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ABSTRACT

State estimation (SE) is a crucial tool for power system state monitoring since the con-
trol center requires a process to deal with a large number of imprecise measurements.
Several SE methods have been applied and developed for the electric power system in
the transmission level in the past several decades. Meanwhile, SE for the distribution
level remained in the background for a long time since the distribution networks were
mainly radial with uni-directional power flows, making classical monitoring and control
functions sufficient. Recently, due to the liberalization of the energy market, growing
penetration of distributed generation, mainly renewable energy sources, and distributed
energy resources such as electric vehicles, the distribution system has been gradually
changing from passive into active grids. This requires more sophisticated monitoring
and control of the distribution network via a distribution management system (DMS) to
ensure optimal integration and maximize the grid hosting capacity. Since one of the key
functions of DMS for real-time operation is the SE procedure, this calls for the follow-
ing: (i) development of SE techniques for the distribution level, so-called distribution
system state estimation (DSSE); (ii) more deployment of time-synchronized devices like
phasor measurement units (PMU) that can directly measure and acquire accurate and
time-aligned phasors with typical refresh rates up to 20-60 times per second.

Two types of DSSE algorithms were developed and implemented on the real-life 50
kV ring distribution grid composed of PMU devices by using the real-time simulation
platform. The first is a static approach. The problem is formulated as a WLS problem to
be solved based on the iterative Newton method, known as static state estimation (SSE).
The second is a dynamic approach, which is more advanced, known as the forecasting-
aided state estimation (FASE). It is one of the particular applications of the dynamic
state estimation (DSE) concept based on the quasi-steady-state operating conditions.
The dynamic formulation is solved using the extended Kalman filter (EKF) technique.
This research aims to implement distribution system state estimation (DSSE) algorithms
coupled with the auxiliary function, the so-called anomaly detection discrimination and
identification (ADDI), into the distribution network. Both normal and abnormal opera-
tion scenarios of the power system are simulated to validate the algorithms.

The results reveal that the FASE is superior to the SSE algorithm in terms of estima-
tion accuracy and computational time under normal operating conditions. However,
under abnormal conditions, if there is no ADDI module, the performances of both algo-
rithms are degraded significantly due to erroneous measurements. The FASE algorithm
loses the system states’ trajectory when sudden load change occurs. These issues point
out the necessity of using the ADDI module against possible disturbances in real-life
networks. In the end, the results show that the proposed FASE algorithm coupled with
the ADDI module can accurately estimate the states under both normal and abnormal
operations. One significant contribution is that the proposed algorithm can perform ad-
equately fast so that it can process every high-speed measurement from PMU devices.
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1
INTRODUCTION

1.1. BACKGROUND AND MOTIVATION
Electric power system deals with the generation, transmission, and distribution of elec-
tricity. Security control, along with efficient and optimum economic dispatch, has al-
ways been the main strategy in power system operation [1]. In order to achieve this, it
is essential to know the states of the system under steady-state conditions by state mon-
itoring. In the control center, there are two ways to know the data of the state: (i) by
using the raw power system data from a real-time data acquisition, (ii) by applying state
estimation to obtain a better and more comprehensive set of information than using the
raw data set [2].

State estimation (SE) is a crucial tool for power system state monitoring since the
control center requires a process to deal with a large number of imprecise measurements
[3]. As a result, SE can provide the best estimate of the states for many downstream ap-
plications, such as power flow, contingency analysis, optimal power flow, dynamic sta-
bilities, etc [4]. The state variables can be the nodal voltage magnitudes and angles in
the network. SE provides the solution for the optimization problem that processes the
measurements together with the network model to determine the optimal estimate of
the states. The importance of utilizing the output from SE for the real-time load flow
program is highlighted on a security analysis basis. Having the load flow values under
steady-state as a base case makes it possible to detect and analyze any contingency event
in the system. If SE is not used, there is not much to be done with the raw data except
checking for an abnormality [2]. Also, when using the raw data set of measurements
directly, the loss of one measurement made the load flow calculation impossible, and
the presence of measurement errors affected the estimation result dramatically. To over-
come these issues, SE can recognize any inconsistent data (or missing data) by evalu-
ating the level of consistency between the measurement set and the network topology
model. This means that SE has a systematic way to detect the presence of bad data (so-
called outliers) and identify which measurement data has the error so that it can be cor-
rected/eliminated.

1
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2 1. INTRODUCTION

Traditionally, SE algorithms made use of the measurements of active and reactive
power of line flow, possibly including magnitudes of bus voltages and branch currents,
to estimate bus voltage magnitudes and angles. The complex bus voltages represent the
state variables of the network since they can determine all the power flows and injec-
tions, given the accurate network model is known [3]. Since these conventional measure-
ments have a low scanning rate of a few seconds provided by the remote terminal units
(RTUs) at substations, this caused traditional SE algorithms to perform at a relatively
lower refresh rate of a few minutes due to computational limitations [5]. Nowadays,
time-synchronized devices like phasor measurement units (PMU) can directly measure
and acquire accurate and time-aligned phasors, known as synchrophasors, with typi-
cal refresh rates up to 20-60 times per second [1]. Thanks to these high-speed scanning
rates, if SE algorithms can perform as fast as the PMU data rate, it will become feasible
to capture dynamic behaviors in response to transient events in the power system [4].
As a result, SE procedures can exploit the availability of synchrophasor measurements
to achieve a more accurate and more sophisticated estimate of the states.

Several SE methods have been applied and developed for the electric power system
in the transmission level in the past several decades. Also, PMUs are usually deployed
and studied at the transmission system. Meanwhile, SE for the distribution level re-
mained in the background for a long time since the distribution networks were mainly
radial with uni-directional power flows, making classical monitoring and control func-
tions sufficient. Nowadays, the distribution grids are undergoing a fundamental up-
grade to more dynamic and complex structures due to the distributed generation (DG)
sources, distributed energy storage, etc. The topology of the grid will also change from
a mainly radial into a more meshed topology, resulting in bi-directional power flows. In
this context, the nature of the distribution grid that was traditionally passive is being
transformed into active distribution grids [6]. The addition of distributed generation,
and the integration of intermittent and volatile renewable generation, requires more so-
phisticated monitoring and control of the distribution network via a distribution man-
agement system (DMS). Since one of the key functions of DMS for real-time operation
is the SE procedure, this calls for the following: (i) development of SE techniques for the
distribution level, so-called distribution system state estimation (DSSE); (ii) more de-
ployment of PMU devices in distribution grids; to ensure optimal integration and max-
imize the grid hosting capacity. At the same time, the advanced DSSE approaches are
also needed to be validated through a real-time simulation platform for online data ac-
quisition, visualization, and feature extraction.

Since 1970 when the first SE technique was proposed by Fred Schweppe, most of
the studies on the topic were focused on static state estimation (SSE) methods based on
weighted least square (WLS). SSE is a data processing algorithm based on only the data
of the current time sample. The algorithm is computed by the central computer to per-
form a “best fit” of the total measurements and estimate the static state vector. Another
type of state estimator is the recursive method, such as the well-known Kalman filter-
based [7]. The Kalman filter is highly potent in several ways: it supports estimation in
past, present, and future states; it can estimate states well even if the accurate model of
the system is not known thanks to the ability to incorporate noise characteristics into
the computations [1], [8]. The most widely adopted non-linear Kalman filters for SE are
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the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) [8]. The for-
mer solves SE by calculating the Jacobian matrix to linearize the measurement functions
as an approximation, while the latter solves SE by using a statistical distribution of the
states [9]. Although the Kalman filter-based SE can obtain better estimation accuracy
than the WLS, it requires a higher complexity algorithm resulting in a higher compu-
tation effort. The high computational time was one of the main reasons the Kalman
filter-based SE was not widely implemented in real-time SE back then [10]. Nowadays,
the effectiveness of SE based on the Kalman filter has been recently reconsidered thanks
to the PMU measurements that allow SE to perform at a high refresh rate.

Bad data processing is one of the primary functions of any SE algorithm, where bad
data refers to errors in the measurements. The erroneous data can arise from problems
in the measuring device or the communication system used to transmit the data [3]. Bad
data is common in power systems since there are usually a number of measurements
collected for SE and several sources of bad data. The estimator can be considerably bi-
ased (i.e., immense errors) if a huge magnitude of bad data goes through the estimation
process [3]. This means that any estimator should be able to identify and reject bad mea-
surements. However, the SSE can be prone to bad data or loss of data if the measurement
redundancy is low, which is a general case for the distribution level since there are not
many measurement devices in the distribution grid [8]. The reason for the prone is that
rejecting erroneous measurements can impact the observability of the system, and SSE
concentrates on only the present measurements. This issue can be overcome by the so-
called forecasting-aided state estimation (FASE) since it can maintain data redundancy
[11] despite bad data elimination. This is because FASE uses not only the measurements
but also the predictions. The FASE is an estimator that considers the time-evolution of
the states for the forecasting under the assumption of quasi-steady-state operating con-
ditions. The state variables are bus voltage magnitudes and angles of the system. The
Kalman filter is also used to solve the FASE formulation for solutions. It can be consid-
ered that the FASE is particularly suitable for distribution systems where the measure-
ment redundancy is usually low. Apart from bad data as the anomaly, sudden changes
of states caused by load change or network topology change may occur in the power
system [8]. In that case, the FASE will obtain a poor estimation accuracy since the state
transition coefficient must take some time instants to adapt to the new operating point.
Hence, FASEs need to treat sudden change as one type of anomalies in order to distin-
guish it from bad data for proper actions to reduce the adverse effects. All in all, the need
for the function of anomaly processing for the Kalman filter-based SE is established.

1.2. LITERATURE REVIEW

1.2.1. LITERATURE STUDY ABOUT STATIC AND DYNAMIC STATE ESTIMATION

AND ANOMALY PROCESSING FUNCTION

Since 1970, the first method of power system SE was proposed by Fred Schweppe [12]–
[14]. The problem was first formulated in terms of SSE and has been studied and applied
widely in the power industry. A solid review of state of the art in electric power system
SSE can be found in [5], [15], [16]. This SSE method was computed using a single scan
of the whole measurement set as a snapshot per time instant, providing that the system
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is overdetermined (having redundant telemetry measurements in the network). The bus
voltage magnitudes and angles are usually given as the state variables. The power sys-
tem operating point is assumed to be quasi-steady-state, of which the load and genera-
tion change smoothly and slow enough so that dynamic behaviors of the states can be
neglected. It is noted by [5] that the utilized SSE was not actually real-time but is only
a quasi-static representation of the network since the conventional measurements re-
ceived from RTUs can be delayed up to a few seconds.

The famous work of R. Kalman was firstly proposed in 1960 [17]. Theoretically, the
Kalman filter can provide better estimation accuracy compared to the WLS-based SSE.
However, the application of the Kalman filter was not widely used (as the WLS) on power
system SE because of the more complex algorithm. Some limitations of the implemen-
tation noted by [10] are: (i) the need for the process model that has to be carefully tuned
to include the time-evolution of the power system state dynamics; (ii) advanced chal-
lenges for the practical aspects, such as the need for anomaly processors that not only
deal with bad data but also sudden change since it violates the process model; (iii) the
higher computational time, which causes difficulties to real-time application.

In the early 1970s, the approach of dynamic SE (DSE) on power systems was pro-
posed by Debs and Larsonn [18] by applying a linear Kalman filter on a linear process
model to describe the system state dynamics. However, the estimation is delayed and
has poor accuracy when a sudden state change occurs. Also, the process model was
oversimplified, so the forecasting is not optimal.

In the late 1970s, Nishiya et al. [19]–[21] proposed the first method to discrimi-
nate/classify anomalies of the DSE formulation into three types: (i) occurrence of bad
data, (ii) changes in network configuration, and (iii) sudden state changes. The non-
linear Kalman filter, the so-called extended Kalman filter (EKF), is used for the process
model. The method introduced the innovation process to be analyzed on a statistical
basis. Specifically, after detecting an anomaly, the skewness of the distribution of the
innovations is used to distinguish bad data from the other anomalies. After that, if the
normalized innovations associated with the power flow measurements exceed a certain
threshold, the sudden topology change is suspected and re-estimated. Otherwise, the
sudden state change is recognized. Although the process model is also simplified as [18],
the innovation analysis proposed in this study has paved the way for the anomaly pro-
cessing development for the Kalman filter-based SE.

Da Silva et al. [22] proposed the DSE based on EKF with the process model that can
track the operating points of the power system under quasi-steady-state. The state tran-
sition coefficients of the process model are assessed using the Holt’s linear exponential
smoothing method, proposed in the same study. Also, the paper showed that the pre-
dictions are pretty unreliable under a sudden change in the system, and that the process
model needs some snapshots of time to adjust its coefficient and then provide reliable
predictions again. One way was suggested to help the adjustment faster was to reduce
the time period in each snapshot of the SE algorithm so that more measurements could
be processed. The anomaly was processed using logical check routines; if the maximum
number of bad data per region is exceeded, the sudden change is characterized. All in all,
this study proves that the Holt’s forecasting method has a very good forecasting capabil-
ity for the EKF-based SE under normal operations. However, the logical check routines
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for processing anomaly is not so reliable because it highly depends on each system.
The author of [23] then proposed a new method to discriminate bad data and sud-

den change by using both innovations and residuals. This approach combines the pre-
estimation procedure (i.e., innovation analysis) and the post-estimation procedure (i.e.,
residuals analysis) to obtain more reliable detection and discrimination of anomalies.
The EKF-based DSE and the forecasting method as [22] were used for normal opera-
tions. Once an anomaly is detected by checking the high value of normalized innova-
tions (known as a-test), the SSE is performed instead in order to guarantee reliable resid-
uals. Then, the values of normalized residuals are checked against a particular threshold
(known as b-test). If one exceeds the threshold value, the anomaly is characterized as
bad data. Then, the suspected bad measurements are identified based on the innova-
tion analysis and are eliminated by substituting them with the forecasted data. Other-
wise, the sudden change is characterized. The technique of this paper contributes sig-
nificantly to the development of anomaly processing because: (i) it can distinguish small
magnitude of bad data from sudden change while the pre-estimation method may not;
(ii) the WLS filter of SSE can provide a good estimation under sudden change. However,
the technique is conducted after the estimation, resulting in higher computational effort
and time. Therefore, careful attention has to be considered for real-time applications.

Coutto Filho et al. [24] proposed a debugging procedure for anomaly detection and
discrimination. The anomaly can be discriminated into (i) gross measurement errors,
(ii) topological errors, or (iii) forecasting errors due to sudden changes in the system op-
erating point. This paper used the Holt’s linear exponential smoothing method for the
process model and used only the WLS for the state filtering. The concept of using inno-
vations and residuals for anomaly processing is similar to [23] for bad data and sudden
change. The anomaly will be classified as topology errors under the condition that the
number of suspicious bad data is more than the expected maximum number of bad data
in the system.

The same author then proposed state-of-the-art for a particular estimator of the DSE
concept, the so-called FASE [11], [25]. This estimator considers the quasi-stationary
regime to track the static-state of the system and its time evolution as static-state dy-
namics while disregarding transients. The state variables specifically refer to the bus
voltage magnitudes and angles.

1.2.2. LITERATURE STUDY ABOUT PMU-BASED STATE ESTIMATION AND DIS-
TRIBUTION SYSTEM STATE ESTIMATION

Phasor measurement units (PMUs) are measurement devices that can take the direct
magnitude and phase angle of voltage and current measurements and have these data
time-stamped with high precision. The typical reporting rate can be up to 20-60 times
per second. The PMU measurements are usually synchronized with the Global Position-
ing Systems (GPS) receivers; thus, they can be from several areas, even across widely
dispersed locations [26].

Since the development of PMUs, many researchers in the SE area have conducted to
see how to use the devices to obtain better observability of the system. Reference [27]
discussed that the voltage phasors from PMUs can significantly improve the phase angle
estimation accuracy with the proper PMU placement. This is because the phase angle
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cannot be monitored for the traditional technology and thus has to be calculated by the
SE process. Another benefit of PMUs is that the high reporting rate of PMUs can lead
to a high time step resolution in the power system monitoring. If the SE algorithm is
computationally efficient enough, the proper tracking of dynamic behavior, e.g., fault
event, will become possible [28].

It is possible to include the voltage and current phasors from PMUs into the SE pro-
cess that is already based on SCADA measurements to increase the performance. This
type of state estimator is known as a hybrid state estimator [29]–[34]. However, there
are still improvement limitations in case if the SCADA measurements are needed for the
network observability or to ensure the measurement redundancy. Also, some works [35]
discussed that the data from PMU and SCADA should be collected and utilized sepa-
rately because the PMU data is far superior to the SCADA data. Suppose a number of
PMUs can cover some portions of the grid and provide enough observability and redun-
dancy. In that case, the estimation performance of the states in those portions can be
improved considerably [36], [37].

Regarding the PMUs and distribution system, Reference [38] proposed a computa-
tionally efficient method to conduct distribution system states estimation (DSSE) with
PMU measurements and pseudo-measurements in a weakly meshed topology. The im-
portant technique is to select the branch current as the state variables, use the rectangu-
lar coordinate, and convert power injection measurements into current injection mea-
surements to obtain a constant Jacobian measurement matrix.

In terms of real-time simulation, one of the prominent works to the best of our knowl-
edge is the dissertation [10], which deployed a PMU on every bus to obtain linear state
estimation and have full observability. The distribution feeder has a radial topology with
distributed generation. The rectangular coordinate is selected. The DSSE algorithm is
conducted in real-time and has a computational time from only a few ms up to 10 ms,
depending on a wide range of real-time application. The algorithm is adequately fast to
locate the fault and possibly contribute to the backup protection scheme. However, it is
pretty rare and costly for a distribution grid to have PMU at every bus in real-life. Another
real-time DSSE approach is presented in [39] using Real Time Digital Simulator (RTDS).
The study used PMU measurements and pseudo-measurements. The processing time
of this algorithm is about 500 ms to find the faulty node.

In summary, the knowledge of the static state estimation (SSE) and the forecasting-aided
state estimation (FASE), also known as dynamic state estimation (DSE), for transmission
systems have been studied and implemented for a long time. Meanwhile, anomaly pro-
cessing functions have also been limited to the transmission system due to the high mea-
surement redundancy. Regarding the distribution system state estimation (DSSE) with
PMU measurements, several methods have been proposed and studied on the radial
topology with a combination of pseudo-measurements and real measurements. How-
ever, only a few studies had implemented the algorithm in real-time to validate the the-
oretical methodologies. Therefore, the research topics about implementing PMU-based
DSSE algorithms with the anomaly processing function into the ring distribution grid in
real-time still have a gap to be discovered.
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In this thesis, we present how to implement DSSE algorithms on the real-life active
ring distribution network composed of PMU devices. It is expected in the near future
that the deployment of synchrophasor measurements will be increased in distribution
grids since the modern grid topology is gradually becoming more meshed with the inte-
gration of distributed generation. Two types of estimators are focused on in this study.
First, the WLS-based SSE is selected since it is the most successful and widely-used al-
gorithm in the power industry and academia, thanks to its simplicity and low computa-
tional time. Second, the EKF-based FASE is selected because the Kalman filter has the
promising capability to track the dynamic behaviors of the power system states, and the
EKF version of the Kalman filter utilizes the same Jacobian matrix as for the non-linear
measurement model of the SSE. With the high reporting rate of PMU measurements,
the power system can be considered under quasi-steady-state operations since it can
be assumed that there is no significant variation in the states between the time sam-
ples. The quasi-steady-state makes the FASE a good candidate to solve for the bus volt-
age magnitudes and angles in distribution grids, which usually have low measurement
redundancy. This thesis’s significance and contribution is the experimental validation
of the theoretical SE algorithm by fully integrating the SE into our real-time simulation
platform to utilize real-time data from software PMUs simulated by Real Time Digital
Simulator (RTDS) and streamed over the internet.

Special attention will be given to anomaly processing, the so-called anomaly detec-
tion discrimination and identification (ADDI), for the validation against possible dis-
turbances in power systems and some telecommunication failures for real-life network
adaptability. Due to the recent availability of PMU devices, the ADDI has been chal-
lenged in terms of real-time practicability. The reason is that any state estimator cou-
pled with the ADDI should consume lower computational time than the fast refresh rate
of PMUs so that the SE will not lose any measurements. This challenge was not raised
before because there was sufficient time to perform the ADDI due to the slow update of
the conventional measurement at several seconds or more. In this study, three differ-
ent methods of anomaly detection and discrimination from the literature are selected
to be compared and tested with several levels and locations of anomalies in the distri-
bution grid. The criteria for discrimination are based on the statistical analysis of inno-
vations and/or residuals, depending on the method. In addition, the most traditional
way to perform anomaly identification and countermeasures are adopted to prevent the
estimation from being biased. Finally, we assess the performance of the proposed state
estimator coupled with the ADDI algorithm under normal and abnormal operating con-
ditions and also compare the results with the other estimators in this study that are not
coupled with the ADDI module.
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1.3. RESEARCH OBJECTIVES
This thesis aims to implement distribution system state estimation (DSSE) algorithms
coupled with the auxiliary function, the so-called anomaly detection discrimination and
identification (ADDI), into an existing 50 kV ring distribution network, namely Enduris
MV grid, equipped with PMU measurements using our real-time simulation platform.
The summaries of objectives are as the following:

1. To create the mathematical model of the topology of the Enduris MV grid in MAT-
LAB.

2. To set up the real-time simulation platform (our experimental setup) to stream
the simulated PMU signals from RTDS facilities via the internet connection into a
computer to run SE on MATLAB.

