study exploits multi-class labelling used for training in a 

semi-automatic way and evaluates different tailor-made features 
trained by the DGCNN architecture for segmenting a colored 
airborne LiDAR point cloud using the dataset described in 

Section 2. Our methodological framework, as shown in Figure 2, 
consists of three main steps: (1) semi-automated point cloud 
labelling; (2) data training by DGCNN; and (3) evaluation. In the 
first step, a colored airborne point cloud is obtained by projecting 

color information of orthophotos to the LiDAR point cloud. 
Next, semi-automated point cloud labelling for obtaining training 
samples is conducted by using available base map vector data 
combined with roughness filtering. After training by the 

DGCNN, results are evaluated and discussed.  
 

 
 

Figure 2. The methodological framework. 

 
 

3.1 Labelling Free Training Samples  

Labelling the point cloud to provide sufficiently accurate training 

samples for semantic segmentation is a non-trivial task. 
Variations in object characteristics and different landscapes may 
introduce confusion and noise in the training data. Moreover, 
using training samples from a different domain may require 

additional or completely new training samples. An existing base 
map is a useful information source to label the training data. 
However, there are several challenges to extract free training 
samples using a 2D base map. First, the base map data used to 

label the point cloud does not provide trees and bare-land 
information. Second, as we use base map polygons to label the 
points, the labelled building and road points may include many 
mislabelled points as there are trees covering buildings or roads. 

We propose a simple hierarchical approach to label tree and bare-
land classes as well as to improve the quality of training samples 
by filtering likely mislabelled points. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-339-2020 | © Authors 2020. CC BY 4.0 License.

 
340



 
 

For semantic segmentation, the study area is divided into 8 parts 
by dividing each of four map sheets into two parts. We use 7 out 

of 8 parts in our study area for training and the remaining part 
(lower part of 1408-4149D map sheets) for testing.  
 
The labelling procedure is as follows:  

- After projecting spectral information (RGB color) to the 
point cloud data, the points are labelled into four  classes 
(bare-land, tree, building, and road). The airborne point 
cloud used in this study has been automatically classified 

into the ground and non-ground points by TerraScan 
software.  

- From the non-ground points, building points are labelled 
using building polygons of the base map. Using the same 

method, road points are labelled from the ground points, 
and remaining points are labelled as bare-land.  

- However, using base map polygons to label buildings 
points may introduce mislabelling in case of trees exist near 

to the buildings. Therefore, we apply tree filtering based on 
point cloud roughness. In this case, any point that is either 
labelled as building or road or unclassified is labelled as a 
tree when its roughness is above a threshold. The surface 

roughness is estimated for each point based on the distance 
between the corresponding point to the best fitting plane 
estimated using all neighbouring points inside an area of 

2m × 2m. The roughness threshold is set empirically to 0.5.  
- In the final step, the point cloud dataset is systematically 

downsampled to 1m × 1m, and remaining outliers are 
removed using a statistical outlier removal algorithm (with 
standard deviation = 2 times the mean distance of 30 
points).  

 

To prepare the training data, we then split each area into 30m × 
30m blocks with a stride or overlap of 15m to ensure local 
geometry is captured efficiently by the network.  
 

3.2 Pointwise Semantic Segmentation of Different Tailored 

Features 

We use a DGCNN architecture [Wang et al., 2018] to perform 
airborne point cloud semantic segmentation. Using a similar 
network architecture as basic PointNet architecture, the DGCNN 

incorporated the so-called EdgeConv to construct a local 
neighbourhood graph describing the relationship of a point to the 
neighbouring points. The EdgeConv operation aggregates local 
geometric features from the neighboring points by k-nearest 

neighbour and applies convolution-line operations on the edges.  
 
As seen in Figure 3, the DGCNN uses a spatial transformation 
component to compute a global shape transformation, followed 

by EdgeConv, which acts as MLP (Multi Layer Perceptron), to 

learn local geometric features for each point. For semantic 
segmentation, three sequential EdgeConv steps followed by three 
fully connected layers are used to make a prediction score for 

each segmented point. A max pooling or downsampling 

operation is then performed as a symmetric edge function to 
make the model permutation invariant and to capture global 
feature. 