3. To implement DSSE algorithms, i.e., the WLS-based SSE and the EKF-based FASE,
using our real-time simulation platform.

4. To create the ADDI algorithm and couple it with the EKF-based FASE to process
anomaly in the measurements as follows: (i) anomaly detection and discrimina-
tion, (ii) anomaly identification and countermeasures.

5. To accurately estimate voltage magnitudes and angles at the 150 kV and 50 kV sub-
stations of the Enduris MV grid in real-time under normal and abnormal operating
conditions.

1.4. RESEARCH CONTRIBUTIONS
The contributions of this study are listed below:

1. Included in Chapter 2 - The mathematical model of the Engurid MV grid topol-
ogy as the network admittance matrix is created in MATLAB. The model consists
of three-phase series components of generic transmission lines and transformers
using two-port parameters. Objective 1 is fulfilled by this contribution.

2. Included in Chapter 4 – The real-time experimental setup to send online PMU
streams from RTDS via the internet into the data acquisition and the SE algorithm
in MATLAB is established. Objective 2 is fulfilled by this contribution.

3. Included in Chapter 2, 5 – The formulations of the WLS-based SSE and EKF-based
FASE are created in MATLAB in Chapter 2. Both DSSE algorithms are successfully
implemented on the real-time experimental setup, and the estimation results are
compared under normal operating conditions in Chapter 5. Objective 3 is fulfilled
by this contribution.

4. Included in Chapter 3, 5 – The ADDI module is created and coupled with the
EKF-based FASE in MATLAB. The module consists of algorithms of (i) anomaly de-
tection and discrimination and (ii) anomaly identification and countermeasures.
Several levels and locations of anomalies are tested against the ADDI module in
Chapter 5. Objective 4 is fulfilled by this contribution.
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5. Included in Chapter 5 – The performance indices for the measurement noise fil-
tering capability and the estimation accuracy are displayed and analyzed under
normal and abnormal operating conditions. The results aim to compare the cases
when there is (or is not any) ADDI module coupled with the DSSE algorithms in
order to prove the necessity of the ADDI module. Objective 5 is fulfilled by this
contribution.

1.5. RESEARCH QUESTIONS
Besides the research objectives that are already defined, some important questions are
also helpful to guide the thesis direction. The questions are answered in detail with brief
results as follows.

1.5.1. WHICH SE TECHNIQUE IS SUITABLE IN TERMS OF ACCURACY TO ES-
TIMATE THE STATES OF THE DISTRIBUTION GRID UNDER NORMAL

OPERATIONS AND WHY?
Generally, two sources of uncertainties that can considerably influence the estimation
accuracy are the available measurement infrastructure in the network and the accuracy
of that measurement type [28]. But since the question is regarding which technique of
SE, the factor contributing to the estimation accuracy is the procedure of SE itself in this
context.

The traditional weighted least square (WLS) algorithm for the static state estimation
(SSE), or the WLS-SSE, usually solves the solution from the flat start initialization, i.e.,
all the bus voltages are set at 1 p.u. and in phase with each other [15]. As a result, the
performance index to evaluate the estimation accuracy, the mean absolute error (MAE)
compared to true values, showed that the MAE of voltage magnitudes and angles using
the WLS-SSE is approximately 8×10−6 in p.u. and rad under normal operations, which
has a very low error.

However, apart from the SE measurement model that the WLS-SSE considers, the
accuracy could be improved if the process model is included in the SE model. The main
algorithm is known as the forecasting-aided state estimation (FASE) and is solved using
the extended Kalman filter (EKF) technique. In short, it will be referred to as the EKF-
FASE. Since forecasting is possible and can be done as the extra step, the initial guess will
be the forecasted values, which are closer to true values than the flat start initialization.
The MAE of voltage magnitudes and angles using the EKF-FASE is approximately 4×10−6

in p.u. and rad under normal operations.
In summary, the obtained MAE values from both algorithms have insignificant dif-

ferences since they are in the same order of 10−6. By multiplying the 10−6 p.u. with the
base value of 50 kV, the voltage magnitude will be only 0.05 V line-to-line, which is neg-
ligible in real life for 50 kV substations. Therefore, both algorithms are suitable to give
an adequately accurate estimation for the distribution grid under normal operations.
But in order to decide which algorithm for practical implementation in real-time, more
aspects should be compared and investigated, such as the computational time and the
robustness against erroneous measurements.
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1.5.2. IS IT FEASIBLE TO RUN THE REAL-TIME SE ALGORITHM AND ITS AUX-
ILIARY FUNCTION IN A COMPUTATIONALLY EFFICIENT WAY TO BE COM-
PATIBLE WITH THE HIGH REPORTING RATE OF THE SYNCHRONIZED

PHASOR MEASUREMENTS IN THE DISTRIBUTION GRID?
Since the PMU devices are capable of providing high-speed refresh rate phasor measure-
ments, the SE algorithm that takes the measurements as input should be designed in a
way that it can fastly process every measurement data and avoid losing data as much as
possible. In order to begin answering this question, we first mention some main chal-
lenges that we have to overcome since they can cause a significant computational bur-
den to the SE algorithm in several aspects.

First, the state estimation (SE) is formulated as non-linear equations in this study
because of the choice of the state variables and the measurements we made. The se-
lected options are (i) polar node-voltage as the states and (ii) polar node-voltage and
polar branch-current for the phasor measurements from PMUs. We chose them so that
the SE algorithm can directly estimate voltage magnitudes and angles, and the current
magnitudes and angles can be handled easily. In turn, the SE model has non-linear mea-
surement functions, possibly resulting in a more computational burden.

Second, the estimator is developed using the three-phase model since a distribu-
tion network usually has an unbalanced load and other electrical quantities. This three-
phase model development, together with a possibly high number of nodes for the distri-
bution system, can result in a large system and then lead to a very high computational
burden.

Third, the high R/X ratio of distribution lines makes the SE algorithm impossible to
apply the fast decoupled load flow technique that is commonly used for the transmission
system for simplification. For instance, for a given low R/X ratio of transmission lines,
the resistance can be neglected with reasonable approximation, leading to a more sim-
plified (decoupled) Jacobian measurement matrix. However, since the technique cannot
be applied to the distribution system, the SE measurement model has to consist of a full
Jacobian measurement matrix, which may lead to a higher computational burden.

As a result of the challenges above, the traditional weighted least square (WLS) algo-
rithm for the static state estimation (SSE), or the WLS-SSE, we developed can converge
within 4-5 iterations under normal operations, which has the overall execution time of
25.3 ms. It is apparent that this execution time exceeds the refresh rate of PMUs at 20 ms
per measurement. In order to overcome this limitation, we developed another approach
that can converge in only one iteration, using the extended Kalman filter (EKF) tech-
nique, with a proper initialization based on predictions. The main algorithm is known
as the forecasting-aided state estimation (FASE). The execution time of the EKF-FASE al-
gorithm is only 10.7 ms. After integrating/coupling the auxiliary function of the anomaly
detection discrimination and identification (ADDI) into the EKF-FASE, the execution
time becomes slightly higher at 13.7 ms. This should be highlighted as a significant con-
tribution that the coupled EKF-FASE estimator will not miss any measurement under
normal operations as the PMU streaming rate is 20 ms per sample. Therefore, it can be
concluded that it is feasible to run the real-time SE algorithm with its auxiliary function
computationally efficiently to be compatible with the high reporting rate of PMUs in the
distribution grid.
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1.6. THESIS OUTLINE
This thesis is organized into six chapters. The overview of Chapters 2-6 is explained as
follows.

In Chapter 2, we introduce theories about PMU-based SE. First, we describe the for-
mulation of SE problems, the concept of distribution state estimation (DSSE), and the
impact of PMUs in SE. Second, the general requirements of SE in this study are ex-
plained. Third, the network admittance matrix for the Enduris MV gird is created by
using the three-phase series components of generic lines and transformers. We describe
the particular characteristics of the non-linear measurement model that link the state
variables and the available measurements, consisting of online phasor measurements
and pseudo-measurements. This followed by describing the process model represent-
ing the time evolution of the power system states to conduct forecasting. Finally, the
equations of the WLS-based SSE and EKF-based FASE are formulated and presented as
flowcharts.

In Chapter 3, the whole process of the ADDI module is explained in detail. We de-
scribe the classification of anomalies. Three different methods of anomaly detection and
discrimination in this study are introduced and depicted. Following this, the process for
anomaly identification and countermeasures for each method is fully described.

Chapter 4 is related to the preparation for the implementation of the SE algorithms
in real-time. First, we elaborate on how to set up the real-time simulation platform using
the facilities in our RTDS laboratory of TU Delft. Second, the schematic of the Enduris
MV grid and the measurement configurations are depicted. Third, the assessment of
measurement noise and process noise covariance matrices are explained with some as-
sumptions. This step aims to tune the uncertainties from the sources of measurements
and process noise to match with the simulated power system in real-time. Lastly, the
performance indices used to assess the filtering capability and estimation accuracy of
SE are introduced.

Chapter 5 shows the experimental results of the real-time simulation. First, the per-
formance indices by the WLS-SSE and EKF-FASE are compared under normal operation
scenarios. This is followed by testing several levels and locations of anomalies against
three methods of the ADDI module. Their computational efforts are compared, and then
the best method is selected. Lastly, the results of the proposed EKF-FASE coupled with
the ADDI module and the DSSE algorithms without the ADDI module are compared un-
der both normal and abnormal operating conditions.

Chapter 6 summarizes the results of this study and suggests future work.





2
THEORY ABOUT PMU-BASED

STATE ESTIMATION

We introduce theories about PMU-based SE. First, we describe the formulation of SE prob-
lems, the concept of distribution state estimation (DSSE), and the impact of PMUs in SE.
Second, the general requirements of SE in this study are explained. Third, the network
admittance matrix for the Enduris MV gird is created by using the three-phase series com-
ponents of generic lines and transformers. We describe the particular characteristics of the
non-linear measurement model that link the state variables and the available measure-
ments, consisting of online phasor measurements and pseudo-measurements. This fol-
lowed by describing the process model representing the time evolution of the power system
states to conduct forecasting. Finally, the equations of the WLS-based SSE and EKF-based
FASE are formulated and presented as flowcharts.

2.1. INTRODUCTION OF DISTRIBUTION SYSTEM STATE ESTI-
MATION AND PMU MEASUREMENTS

This section aims to introduce concepts of SE with PMU devices and general facts about
the distribution system compared to the transmission system. They are organized into
three subsections. First, the formulation of the SE problem is explained. Second, the
distribution system state estimation (DSSE) is introduced. Third, the role and impact of
PMUs in SE are described.

2.1.1. FORMULATION OF THE STATE ESTIMATION PROBLEM

The problem formulation of the SE in power systems is to determine the state variables
of the network based on the SE mathematical models and the real-time measurements
received from the meters at the field. The aim is to solve for the states that can lead to a
better approximation of the true measurements [28]. The SE mathematical models gen-
erally consist of the network topology model and the measurement model for the static
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state estimation (SSE). However, for the dynamic state estimation (DSE), the SE math-
ematical models also have to include the process model, representing dynamic charac-
teristics of the states, since the approach also relies on tracking the time evolution of the
states historically with respect to the previous time samples in order to predict the states
one step ahead.

2.1.2. DISTRIBUTION SYSTEM STATE ESTIMATION
The electric power system consists of generation, transmission, and distribution sys-
tems. Typically, a distribution network consists of High-to-Medium Voltage (HV/MV)
transformation centers, the MV grid, Medium-to-Low Voltage (MV/LV) transformation
centers, and the LV grid. The LV grid is mainly connected by residential and commercial
users., while the MV grid is connected by industrial users. Recently, due to the liber-
alization of the energy market, growing penetration of distributed generation, mainly
renewable energy sources, and distributed energy resources such as electric vehicles,
the distribution system has been gradually changing from passive into active grids. This
requires more sophisticated monitoring and control of the network, which is relevant to
the smart grid (SG) scenario. In the SG scenario, the smarter energy management system
solution by the distribution system operator (DSO) aims to fulfill customers’ demands
without harming the service quality and infrastructure. The precise and reliable opera-
tion of the management and control functions by DSO are based on the information of
the operating condition of the grid [40].

One way to achieve the real-time network conditions is to use the distribution system
state estimation (DSSE) algorithm to provide the states of the distribution system as a
snapshot by using the measurements from the field and the other network information
if available. Figure 2.1 illustrates the relevant applications of the DSSE results for a new
distribution management system (DMS) by the distribution system control center [40].

Figure 2.1: The relevant applications of the DSSE results for DMS [40].

In order to conduct DSSE, the measurement infrastructure available in the network
is the most critical factor that determines how fast and accurate the states can be solved.
For the transmission level, there are usually a number of measurement devices deployed
in the grid. However, in general, the measurement and monitoring devices are in short
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supply for distribution networks, basically limited to only HV/MV substations. For MV
grids, the currents and voltages of MV lines to the main feeder are usually monitored
for the local protection system, and their average values are sent to system operators in
the utility control center via a SCADA system. The updating rate of these conventional
measurements can be a few seconds up to minutes [40]. Due to the lack of measurement
redundancy, the distribution networks are never observable in practice [41]. This calls
for the use of historical data or forecast measurements regarding power consumption
and generation for the location that lacks a measurement device to obtain minimal ob-
servability (100%). These data are so-called pseudo-measurements, which usually have
large uncertainties to reflect the low confidence of the data.

Traditionally, the SE algorithm has been developed and exploited for decades in trans-
mission grids, i.e., the so-called transmission system state estimation (TSSE). The tech-
nique is generally formulated as a weighted least square (WLS) problem and then solved
based on the iterative Newton method. In principle, the same framework of TSSE could
be applied to the distribution grid. Still, the approach has to be conceptually different
because of the characteristics of a typical distribution grid, as shown in Table 2.1. Some
of the main points are explained below [28], [40].

First, the number of measurement devices in distribution systems is poor. Because of
this, pseudo-measurements that are derived from statistical or historical data are needed
to obtain network observability, as mentioned before. This causes a high uncertainty in
the DSSE results, and the estimator’s robustness is limited when there is a loss of mea-
surement or data degradation because of the low redundancy. Second, the topology of
distribution systems is mainly radial or weakly meshed, which is suitable for using the
back/forward sweep-based method to solve for the states in the DSSE. Note that the
Newton-based method that is commonly used in the TSSE can also be applied to the
DSSE, but a higher execution time can be expected, and some cautions should be noted
to avoid possible numerical difficulties due to a particular transformer configuration
[41]–[43]. Third, the DSSE estimator should be modeled as the full three-phase since the
electrical quantities, such as loads, are non-symmetrical, and there are also two-phase
and single-phase laterals in the network. With the penetration of distributed generation,
the characteristic of the unbalanced electrical system is increased. By contrast, the elec-
trical quantities for transmission systems can be considered balanced. Thus, the TSSE
algorithm is usually modeled as a single-phase model as the positive sequence of the
electrical quantities. Fourth, the characteristic of the distribution lines is the high R/X
ratio, possibly equal to one. This high R/X ratio disables the possibility of the fast decou-
pled load flow technique, which is commonly applied for transmission lines with a low
R/X ratio to neglect the resistances for simplicity.

In general, the low availability of measurements is the critical problem that affects
the estimator’s robustness and can lead to a poor estimation accuracy of the DSSE. How-
ever, these problems will be alleviated thanks to the availability of PMU devices that have
very high accuracy in the Enduris MV distribution grid we considered in this study. Our
DSSE algorithms were designed using a three-phase model with a full Jacobian matrix
(not using the fast decoupled load flow technique). The iterative Newton method is used
to solve the WLS problem for the static state estimation (SSE).
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Table 2.1: Main differences between transmission system and distribution systems [28].

Transmission System Distribution System
Monitoring Many measurement devices Few measurement devices

Main measurement types Real measurements Pseudo-measurements
Topology Meshed Radial/weakly meshed

Three-phase system Balanced Unbalanced
Injections Concentrated loads Distributed loads

Nodes number Low/medium High
Line impedance Low R/X ratio High R/X ratio

2.1.3. ROLE AND IMPACT OF PMUS IN STATE ESTIMATION
The characteristics of the PMUs impact the SE functionalities and performance signifi-
cantly in several aspects. Some important characteristics are summarized as the follow-
ing [28]:

1. Availability of phasor measurements

2. Synchronization with respect to the UTC

3. High reporting rate

4. High accuracy and compliance with the measurement of dynamic signals

First, the availability of PMU measurements is capable of providing phasors consist-
ing of magnitudes and angles of voltages and currents. Concerning the conventional
measurement, which can give only magnitudes, the additional information of angles
from PMUs raises the measurement redundancy for the input of the SE algorithm. This
leads to enhanced robustness of the SE process and expanded observability of the mon-
itored network. Therefore, the SE algorithm tends to have a higher ability to deal with
some erroneous or loss of measurements due to problems in the telecommunication
system, e.g., bad data or topology errors, since the problems largely depend on the level
of measurement redundancy in the network. In addition, another advantage of the PMU
measurements is related to the convergence properties of the SE algorithm. It is ac-
knowledged that the current measurements can cause SE convergence difficulties by the
lack of the current angles measurements. To be more specific, the possible bi-directional
power flow of a modern grid can cause the convergence problem since more caution
should be considered to define the power flow direction. Hence, these problems will be
alleviated thanks to the availability of phasor measurements.

Second, one of the most important features of the PMUs is that the measurements
are synchronized with the universal time reference (UTC). One benefit is that each mea-
surement has its own time-stamped so that all the data from PMUs can be referred to
precisely. If there is no time-stamped, the SE results will not be able to refer to the ex-
act instant of time. This is usually not a big concern for the transmission grid since the
steady-state conditions are realistic shortly. However, this point becomes more conse-
quential for the distribution grid in case there are intermittent renewable sources and
distributed generation since the system operating conditions vary rapidly. Therefore,
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the synchronized measurements from PMUs can guarantee consistent measurements
for the SE algorithm and then provide more reliable estimation results for the system
operator in the control center.

Third, the capability of PMUs to provide synchrophasor measurements at high-speed
rates is exceptional. Suppose the SE algorithm and the telecommunication system are
designed efficiently in terms of computational time. In that case, it is possible to exploit
the high reporting rate of PMUs, resulting in the high time sample resolution for moni-
toring the system operating conditions. Traditionally, conventional measurements with
low refresh rates are utilized; the SE algorithm can perform at the rate for up to a few
minutes in transmission systems. It is widely known that this rate is too slow to observe
the dynamic behavior of the modern gird. This calls for a faster SE computational time
and a more frequent reporting rate of measurement devices. Therefore, it can be essen-
tial to have the high report rates of PMU measurements to monitor the power system’s
dynamics using a fast SE execution to support an energy management system.

Fourth, PMU devices are designed to provide highly accurate measurements in digi-
tal. It is apparent that the more accurate the measurement for the input of SE is, the more
precise the estimation result can be. In order to monitor dynamic behaviors, given a re-
liable SE algorithm, it is crucial to ensure that the measurement instruments can deal
with the dynamic signals properly and provide sufficiently accurate measurements in
such conditions. Typically, the accuracy of the conventional meters is defined in steady-
state conditions, but the accuracy degradation is unknown while under dynamic condi-
tions. For the PMU devices, those who meet the synchrophasor standard IEEE C37.118.1
[44] will be guaranteed a minimum accuracy level for a specific situation, i.e., 1% of total
vector error (TVE) for steady-state and of 3% for dynamic conditions. Here, 1% of TVE
corresponds to a maximum deviation of 1% in amplitude estimation or a maximum de-
viation of 1 crad (0.01 rad) for phase angle. However, the occurrence of a fast transient
such as step changes can significantly degrade the measurement accuracy, depending
on how suitably the reported data is marked.

2.2. REQUIREMENTS OF STATE ESTIMATION
In general, the following three essential requirements are used to evaluate a suitable SE
algorithm for an application: estimation accuracy, time frame, and robustness [28].

2.2.1. ACCURACY OF THE ESTIMATION

Since the state variables in power systems are required for many applications, such as
system security control and constraints on economic dispatch [45], it is fundamental
to assess the efficiency of the estimation in terms of accuracy because the applications
depend on it.

In reality, since it is impossible to know the true states of the network, the estimation
accuracy is used to represent the maximum expected deviation of the estimate from the
true value. However, the actual values are known in this thesis since we can read the val-
ues directly from the real-time simulation infrastructure. Here, the estimation accuracy
expresses how close the estimated states are to their actual values, reflecting the level of
uncertainty of the estimated quantities.
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Generally, two sources of uncertainties that can considerably influence the estima-
tion accuracy are the available measurement infrastructure in the network and the accu-
racy of that measurement type [28]. They act as the bottlenecks affecting the precision
between the estimated values and actual values from the power system. The two sources
of uncertainties are explained as the following.

First, the availability of the measurement infrastructure is the most critical factor for
estimation accuracy. As noted earlier, poor estimation accuracy can be expected when a
certain number of pseudo-measurements is used due to an insufficient number of real
measurements in the general distribution grid. In this thesis, many PMUs are equipped
in the Enduris MV distribution grid, covering MV substations and cables. This makes the
network highly observable and needs only a few pseudo-measurements. Therefore, a
high estimation accuracy can be expected, mainly depending on the accuracy of phasor
measurements.

Second, the measurement accuracy depends on the specification of the reading me-
ter of each type. For phasor measurements, the information from the datasheet of PMU
devices in the field has to be carefully used to determine the uncertainty for the SE mea-
surement model. In this work, however, since the PMUs are simulated as software in
the RTDS, the measurement accuracy of the devices can be considered ideal. In turn,
additional measurement noises have to be manually added to the ideal/actual measure-
ments using MATLAB so that the uncertainty level in the SE measurement model can be
determined appropriately.

2.2.2. TIME FRAME

The time frame is the time window that the estimated states are considered valid. For
online SE implementation, the SE algorithm must run with the power system monitoring
in real-time. In the 2000s, the scanning rate was every 2 s for SCADA measurements.
Still, the practical estimators ran every few minutes due to computational limitations [5].
A reasonable shorter time window will be required with more advanced measurement
devices and methodologies in the near future for the smart grid [28].

For a given high reporting rate at every 20 ms of the PMU devices, the execution
time of the whole SE algorithm, including auxiliary functions, e.g., bad data detection,
topology error identification, and other anomaly processors, should be at or below 20
ms. This way, the countermeasure by the auxiliary function can be applied against any
abnormal conditions in the system before the time the new set of measurements arrives.
This can lead to a more reliable SE result for the power system monitoring in the control
center.

2.2.3. ROBUSTNESS

The robustness indicates the SE capacity to provide the system state with a given qual-
ity; when the input data is degraded [28]. The causes of the degradation due to gross
errors (or outliers) can be either the unreliable dynamical model or several data qual-
ity issues of PMU measurements. The data quality issues can result from carrying bad
data, non-Gaussian measurement noise, missing data, cyberattacks, etc [46]. This thesis
considers only bad data due to the observation outliers that affect the metered values.
In reality, these outliers may result from significant biases in phasor measurements due
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to infrequent calibration of PMUs, device failures, and impulsive communication noise
[47].

For the robust static state estimation (SSE), one crucial method is to reduce the weight
given to erroneous measurements to minimize the influence of the bad data. Also, when
an estimator has the principle of automatically eliminating bad data, it also has a robust
property [6].

For a particular type of SE that considers the time evolution of the state, such as the
forecasting-aided state estimation (FASE), the presence of observation outliers can sig-
nificantly degrade the estimation performance if some proper actions are not taken. To
alleviate this degradation, the pre-estimation techniques based on the innovation anal-
ysis are usually conducted to detect, identify, and eliminate the gross errors to obtain
unbiased state estimates [46]. Apart from bad data, potentially inaccurate estimation
results are obtained with the presence of a sudden state change due to load changes,
distributed energy resource fluctuations, system topology changes, etc. This is because
the predictions will become unreliable under an unexpected change of states. Hence,
further actions are needed to avoid losing the system states’ trajectory. One of the widely
used actions is applying an adaptive filtering scheme. It aims to automatically adjust the
weight of the predicted states through its error covariance matrix [48]–[51]. However,
this method is usually complex and may not be attractive from the computational point
of view [23], [24]. In order to have a less complex algorithm and more attractive execu-
tion time, this thesis proposed an anomaly processor, the so-called anomaly detection
discrimination and identification (ADDI) algorithm, as an auxiliary function of the FASE
to perform systematic procedures against anomalies.

2.3. MATHEMATICAL MODELS FOR STATE ESTIMATION
This study utilized the three-phase component and topology models to perform the dis-
tribution system state estimation (DSSE) since the three phases of the distribution sys-
tem are generally not balanced in real life, unlike the transmission system.

This section introduces the mathematical models of the network topology and the
required models for the SE process in this work. Subsection 2.3.1 shows the modeling
of the three-phase components: three-phase transmission line and transformer. Sub-
section 2.3.2 shows how to create the compound bus admittance matrix of the network.
Subsections 2.3.3 and 2.3.4 show main equations with assumptions of the measurement
model and the process model of SE, respectively.

2.3.1. MODELING OF THREE-PHASE COMPONENTS
The model of a component, such as a transmission line and transformer, is a subsystem
and can be used to build the entire network. Here, each three-phase element is con-
nected in series to each edge of the bus n and bus m. Each component is modeled as
follows [42]:

inm = y(n)
nm vn −y(m)

nm vm (2.1)

imn = y(m)
mn vm −y(n)

mn vn (2.2)
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where inm(imn) is a 3×1 dimensional vector of current phasor flowing from bus n to bus
m (bus m to bus n, respectively); vn(vm) is a vector (3×1) of voltage phasor of bus n (bus
m, respectively); y(n)

nm ,y(m)
mn are matrices (3×3) of self-admittance of the component be-

tween bus n and bus m, measured from the edge of bus n (bus m, respectively); y(m)
nm ,y(n)

mn
are matrices (3×3) of mutual admittance of the component between bus n and bus m,
measured from the edge of bus n (bus m, respectively). The transmission line and trans-
former are derived in the current-voltage models as in the subsections below.

2.3.1.1 TRANSMISSION LINE

Figure 2.2: Three-phase two-port π-model of a generic network branch.

The line was modeled as the four-wire grounded wye line segment. It is assumed
that the line has a multi-grounded neutral. By applying the Kron reduction technique,
the phase admittance matrices are dimensional 3×3 [52]. The general three-phase line
model is shown in Figure 2.2 and has the current-voltage equations as the following [7],
[53]: [

inm

imn

]
=

[
ynm,L +ynm,T −ynm,L

−ymn,L ymn,L +ymn,T

][
vn

vm

]
(2.3)

Comparing (2.3) with (2.1)-(2.2) to express in terms of the two-port parameters yield:

y(n)
nm = y(m)

mn = ynm,L +ynm,T (2.4)

y(m)
nm = y(n)

mn = ynm,L (2.5)

where

ynm,L = gnm,L + j bnm,L (2.6)

ynm,T = gnm,T + j bnm,T (2.7)

ymn,T = gmn,T + j bmn,T (2.8)
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are the series admittance ynm,L , and the two shunt admittances ynm,T and ymn,T , respec-
tively; j is the imaginary unit; gnm,L and bnm,L are the series conductance and suscep-
tance, respectively; gnm,T and bnm,T (gmn,T and bmn,T ) are the shunt conductance and
susceptance, measured from the side of bus n (bus m, respectively). The series admit-
tance ynm,L is dimensional (3×3) matrix and given by [7]:

ynm,L =

 g aa
nm,L + j baa

nm,L g ab
nm,L + j bab

nm,L g ac
nm,L + j bac

nm,L
g ba

nm,L + j bba
nm,L g bb

nm,L + j bbb
nm,L g bc

nm,L + j bbc
nm,L

g ca
nm,L + j bca

nm,L g cb
nm,L + j bcb

nm,L g cc
nm,L + j bcc

nm,L

 (2.9)

Note that these parameters can be expressed in terms of the series impedance zl i ne ,
and the shunt admittance yl i ne of the three-phase transmission line:

ynm,L = z−1
l i ne (2.10)

ynm,T = ymn,T = yl i ne,T /2 (2.11)

2.3.1.2 THREE-PHASE TRANSFORMER

Figure 2.3: General three-phase two-port transformer model.

At the distribution level, two blocks can appropriately model a three-phase trans-
former. A series block represents the per unit leakage admittance, and a shunt block rep-
resents the core losses of the transformer. The general three-phase transformer model is
shown in Figure 2.3, and the current-voltage equations are as follows [53].[

ip

is

]
=

[
Ypp Yps +Ymag

Ysp Yss +Ymag

][
vp

vs

]
(2.12)

where Ypp ,Yps ,Ysp ,Yss are the submatrices (3×3), and Ymag is the magnetizing admit-
tance matrix (3×3) calculated in. Comparing (2.12) with (2.1)-(2.2) to express in terms of
the two-port parameters yield:
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y(n)
nm = Ypp

y(m)
nm =−Yps −Ymag

y(n)
mn =−Ysp

y(m)
mn = Yss +Ymag

(2.13)

The transformer submatrices Ypp ,Yps ,Ysp ,Yss for (2.12)-(2.13) for the common step-
down transformer are shown in Table 2.2 [53], where the neutral transformer tap changer
position is assumed for simplification. The submatrices are defined depending on the
type of transformer winding.

Table 2.2: Transformer submatrices for common three-phase step-down transformer connections.

Connection Ypp Yps Ysp Yss

YNyn YI -YI -YI YI

YNy, Yyn, Yy, Dd YI I -YI I -YI I YI I

YNd YI YT
I I I YI I I YI I

Yd, Dy YI I YT
I I I YI I I YI I

Dyn YI I YT
I I I YI I I YI

The particular submatrices in Table 2.2 are defined as:

YI =
 1 0 0

0 1 0
0 0 1

 Y sc
Y sc

Y sc+n

 ;

YI I = 1
3

 2 −1 −1
−1 2 −1
−1 −1 2

Y sc ;

YI I I = 1p
3

 −1 1 0
0 −1 1
1 0 −1

Y sc ,

(2.14)

where Y sc = 1
/

Z sc ;Y sc+n = 1
/(

Z sc +Z n

)
; Z sc is the short circuit impedance; and Z n is

the impedance between neutral and ground.

The transformer magnetizing admittance Ymag for (2.12)-(2.13) is defined as:

Ymag = AY012
mag A−1 = 1

3

 2Y 1
mag +Y 0

mag −Y 1
mag +Y 0

mag −Y 1
mag +Y 0

mag

−Y 1
mag +Y 0

mag 2Y 1
mag +Y 0

mag −Y 1
mag +Y 0

mag

−Y 1
mag +Y 0

mag −Y 1
mag +Y 0

mag 2Y 1
mag +Y 0

mag

 (2.15)

where A is the Fortescue transformation matrix; Y012
mag = di ag

{
Y 0

mag ,Y 1
mag ,Y 2

mag

}
; Y 1

mag =
Y 2

mag is the positive (equal to negative) sequence of the transformer magnetizing admit-

tance, and Y 0
mag is the zero sequence of the transformer magnetizing admittance [53].
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2.3.2. Y-BUS CONSTRUCTION FOR NETWORK TOPOLOGY MODEL
The bus admittance matrix of the network can be constructed using the component
models from the previous section 2.3.1. The following matrix equation is derived from
Kirchhoff’s current law (KCL) at each bus and then formed as a set of nodal equations of
the entire network [15].

IBU S =


ii n j ,1

ii n j ,2
...

ii n j ,N

=


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N
...

...
. . .

...
YN 1 YN 2 · · · YN N




v1

v2
...

vN

= YBU S×VBU S (2.16)

where IBU S ,VBU S are vectors (3N×1) of bus external current injection phasors and bus
voltage phasors, respectively; N is the total number of buses in the network; YBU S is the
bus admittance matrix (3N×3N); ii n j ,n ,vn are vectors (3×1) of three-phase net current
injection and voltage phasor at bus n, respectively; Ynm is the (n,m)-th element of YBU S .
By using the same notation from (2.1)-(2.2), the diagonal and non-diagonal parts of YBU S

can be calculated as [42]:

Ynn = ∑
m∈ℵn

y(n)
nm ,n ∈ ℵ (2.17)

Ynm =−y(m)
nm ,m ∈ ℵn (2.18)

where ℵ is the set of buses in the network; ℵn is the set of neighboring buses to bus n.
Here, the shunt components of the transmission line and transformer models are already
added to their corresponding diagonal elements.

The expression of the generic element Ynmof the bus admittance matrix YBU S is:

Ynm =
 Gaa

nm + j B aa
nm Gab

nm + j B ab
nm Gac

nm + j B ac
nm

Gba
nm + j B ba

nm Gbb
nm + j B bb

nm Gbc
nm + j B bc

nm

Gca
nm + j B ca

nm Gcb
nm + j B cb

nm Gcc
nm + j B cc

nm

 (2.19)

Note that the relationship between the flow current inm in (2.1) and the injection current
ii n j ,n in (2.16) is abided by KCL at each bus n ∈ ℵ as follows [42]:

ii n j ,n = ∑
m∈ℵn

inm ,n ∈ ℵ (2.20)

The network topology model will be used for the next section to determine the measurements-
state variables model, so-called the measurement model.

2.3.3. MEASUREMENT MODEL
In this study, the primary measurements in the MV distribution grid are the synchro-
nized voltage and current phasors measured by PMU devices. Theoretically, a linear
measurement model can be achieved if the state variables and the observed measure-
ments are expressed in a suitable coordinate, either polar or rectangular; there must not
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be conventional power measurements, i.e., active and reactive power injections or power
flows. However, in this thesis, not every bus is equipped with a PMU device. Therefore,
those buses in the HV area are assigned pseudo-measurements as (i) constant voltage
phasor at the slack bus, (ii) active and reactive power injections for simplicity and to en-
sure full observability. The mixed set of the phasor and the conventional measurements
cause the measurement model to become non-linear because of the non-linear relation-
ship between the non-phasor measurements and the system states [7]. In this thesis, the
state variables in the network with N buses are expressed in polar coordinates.

x =
[

Va,b,c
1 , ...,Va,b,c

i , ...,Va,b,c
N ,δa,b,c

1 , ...,δa,b,c
i , ...,δa,b,c

N

]T
, i ∈ ℵ (2.21)

where

Va,b,c
i = [V a

i ,V b
i ,V c

i ] (2.22)

δa,b,c
i = [δa

i ,δb
i ,δc

i ] (2.23)

are the magnitude and phase, respectively, of the voltage phasor at bus i in the three-
phase a, b, and c; ℵ is the set of buses in the network. Given that the state vector has
n state variables and dimension (n×1), the number n is equal to 3·(2N) magnitude and
phase of the voltage phasors.

The measurements in the network consist of the bus power injections as the pseudo-
measurement, the bus voltage phasors, the branch current phasors. Given there are m
measurements in the system, which are expressed as the measurement vector with di-
mension (m×1):

z = [
zPQi n j ,zV ,zI f low

]T (2.24)

where

zPQi n j =
[

Pa,b,c
i n j ,1, ...,Pa,b,c

i n j ,m1
,Qa,b,c

i n j ,1, ...,Qa,b,c
i n j ,m1

]T
(2.25)

zV =
[

Va,b,c
1 , ...,Va,b,c

m2
,δa,b,c

1 , ...,δa,b,c
m2

]T
(2.26)

zI f low =
[

Ia,b,c
1 , ...,Ia,b,c

m3
,θa,b,c

1 , ...,θa,b,c
m3

]T
(2.27)

are, respectively, the measurement vectors composed of (i) 3·(2m1) active and reactive
power injections; (ii) 3·(2m2) magnitudes and angles of the bus voltage; (iii) 3·(2m3)
magnitudes and angles of the branch. Note that the number of m is equal to 3·(2m1)+
3·(2m2)+ 3·(2m3).

With the state vector and measurement vector mentioned before, the measurement
model of the state estimation represents the link between the measurements and the
states and has the equation as the following:

z = h (x)+e (2.28)
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where h (x) is the non-linear measurement function; e is the measurement noise vector,
which is assumed to be white and Gaussian with zero mean and its covariance matrix R.

p(e) ∼ N(0,R) (2.29)

and can also be written as:

E {e} = 0,E
{

eeT }= R (2.30)

Here, R is the measurement noise covariance matrix. Each diagonal element of R is
the variance of each measurement, which indicates the uncertainty of the measurement,
e.g., sensors from actual PMUs. The off-diagonal elements represent the correlation be-
tween the measurements, which is assumed to be negligible in this study.

R =


σ2

1
σ2

2
. . .

σ2
m

 (2.31)

where σi is the standard deviation of each corresponding measurement; m is the num-
ber of measurements.

2.3.3.1 MEASUREMENT FUNCTION

The expressions of each type of measurement in terms of the states, i.e., the measure-
ment function h (x), are given below. All measurement functions have to be in terms
of the voltage magnitudes and angles (states). The subscripts n and m denote the bus
index; the subscripts p and l denote the phase, i.e., phase a, b, or c.

The active and reactive power injection at bus n are expressed as [7]:

P p
i n j ,n =V p

n

N∑
m=1

∑
l∈{a,b,c}

V l
m(Gpl

nm cosδpl
nm +B pl

nm sinδpl
nm) (2.32)

Qp
i n j ,n =V p

n

N∑
m=1

∑
l∈{a,b,c}

V l
m(Gpl

nm sinδpl
nm −B pl

nm cosδpl
nm) (2.33)

where δpl
nm = δp

n −δl
m ;

The magnitudes and angles of the three-phase branch current phasors flowing on the
transmission line between bus n and bus m are expressed as:

I p
nm =

∣∣∣I−
p

nm

∣∣∣=√
Re2

{
I−

p

nm

}
+ Im2

{
I−

p

nm

}
(2.34)

θ
p
nm = arctan

Im
{

I−
p

nm

}
Re

{
I−

p

nm

} (2.35)
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where Re
{

I−
p

nm

}
and Im

{
I−

p

nm

}
denote the real and imaginary part of the current phasor

I−
p

nm
between bus n and bus m at phase p. Note that I−

p

nm
means the current phasor is

measured from the side of bus n, while I−
p

mn
means it is measured from the side of bus

m.
Here, since this study utilizes the polar coordinates, Re

{
I−

p

nm

}
and Im

{
I−

p

nm

}
can be

expressed in terms of the voltage magnitudes and angles as [7]:

Re
{

I−
p

nm

}
= ∑

l∈{a,b,c}

[
g pl

nm,L(V l
n cosδl

n −V l
m cosδl

m)−bpl
nm,L(V l

n sinδl
n −V l

m sinδl
m)

]
+ ∑

l∈{a,b,c}

[
g pl

nm,T (V l
n cosδl

n)−bpl
nm,T (V l

n sinδl
n)

] (2.36)

Im
{

I−
p

nm

}
= ∑

l∈{a,b,c}

[
g pl

nm,L(V l
n sinδl

n −V l
m sinδl

m)+bpl
nm,L(V l

n cosδl
n −V l

m cosδl
m)

]
+ ∑

l∈{a,b,c}

[
g pl

nm,T (V l
n sinδl

n)+bpl
nm,T (V l

n cosδl
n)

] (2.37)

In order to utilize the measurement function h (x), the function is linearized around a
system operating point by executing Taylor series expansion and eliminating high-order
terms [54]. Once the non-linear terms are neglected, the Jacobian matrix H is obtained
for the state estimation process.

H(x) = ∂h(x)

∂x
(2.38)

Considering the available measurements in this study, the Jacobian matrix will be in
the form of submatrices:

H =

HPQi n j

HV

HI f l ow

 (2.39)

where HPQi n j is the submatrix consists of the partial derivatives of the bus active and
reactive power injections with respect to the states; HV is the submatrix consists of the
partial derivatives of the bus voltage magnitude and angle with respect to the states;
HI f low is the submatrix consists of the partial derivatives of the branch current magni-
tude and angle with respect to the states.

The first submatrix HPQi n j is given by:

HPQi n j =
[

∂Pi n j ,n

∂V
∂Pi n j ,n

∂δ
∂Qi n j ,n

∂V
∂Qi n j ,n

∂δ

]
(2.40)
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The partial derivatives relevant to the active power injections are [7]:

∂P p
i n j ,n

∂V l
n

=V l
nGpl

nn +
N∑

m=1
V l

m

(
Gpl

nm cosδpl
nm +B pl

nm sinδpl
nm

)
(2.41)

∂P p
i n j ,n

∂V l
m

=V p
n

(
Gpl

nm cosδpl
nm +B pl

nm sinδpl
nm

)
(2.42)

∂P p
i n j ,n

∂δl
n

=−(V l
n)2B pl

nn +V p
n

N∑
m=1

V l
m

(
−Gpl

nm sinδpl
nm +B pl

nm cosδpl
nm

)
(2.43)

∂P p
i n j ,n

∂δl
m

=V p
n V l

m

(
Gpl

nm sinδpl
nm −B pl

nm cosδpl
nm

)
(2.44)

The partial derivatives relevant to the reactive power injections are [7]:

∂Qp
i n j ,n

∂V l
n

=−V l
nB pl

nn +
N∑

m=1
V l

m

(
Gpl

nm sinδpl
nm −B pl

nm cosδpl
nm

)
(2.45)

∂Qp
i n j ,n

∂V l
m

=V p
n

(
Gpl

nm sinδpl
nm −B pl

nm cosδpl
nm

)
(2.46)

∂Qp
i n j ,n

∂δl
n

=−(V l
n)2Gpl

nn +V p
n

N∑
m=1

V l
m

(
Gpl

nm cosδpl
nm +B pl

nm sinδpl
nm

)
(2.47)

∂Qp
i n j ,n

∂δl
m

=V p
n V l

m

(
−Gpl

nm cosδpl
nm −B pl

nm sinδpl
nm

)
(2.48)

The second submatrix HV is given by [7]:

HV =
[
Ψ Γ

Λ Φ

]
(2.49)

where

Ψ
np,V
ml ,V =

{
1, if n = m and p = l
0, if n 6= m or p 6= l

(2.50)

Γ
np,V
ml ,δ = 0 (2.51)

Λ
np,V
ml ,δ = 0 (2.52)

Φ
np,δ
ml ,δ =

{
1, if n = m and p = l
0, if n 6= m or p 6= l

(2.53)



2

28 2. THEORY ABOUT PMU-BASED STATE ESTIMATION

In (2.50)-(2.53), the superscripts refer to bus n, phase p, and voltage magnitude V , or
voltage angle δ of the PMU measurements. The subscripts refer to bus m, phase l , and

voltage magnitude V , or voltage angle δ of the state variables. For example, Ψnp,V
ml ,V is the

connection between measurement Vnp and state Vml .