 
Suppose a F-dimensional point cloud is given with n points, 

denoted by 𝑋 = {𝑥1,… , 𝑥𝑛} ⊆  𝑅𝐹. Consider a feature 

dimensionality of 𝐹 = 9, where each point consists of 3D 

coordinates and 6 other features (e.g.  RGB color, surface 

normals, Intensity, etc). Consider a directed graph 𝐺 = (𝑉, 𝐸) 
representing local point cloud connectedness, where 𝑉 = {

 
(a) Network architecture 

  
(b) Spatial transformer module (c) EdgeConv 

Figure 3. The DGCNN architecture (Wang et al., 2018). (a) The top branch shows the classification model architecture while the 
bottom branch shows a semantic segmentation model architecture; (b) A spatial transformation module is used to learn specific 

transformations from the input point cloud, i.e. to estimate a 3 × 3 transformation matrix by concatenating the coordinates of each 
point and the coordinate differences between its k-nn neighbors, and then apply point convolutions; (c) EdgeConv takes an output 

tensor of shape (𝑛 × 𝑓), and then applies multi layer perceptron (MLP) operations with a number of neurons defined as 

{𝑎1, 𝑎2, . . . , 𝑎𝑛 } to compute edge features which finally results in a tensor shape of (𝑛 × 𝑎𝑛) after pooling the neighboring edge 

features. 
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1, . . . , n}  and 𝐸 ⊆ 𝑉 ×  𝑉  denotes the vertices and edges, 
respectively. For each point, DGCNN uses the k-nearest 

neighbour graph to construct graph 𝐺 containing directed edges 
of the (𝑖 , 𝑗1),…,(𝑖, 𝑗𝑘) such that points 𝑥𝑗1, … , 𝑥𝑗𝑘 are closest to 𝑥𝑖 

in 𝐺 (see Figure 4). The k-nearest neighbours of a point 
dynamically change from layer to layer of the network and are 
computed sequentially. The edge function is then defined as 

𝑒𝑖𝑗 =  ℎΘ(𝑥𝑖 ,𝑥𝑗), where ℎΘ: 𝑅𝐹 × 𝑅𝐹 → 𝑅𝐹′ is a non-linear 

function that contain learnable parameters Θ, and Θ =
(𝜃𝑖 , … , 𝜃𝑘) are the weights of the filter to be optimized in each 

edge convolutional layer.  
 
DGCNN adopts an asymmetric edge function ℎΘ(𝑥𝑖, 𝑥𝑗) = 

ℎΘ(𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖) across all layers to combine both the global shape 

structure (by capturing the coordinates of the patch center 𝑥𝑖) and 
the local neighbourhood information (by capturing 𝑥𝑗 − 𝑥𝑖). 

Similar to PointNet and PointNet++, the aggregation operation 
to downsample the input representation in DGCNN is max 
pooling. 

 

3.3 Feature Combinations 

As this paper aims to investigate different feature combinations 
to classify earth objects in an airborne point cloud, we provide 

three different sets of feature vector for training, consisting of: 
1. RGB points: each point is represented by true color (Red, 

Green, and Blue) from an orthophoto 

(X, Y, Z, R, G, B, nx, ny, nz). 
2. IRN points: each point is represented by original LiDAR 

features consisting of Intensity, return number, and number 

of returns (X, Y, Z, I, R, N, nx, ny, nz). 

3. RGI points: each point is represented by Red and Green 

color and Intensity (X, Y, Z, R, G, I, nx, ny, nz). 
 

All feature combinations are complemented by normalized 3D 

coordinates (nx, ny, nz) in which the point cloud original 
coordinates are transformed to local coordinates by subtracting 
from centroid XYZ values to boost the translational invariance 
of the algorithm [Qi et al., 2018].  
 
During training, 4096 points are uniformly sampled from each 

block to form data batches with a consistent number of points, 
while all points are used during testing time. As we used 9 
features for training, therefore, the input data size to the network 

is 4096 × 9. We use 𝑘 = 20 nearest neighbours for each point 
to construct the edge graphs. For all experiments, the final model 
is obtained after running 50 epochs, optimized by a so-called 

Adam optimizer with an initial learning rate of 0.001, a 
momentum of 0.9, and a mini batch size of 24. 
 
The 3D point cloud semantic segmentation using DGCNN is 

performed on a High Performance Computing (HPC) 
environment of Delft University of Technology consisting of 26 
computing nodes. During training, two Tesla P100 GPUs 

available in the cluster were used.  

 

3.4 Evaluation 

To evaluate the performance of different training models from 
different feature combinations, we determine the confusion 

matrix and overall accuracies. Along with overall accuracy, there 
three other criteria metrics are estimated: the recall (also known 

as completeness), the precision (also known as correctness), and 
F1-score. The recall refers to the percentage of the total points 

correctly predicted by the model, while the precision refers to the 
percentage of the results that area relevant. The F1-score is a 
harmonic mean of precision and recall. In addition, the overall 
accuracy indicates the percentage of all correctly classified points 

of all classes from the total number reference points is also 

estimated. 

 

  
(a) PointNet (b) EdgeConv operation results in edge features   

Figure 4. Basic differences between PointNet and DGCNN. (a) The PointNet output of the feature extraction 𝒉(𝒙𝒊), is only 

related to the point itself, (b) The DGCNN incorporates local geometric relationship 𝒉(𝒙𝒊, 𝒙𝒋 − 𝒙𝒊)  of a point 𝒙𝒊 to its 

neighbourhood 𝒙𝒋𝒊 to 𝒙𝒋𝟒. 