The third submatrix HI f low is given by:

HI f low =
[

∂Inm
∂V

∂Inm
∂δ

∂θnm
∂V

∂θnm
∂δ

]
(2.54)

The partial derivatives relevant to the current magnitudes are:
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] (2.58)
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The partial derivatives relevant to the current angles are:
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2.3.4. PROCESS MODEL
The process model is used to represent the time evolution of the system states as a func-
tion of the previous states, the process noise, and the controllable input (if any). The
process model, also was called the dynamic model [22], [24], can be utilized only by
the particular type of state estimators that can predict the states by modeling their time
evolution, such as the Kalman filter (KF) based SE [7]. On the other hand, the static SE
(SSE) utilizes only the measurement model for the present measurement set; therefore,
it can estimate only the present states due to the lack of forecasting capability. For the
particular case of this study, the process model can be formulated as the state space rep-
resentation for discrete time-variant systems as follows [7], [11], [25], [46]:
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xk = Fk−1xk−1 +gk−1 +wk−1 (2.63)

where

• k is the time sample.

• xk is the (n×1) state vector as noted in (2.21) at the time instance k.

• Fk−1 is the (n×n) state transition matrix, which indicates how fast the system states
change from the time sample k −1 into k.

• gk−1 is the (n×1) state transition vector, which is related to the historic trend be-
havior that links to the system states at the time k.

• wk−1 is the (n×1) process noise, which represents the model uncertainties.

Two parameters of the matrices Fk−1 and gk−1 can be assessed online and offline ac-
cording to Holt’s linear exponential smoothing technique of forecasting [22]. The tech-
nique conducts short-term forecasting based on the reducing weights of the previous
dataset. The assumption is that the system states are independent and uncorrelated.
The process noise wk−1 is assumed to be white and Gaussian with zero mean and co-
variance matrix Qk−1.

p(wk−1) ∼ N(0,Qk−1) (2.64)

and also can be written as

E {wk−1} = 0,E
{

wk−1wT
k−1

}= Qk−1 (2.65)

Here, Q is the process noise covariance matrix, and the elements of Q represent the
process model’s uncertainties corresponding with each state. Here, Q is assumed to be
diagonal for simplicity in this study.

Q =


σ2

1
σ2

2
. . .

σ2
n

 (2.66)

where σi is the standard deviation of each corresponding process uncertainty; n is the
number of states. The matrix Q can be assessed based on normal operation scenarios.
The detailed assessment will be explained in Chapter 4.

2.4. WEIGHTED LEAST SQUARE-BASED STATIC STATE ESTIMA-
TION

This section describes the concept of the weighted least square (WLS), static state esti-
mation (SSE) with PMU measurements, and the process of the WLS-SSE in detail. They
are organized into three subsections as follows.
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2.4.1. WEIGHTED LEAST SQUARE TECHNIQUE
The weighted least square (WLS) term are used to find a solution for an overdetermined
system, i.e., there are more equations than unknowns. In this case, it means that the
number of measurements m is more than the number of state variables n in the power
system. Suppose an ideal linear measurement model is given as:

z = Ax (2.67)

where z is the measurement vector (m×1); A is the linear measurement matrix (m×n);
x is the state vector (n×1). Then it can be seen that this equation cannot be solved for the
state vector x due to the overdetermined equations (m > n). In practice, the measure-
ment is not ideal (imperfect), and the measurement model is non-linear in this study.
The equation (2.67) should be written as:

z = h (x)+e (2.68)

where h is the non-linear measurement function; e is the noise/error vector of the mea-
surement with dimension (m×1), which has the properties as stated in (2.29) rewritten
here as

p(e) ∼ N(0,R) (2.69)

where R is the measurement noise covariance matrix. The WLS problem is solved based
on the assumption that the measurement errors are random, independent, and normally
distributed with mean zero and variances in the form of the covariance matrix R. Sup-
pose R is assumed diagonal for simplicity,

R =


σ2

1
σ2

2
. . .

σ2
m

 (2.70)

where σi is the standard deviation of each corresponding measurement; m is the num-
ber of measurements. The objective function J (x+) of the power system state estimation
is to find the estimated state vector x+ that minimizes [3]

J (x+) = [
z−h(x+)

]T R−1 [
z−h(x+)

]= m∑
i=1

[
zi −hi

(
x+

)]2

Ri i
(2.71)

where z is the observed measurement vector; x+ is the estimated state; subscript i is the
ith index of the measurements. Note that the difference between the observed measure-
ment z and the estimated measurement h

(
x+

)
is defined as the measurement residual

(so-called residual). It can be understood that the aim is to minimize the sum of the
squares of the weighted residuals.

Note that if the uncertainty of the measurement is large, a larger corresponding resid-
ual is accepted (compared to the residual with smaller uncertainty). Meanwhile, the
smaller measurement uncertainty needs the corresponding residual to be small to min-
imize the objective function.
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Since the measurement function h is non-linear, the objective (2.71) has to be mini-
mized recursively by linearizing h (x) at the operating point x j , where superscript j is the
jth number of iteration [3].

h (x) = h
(
x j

)
+H

(
x−x j

)
(2.72)

Here, x is the actual state vector; x j is the estimated state vector at the jth iteration;H
is the measurement Jacobian matrix, which consists of the first partial derivatives of the
h with respect to the state x at the operating point x j . The iterative solution of (2.71) can
be written as [3]:

G∆x = HT R−1∆z (2.73)

∆x = G−1HT R−1∆z (2.74)

where
∆x = x−x j ,∆z = z−h

(
x j

)
(2.75)

G = HT R−1H (2.76)

Here, G is known as the gain matrix. The matrix is large, sparse, symmetric, and
non-negative definite. The full-network observability can be ensured if the matrix G is
positive definite or the matrix H has full rank [10]. The inverse of G represents the covari-
ance of the estimated states. The set of equations given by (2.73)-(2.74) are referred to
as the Normal Equations. The solution of ∆x can be solved using Gaussian elimination.
Note that the equation (2.74) performs one iteration of the conventional WLS filtering.
The idea is to set a threshold of ∆x so that the WLS filtering can be performed iteratively
until the estimate converges and obtain the estimated (filtered) state x+k .

2.4.2. STATIC STATE ESTIMATION WITH PHASOR MEASUREMENTS
Traditionally, the available measurements in real-time for SE processing were from a su-
pervisory control and data acquisition (SCADA) system composed of remote terminal
units (RTUs) in the substations. The conventional measurements were analog, such as
bus voltage magnitude, active and reactive power flow/injection, and branch current
magnitude flow. The scanning rate was every two seconds, which took long enough that
the system slightly changed into a different state when the scan finished, compared with
the old state since start scanning [3]. This is so-called time-skewed. The practical esti-
mators even ran every few minutes due to the limitation of the computational hardware
at that time. The concept of “static” is the assumption that the system does not change
during the scan. This also depends on how long the scan is and how fast the variation of
load and generation during the scan. Static SE (SSE) processes the real-time measure-
ments as snapshots of measurements together with static network data. The static net-
work data indicates that the network has constant parameters (does not change through
time) and has basic substation configurations [5].

Nowadays, with the use of synchronized phasor measurements, angle measurements
of voltage and current can be included in the SE process as direct measurements. Also,
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the scanning rate is significantly faster than the conventional one, which is only tens
of milliseconds. This is one step closer to the dynamic and real-time SE thanks to a
more sophisticated telemetered system and the time-tagged measurements by Global
Positioning System (GPS) [5]. One important issue is that each sampling instant of SE
requires the determination of the reference for PMU data since the PMU measurements
have the universal time as a reference, unlike the conventional SE that can use a specific
bus like the slack bus as a reference. If including the angle measurement without taking
the issue of the different references into account, the SE is likely not able to converge.
One solution is to install a PMU device at the slack bus to use its angle as the reference
for the conventional SE with PMUs [3]. In this work, all the voltage and current angle
measurements are subtracted by the reference angle of the slack bus in the real-time
simulation before sending them into the SE process. Note that this study utilizes the
PMU measurements and the state variables in polar coordinates, not in rectangular, in
order to deal with magnitudes and angles of the currents easily. Also, there are some
conventional measurements, i.e., pseudo-measurements as power injections at some
unobservable buses at HV buses. Therefore, the branch currents and power injections
(measurements) are expressed in non-linear functions of the voltage magnitudes and
angles (state variables).

2.4.3. WLS-SSE PROCESS

This subsection describes how the algorithm of the WLS-based static SE (WLS-SSE) works
using the Normal Equations approach. At each time instance k, the state vector xk needs
to be initialized to start performing the iterative process for the solution. The initial point
to begin usually is the flat voltage profile (also known as the flat start), i.e., all the bus volt-
ages are set at 1 p.u. and in phase with each other [15]. The whole flowchart of the plain
WLS-SSE algorithm is shown in Figure 2.4. Each step is explained below.

• Step 1: Set the iteration j = 0 at the time sample k.

• Step 2: Read the latest measurement dataset zk from the real-time simulation plat-
form that is streaming the PMU measurements at the refresh rate of 50 Hz.

• Step 3: Initialize the state vector x j
k as a flat start since the iteration j = 0 to prepare

to perform the first iteration of the WLS filtering using the Normal Equation.

• Step 4: Calculate the measure-state variables h
(
x j

k

)
. In simple words, calculate

the measurements from the state vector x j
k and the non-linear function based on

Ohm’s and Kirchhoff’s laws, using the equations (2.32)-(2.35). The measurements
are so-called estimated measurements.

• Step 5: Calculate the increment of the measurements ∆z j
k , which is the difference

between the observed measurement set zk at Step 2 and the estimated measure-

ments h
(
x j

k

)
at Step 4. The more iterations the states have been filtered (esti-

mated), the more convergence of h
(
x j

k

)
into zk .
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• Step 6: Calculate the measurement Jacobian matrix H
(
x j

k

)
at the operating point

of x j
k . This matrix is not the exact link between the measurements and the states

anymore, only an approximation. Also, calculate the measurement noise covari-
ance matrix Rk based on the received measurements at Step 2. Rk will have to be
recalculated when there is a new measurement set.

• Step 7: Calculate the gain matrix G
(
x j

k

)
. Note that since H is very sparse, the prod-

uct will also be sparse. Nonzero elements in G can be calculated using sparse tech-
nique to increase the computational efficiency.

• Step 8: Solve the Normal Equation for ∆x j
k .

• Step 9: Update the state vector x j+1
k and calculate the absolute value of ∆x j

k to
check for the convergence threshold.

• Step 10: If the absolute value of ∆x j
k is below the threshold 10−5, the solution is

converged. Otherwise, the next iteration is required, so the algorithm repeats from
Step 4 for the new iterative solution.

• Step 11: Display the SE results at the time instance k and store them in the database.

• Step 12: Move on to the next time sample k + 1 for a new measurement set and
repeat the SE process from Step 1 again.

Further comments
The WLS-SSE utilized in this thesis is the plain algorithm, which mainly focuses on the
matrix formulation to solve the state estimation as an unconstrained optimization prob-
lem using PMU data. Apart from the main function, there are more applications of tradi-
tional SE. For example, the network topology processor is a SE function used to receive
the circuit breaker status from telemetered communication to recognize the present
topology of the network. This can be done by constructing the bus-branch model based
on the information of the breaker/switch statuses. Another function recommended for
SE is bad data detection and identification. Post-estimation processing is used to fil-
ter the bad PMU data to prevent it from contaminating the solution. The well-known
methods are the Chi-squares test and the largest normalized residual test [4].

It is fundamental to note that the main drawback of the WLS-SSE is the computa-
tional burden due to the iterative method. Suppose the gain matrix G can be calculated
as an approximate constant per time sample k. In that case, the step of calculating G
can be done only once (outside the iterative loop in Figure 2.4). This tends to reduce the
computational time, but in turn, leads to less accuracy as a trade-off. Another possible
solution is to initialize the state vector xk as the previous operating point instead of the
flat start. This can be considered as the simple tracking SE. Utilizing the latest states
will significantly increase the computational speed since fewer iterations are required
to converge compared to the flat start. However, suppose there is a sudden change in
the power system. In that case, the tracking SE tends to require more iterations or even
could not converge in case the present states are dramatically different from the previous
states.
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Figure 2.4: Traditional weighted least square (WLS)-based static state estimation (SSE) algorithm.
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2.5. EXTENDED KALMAN FILTER-BASED FORECASTING AIDED

STATE ESTIMATION
Due to a limitation of the WLS-SSE, dynamic state estimators (DSE) using the Kalman
filter (KF) can provide better estimation accuracy. In turn, while the SSE needs only
the measurement model, the DSE also needs the process model to represent the time
evolution of the power system states. The other limitation of the WLS-SSE is the com-
putational burden issue from the iterative procedure. By using good predictions from
the process model to initialize the state vector, the solution from the KF-based SE can
be obtained with only one iteration, the so-called “one iteration principle [23],” to assess
as fast as possible. This principle can significantly enhance computational performance
and thus facilitate real-time applications. As mentioned, it can be seen that the forecast-
ing capability is one of the critical roles that can overcome the limitations from the SE
that concentrates only on the present measurements and states.

The Extended Kalman filter (EKF) is a particular type of Kalman filter which deals
with non-linear equations, i.e., measurement functions, in terms of the linearized Ja-
cobian matrix, which is the same Jacobian matrix used in the WLS-SSE. The filter has
two types of states: the forecasted states and the filtered states. While the SSE conducts
only the filtering stage, the EKF-based SE requires two steps to process state estimation:
(i) state forecasting, which is a prediction step for the next time sample (ii) state filtering
(known as corrector step), where the most recent measurement set is taken into account.

The forecasting-aided state estimation (FASE) is a particular application of the DSE
for the quasi-steady state operating conditions in the power system. Here, the changes
of the operating point are driven by smooth stochastic variation in the power injections
from load and generation while assuming that the dynamics of states are negligible (dis-
regarding transients) [46]. Note that the magnitudes and angles of bus voltage are se-
lected as the state variables from the independent variables related by power flow equa-
tions, such as bus load and generation, magnitudes and angles of line flow, and magni-
tudes and angles of bus voltage. Here, the bus voltages are referred to as the static state
of the system and its time evolution as static-state dynamics, which indicates a sequence
of stable steady-state operations while neglecting transients [25].

Therefore, the so-called EKF-based FASE is the state estimators that use the EKF
technique to solve the non-linear measurement equations for the algebraic state vari-
ables that specifically refer to the bus voltage magnitudes and angles. The EKF-FASE
formulation consists of the process model and the measurement model, as noted with
the notation in (2.63) and (2.28), respectively. The equations are rewritten here.

xk = Fk−1xk−1 +gk−1 +wk−1

zk = h (xk )+ek
(2.77)

The state xk at the time instant k is forecasted from the process model based on the
state of previous time xk−1, the transition matrix Fk−1, the trend vector gk−1. Then, once
the new measurement set zk at time k is received, the state xk can be solved using the
EKF filtering process in the measurement model to obtain the final estimate.

Traditionally, the conventional measurements at each point of time are received from
the remote terminal unit (RTUs), which still have some intrinsic limitations such as no
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time stamps and low sampling rates from the dynamic point of view. To overcome this,
the synchronized measurements from PMU devices are utilized in this study to take one
step closer to the dynamic and real-time SE. This following subsection discusses the two
stages of state forecasting and filtering, mathematical formulation, and procedures of
the FASE.

2.5.1. STATE FORECASTING
By performing conditional expectation on the process model equation (2.63), the rela-
tions of the forecasted state vector x−k and its covariance matrix P−

k at time sample k are
given by [22]

x−k = Fk−1x+k−1 +gk−1 (2.78)

P−
k = Fk−1P+

k−1FT
k−1 +Qk−1 (2.79)

where x+k−1 and P+
k−1 are the estimated state vector and its covariance matrix, respec-

tively at time k − 1. In simple words, this stage predicts the present states from the
weighted average of the previous states using Holt’s exponential smoothing method. The
weight for each set of historical states is exponentially decreased with time. In addition
to the prediction of the states, the forecasting error covariance matrix is also calculated.

2.5.1.1 HOLT’S LINEAR EXPONENTIAL SMOOTHING METHOD

Holt’s linear exponential smoothing method is a relatively simple technique to do short-
term forecasting. Once a reasonable number of datasets is reached, they will be fore-
casted at the same time. The series of the datasets are smoothed with their trend through
two different parameters, α and β, whose values lie between 0 and 1 [22].

Consider xi ,k−1 is the ith element of the true state vector xk−1 at time sample k −1. If
x−

i ,k and x−
i ,k−1 are predictions of the state vector at time sample k and k−1, respectively,

Holt’s method expressions are [22]

x−
i ,k = ai ,k−1 +bi ,k−1 (2.80)

where ai ,k−1 and bi ,k−1reflect the trend of the ith dataset element at time sample k −1
towards the forecasted state x−

i ,k at time sample k. The parameters are defined as

ai ,k−1 =αi xi ,k−1 + (1−αi ) x−
i ,k−1 (2.81)

bi ,k−1 =βi
(
ai ,k−1 −ai ,k−2

)+ (
1−βi

)
bi ,k−2 (2.82)

The equation (2.80) can be rewritten as follows:

x−
i ,k = Fi ,k−1xi ,k−1 + gi ,k−1 (2.83)

where

Fi ,k−1 =αi
(
1+βi

)
(2.84)
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gi ,k−1 =
[(

1+βi
)

(1−αi )
]

x−
i ,k−1 −βi ai ,k−2 +

(
1−βi

)
bi ,k−2 (2.85)

The equation (2.83) can be written in the matrix form and include the process noise
wk−1, resulting in the process model in (2.63), which is rewritten here again as:

xk = Fk−1xk−1 +gk−1 +wk−1 (2.86)

where

• Fk−1is a (n×n) diagonal matrix with elements of Fi ,k−1defined in (2.84).

• gk−1is a (n×1) vector with elements of gi ,k−1defined in (2.85).

• wk−1 is white Gaussian sequence with zero mean and covariance Qk−1.

Overall, Holt’s technique makes short-term predictions based on the trend of previous
states, and it is acknowledged that this technique is very accurate if the power system
states change slowly in a stable trend [55].

2.5.2. STATE FILTERING

The objective function J
(
x+

)
for the filtering stage is to find the estimated state vector x+

that minimizes [22]

J
(
x+

)= [
z−h(x+)

]T
[R]−1 [

z−h(x+)
]+ [

x+−x−
]T

[P−]−1 [
x+−x−

]
(2.87)

where the time notation is omitted for simplicity. This means to obtain the estimated
state x+k , which considers the measurement zk and the forecasted state x−k with their
covariance matrices Rk and P−

k , respectively. The solutions of the objective function for
obtaining the estimated state are shown below.

The state forecasting step results in the prediction of system states using the past
information when new measurements at time k are not observed yet. After obtaining
the new measurements zk , the states are filtered using the previous forecasted states
vector x−k to perform a single iteration filtering based on the EKF technique to obtain the
estimated states x+k and its covariance matrix P+

k (so-called estimation error covariance
matrix) as follows [22]:

x+k = x−k +Kkνk (2.88)

P+
k = [I−Kk Hk ]P−

k (2.89)

where Kk is Kalman gain; νk is the measurement innovation vector (usually called in-
novations), which is defined as the difference between the forecasted and the observed
measurements. It is known that the νk is distributed approximately in Gaussian with
zero mean and covariance matrix Sk [25]. These variables are defined below:

Kk = P−
k HT

k [Sk ]−1 (2.90)
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νk = zk −h
(
x−k

)
(2.91)

Sk = Hk P−
k HT

k +Rk (2.92)

2.5.3. EKF-FASE PROCESS ALGORITHM

This subsection describes how the algorithm of the EKF-based FASE (EKF-FASE) works
with the proposed anomaly detection discrimination and identification (ADDI) module.
At each time instance k, the estimated state vector and its covariance matrix are needed
to be initialized with their previous data at the previous time sample x+k−1 and P+

k−1. If
there is not any previous data, they can be taken from the historical data of the WLS-
SSE, i.e., the estimated state and the inverse of the gain matrix, respectively. The whole
flowchart of the EKF-FASE algorithm is shown in Figure 2.5. Each step is explained below.

• Step 1: Begin at time sample k.

• Step 2: Initialize the state vector and its covariance matrix from the previous time
sample x+k−1, P+

k−1.

• Step 3: Perform the state forecasting stage by using Holt’s exponential smoothing
method and the previous state vector x+k−1. The transition matrix Fk−1 and gk−1

provide the trend of the time evolution of the state vector. The weight of the trend
decreases exponentially. The more historical time of the data is, the more it will be
forgotten; thus, the most recent data will affect Fk−1 and gk−1 the most.

• Step 4: Read the latest measurement dataset zk from the real-time simulation plat-
form that is streaming the PMU measurements at the refresh rate of 50 Hz.

• Step 5: Calculate the measurement innovation vector νk and the covariance ma-
trix Sk . The innovation vector is the essential variable for the proposed ADDI mod-
ule to help recognize (i) whether the system is under abnormal operating condi-
tions, (ii) the type of anomaly in the system.

• Step 6: If there is the ADDI module, perform the procedures of state filtering, rec-
ognizing and countering the anomaly as presented in Figure 3.1-Figure 3.5 in the
next chapter, depending on the selected method of the ADDI algorithm. If there is
no ADDI module, perform the EKF filtering (with only one iteration) to obtain the
estimated state vector x+k and covariance P+

k and move on to the next step.

• Step 7: Collect the estimated state vector x+k and covariance P+
k to be used at the

next time sample k +1.

• Step 8: Move on to the next time sample k + 1 for a new measurement set and
repeat the process from Step 1 again.
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Further comments
Suppose the power system is operating under normal operations, i.e., steady-state or
quasi-steady-state. In that case, the estimation results of the EKF-FASE usually have
good accuracy (better than the WLS-SSE) since the input or the trend vector varies slowly.
However, if there is a sudden change of states due to sudden load or sudden topology
change, the EKF-FASE without the ADDI module will result in poor estimation accuracy.
This is because the state transition coefficients cannot adapt immediately but take some
time to adjust to a new situation [46]. Therefore, this study proposes the ADDI module
for the EKF-FASE to overcome the issue. When the system is under abnormal operat-
ing conditions, the ADDI module can deal with different types of anomaly by applying
countermeasures to prevent the estimation result from becoming inaccurate. The de-
tailed procedures of the ADDI algorithm are introduced in Chapter 3.
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Figure 2.5: Extended Kalman filter (EKF)-based forecasting-aided state estimation (FASE) algorithm with and
without the anomaly detection discrimination identification (ADDI) module.





3
ANOMALY DETECTION,
DISCRIMINATION, AND

IDENTIFICATION

This chapter elaborates on the adopted procedures for anomaly detection, discrimina-
tion, and identification (ADDI). For clarification, detection means recognizing the pres-
ence of an anomaly in the measurement set; discrimination means classifying the detected
anomaly according to its type; identification means determining which measurements
carry the anomaly. Note that the ADDI module was designed to be used with the EKF-FASE
and cannot be used directly for the WLS-SSE. By utilizing the prediction results from the
state estimator, it can start the algorithm. In the end, the ADDI module will take proper
actions, so-called countermeasures, against the anomaly to reduce negative impacts so
that the state estimation can remain unbiased.

Section 3.1 introduces the classification of the anomaly in this study. Section 3.2 explains
the concept of detection and discrimination in three different methods. Section 3.3 con-
siders the identification and countermeasures according to the selected method.

3.1. CLASSIFICATION OF ANOMALY
This section introduces the normal and abnormal operating conditions of the power sys-
tem, the different types of anomalies in the SE process, and why the anomaly has to be
classified in this study.

Typically, as far as the SE is concerned, the power system is assumed to operate under
normal operating conditions, known as the quasi-stationary regime. The system operat-
ing point changes due to smooth, slow load variations and generation adjustments. But
when the power system is under abnormal operating conditions, it means that an un-
expected thing happens in the system, such as faults in the network, load curtailments,
outages of generators or wind turbines. These events will cause a sudden change of the
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system states so that the stable equilibrium operating point of the system moves into
another stable point.

For SSE, the estimator can always track the system trajectory since it considers only
the filtering step and concentrates only on the present measurements. Hence, the sud-
den change tends not to affect the estimation accuracy of the SSE. In contrast, for FASE,
the sudden change can have negative impacts on the estimation performance, resulting
in delayed or inaccurate estimation [19]. The reason is that the estimator also considers
the predictions based on the historical data before filtering; and that there are signifi-
cant differences between the predicted values and the present measurement set during
the sudden change. Therefore, to overcome this issue, the sudden change (of states) has
to be treated as one type of the anomalies.

Apart from the sudden change, bad data is the other well-known anomaly that can
significantly deteriorate the SE performance (for both SSE and FASE). Bad data is defined
as erroneous measurements consisting of gross errors that deviate the measured values
significantly from their expected values. It can be due to information system malfunc-
tions or incorrect telemetered meter readings [19]. In general, bad data is common in
power systems; therefore, detecting and identifying bad data is suggested to be one of
the main functions of a state estimator [7]. Hence, this study considered bad data as the
other type of anomalies so that it can be discriminated from the sudden change. Then a
proper action is taken to eliminate bad data using the proposed ADDI module.

Note that it is suggested that any practical estimator should have an anomaly proces-
sor (at least for bad data) rather than having a very high filtering capability estimator, but
the estimation result still can be seriously distorted due to having no processor against
an anomaly [56].

In this thesis, the anomalies can be classified into two types: sudden change of state
variables and bad data, as explained above. The sudden change in the power system is
simulated by implementing: (i) an unexpected load change such as disconnection of a
large load, or (ii) an abnormal state of operation such as the outage of a wind turbine.
The bad data is injected into the system by simulating the gross error in the received
measurements to mimic the telemetry noise. In order to reduce the negative impacts
from these anomalies, the proposed ADDI algorithm needs to recognize (so-called dis-
criminate) the type of detected anomaly to take action properly. The proposed ADDI
procedures are explained in the following two sections: (i) anomaly detection and dis-
crimination in Section 3.2, (ii) anomaly identification and countermeasure in Section
3.3.

Note that it is assumed to neglect the possibility of having bad data at the same time
with the sudden change. Also, sudden topology change, incorrect topology information,
or errors contained in network parameters are more complicated to deal with [15] and
consequently are not under the scope of the thesis.

3.2. ANOMALY DETECTION AND DISCRIMINATION
Since the concept of anomaly detection and discrimination is the essential function of
the ADDI algorithm, different methods should be studied and validated by the imple-
mentation to see which one has the most efficiency. This section introduces three dif-
ferent methods to detect and classify the anomaly into sudden change or bad data. Two
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methods are classified as pre-estimation schemes. The other method is the combination
of pre- and post-estimation schemes. The word “pre-estimation” basically means before
the estimation. The pre-estimation scheme indicates that it can be performed before the
filtering stage of the state estimator. In contrast, the post-estimation scheme indicates
that it can be performed after the filtering stage [7]. All three methods utilized in this
study will be addressed in Subsection 3.2.1-3.2.2.

3.2.1. PRE-ESTIMATION APPROACH
The pre-estimation schemes of anomaly detection and discrimination consist of sta-
tistical procedures by analyzing the innovation vector [7], [56]. The innovation vector
can be calculated (analyzed) once the state forecasting of the EKF-FASE is performed.
The statistical procedures begin with detecting the presence of an anomaly using the
largest normalized innovation test (Subsubsection 3.2.1.1). After that, depending on the
method adopted, the skewness of normalized innovations distribution (Subsubsection
3.2.1.2) and/or the skewness to the largest normalized innovation ratio (Subsubsection
subsubsection 3.2.1.3) are used to discriminate bad data from the sudden change. The
two pre-estimation methods of the ADDI module (Subsubsection 3.2.1.4- 3.2.1.5) display
how these statistical bases are utilized for anomaly processing.

3.2.1.1 LARGEST NORMALIZED INNOVATION TEST

It is possible to detect the presence of anomalies by conducting an innovation analysis
[11]. The principle is based on statistical characteristics of the normalized innovation
vector τ which the ith element is defined as the following:

τk (i ) = νk (i )√
Sk (i, i)

(3.1)

where νk and Sk are the innovation vector and its covariance matrix, respectively, which
are defined in (2.91)-(2.92). Once the normalized innovation vector is calculated, the
largest normalized innovation (LNI) can be determined as:

LN Ik = max
i

|τk (i )| (3.2)

This will be compared with the threshold γa . If LNIk > γa , the presence of anomaly
is detected.

3.2.1.2 SKEWNESS OF DISTRIBUTION OF NORMALIZED INNOVATIONS

Skewness is a measure of asymmetry level in the distributions. When skewness is closer
to the zero value, the distribution is more symmetrical, and vice versa. This property
of skewness for normalized innovations distribution can be used to discriminate bad
data from sudden change since the presence of bad data can shift the distribution of the
normalized innovations far away from symmetry. In contrast, under sudden change, the
distribution will remain symmetrical. The skewness is defined as follows [9], [19], [55]:

ψk = M3,k

ρ3
k

(3.3)



3

46 3. ANOMALY DETECTION, DISCRIMINATION, AND IDENTIFICATION

where M3 is the third central moment; ρ is the standard deviation of the distribution.
They can be obtained as follows:

M3,k = E
{
(τk ).∗3}−3µk E

{
(τk ).∗2}+2µ3

k (3.4)

ρ2
k = E

{
(τk ).∗2}−µ2

k (3.5)

µk = E {τk } (3.6)

where the operator .∗ b is an element-wise exponentiation for a vector base with the
power b. The calculated skewness is tested against threshold ζ. If ψk > ζ, the anomaly is
recognized as bad data; otherwise, the system is affected by the sudden change. In this
thesis, to improve conciseness, the skewness of the distribution of normalized innova-
tion is usually referred to as the skewness.

3.2.1.3 SKEWNESS TO THE LARGEST NORMALIZED INNOVATION RATIO

Apart from the skewness of normalized innovations distribution, it is claimed in [55] that
the skewness to the largest normalized innovation ratio (SIR), given as:

SI Rk = ψk

LN Ik
(3.7)

has a clear threshold to separate bad data and sudden load change. The threshold is
defined as SI Rth = mi n(1/3,3σmax ), where σmax is the maximum of the standard devi-
ations from the measurement uncertainty. If SI Rk > SI Rth , the anomaly is recognized
as bad data; otherwise, it is classified as a sudden change.

3.2.1.4 THE CONVENTIONAL INNOVATION ANALYSIS METHOD (METHOD 1)
The conventional innovation analysis method, referred to as Method 1 in this study, has
been used in [9], [19]–[21], [55]. This method utilizes the LNI test and the skewness of the
distribution of normalized innovations. The flowchart of Method 1 is presented in Figure
3.1. The aim is to detect and recognize the type of anomaly for further identification and
countermeasure. Four steps of the flowchart are described below.

• Step 1: From Figure 2.5, once the state forecasting stage is performed and the inno-
vation vector and its covariance matrix are calculated, the normalized innovation
vector τk at time k is calculated using the equation (3.1).

• Step 2: Run the LNI test by comparing the maximum of the absolute value of the
normalized innovations with the threshold γa . If the value exceeds the threshold,
the presence of anomaly is detected, and move on to the next step. Otherwise, the
system is under normal operations and move on to the number 1 in Figure 3.4.

• Step 3: Calculate the skewness value using the equation (3.3).
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• Step 4: Run the skewness test by comparing the skewness value with the threshold
ζ. If the skewness exceeds the threshold, the anomaly is classified as bad data since
the skewness of the distribution is distorted with respect to the symmetrical distri-
bution. Then, move on to the number 2 in Figure 3.4. Otherwise, the sudden load
change is recognized since the skewness is small. This indicates that the distri-
bution of the normalized innovations is still symmetrical with different mean and
variance. Then, move on to the number 3 in Figure 3.4 for further identification
and countermeasure.

Figure 3.1: The flowchart of anomaly detection and discrimination using the conventional innovation
analysis method (Method 1).
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3.2.1.5 THE IMPROVED INNOVATION ANALYSIS METHOD (METHOD 2)
The second method is the improved innovation analysis method, referred to as Method 2
in this study. This technique has been proposed by [55] to classify the anomaly into bad
data, sudden load change, and sudden topology change by using the LNI test, the skew-
ness, and the SIR. Since the sudden topology change is not under this thesis’s scope, the
detection and discrimination algorithm from [55] is simplified, resulting in the flowchart
shown in Figure 3.2. The flowchart of Method 2 aims to detect and recognize the type of
anomaly for further identification and countermeasure. Six steps are described below.

• Step 1: From Figure 2.5, once the state forecasting stage is performed and the inno-
vation vector and its covariance matrix are calculated, the normalized innovation
vector τk at time k is calculated using the equation (3.1).

• Step 2: Run the LNI test by comparing the maximum of the absolute value of the
normalized innovations with the threshold γa . If the value exceeds the threshold,
the presence of anomaly is detected, and move on to the next step. Otherwise, the
system is under normal operations and move on to the number 1 in Figure 3.4.

• Step 3: If there is only one index of the normalized innovations (i.e., one element of
the normalized innovation vector τk ) that exceeds the threshold γa , this indicates
the presence of a single bad data. Otherwise, move on to the next step. This is
because a sudden change and multiple bad data will cause multiple indexes of the
normalized innovations to be higher than the threshold.

• Step 4: Calculate the skewness value and the SIR using the equation (3.3) and (3.7),
respectively.

• Step 5: Run the skewness test by comparing the skewness value with the thresh-
old ζ. Similar to Method 1, if the skewness exceeds the threshold, the anomaly is
distinguished as bad data. Otherwise, move on to the next step.

• Step 6: Run the SIR test by comparing the SIR value against the threshold SI Rth .
It will be seen from the simulation results that the presence of bad data usually
causes the SIR value to be higher than SI Rth . Otherwise, the sudden load change
is recognized since it is generally characterized by small skewness, resulting in an
extremely small SIR value.

After bad data is recognized from Step 3, 5, or 6, move on to the number 2 in Figure 3.4.
After sudden load change is recognized from Step 6, move on to the number 3 in Figure
3.4.
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Figure 3.2: The flowchart of anomaly detection and discrimination using the improved innovation analysis
method (Method 2).

3.2.2. COMBINATION OF PRE- AND POST-ESTIMATION APPROACH

By including post- into the pre-estimation approaches, the performance of anomaly pro-
cessing can be improved. Here, this scheme will be referred to shortly as the combined
method. It consists of the procedure for using innovation and residual vectors. Since
the residuals indicate how well the measurement set fits the network topology model,
the analysis based on both innovations and residuals can enhance the reliability and
preciseness of anomaly detection and discrimination [7]. However, this advantage can
cause an excessive computational burden since the iterative filtering of WLS is always
needed.

The first subsubsection introduces the analysis of residuals to confirm the presence
of bad data or sudden change. The second subsubsection shows how the combined
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method utilizes the innovations and residuals for anomaly processing.

3.2.2.1 LARGEST RESIDUAL TEST

It is possible to validate the presence of an anomaly after the WLS filtering stage us-
ing the residual analysis. The residuals indicate the consistency between the observed
measurements and the network topology model. By analyzing the residuals, the level of
consistency can be determined. Therefore, this can help distinguish the anomalies since
bad data causes the measurements to become inconsistent with the network model [7],
while the measurements under sudden change can be considered to have full consis-
tency [24]. In order to start conducting the residual analysis, the residual vector, defined
as the difference between the observed measurements and the estimated measurement,
is calculated as:

rk = zk −h
(
x+k

)
(3.8)

where zk is the observed measurement vector; h
(
x+k

)
is the estimated measurement

vector, calculated by substituting the estimated state into the measurement function h.
It is known that rk is distributed approximately in white Gaussian with zero mean and
covariance matrixΩk [25]. TheΩk is given by:

Ωk = Rk −Hk P+
k HT

k (3.9)

Using (3.8)-(3.9), the normalized residual vector can be calculated according to:

υk (i ) = rk (i )√
Ωk (i, i)

(3.10)

Once the normalized residual vector is calculated, the largest normalized residual
(LNR) can be determined as:

LN Rk = max
i

|υk (i )| (3.11)

This will be compared with the threshold γb . If LN Rk > γb , the presence of erro-
neous data is confirmed and the anomaly is classified as bad data. Otherwise, the sud-
den change is recognized.

Remark
By substituting the covariance of the estimated states P+

k by [Gk ]−1, the WLS-SSE can
also use the equations (3.8)-(3.11) to run the residual analysis and the LNR test to (i)
detect the presence of bad data, and (ii) validate the network topology model because
the residuals determine the level of consistency of the measurement set with the network
topology model. The two points can be conducted by checking the ideal properties of
the normalized residuals of having mean zero and unit variance. This will be shown
in the following explanation. Firstly, the relationship between the residuals rk and the
measurement errors ek can be expressed as [15]:

rk = Ck ek (3.12)
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where Ck = I−Hk [Gk ]−1HT
k [Rk ]−1is known as the residual sensitivity matrix, repre-

senting the sensitivity of the residual vector rk to the measurement error vector ek . It
can be seen that the residuals are expressed in a linear combination of the measure-
ment errors. Since the elements of the measurement error vector ek are assumed to be
random independent and normally distributed with mean zero and covariance Rk, i.e.,
p(ek ) ∼ N(0,Rk ), the corresponding elements of the residual vector rk will have a nor-
mal distribution with mean zero and covarianceΩk , i.e., p(rk ) ∼ N(0,Ωk ). Finally, after
normalizing as in the equation (3.10), the normalized residuals ideally have a normal
distribution with mean zero and unit variance [16], i.e.,

p(υk ) ∼ N(0,1) (3.13)

3.2.2.2 THE COMBINED METHOD (METHOD 3)
This method has been used for the distinction of anomalies between sudden change and
bad data [11], [24], [56]. Here, it is referred to as Method 3 in this study. There are four
steps for each time instant k, as shown in Figure 3.3. The flowchart of Method 3 aims to
detect and recognize the type of anomaly for further identification and countermeasure.
Each step is explained below.

• Step 1: From Figure 2.5, once the state forecasting stage is processed and the inno-
vation vector and its covariance matrix are calculated, the normalized innovation
vector τk at time k is calculated using the equation (3.1).

• Step 2: Run the LNI test with the threshold value γa . If the LNI is larger than the
threshold, an anomaly is detected then the algorithm moves on to the next step.
Otherwise, the system runs in normal operations, and move on to the number 4 in
Figure 3.5.

• Step 3: Perform the SSE with the WLS filtering to do the anomaly processing after
the filtering stage (so-called post-estimation).

• Step 4: Calculate the normalized residuals vector υ by running the residual analy-
sis using the equation (3.10).

• Step 5: Run the LNR test against the threshold γb to discriminate the anomaly
between sudden load change and bad data. If the LNR is larger than the threshold,
the presence of bad data is recognized since bad data causes the measurement set
to become inconsistent with the network model, which reflects in a high value of
LNR. Then, move on to the number 5 in Figure 3.5. Otherwise, the system is under
sudden load change and move on to the number 6 in Figure 3.5.
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Figure 3.3: The flowchart of anomaly detection and discrimination using the combined methods (Method 3).
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3.3. ANOMALY IDENTIFICATION AND COUNTERMEASURES
After the type of the anomaly is determined in Section 3.2, the identification stage is
conducted to identify which measurements carry the anomaly in order to counter it ap-
propriately. The methodologies are explained in two parts (depending on the adopted
method: Method 1, 2, or 3): using the pre-estimation and combined methods. In each
part, there are three scenarios for the adopted state estimator: normal operating condi-
tions, bad data, and sudden load change. The identification methodologies and coun-
termeasures are elaborated as the following.

3.3.1. USING THE PRE-ESTIMATION METHOD (METHOD 1 OR 2)
The system is operating in normal conditions when there is no anomaly detected in the
scanned measurements (the number 1 in Figure 3.4). The EKF filtering can be executed
directly since all of the measurements are valid.

Suppose the anomaly is recognized as bad data using the pre-estimation method
(the number 2 in Figure 3.4). In that case, the PMU measurements corrupted with bad
data are identified by finding the measurements associated with the innovations that ex-
ceed the threshold γa . For example, if the ith element of the innovation vector is higher
than γa , then the ith innovation (and so the ith measurement) is suspected. To do bad
data suppression, all of the identified (suspected) measurements are eliminated simulta-
neously by substituting them with the corresponding forecasted measurements. Math-
ematically, the implementation is to set all the suspected innovation values into zero.
After removing bad data, the EKF filtering process is executed then the algorithm moves
on into the next time instant.

Suppose the anomaly is recognized as sudden load change (the number 3 in Figure
3.4). Only the PMU measurement associated with the LNI is identified to locate the PMU
nearest to the bus with the sudden load change event. Then, most importantly, perform-
ing the WLS-based SSE instead of the EKF filtering because the predictions of the EKF are
unreliable under the sudden change.

3.3.2. USING THE COMBINED METHOD (METHOD 3)
Regarding the case of normal operating conditions (the number 4 in Figure 3.5), the EKF
filtering is executed directly. No additional actions are needed.

For the case of bad data recognition (the number 5 in Figure 3.5), the PMU measure-
ments with gross errors are identified by searching for the corresponding measurements
that have both the innovations and the residuals under suspicion. If the ith innovation
and the ith residual are both higher than γa and γb , respectively, both the ith innova-
tions and the ith residuals (and so the ith measurement) are suspected. This approach is
different from the pre-estimation approaches that identify based on only the suspected
innovations. This combined method can be considered a sensitive test because it can
overcome the difficulty of detecting and discriminating a small magnitude of bad data
(from the other anomalies), which is one of the main problems for an anomaly process-
ing algorithm [23]. Next, the same methodologies of bad data suppression and further
countermeasures as the pre-estimation are applied.

Once the anomaly is recognized as sudden load change (the number 6 in Figure 3.5),
regarding the countermeasures, there is no need to execute the WLS filtering anymore
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because it has been already done during the detection and discrimination stage in Fig-
ure 3.3. Therefore, the algorithm only identifies the PMU measurement with the LNI to
locate the event, which is the same as in the pre-estimation method, then moves on to
the next time sample.

Figure 3.4: The flowchart of anomaly identification and countermeasures for the pre-estimation method
(Method 1 or 2).