 

  
(a) Classification result using RGB features (b) Ground truth 

Figure 5. Semantic segmentation result over the test set area in comparison to the ground truth. Blue points represent bare-

land, orange represents building, green represents vegetation, and red represents road. 
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4. RESULTS AND DISCUSSIONS 

This study aims to provide a cheap but effective method to 

label a considerable amount of training samples and analyse 
optimal features using point-wise deep learning approach. 
Figure 5 shows the classification result over our test area.  
 

The test data comprises of 46.477.312 points and these points 

are excluded for training. Overall accuracy evaluated on the 
test area for RGB points, IRN points, and RGI points are 
81.05%, 76.13%, and 79.81%, respectively (Table 1). Table 2 

to Table 4 show the confusion matrix of the results using 

different feature combinations.   
 

 F1-score (%) Overall 
Accuracy 

(%) 
bare-

land 

tree building road 

RGB 74.2 79.8 84.2 73.9 81.05 

IRN 74.7 75.4 77.4 70.4 76.13 

RGI 74.5 78.8 82.4 74.6 79.81 

Table 1. Comparison of the overall accuracy and F1-score 

per-classes of different feature combinations.  

RGB 

ground truth 
comp./ 
recall 

bare-

land tree building road 

p
re

d
ic

ti
o

n
 bare-

land 
4,305,343 151,379 1,437,965 665,654 65.63% 

tree 77,020 11,798,573 3,855,133 3,434 74.99% 

building 169,987 1,868,355 19,798,584 6,220 90.64% 

road 498,846 4,246 69,909 1,766,664 75.51% 

corr./ 

precision 
85.23% 85.36% 78.69% 72.35% 81.05% 

Table 2. Confusion matrix of segmentation result using RGB 

composition. 

IRN 

ground truth 
comp./ 

recall 
bare-
land tree building road 

p
re

d
ic

ti
o

n
 bare-

land 
4,303,394 73,926 1,149,484 948,231 66.46% 

tree 108,541 12,711,073 7,075,664 4,619 63.88% 

building 414,761 1,039,166 16,902,283 23,763 91.96% 

road 223,507 1,134 31,702 1,466,064 85.12% 

corr./ 
precision 

85.21% 91.94% 67.18% 60.02% 76.13% 

Table 3. Confusion matrix of segmentation result using IRN 

composition. 

RGI 
ground truth 

comp./ 

recall 
bare-
land tree building road 

p
re

d
ic

ti
o
n

 bare-
land 

4,383,401 148,951 1,519,290 661,463 65.30% 

tree 79,409 12,160,087 4,791,228 3,331 71.39% 

building 129,737 1,509,060 18,777,942 5,719 91.95% 

road 457,338 4,981 73,448 1,771,927 76.78% 

corr./ 
precision 

86.80% 87.97% 74.63% 72.55% 79.81% 

Table 4. Confusion matrix of segmentation result using RGI 

composition. 

 

Based on the confusion matrix, the detected building and road 
points have higher recall rate than the precision. In contrast, 
the bare-land and tree points have higher precision rate than 
the recall rate. In our case, it is likely that using the base map 

to label the training samples induces a higher recall rate. A 

lower recall but higher precision means that the model is 
accurate enough to detect the object (in this case, bare-land and 
tree) but misses a significant number of the corresponding 

object points. 

A more detailed analysis based on the results of different 
feature combinations in connection to the training samples 

labelling procedure discusses as follows:  

a. Prediction of building points 
We discover that the number of building points detected 
as the tree is at least three times more than the number of 

tree points detected as building. This portion is the 
biggest contribution to the precision rate of the building 

class. We assume that the use the 2D polygons to label 
the buildings may still include mislabelled points. For 

example, points on the building façade are labelled as 

building points but in the result, many façade points are 
predicted as trees (see Figure 6.c). A significant number 
of building points falsely classified as road is likely 

caused by many ground points within building 
surrounding that are labelled as building. In this case, the 
training model correctly predicts the ground points that 
were mislabelled in the ground truth. However, the worst 

building precision rate is achieved when no spectral 
information is used, in this case, when using IRN 
features. 

 

b. Prediction of road points 
Using spectral information for road points prediction 
returns a higher precision but lower recall. On the other 
hand, using LiDAR features gives a higher recall but 

lower precision result. This means, using only off-the-

shelf LiDAR features increases the over-classification 
chance. Such road and bare-land confusion exist 
particularly when open yard with asphalt surface is 

labelled as road, for example, points on parking lot or 

front yard offices with asphalt surface are labelled as the 
road (see Figure 6.a and 6.b). However, the model has a 
low rate to detect such points on asphalt yard as the road. 

IRN features the worst precision rate for road. 