Figure 3.5: The flowchart of anomaly identification and countermeasures for the combined method (Method
3)



4
IMPLEMENTATION ASPECTS

This chapter involves the implementation aspects of how the real-time SE was conducted
using our real-time simulation platform, including the schematic of the considered dis-
tribution network, the relevant settings of the SE mathematical models for the available
measurements, and the performance indices. They are organized into the following sec-
tions. Section 4.1 elaborates the test setup and its architecture for real-time SE. Section 4.2
explains the topology of the Enduris MV distribution grid and the measurement configu-
rations utilized in this thesis. Section 4.3 assesses the settings of the measurement and the
process noise covariance matrices. Section 4.4 shows the performance indices for evaluat-
ing the SE results.

4.1. REAL-TIME EXPERIMENTAL SETUP
Real Time Digital Simulator (RTDS) is capable of simulating very complex and large
models in real-time, with a sampling time as low as tens of microseconds. With the
integration of distributed generators, the complexity of the power system has grown;
therefore, the RTDS is extremely useful to study the dynamics of the system [39]. Fig-
ure 4.1 shows the adopted architecture of the real-time experimental setup for SE in the
RTDS laboratory at TU Delft, Intelligent Electrical Power Grid (IEPG) group. The setup
utilizes two racks from a six-rack RTDS of RTDS Technology Inc. Canada, a phasor data
concentrator, a router, and two desktop PCs. In this study, Computer A and Computer
B specifications are i7-8750H @ 2.20GHz CPU, 16GB RAM, and i7-9700 @ 3.00GHz CPU,
8GB RAM, respectively.

One desktop PC (Computer A) is used to run RSCAD software to communicate with
RTDS via a TCP/IP channel to simulate the real-time power system. Software PMUs (GT-
NET) by RTDS are utilized to produce the PMU signals obtained from the power sys-
tem simulation. The software PMUs are synchronized to an accurate time source, e.g.,
a GPS clock. This is because a GTSYNC card receives the reference clock and ensures
the synchronization of the RTDS clock with the GPS reference clock [57]. The precision
time protocol (PTP) provided by the GTSYNC card is specified in IEEE Std 1588 v2 [58],
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[59]. The refresh rate of the PMUs is set at 50 samples per second or 50 Hz in this study.
All of the time-stamped data of PMUs are sent to the phasor data concentrator (PDC)
model SEL-5073 via a LAN cable. The received synchronized data is then time-aligned
at the PDC before sending it in a single channel to the other desktop PC (Computer B).
The synchro-measurement application development framework (SADF) [60] is used in
Computer B to receive the online PMU time-series data. The data transfer is according to
IEEE Standard C37.118.2-2011 [44]. Meanwhile, the PMU data is processed in real-time
by implementing the SE algorithms on MATLAB 2020b. Both algorithms of the SADF and
SE are run in parallel by the same computer.

Figure 4.1: Architecture of the real-time experimental setup for state estimation using RTDS.
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4.2. REAL-TIME POWER SYSTEM MODEL: ENDURIS MV DIS-
TRIBUTION GRID

In this thesis, the actual 50 kV ring Enduris network located in the southwest of the
Netherlands is used as a test benchmark. The Enduris MV grid model is developed in
the RSCAD software, which is a graphical user interface software to control the RTDS
hardware through Ethernet-based communication. The grid model is divided into two
subsystems and simulated in two separate racks of RTDS using 65 us fixed time step.
There are ten PB-5 processor cards for each rack. These racks are interconnected using
fiber optic cable for inter-rack communication. For simplicity, each wind turbine is mod-
eled with the average model using a permanent magnet synchronous machine (PMSM).
Each generator is modeled with a governor and constant excitation system. Each load is
modeled with the three-phase balancing.

The measurement configuration of the Enduris network is depicted in Figure 4.2. The
150 kV substation (bus 1) is the slack bus without a PMU device; hence, we assigned bus
1 to have a pseudo-measurement as a constant voltage phasor for the SE measurement
model. For the 50 kV area, there are five PMU voltage measurements on every substation
at bus 2-6 and six PMU current measurements on the three-phase 50 kV cables. Apart
from this, a pseudo measurement of active and reactive power injection at the nominal
power and virtual measurements1 of zero injection2 are simulated for simplicity and to
ensure the full network observability. This thesis will focus on estimating the states at
bus 1-6, i.e., all 150 kV and 50 kV substations.

The operation scenario in the schematic is under steady-state on Sunday morning of
17-1-2016 [61]. This scenario will be used as the base operation in this thesis. The three-
phase active and reactive power injection values of each bus are depicted. The power in-
jection values (in MW and MVAR) shown in the schematic denote the withdrawn power
at a given bus. The positive sign is the consumed power of that bus by the load attached
to the bus. In contrast, the negative sign is the generated power into the bus.

4.3. ASSESSMENT OF MEASUREMENT AND PROCESS NOISE CO-
VARIANCE MATRICES

This section involves the settings of the covariance matrices of the measurement noise
R and the process noise Q based on assumptions. The assessment of the R and Q are
essential since they represent the measurement noises and the process noises in the SE
models. Therefore, they will directly impact the estimation accuracy since EKF-based
FASE optimality depends on a proper assessment of both matrices R and Q [10]. Mean-
while, only the assessment of R affects the WLS-based SSE estimation since it has no
process model.

1Virtual measurements are measurements with very small uncertainties that are used to approximate the exact
information about zero injection buses [10].

2Zero injection bus means a bus with no generation and no load attached, so the difference between the net
power injected and withdrawn at the bus is zero.
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Figure 4.2: The schematic of the Enduris MV distribution grid and the available measurement configurations.

4.3.1. MEASUREMENT NOISE COVARIANCE MATRIX R
As introduced before in Section 2.3.3, R represents the uncertainties for each corre-
sponding measurement. They are generally originated from voltage and current sensors
and PMU devices installed in a real network. In this thesis, since the PMU data from
RTDS is simulated ideally, there is no noise coming from any sensor and PMU device.
Since the contribution of the measurement noise to the matrix R is not known, the el-
ements of R are needed to be tuned experimentally [8]. The noises are simulated as
Gaussian distributed random errors with zero mean and have variances associated with
the measurement uncertainties, i.e., diagonal elements Ri i , from Table 4.1. By adding
these random noises to the true measurements (i.e., voltage and current-flow phasors
from RTDS), the so-called received/observed measurements are obtained and will be
processed in the SE algorithm.
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This study uses two common assumptions for the measurement model, as noted in
the equations (2.29) and (2.31). Firstly, the measurement errors are Gaussian with zero
means [15]. Secondly, the measurements are independent and identically distributed
[10]. This implies that there is no correlation between measurements of different PMU
devices and the same device; therefore, each measurement has a particular standard de-
viation. These assumptions make the measurement error covariance matrix Rk diagonal
(subscript k denotes the time sample). The diagonal elements of Rk represent variances
of measurements, i.e., σ2

k .
In order to set up the matrix Rk for the measurement system, we assume that the ob-

served measurement value zk (i ) represents the mean value of the distribution of the ith

measurement. The standard deviation σk (i ) is defined by the error (the so-called un-
certainty) of the measurement. Then, the range ±3σk (i ) deviation around the mean will
cover about 99.7% of the Gaussian distribution. Therefore, for a given maximum mea-
surement error in percentage, i.e., er r ori [%], on the mean zk (i ), the standard deviation
for each type of measurement can be calculated. For voltage magnitudes from PMUs,
the standard deviation σk (i ) is assessed as [62], [63]:

σk (i ) = er r ori [%]

100
· zk (i )

3
(4.1)

The standard deviation σk (i ) for current magnitudes from PMU and pseudo mea-
surements of power injection can be assessed as [48]:

σk (i ) = er r ori [%]

100
· zk (i )

3
+k f · f(i ) (4.2)

where k f is a scaling coefficient; f(i ) is a full-scale meter value. The equation (4.2) is
designed in a way to improve estimation accuracy by preventing the standard deviation
from being too low if the measurement observes a very light load. This is because a
tiny value of the standard deviation can considerably bias the weighting factors of SE,
resulting in inaccurate estimation.

Considering a maximum measurement error in rad, i.e., er r ori [r ad ], for PMU volt-
age and current angle measurements, the standard deviation σk (i ) is assessed as:

σk (i ) = er r ori [r ad ]

3
(4.3)

Table 4.1 shows the measurement uncertainty for each type of measurement for the
equations (4.1)-(4.3). Here, Vmag and Vang l e denote bus voltage magnitude and voltage
angle, respectively; Imag and Iang l e denote branch current magnitude and current angle,
respectively. The real-time phasor measurement uncertainties are considered as follows:
3× 10−3% for Vmag , 3× 10−5 rad for Vang l e , 1% for Imag , 2× 10−1 rad for Iang l e . It is
worth noting that these assigned uncertainties are very small since the synchrophasors
standard IEEE Std C37.118-2005 [64] allows a 1% vectorial error in phasor estimation, i.e.,
a maximum deviation of 1% in amplitude estimation or a maximum deviation of 1 crad
(0.01 rad) for phase angle [65]. For pseudo-measurements, the uncertainty for power
injection is assigned at typically very high at 20% to substitute a constant value equal to
the nominal power. In contrast, the pseudo-measurement of Vmag and Vang l e at bus 1 is
assigned the same uncertainty as to the phasor measurements from PMUs since it is the
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slack bus; therefore, it is reasonable to consider the voltage phasor of bus 1 as a constant
for SE process.

Table 4.1: Measurement uncertainty for each type of measurement.

PMU measurements
Pseudo

measurements
Vmag Vang l e Imag Iang l e Power Injection

3E-3% 3E-5 rad 1% 2E-1 rad 20%

4.3.2. PROCESS NOISE COVARIANCE MATRIX Q
Q represents the uncertainties of the process model for each state variable. The assess-
ment of Q is complicated since the process noise varies when the power system states
change over time. For example, a sudden state change will significantly increase the
process noise level [48]. If Q is fixed and not carefully considered, there can be a con-
siderable error in the EKF-based FASE estimation result. In this thesis, the algorithm of
ADDI will be used to cope with this sudden change issue to avoid the complexity of the
Q assessment and still obtain an accurate estimation. Here, the process noise covari-
ance matrix Q is kept constant with diagonal terms equal to 1×10−11. Having only the
diagonal elements infers that it is considered no correlation among the process noises
of the states. The setting of the diagonal value is selected based on a number of offline
simulations to give optimal estimates under the steady-state condition.

It is worth discussing that the adopted uncertainty of the process model at 1×10−11

in this work is significantly smaller than other studies at 1× 10−6 [9], [22], [55]. This is
because most of the measurement types of those studies are based on the conventional
or SCADA measurements from RTUs, which have significantly higher measurement un-
certainties (higher Ri i ) than the synchronized phasor measurements, e.g., 0.1-0.2% for
the conventional voltage magnitude measurement. Hence, if the value of Ri i is low, the
Qi i should also be adopted at a low value for the consistency to reach an optimum point
of EKF-based estimation performance under normal operations.

4.4. PERFORMANCE INDICES FOR STATE ESTIMATION
This section presents the indices to assess the proposed state estimation algorithm. By
using true, measured, and estimated values, the first performance indicator can be formed
as [9], [23], [56]:

Jk =

m∑
i=1

∣∣z+k (i )−ztr ue
k (i )

∣∣
m∑

i=1

∣∣zk (i )−ztr ue
k (i )

∣∣ (4.4)

where m is the number of measurements; z+k (i ), ztr ue
k (i ), and zk (i ) represent the esti-

mated, true, and observed values of the ith measurement. The performance index Jk is
the overall performance of the filtering process at each time sample k. The numerator
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indicates how accurate the estimate can be compared with the true values. The denom-
inator indicates the level of uncertainty on the measurements. A good filtering perfor-
mance can be confirmed when the index Jk is smaller than one. This infers that the un-
certainty level in the observed measurements is reduced after the filtering process. Note
that the index Jk is evaluated separately for each measurement type as follows: Vmag ,
Vang l e , Imag , and Iang l e . The next performance index, which is calculated by comparing
the estimated with actual values, is defined as [9], [66]–[68]:

M AEk = 1

n

n∑
i=1

∣∣x+k (i )−xtr ue
k (i )

∣∣ (4.5)

Here, n is the number of state variables; x+k (i ) is the estimated (filtered) state vector;
xtr ue

k (i ) is the true state vector. The index M AEk is the mean absolute error at the time
sample k, which indicates the estimation error for Vmag and Vang l e states in p.u. and
rad, respectively.





5
RESULTS OF REAL-TIME

SIMULATIONS

This chapter presents the experimental results from the real-time DSSE implemented into
the Enduris MV distribution grid, using our real-time simulation platform. Three different
algorithms of DSSE were tested to compare their performance: the traditional WLS-based
SSE, the basic EKF-based FASE without the ADDI module, and the proposed EKF-based
FASE coupled with the ADDI module. All algorithms conduct SE based on the online syn-
chrophasor measurements from the simulated PMUs in RTDS. The findings are divided
into three sections. Section 5.1 considers the SE results under normal operations and val-
idates the network topology model. Section 5.2 displays and analyzes the results of sim-
ulating several test cases of anomalies against the ADDI module. Section 5.3 deals with
the SE results under abnormal operations considering the ADDI module. For easy un-
derstanding of the variables’ symbol in this chapter, Vmag and Vang l e denote bus voltage
magnitude and voltage angle, respectively; Imag and Iang l e denote branch current mag-
nitude and current angle, respectively.

5.1. STATE ESTIMATION UNDER NORMAL OPERATIONS
In this work, the normal operation scenarios refer to conditions that there is no anomaly
in the power system, such as sudden state change and bad data. In this context, the nor-
mal operation is the steady state or the quasi-steady-state operation, whose simulating
conditions are explained in Subsection 5.1.1 and 5.1.2, respectively.

5.1.1. STEADY STATE
This subsection is divided into three subsubsections. The first introduces the condition
of steady-state operation and how it is simulated. The second shows the validation of
the SE network topology model that is reasonably accurate by using the WLS-SSE. Then,
it can be confirmed that the model can be used further on the EKF-FASE for more ad-
vanced SE algorithms. The third compares the estimation performance under steady-
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state between the WLS-SSE and EKF-FASE.

5.1.1.1 OPERATING CONDITIONS UNDER STEADY-STATE

The steady-state operating condition was obtained by simulating the real-time power
system (using RSCAD/RTDS) with constant power at every load and generator. As noted
earlier in Figure 4.2 from Section 4.2, this scenario came from the actual operating con-
dition of the Enduris MV grid on Sunday morning of 17-1-2016 [61]. The three-phase
nominal power injections of each substation and the equipment attached to the substa-
tion are shown in Table 5.1 and Table 5.2, respectively. The positive sign of the power is
the consumed power, and the negative sign is the generated power into the bus.

Table 5.1: Three-phase Nominal Power Injection at Substations.

Nominal Power
Injection of Sub.

Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

Pinj of Sub. (MW) 7.51 7.04 1.61 9.36 9.00
Qinj of Sub. (MVAR) 5.41 -1.21 -1.48 0.96 0.39

Table 5.2: Three-phase Nominal Power of Equipment attached to each Substation.

Nominal Power of Equipment
Attached to Each Sub.

Bus 2 Bus 3 Bus 4 Bus 5 Bus 6

P of Load (MW) 7.50 13.00 10.70 20.00 9.00
Q of Load (MVAR) 5.00 1.50 2.50 2.00 0.00

P of Wind Turbine (MW) - -3.00 -4.00 -10.80 -
Q of Wind Turbine (MVAR) - -0.30 -1.50 -4.00 -

P of Generator (MW) - -3.00 -5.00 - -
Q of Generator (MVAR) - -2.00 -2.00 - -

5.1.1.2 VALIDATION OF NETWORK TOPOLOGY MODEL FOR STATE ESTIMATION

As to the validation of the network topology model, some statistical properties of the
normalized residuals from the WLS-SSE have to be investigated and compared to the
common theoretical characteristics when the system is under normal operations.

Figure 5.1 and Figure 5.2 show statistics of the distributions of the WLS normalized
residuals during the steady-state operation for 1000 time samples. The distributions are
shown as box plots1. It can be seen that the normalized residuals are mostly within the
range 4 and -4 for every measurement type. With this information, the network topology
model utilized for SE in this study can be claimed that there are no bad data and topology
model errors because the obtained absolute values of normalized residuals are below a
common threshold of 3 or 4 [10].

1The box plot represents the distribution of the data values. On each box, the horizontal middle bar is the
median. The top and bottom edges of the box are the upper and lower quartiles of the data. The ends of the
dashed lines are the minimum and maximum [69], [70].
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In addition, in order to support the claim, the arithmetic mean and variance were
extracted from the data in Figure 5.1 and Figure 5.2, as shown in Figure 5.3 and Figure
5.4, respectively. Ideally, each measurement error is assumed to be independent, having
a normal distribution with mean zero and variance Ri i . Hence, the distribution of nor-
malized residuals for each measurement should be normal with mean zero and unit vari-
ance, as mentioned in the equation (3.13). The findings from Figure 5.3 and Figure 5.4
show that all mean values of the normalized residuals are near zero, except only Iang l e

that has mean values from around -0.25 to -0.35. The possible reason is that the mea-
surement uncertainty settings, i.e., variances Ri i , of the corresponding measurement
Iang l e are not perfectly matched with the received current phasor measurement signals.
However, the variances of the normalized residuals corresponding to each measurement
are approximately one or below. This can be considered that the obtained variances are
within the ideal unit variance and that there are no outliers and no topology errors in the
system.

It is interesting that the normalized residuals associated with the measurement Vmag

and Vang l e at bus 1 have the precise zero mean and zero variance. This is because the
voltage phasor measurements at bus 1 (the slack bus) are assumed to be the constant
magnitude and angle using the pseudo-measurements since there is no PMU device at
the slack bus of the Enduris grid. The zero mean and zero variance confirm that the
assigned pseudo-measurements of Vmag and Vang l e at bus 1 are matched and consistent
with the actual phasor voltage of the slack bus in the real-time simulation under the
steady-state operation scenario.

To summarize, according to the data range, mean values, and variances of the nor-
malized residual distributions under steady-state, it can be claimed that the network
topology model utilized in MATLAB for SE is reasonably matched with the actual topol-
ogy model of the Enduris grid in the RSCAD software.

Figure 5.1: Statistics of the distributions of the normalized measurement residuals for Vmag (left figure) and
Vang l e (right figure) using the WLS-SSE.
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Figure 5.2: Statistics of the distributions of the normalized measurement residuals of Imag (left figure) and
Iang l e (right figure) using the WLS-SSE.

Figure 5.3: Mean and Variance of the distributions of the normalized measurement residuals for Vmag (left
figure) and Vang l e (right figure), extracted from Figure 5.1 to make the statistical inference.

Figure 5.4: Mean and Variance of the distributions of the normalized measurement residuals for Imag (left
figure) and Iang l e (right figure), extracted from Figure 5.2 to make the statistical inference.
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5.1.1.3 PERFORMANCE OF STATE ESTIMATION UNDER STEADY-STATE

The comparison of the performance indices Jk and M AEk between the WLS-SSE and the
EKF-FASE algorithm for 7 seconds is displayed in Figure 5.5 and Figure 5.6, respectively.
Note that the ADDI module has not been activated yet since the system is under normal
operations.

Regarding the index Jk , recalled from Section 4.4 that the Jk indicates the capability
of filtering the measurement noise. If Jk is less than one, this means that the SE filtering
process is effective, and the noise level in the measurements has been reduced (filtered
out). The results in Figure 5.5 show that using the EKF-FASE obtains lower Jk than the
WLS-SSE, especially for the state variables Vmag and Vang l e . This infers that the EKF es-
timator is clearly more efficient than the WLS-SSE in dealing with the random Gaussian
noises and estimating the state variables.

Figure 5.5: Performance indices Jk of Vmag , Vang l e , Imag , and Iang l e under steady-state.

Regarding the index M AEk , the M AEk of Vmag and Vang l e show that the errors are in
the order of 1×10−6 p.u. and 1×10−6 rad (compared with actual values), which are very
low. This means that both estimators of the WLS-SSE and EKF-FASE can provide very
accurate states of buses 1-6. The lower M AEk values of Vmag and Vang l e of the EKF than
the WLS show that the EKF always reaches higher SE accuracy under the steady-state.
The gain is approximately two-fold.
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Remark: It is worth mentioning that the EKF can obtain an even higher estimation
accuracy if more optimum values of the exponential smoothing parameters, i.e.,α and β
for the equations (2.84)-(2.85), are selected to produce better predictions from previous
measurements. However, no investigation was made to determine the optimal param-
eters α and β, but the adopted α = 0.9 and β = 0.4 in this study were found to produce
adequately good results.

Figure 5.6: Performance indices M AEk of Vmag (left figure) and Vang l e (right figure) under steady-state.

5.1.2. QUASI-STEADY-STATE

This subsection is divided into three subsubsections. First, the operating condition of
the quasi-steady-state is explained. Second, the statistical properties of the normalized
innovations are illustrated and analyzed since they are essential properties to determine
a threshold for anomaly detection. Third, the performance indices between the WLS-
SSE and EKF-FASE are shown and analyzed.

5.1.2.1 OPERATING CONDITIONS UNDER QUASI-STEADY-STATE

The quasi-steady-state condition was simulated by varying the loads attached to sub-
stations from the nominal power (shown in Table 5.2 in the previous subsection). The
rate of change of load variation is an increasing linear trend in both active and reactive
power, including a random fluctuation. The linear slope was given differently for each
load group, i.e., 1% for load buses 3-5 and 5% for load buses 2 and 6 over 14 seconds. The
added fluctuation is a random number with normal distribution with zero mean and
standard deviations: 0.1% of the trend value for load buses 3-5 and 0.15% for load buses
2 and 6. As a result, the power injections at bus 1 and bus 2-6 are shown in Figure 5.7 and
Figure 5.8, respectively. Note that each load varied not continuously due to the limited
load resolution in RSCAD that has to change the load profile discretely. This is the reason
why the gentle slopes for the load variation were selected in this thesis. If a steep slope is
set, the ADDI module will see the discrete variation as sudden load changes inevitably,
and the quasi-steady-state condition will not be held anymore.
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Figure 5.7: Time evolution of the three-phase power injections at bus 1 (the 150 kV substation).

Figure 5.8: Time evolution of the three-phase power injections at bus 2-6 (the 50 kV substations).
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5.1.2.2 DISTRIBUTION OF NORMALIZED INNOVATIONS DURING QUASI-STEADY-STATE

This subsubsection shows the statistics of the distributions of the normalized innova-
tions during the quasi-steady-state operation for 1000 time samples. It is crucial to se-
lect a proper threshold of normalized innovations to indicate that the system states are
under normal operating conditions. The threshold value is fundamental to recognize
the presence of an anomaly in the set of received measurements at each time instant (as
noted in Section 3.2). Since the results from Figure 5.9 and Figure 5.10 reveal that all of
the normalized innovations are between 4.5 and -4.5, the threshold γa at 4.5 is selected
in this study.

It is important to note that the values of normalized innovations also depend on the
value of the adopted Q, which is 1×10−11 at diagonals in this study. This is because the
normalized innovation vector τ are calculated from (3.1), which depends on S. The S
is computed by (2.92) depending on P−, and P− depends on Q from (2.79). Hence, if
the value of Q is reassessed, the range of normalized innovations will change, and a new
threshold γa has to be reselected based on the new distributions of normalized innova-
tions under normal operations.

Figure 5.9: Statistics of the distributions of the normalized measurement innovations for Vmag and Vang l e
using the EKF-FASE.

Figure 5.10: Statistics of the distributions of the normalized measurement innovations for Vmag and Vang l e
using the EKF-FASE.
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5.1.2.3 PERFORMANCE OF STATE ESTIMATION UNDER QUASI-STEADY STATE

Figure 5.11 and Figure 5.12 compare the performance indices Jk and M AEk between
the WLS-SSE and the basic EKF-FASE without ADDI for 14 seconds under quasi-steady-
state. Here, the values of Jk are similar to Figure 5.5 under steady-state, except that there
are some peaks’ values higher than 1 for the EKF estimator (see the orange figures). Since
these peaks originated from the inevitable small discrete changes of the load profiles in
RSCAD, we can consider neglecting them to avoid misinterpretation of these high-value
peaks as sudden load changes.

Regarding M AEk from buses 1-6 states, it can be seen that the M AEk of Vmag gradu-
ally increased, unlike under steady-state. This phenomenon is due to the constant volt-
age magnitude and angle of the pseudo-measurement at bus 1 (the slack bus). When the
power injections gradually varied as the quasi-steady-state conditions, the actual volt-
age magnitude of the slack bus tended to change slightly; hence, the assumed constant
voltage magnitude of the pseudo-measurement leads to a more significant estimation
error as long as the power injections varied more through time. By contrast, the M AEk

of Vang l e is maintained at the same level, similar to the steady-state case. It means that
the actual voltage angle at bus 1 has not changed since it is the reference angle for the
whole network. All of these arguments are supported by Figure 5.13, showing the actual
voltage states compared with their estimate at the slack bus. In addition, Figure 5.14 dis-
plays the M AEk of Vmag and Vang l e calculated by using only buses 2-6 states to infer that
the M AEk of Vmag can maintain the same accuracy if not considering the bus 1 states.
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Figure 5.11: Performance indices Jk of Vmag , Vang l e , Imag , and Iang l e under quasi-steady-state.

Figure 5.12: Performance indices M AEk of Vmag (left figure) and Vang l e (right figure) under
quasi-steady-state.
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Figure 5.13: True and estimated states of Vmag and Vang l e at bus 1 (the slack bus) phases A, B, and C.

Figure 5.14: Performance indices M AEk of Vmag (left figure) and Vang l e (right figure) when considering only
bus 2-6 states under quasi-steady-state.
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5.2. DETECTION, DISCRIMINATION, AND IDENTIFICATION

AGAINST AN ANOMALY
This section investigated the results of performing anomaly detection discrimination
and identification using three different kinds of methods (i.e., Method 1, 2, and 3) of the
ADDI module, as the methodologies presented in Section 3.2. The adopted threshold
settings of the criteria are shown and explained in Subsection 5.2.1. The three meth-
ods of the ADDI were tested against several levels of anomalies, i.e., sudden load change
(Subsection 5.2.2) and single/multiple bad data (Subsection 5.2.3), in order to prove the
algorithm’s reliability to recognize the anomaly. It will be seen that the proposed ADDI
module coupled with the EKF-FASE can classify the anomaly into bad data and a sudden
change in the power system. The performances are also compared in terms of computa-
tional time for the real-time applicability in Subsection 5.2.4. Note that, in this section,
the base scenario is the steady state operating condition for simplicity. All the test cases
were simulated by adding the anomaly into the base scenario.

5.2.1. THRESHOLD SETTINGS FOR ANOMALY DETECTION AND DISCRIMI-
NATION

Overall, there are four criteria for anomaly detection and discrimination. Depending
on the selected method (i.e., Method 1, 2, or 3), certain criteria are adopted to compare
the thresholds with the values resulting from the analysis based on innovations and/or
residuals. This subsection explains how the thresholds have been selected in this study,
and their values are shown in Table 5.3.

The threshold γa for the LNI test is selected to ensure that anomalies will not be de-
tected wrongly in their absence. Regarding the setting, the threshold γa = 4.5 is adopted
based on the evaluation of normalized innovations during normal operating conditions
(see Figure 5.9-Figure 5.10 from the previous section) [24].

The threshold ζ for the skewness of normalized innovations distributionψk depends
on the system [9], particularly the topology and measurement configuration of the net-
work. Its value is also determined based on simulations of a large number of different
anomaly scenarios [19]. Based on several test cases of simulations conducted in this
study, the value of ζ = 3.2 is selected.

Due to the fact that the σmax in our system is 0.2/3 (current angle measurement ac-
curacy is 0.2 rad, from Table 4.1) the threshold SI Rth will be selected from the condition
SI Rth = mi n(1/3,3σmax ). Hence, the threshold is adopted as SI Rth = 0.2.

The threshold γb for the LNR test can be the same value as γa for their consistency
[23]. Also, it can be adopted from practical experience [11]. Here, the discrimination
threshold γb = 4.5 is selected based on the evaluation of normalized residuals during
normal operating conditions in this study (see Figure 5.1-Figure 5.2 from the previous
section).
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Table 5.3: Threshold settings for Method 1, 2, and 3.

Method
Threshold values

γa ζ SI Rth γb

Method 1 4.5 3.2 - -
Method 2 4.5 3.2 0.2 -
Method 3 4.5 - - 4.5

5.2.2. UNEXPECTED SUDDEN LOAD CHANGE
In order to prove the capacity of the ADDI module against the unexpected sudden changes
of states, several test cases of a single sudden load change were applied at different lo-
cations and with different intensities (50% and 100% reduction of the nominal power of
the load or wind turbine (WT) attached to the bus) by using the RSCAD software. Ta-
ble 5.4 compares the results of the three ADDI methods to detect and distinguish the
sudden load change (from bad data) and identify the most likely location. The findings
reveal that all Method 1, 2, and 3 are able to recognize the sudden load change precisely
at the first instant of its occurrence. The values of LNI, skewness, SIR, LNR were used to
compare with the threshold values depending on each method. When an LNI exceeds
the threshold (γa = 4.5), the presence of an anomaly is detected, and the ADDI module
is triggered to recognize the type of the anomaly for further actions. Concerning Method
1 and 2, as shown in Table 5.4, the skewness and SIR values are below the thresholds (ζ
= 3.2 and SI Rth = 0.2). Hence, both methods can recognize the anomaly as the sudden
load change reliably. Concerning Method 3, the sudden load change can also be discrim-
inated (from bad data) correctly because of the lower values of LNR than the threshold
(γb = 4.5). In addition, regardless of the method, by finding which measurement corre-
sponds to the LNI, the PMU nearest to the event can be identified/located and reported
to the system operator. For instance, as can be seen at the rows of bus 2 from Table
5.4, the measurement Vang l e 2A is identified to have the LNI; therefore, the operator can
realize that the event occurred at or near bus 2.

Further comments
After the identification stage, the proper action will be taken by switching from the EKF-
FASE into the WLS-SSE, as mentioned in Section 3.3, to avoid using unreliable predic-
tions. This is because the prediction step from the EKF still relies on the previous estima-
tions (before the sudden change) [9], and there is a considerable difference between the
states before and at the time sudden change occurs. Unlike the EKF, the newly adopted
WLS filtering considers only the measurements at the present time; therefore, the WLS
estimator accuracy will not be affected by the sudden load change.
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Table 5.4: Results of discrimination and identification of a sudden load change event.

Bus
Nominal

power
Reduction
of power

LNI
Skew-
ness

SIR LNR
Identified

Meas.
with LNI

Mthd.
1

Mthd.
2

Mthd.
3

3.75 MW 344.22 2.54 0.01 2.09 Vang l e 2A 3 3 3
2

Load
7.5 MW 7.5 MW 644.89 2.63 0.00 3.08 Vang l e 2A 3 3 3

6.5 MW 357.63 2.20 0.00 2.61 Vang l e 3B 3 3 3Load
13 MW 13 MW 675.22 2.19 0.00 3.19 Vang l e 3A 3 3 3

3 WT
3 MW,

0.3 MVAR

3 MW,
0.3 MVAR

164.92 1.77 0.01 2.53 Vang l e 3B 3 3 3

5.35 MW 172.87 2.11 0.00 4.46 Vang l e 4A 3 3 3Load
10.7 MW 10.7 MW 502.66 2.16 0.00 4.22 Vang l e 4C 3 3 3

4 WT
4 MW,

1.5 MVAR

4 MW,
1.5 MVAR

134.40 1.63 0.00 4.31 Vang l e 4C 3 3 3

10 MW 638.05 1.97 0.00 2.58 Vang l e 5C 3 3 3Load
20 MW 20 MW 940.33 2.07 0.00 3.93 Vang l e 5A 3 3 3

5 WT
10.8 MW,
4 MVAR

10.8 MW,
4 MVAR

676.91 1.62 0.00 3.85 Vang l e 5A 3 3 3

4.5 MW 230.70 2.35 0.01 4.00 Vang l e 6C 3 3 3
6

Load
9 MW 9 MW 363.45 2.39 0.00 3.66 Vang l e 6A 3 3 3

5.2.3. BAD DATA
This subsection investigated the results of anomaly detection, discrimination, and iden-
tification using Method 1, 2, and 3 against single and multiple bad data in order to an-
alyze their capacities. First, single bad data is simulated. Then, it is followed by the
multiple bad data simulation.

Several test cases of a single bad data with different magnitudes were simulated on
the PMU measurements of Vmag and Vang l e at bus 3 phase A and Imag and Iang l e at
branch 2-3 phase A as shown in Table 5.5. The gross errors in measurements are ex-
pressed in terms of the number of measurement standard deviations (σ). The results
reveal that the bad data larger than 8σ can be correctly distinguished (from sudden load
change) and identified by all Method 1, 2, and 3. This is due to the three bases as the
following: first, the LNI values exceed the threshold (γa = 4.5), indicating the presence
of the anomaly. Second, regarding Method 1 and 2, the skewness and/or SIR values are
higher than the adopted thresholds (ζ = 3.2 and SI Rth = 0.2), revealing the characteriza-
tion of bad data. Third, regarding Method 3, the LNR values exceed the threshold (γb =
4.5), showing the characterization of bad data. It should be highlighted that Method 1
wrongly discriminated the two cases of the bad data as the sudden load change. These
are gross errors with very small magnitudes (8σ) contained in the measurements of the
current magnitude and the current angle. On the contrary, Method 2 correctly recog-
nized and identified them since the skewness values are lower than the threshold (ζ =
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3.2), but the SIR values are still high enough against the threshold (SI Rth = 0.2). Method
3 also correctly recognized and identified the very small bad data (8σ) because the LNR
exceeds the threshold (γb = 4.5).

From the findings of Table 5.5, two remarks should be pointed out. First, the crite-
ria SIR in Method 2 can help recognize bad data with very small magnitudes. Second,
Method 3 can deal with very small gross errors by directly utilizing both innovations and
residuals in the combined scheme. Note that, unlike Method 3, although Method 1 and 2
use only innovations, additional statistic measures are needed to be calculated (i.e., the
skewness and/or the SIR) in the pre-estimation scheme.

In order to test the ADDI module against the multiple bad data, the simultaneous
presence of the two bad data, as shown in Table 5.6, is simulated. The gross errors have
the magnitude of 20σ on the Vmag measurement at bus 3 phase A and 8σ on the Iang l e

measurement at branch 2-3 phase A. From the value of LNI, skewness, SIR, LNR, it is ap-
parent that all Method 1, 2, and 3 can recognize and identify the multiple bad data suc-
cessfully. The corresponding absolute normalized innovations |τ (i )| to the erroneous
measurements were presented as the two peaks in Figure 5.15. The measurement in-
dex 49 and 103 are Vmag bus 3 phase A and Iang l e branch 2-3 phase A, respectively. The
ADDI module successfully identified the two peaks having the absolute normalized in-
novations higher than the threshold (γa = 4.5) for further actions.

Further comments
With regard to the countermeasures following the identification step, as noted in Sec-
tion 3.3, the erroneous measurements will be rejected by substituting them with the as-
sociated forecasting measurements. The predicted values come from the process model
using Holt’s exponential smoothing technique based on previous data. After the coun-
termeasures procedure, the bad data are properly removed from the measurements, and
they are ready to be processed at the EKF filtering stage of SE.

Table 5.5: Results of discrimination and identification of a single bad data.

Measure-
ments

BD (σ) LNI
Skew-
ness

SIR LNR
Mthd.

1
Mthd.

2
Mthd.

3
Vmag 3A 20σ 16.31 6.93 0.42 10.22 3 3 3

Vmag 3A 50σ 38.30 9.75 0.25 21.25 3 3 3

Vang l e 3A 20σ 16.54 5.89 0.45 5.87 3 3 3

Vang l e 3A 50σ 40.17 9.71 0.25 15.73 3 3 3

Imag 2-3A 8σ 8.50 2.72 0.38 8.19 7 3 3

Imag 2-3A 60σ 58.18 10.44 0.18 70.06 3 3 3

Iang l e 2-3A 8σ 7.75 2.52 0.34 7.78 7 3 3

Iang l e 2-3A 45σ 42.88 9.91 0.23 42.91 3 3 3
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Table 5.6: Results of the ADDI module test against multiple bad data.

Measurement BD (σ) |τ (i )| LNI Skewness SIR LNR
Vmag 3A 20σ 18.54

18.54 6.04 0.36 11.67
Iang l e 2-3A 8σ 6.23

Figure 5.15: Absolute values of normalized innovations when detecting multiple bad data.

5.2.4. COMPUTATIONAL TIME

In this thesis, the power system network and the measurement devices were modeled in
RSCAD/RTDS to assess the impact of the latency of the proposed algorithm. The PMU
simulated by the RTDS has been set the refresh rate at 50 Hz. In general, there are two
types of latencies: the computational time of the algorithm, and the time taken by the
data communication system to send the PMU signals from the RTDS to Computer B
[39]. Since the latency by the real-time simulation platform is not in the scope of this
study, the data transmission is assumed to be ideal and has no latency. Therefore, we
will focus on only the latency due to the computational time of the algorithm, which
largely depends on the hardware of Computer B running this algorithm (the Computer
B specification is already mentioned in Section 4.1).

Table 5.7 compares the average computational time of three algorithms under nor-
mal operations: the traditional WLS-based SSE, the basic EKF-based FASE without the
ADDI, and the proposed EKF-based FASE coupled with the ADDI algorithm. The pro-
cessing time starts from receiving the PMU measurements until finishing that time sam-
ple (see the flowchart in Figure 2.4 and Figure 2.5).

It is apparent that the WLS is the slowest algorithm since it needs up to four iterations
to converge, whereas the EKF-based algorithms can converge within only one iteration.
The computational time of the integrated ADDI into the EKF estimator is comparable
to the basic EKF. A minimal time period of 3 ms is needed for the ADDI module to scan
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for an anomaly (regardless of Method 1, 2, or 3). Note that the processing time of the
proposed algorithm is only 13.7 ms; hence, the estimator will not miss any measurement
under normal operations since the PMU streaming rate is 20 ms per sample (50 Hz).

Table 5.7: Average computation time under normal operations.

Plain WLS EKF w/o ADDI EKF w/ ADDI
25.3 ms 10.7 ms 13.7 ms

By conducting a number of test cases of anomalies, Table 5.8 shows the average pro-
cessing times for the proposed algorithm in order to assess the computation burden be-
tween Method 1, 2, and 3. The processing time starts from the moment of receiving the
PMU measurements, applying countermeasures, until the moment that the sample is
finished (see the flowchart in Figure 2.5).

While the system is under sudden change, all methods execute the WLS filtering as
the countermeasure, so it can be seen that the 24.1 and 27.0 ms are not much different
from the plain WLS at 25.3 ms in Table 5.7. However, Method 3 consumes a bit longer
time than Method 1 and 2, possibly because Method 3 has to compute both innovation
and residual analysis, but Method 2 needs to compute only innovation analysis to rec-
ognize the anomaly.

In case the system is under bad data, Method 1 and 2 are about two times faster
because the pre-estimation scheme can recognize the anomaly before the filtering (esti-
mating) process. The one-iteration EKF filtering is executed after rejecting the bad data
to obtain the estimated states. In contrast, Method 3 has to perform the WLS filtering
first to recognize the anomaly, and the WLS consumes up to four iterations. After reject-
ing bad data, the EKF filtering is performed to obtain the final estimation.

Since Method 3 requires too much time for both types of anomalies, it is suggested to
adopt the pre-estimation schemes either Method 1 or 2 due to the fast processing time.
It should be highlighted as a significant contribution that the countermeasures for bad
data can be performed in time (18.5 ms) before receiving a new measurement every 20
ms, using the EKF-FASE coupled with the ADDI module, based on the pre-estimation
schemes. This study decided to adopt Method 2 over Method 1 for the main ADDI algo-
rithm because of the good detection of some small bad data magnitudes, as shown from
the results of Subsection 5.2.3.

Table 5.8: Average computational time for the proposed algorithm under the presence of anomaly.

Type of anomaly
EKF w/ ADDI

Method 1 and 2 Method 3
Sudden load change 24.1 ms 27.0 ms

Bad data 18.5 ms 35.6 ms
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5.3. VERIFICATION OF CAPABILITY OF THE PROPOSED STATE

ESTIMATION ALGORITHM TO TRACK NEW OPERATING POINTS
This section analyzes the final results after the state filtering against a sequence of anoma-
lies: sudden load change followed by multiple bad data. The three algorithms of DSSE
will be tested and compared: the traditional WLS-SSE, the EKF-FASE without the ADDI,
and the EKF-FASE with the ADDI. It will be shown that the proposed EKF-FASE estima-
tor coupled with the ADDI module has the capabilities to do the following: (i) recogniz-
ing and countering the anomaly; (ii) filtering the states properly to track the power sys-
tem operating point; (iii) identifying multiple bad data then rejecting and substituting
them with reliable predictions. These capabilities accomplished the main thesis objec-
tive (Objective 5); the proposed algorithm is able to online estimate the states accurately
at bus 1-6 for the Enduris MV network using the PMU measurements.

The simulation in this section was carried out in real-time for a period of 7 s by adding
the sequence of anomalies into a base scenario. Here, the base scenario is the quasi-
steady-state operation, which has the same ramp rate of the load variation as presented
in Subsection 5.1.2. Regarding the anomalies, in the beginning, the sudden load change
is simulated at time 0.6 s by tripping the wind turbine of 10.8 MW at bus 5. After that,
three bad data with different magnitudes were injected simultaneously between time 4-
4.5 s in the following measurements: Vmag at bus 5 phase C, Vang l e at bus 3 phase B,
and Imag at branch 4-5(1) phase C. The magnitudes of the three bad data in terms of
standard deviations are 20σ, 50σ, and 60σ, respectively. The experimental results of this
section are divided into two subsections as follows.

5.3.1. ANALYSIS OF PERFORMANCE INDEX Jk
Figure 5.16 compares the performance indices Jk between the three algorithms in order
to analyze their filtering capabilities. Figure 5.17 shows the anomaly alarm status to show
that the ADDI algorithm can classify the simulated anomalies.