 

c. Prediction of bare-land points 
For all feature combinations, a lower recall rate is mostly 

caused because many road and building points are 
detected as bare-land points. We observe there were 
many ground points remain in the non-ground points 
after filtering process, which later induce mislabelling. 

The recall and precision rate of the prediction results 

from all combinations are similar. We assume that other 
features than XYZ coordinates may have small weights 
for predicting the ground points. 

 

d. Prediction of tree points  
The lower recall rate of the tree class is because many 
building points are classified as tree. The reason why the 

tree class has lower recall is the same as why the building 
points have lower precision. It is because points on 

building facades labelled as buildings in ground truth, 
are predicted as tree (see Figure 6.c). However, among 

other classes of all feature combinations, the tree class 
always has the highest precision rate. This means that the 

errors in predicting tree points as other class are very 
low, in other words, the model can predict the tree class 

accurately. The highest precision rate of the tree class is 

achieved by the IRN feature combination. The use of 
return number and number of returns appears to increase 
the chance to predict tree points correctly. 
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 (a) Subset 1 (b) Subset 2   (c) Subset 3 

 
Figure 6. Comparison of DGCNN point cloud semantic segmentation results using different feature combinations (RGB, IRN, 

RGI) to the reference for three different subset areas. Black ellipses and rectangles highlight the differences in result between 
three feature combinations and the ground truth. Blue points represent bare-land, orange represents building, green represents 

vegetation, and red represents road. 
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Figure 6 shows a comparison between three different subsets of 
three different classification setups and the ground truth. The 
rectangles and ellipses highlight areas where differences occur. 
The black ellipses indicate the differences over the building roof 
area. The RGB features failed to detect several building points of 
a particular area inside the ellipse but not for IRN and RGI 
features. It is likely that the black building roof color causes false 
predictions when using  RGB features. Other differences are 
indicated by the black rectangles in the second column of Figure 
6. There is confusion to classify an asphalt surface covering a big 
front yard from all feature combinations. Although the asphalt 
front yard has a similar color as the road and is defined as the 
road in the ground truth, but based on its shape, it can be 
considered as non-road. 
 
As we use a ground orthophoto to color the points cloud, it is 
possible that points are having incorrect colors (or color 
misalignment) due to building relief displacement. This problem 
usually happens in the surrounding of high-rise building areas, 
where some particular areas were blocked by the leaning building 
roof (see Figure 7). However, we found out that the DGCNN 
network is still able to detect bare-land points correctly even 
though these points were assigned with an incorrect color. 

5. CONCLUSION AND RECOMMENDATION 

This study exploits the use of a 2D base map to label the training 
samples and use different feature combinations to perform 
semantic segmentation using existing pointwise deep learning 
architecture, a DGCNN, from a colored airborne LiDAR point 
cloud. Three different feature combinations (RGB, IRN, and 
RGI) are used to classify the point cloud into four classes: bare-
land, tree, building, and road points. 
The best overall accuracy, 81.05%, is achieved when using a 
point cloud attributed with spectral information to the DGCNN 
network Based on our results, using a 2D base map to label the 
training samples is indeed a cheap and effective approach. 
However, the accuracy rate may not indicate the correct value as 
our ground truth labelled from 2D base map still include 
mislabels. In our study, we discover that using spectral 
information (RGB) is increasing overall accuracy, in particularly 
for building and tree points. Surprisingly, spectral information is 
likely not affecting bare-land prediction as it has a similar recall 
and precision rates for all feature combinations. The combination 
of two spectral bands (Red and Green) with Intensity has the 
highest detection rate for the road class. The use of original 
LiDAR features (Intensity, return number, and number of 

   

   
(a) Classification result for 

RGB composition 
(b) Classification result for RGB 

overlaid on orthophoto 
(c) 3D perspective of the 

classification results overlaid on 
2D base map polygon 

   
(d) The ground truth  (e) Ground truth points overlaid on 

orthophoto 
(f) The building polygon from 
base map (red outline) overlaid 

on orthophoto   

Figure 7. Results in an area where relief displacement occurs. The classification method still correctly predicts ground and tree 
points that may have incorrect spectral color. 
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returns) gives an impressive accuracy result in detecting tree 
points. As the study area is located in a big city, where many 
high-rise buildings exist, points on the façade heavily affect the 
detection result. However, incorrect color due to relief 
displacement is not affecting the result. 
 
When labelling training samples using a base map one should 
consider additional steps to refine the labels and reduce mislabels 
especially in case trees exist in the surrounding of buildings and 
roads. Improving the proposed labelling method and combining 
a complete set of original LiDAR point clouds and aerial photos 
features for training are believed to increase the detection 
accuracy. Domain and time shift using the trained model is also 
interesting to be investigated further. In addition, we also address 
the need of improved neural network architecture for more robust 
3D point cloud semantic segmentation for future research. 
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