At time 0.6 s and a short period after, it can be seen that the EKF coupled with ADDI
estimators have identical values of Jk for every measurement to the plain WLS’s. This is
because the ADDI module recognized the sudden change at time 0.6 s, and the estimator
switched from the EKF into the WLS filtering as the countermeasure, which became the
same algorithm as the plain WLS. As shown in Figure 5.17, it is essential to notice that
the alarm is still active for a short period after the moment of the actual sudden change
at time 0.6 s in the power system. The reason behind this is that the LNI value was still
higher than the threshold (see examples in Figure 5.18) because the process model of the
EKF-FASE cannot track the system state immediately; therefore, the LNI test still trig-
gered the ADDI algorithm for a certain time. Consequently, the WLS filtering continued
to be executed until the LNI value became lower than the threshold (γa = 4.5) after time
1 s. After the normal operation alarm was triggered after time 1 s, the estimation algo-
rithm switched back to the EKF filtering and again utilized the predicted states from the
process model.

For the same time period from 0.6 s to 1 s, it is apparent that the EKF without the
ADDI estimator has very high indices (Jk À 1) for every measurement (see the orange
figures). This infers that the estimator lost the system state trajectory. But it still came
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back to track the system operating point from time 1 s onwards. Unlike having the ADDI
module, it can be seen that the EKF without the ADDI is likely to exhibit a longer tran-
sient period or even lose the system state tracking forever since no proper action is taken
[23].

During time 4-4.5 s, it is clear that both the plain WLS and the EKF without the ADDI
have similar higher indices Jk , indicating the degraded filtering performance than the
prior time. This is because the erroneous measurements were not rejected; hence, they
slipped into the filtering step and biased the estimation. In contrast, the EKF coupled
with the ADDI exhibited the lower indices Jk , indicating the improved performance of
the state filtering that effectively reduced the noises with respect to the received noisy
measurements. The ADDI module detected the anomaly using the LNI test and recog-
nized it as bad data. The multiple bad data were correctly identified as the three suspi-
cious measurements (see the peaks in Figure 5.19) and then replaced by the correspond-
ing forecasting measurements. As can be seen from Figure 5.17, the bad data alarm sta-
tus is active from time 4 s until 4.5 s before the bad data is no longer injected. Then the
system is again under normal operations.

Figure 5.16: Performance indices Jk of Vmag , Vang l e , Imag , and Iang l e under abnormal operating
conditions.
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Figure 5.17: Anomaly alarm status as results of the proposed EKF-FASE estimator coupled with the ADDI
module under abnormal operating conditions.

Figure 5.18: Absolute values of normalized innovations at time 0.6 s (left figure) and 1 s (right figure) when
activating sudden load change alarm status.

Description: The absolute values of normalized innovations against the measurement indexes are plotted as
the two snapshots: the first and the last snapshot of the sudden load change alarm status from Figure 5.17 at

times 0.6 s and 1 s, respectively. The value γa is plotted as the dashed lines indicating the detection threshold.

Figure 5.19: Absolute values of normalized innovations with the presence of the three bad data.
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5.3.2. ANALYSIS OF PERFORMANCE INDICE M AEk
Figure 5.20 shows the performance indices M AEk between the three algorithms in order
to prove that the proposed EKF coupled with the ADDI algorithm provides the lowest
estimation error during the whole simulation time.

From time 0.6 s onwards, the EKF without the ADDI displayed very high indices
M AEk of Vmag and Vang l e , indicating the loss of the system tracking for a particular
period, as noted in Subsection 5.3.1. Figure 5.21 shows an example of poor predictions
under sudden change; the forecasted values of Vang l e at bus 3 phase B deviate dramat-
ically from the actual values at around the time 0.6 s. If these unreliable predictions are
taken into account in the filtering stage, the estimate will suffer from these inaccuracies.
This negative impact can be seen in Figure 5.20 for the poor M AEk values of Vmag and
Vang l e (orange figure) and also in Figure 5.22 for the wrong estimates of Vang l e bus 3
phase B (orange figure). In contrast, the EKF coupled with the ADDI neglected the un-
reliable predictions and executed the WLS instead of the EKF filtering. Because of this
countermeasure, there is no negative impact on the accuracy of the EKF estimator, re-
sulting in good performance indices M AEk in Figure 5.20 (green figure) and accurate
estimated states in Figure 5.22 (green figure) at around the time 0.6 s against the sudden
change.

Interestingly, as shown in Figure 5.20, there have been sudden growths in the indices
M AEk of Vmag for all algorithms since time 0.6 s. Then the indices slightly ramp up due
to the gradual load variation from the quasi-steady-state operation. The possible reason
behind these phenomenons is that the new system operating point had a significant
difference between the new actual Vmag at bus 1 (the true voltage at the slack simulated
from RSCAD) and the assigned constant pseudo-measurement Vmag at bus 1. A similar
phenomenon to this case is already explained in the M AEk results in Section 5.1.2.

Between 4-4.5 s, the EKF without the ADDI and the WLS display poor performance
indices M AEk for both Vmag and Vang l e in Figure 5.20 since no action is taken to sup-
press the multiple bad data, as explained in the previous subsection. Figure 5.21 shows
the true, predicted, and measured values of Vang l e at bus 3 phase B to demonstrate
good predictions and erroneous measurements. If the bad data is not rejected, it will
get through the estimator and contaminate the filtering process, resulting in the wrong
estimation, as seen in the EKF without the ADDI and the WLS in Figure 5.22 at the pe-
riod 4-4.5 s. In contrast, the EKF coupled with the ADDI estimator can properly counter
the multiple bad data by substituting the erroneous measurements with the correspond-
ing forecasts to utilize the reliable predictions. This results in good performance indices
M AEk and reasonable estimates between 4-4.5 s, similar to the normal operations, as
seen in Figure 5.20 (green figure) and Figure 5.22 (green figure), respectively.
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Figure 5.20: Performance indices M AEk of Vmag (left figure) and Vang l e (left figure) under abnormal
operating conditions.

Figure 5.21: True, predicted, and measured values of Vang l e at bus 3 phase B.

Description: The right figure focuses on a particular part of the left figure to sharpen the information.

Figure 5.22: True and estimated states of Vang l e at bus 3 phase B.

Description: The right figure focuses on a particular part of the left figure to sharpen the information.
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CONCLUSIONS AND FUTURE WORK

6.1. CONCLUSIONS
Power systems at the distribution level are evolving, so the control and management
system are needed more reliable and more accurate system monitoring on the oper-
ating conditions of the grid. In the near future, it is expected that the deployment of
synchrophasor measurements will be increased in distribution grids to do fast control
schemes since the modern grid topology is gradually becoming more meshed along with
the high integration of distributed generation.

In this thesis, we present and analyze the implementation of DSSE algorithms on a
real-life active distribution network composed of PMU devices. The measurement func-
tions of SE are non-linear despite having the PMU measurements because some buses
in the distribution network do not equip a PMU device; thus, pseudo-measurements are
given to obtain full observability and for simplicity. The polar coordinates are used for
both the state variables and measurements. The WLS-based SSE and EKF-based FASE
estimators are studied and compared, mainly focusing on the EKF-based FASE. It is im-
portant to highlight that we experimentally validate the theoretical DSSE algorithms by
fully integrating them into our real-time simulation platform to utilize real-time data
from software PMUs simulated by RTDS and streamed over the internet according to
IEEE Standard C37.118.2-2011. Hence, the results discussed in this thesis are from real-
time state estimators using online PMU measurements.

The WLS-SSE and EKF-FASE formulations in this thesis rely on the following assump-
tions. First, the measurement noises are distributed in Gaussian with zero means. Sec-
ond, each measurement is independent and identically distributed, so the measurement
noises are uncorrelated. Third, the measurement Jacobian matrix is of full rank, so the
network is observable. Fourth, the software PMUs simulated by RTDS are ideal (i.e., pha-
sor measurements are perfectly measured), so the measurement noises are added man-
ually in MATLAB and assumed to be very low-level noises. RTDS is used to simulate the
actual Enduris MV grid in real-time and steam the PMU measurements. Meanwhile, the
mathematical model of the Engurid MV grid topology as the network admittance matrix
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is created in MATLAB to run SE algorithms. The model consists of three-phase series
components of generic transmission lines and transformers using two-port parameters.
The results of the statistical distribution of the normalized residuals from the WLS-SSE
under steady-state operations confirm that the network topology model in MATLAB is
reasonably matched with the actual Enduris MV grid simulated in RTDS. Objective 1 is
fully accomplished at this point.

The main findings are summarized into three parts: (i) performance assessment of
DSSE algorithms under normal operations, (ii) validation of the ADDI module after inte-
grating into the EKF-FASE against anomalies, and (iii) performance assessment of DSSE
algorithms under abnormal operations. Each part is explained below.

Under normal operations, i.e., steady-state and quasi-steady-state, both the WLS-
FASE and EKF-FASE are successfully implemented into the real-time simulation plat-
form. The findings show that the performance of the EKF-FASE surpasses the WLS-SSE
in terms of measurement noises filtering capability and estimation accuracy. Both esti-
mation errors are in the order of 1×10−6 both in p.u. and rad; thus, the difference of both
estimation errors is likely insignificant. The impact of the given pseudo-measurement
as a constant voltage for the slack bus is discussed. The results also point out that the av-
erage execution time for the WLS-SSE is the slowest algorithm at 25.3 ms since it needs
up to four iterations to converge. In contrast, the EKF-based algorithms can converge
within only one iteration. The average execution time for the basic EKF-FASE and the
EKF-FASE coupled with the ADDI algorithm is 10.7 ms and 13.7 ms, respectively. This
means that the ADDI module requires only 3 ms additional to scan for any anomaly and
that the EKF-based algorithms are more suitable for real-time applicability. This should
be highlighted as a significant contribution that the coupled EKF-FASE estimator will
not miss any measurement under normal operations as the PMU streaming rate is 20
ms per sample. Objectives 2 and 3 are fully accomplished, while Objective 5 is partly
accomplished at this point.

Special attention is given to the ADDI algorithm for the validation against possible
disturbances in power systems and some telecommunication failures for real-life net-
work adaptability. Three different methods of anomaly detection and discrimination
(namely the conventional-, the improved-innovation analysis, and the combination of
pre- and post-estimation method) are tested and compared. Then, the anomaly is iden-
tified by the traditional largest normalized innovation test. This is followed by applying
countermeasures to prevent the estimation from being biased. Suppose the anomaly
is characterized as a sudden change. In that case, the algorithm will switch from the
EKF filtering into the WLS filtering to avoid inaccurate estimation by neglecting unreli-
able predictions and process only the present measurements. Otherwise, if bad data is
recognized, the errors will be eliminated from the measurements by substituting them
with the forecasted values and then performing the EKF filtering. By testing the ADDI
module with several levels and locations of anomalies, the findings show that all three
methods of anomaly detection and discrimination can correctly recognize all sudden
change events and multiple bad data. Still, only the first method fails to recognize very
small magnitudes of single bad data while the other methods do not. In addition, since
the first and second methods are based on pre-estimation schemes that utilize innova-
tion analysis, their average computational times are expected to be more attractive be-
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cause anomalies can be processed before the estimation. In contrast, the third method
should be a time-consuming algorithm because it includes the post-estimation scheme
that utilizes residuals, which are obtained only after the iterative WLS filtering estimation
process. As expected, the findings reveal that the average computational time interval
from the moment of start receiving PMU measurements until the moment after apply-
ing countermeasures is 18.5 ms under bad data and 24.1 ms under sudden change for
the pre-estimation schemes. In comparison, those for the third method are 35.6 ms and
27.0 ms, respectively. This thesis has underlined the importance of the pre-estimation
scheme for the ADDI module (coupling with the EKF-FASE) that it is feasible to follow
the high-speed refresh rate of PMUs at 20 ms under abnormal operations, particularly
the bad data. Objective 4 is fully accomplished at this point.

Under abnormal operations, an outage of 10.8 MW wind turbine is simulated. Fol-
lowing this, multiple bad data is injected into the PMU measurements. The results reveal
that the proposed EKF-FASE coupled with the ADDI algorithm performs well, by far bet-
ter than the estimators without the ADDI module. The estimation errors are in the order
of 1×10−5 in p.u. and 1×10−6 in rad during the whole simulation. These voltage mag-
nitude and phase errors are abided by the synchrophasor standard IEEE Std C37.118-
2005, allowing 1% vectorial error in phasor estimation, i.e., a maximum deviation of 1%
in amplitude estimation or a maximum deviation of 1 crad (0.01 rad) for phase angle.
Objective 5 is fully accomplished at this point.

In conclusion, the necessity of using the ADDI module against possible disturbances
in real-life networks has been pointed out. This thesis also validates that the proposed
algorithm can accurately estimate the states under both normal and abnormal opera-
tions and continuously track the new system operating point of the active distribution
system in real-time.

6.2. FUTURE WORK
This study is the first step towards advanced active distribution system monitoring us-
ing Kalman filter-based SE algorithms to process online phasor measurements. Several
possible directions can be developed and extended for future research. We made some
suggestions that are listed in order of priority, as shown below.

• A missing point in this thesis is that there is no consistency checking between the
time frame of the SE algorithm and the current time-stamped PMU data received
from the data acquisition. It is suggested to develop an extra algorithm that checks
the time consistency between the two and ensures that the SE algorithm will not
miss any measurement, possibly by creating a buffer memory to store some data
if some measurements are lost.

• Regarding the measurement uncertainty, since we assumed a very low noise level
added to ideal PMU measurements from RTDS, future work can include higher
measurement noises according to the class of sensors that interface the network
voltage and current signals with a PMU to be more practical.

• With regard to the measurement functions, they can be improved to be linear func-
tions by using only rectangular coordinates, i.e., measurements and states are in
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the form of rectangular voltages and currents. The power injection/flow measure-
ments also have to be converted into the current injection/flow. If the linear mea-
surement functions are accomplished, less execution time of the SE algorithm is
expected since the measurement Jacobian matrix is constant, and no need to cal-
culate it every iteration or every time sample. Also, the estimation accuracy will
increase since the linear Jacobian matrix is not an approximation anymore.

• On the issues of the ADDI module, since the considered anomalies in this study are
limited to bad data and sudden load change, our pre-estimation schemes based on
the innovation analysis are sufficient to distinguish between the two, as shown in
the results. However, suppose more complicated anomalies like sudden topology
change, incorrect topology information, or errors contained in network parame-
ters are taken into account. In that case, only innovation analysis is not sufficient
anymore; thus, the information of residuals is also needed since it represents the
consistency level between the present measurements and the topology network.
After that, the topology error identification method can be developed to check any
inconsistencies and then fix the suspected parameters systematically to eliminate
the anomaly.

• Concerning the measurement noise covariance matrix, correlation among mea-
surements can arise when considering a larger distribution network with fewer
PMU devices and more pseudo-measurements since loads can present similarity,
and the weather conditions can also affect the correlation of pseudo-measurements
based on their locations. Hence, including possible correlations into the measure-
ment noise covariance matrix can significantly increase the estimation accuracy.
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A.1. PARAMETERS OF THE ENDURIS MV DISTRIBUTION GRID
The original parameters of the Enduris MV distribution grid are shown in Reference [61]
using PowerFactory software. Here, this appendix section shows the modeling param-
eters of the grid in RSCAD software. The 150 kV transmission line and 50 kV cable pa-
rameters are shown in Table A.1 and Table A.2, respectively. The number 1 denotes the
positive sequence, and the number 0 denotes the zero sequence. For example, R1 de-
notes the positive sequence of resistance. The transformer parameters are shown in Ta-
ble A.3. Note that the three-winding transformers are simplified into two-winding trans-
former modeling (see the schematic in Figure 4.2), and the transformer magnetizing ad-
mittances are neglected for simplicity.

Remark: The SE topology model in MATLAB utilizes the parameters only for the 150
kV transmission lines, 50 kV cables, and 150/52.5 (HV/MV) transformers. The other
MV/MV and MV/LV transformer parameters are not utilized in the SE model in MAT-
LAB. This is because the thesis’s main objective is to estimate states at only 150 kV and
50 kV substations; thus, the states at 10 kV and 0.4 kV are not considered.

Table A.1: Parameters of 150 kV Transmission Lines from RSCAD Software.

Transmission
line name

R1
(Ω/km)

X1
(Ω/km)

R0
(Ω/km)

X0
(Ω/km)

C1_shunt
(µF/km)

C0_shunt
(µF/km)

Length
(km)

Wit Gsp 150
-Wap 150w

0.0657 0.2932 0.2234 0.7727 0.0124 0.00536 7.8

Wit Wap 150w
-Kng 150w

0.0657 0.2932 0.2234 0.7727 0.0124 0.00536 5.2

Wit Kng 150w
-Kng 151

0.0714 0.2791 0.2393 0.7316 0.0487 0.04274 1.17
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Table A.2: Parameters of 50 kV Cables from RSCAD Software.

Cable name
R1

(Ω/km)
X1

(Ω/km)
R0

(Ω/km)
X0

(Ω/km)
C1_shunt
(µF/km)

C0_shunt
(µF/km)

Length
(km)

Tln-Kng 0.1508 0.1223 0.9313 0.3489 0.3464 0.3464 12.17
Otl-Tln 0.1293 0.1228 0.5446 0.2482 0.3464 0.3464 15.313

Zrz-Otl 2 0.0350 0.1590 0.2100 0.3975 0.2100 0.2100 9.804
Zrz-Otl 1 0.1153 0.1234 0.5426 0.2305 0.3464 0.3621 9.804
Gse-Zrz 1 0.1508 0.1223 0.9313 0.3489 0.3464 0.3464 19.77
Gse-Zrz 2 0.1508 0.1223 0.9313 0.3489 0.3464 0.3464 19.77

Wit Gsp-Gse 0.0967 0.3037 0.2858 0.6294 0.1945 0.1909 2.48
Zwart Gsp-Gse 0.0967 0.3037 0.2858 0.6294 0.1945 0.1909 2.48

Table A.3: Parameters of HV/MV, MV/MV, and MV/LV Transformers from RSCAD Software.

Transformer
name

Rated
voltage

S
(MVA)

Positive sequence
impedance

Zero sequence
impedance

Vector
group

Short circuit
voltage uk

(%)

Copper
losses
(kW)

Short circuit
voltage uk0

(%)
151 Gsp 150/52.5 60 12.7 246.9 12.05 YNy0
152 Gsp 150/52.5 60 12.7 246.9 12.05 YNy0
153 Gsp 154.5/11.1 40 20.2 140.60 19.19 YNd11
151 Kng 150/52.5 60 12.28 172.1 11.66 Yyn0
51 Kng 52/11.1 40 20.05 158 19.17 Yd11
51 Tln 52.5/11.1 28 12.27 112.6 11.68 YNd11
51 Otl 52.5/11.1 40 20 90 18.93 YNd11
51 Zrz 52.5/11.1 27 16.5 105.5 11.28 Yd11
51 Gse 52.5/11.1 40 20 90 18.93 YNd11

Gsp-WT 10.6/0.4 4 6 4.0 3 Dyn5
Tln-WT 10.6/0.4 5.6 6 5.6 3 Dyn5
Otl-WT 10.6/0.4 5.6 6 5.6 3 Dyn5
Zrz-WT 10.6/0.4 5.6 6 5.6 3 Dyn5
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in active distribution networks,” International Journal of Electrical Power & En-
ergy Systems, vol. 54, pp. 154–162, 2014, ISSN: 0142-0615. DOI: https : / / doi .
org/10.1016/j.ijepes.2013.07.001. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0142061513002986.

[54] Shahid Jaman, “Implementation of Forecasting-Aided State Estimation,” Ph.D. dis-
sertation, Universidad de Oviedo, Sep. 2017.

[55] Z. Jin, S. Chakrabarti, J. Yu, L. Ding, and V. Terzija, “An improved algorithm for
cubature Kalman filter based forecasting-aided state estimation and anomaly de-
tection,” International Transactions on Electrical Energy Systems, vol. 31, no. 5,
e12714, 2021. DOI: https://doi.org/10.1002/2050-7038.12714. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/2050-
7038.12714.

[56] D. M. Falcao, P. A. Cooke, and A. Brameller, “Power System Tracking State Estima-
tion and Bad Data Processing,” IEEE Transactions on Power Apparatus and Sys-
tems, vol. PAS-101, no. 2, pp. 325–333, 1982. DOI: 10.1109/TPAS.1982.317110.

[57] S. J. Geetha, A. Meghwani, S. Chakrabarti, K. Rajawat, and V. Terzija, “Spoofing
attack on synchrophasor GPS clock: Impact and detection in power system state
estimation,” International Journal of Electrical Power & Energy Systems, vol. 134,
p. 107 396, 2022, ISSN: 0142-0615. DOI: https://doi.org/10.1016/j.ijepes.
2021.107396. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0142061521006359.

[58] D. S. Ouellette, M. D. Desjardine, and R. Kuffel, “Using a real time digital simulator
with phasor measurement unit technology,” in 11th IET International Conference
on Developments in Power Systems Protection (DPSP 2012), 2012, pp. 1–6. DOI: 10.
1049/cp.2012.0034.

[59] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems,” IEEE Std 1588-2008 (Revision of IEEE Std 1588-
2002), pp. 1–269, 2008. DOI: 10.1109/IEEESTD.2008.4579760.

[60] M. Naglic, M. Popov, M. A. M. M. van der Meijden, and V. Terzija, “Synchro-Measurement
Application Development Framework: An IEEE Standard C37.118.2-2011 Supported
MATLAB Library,” IEEE Transactions on Instrumentation and Measurement, vol. 67,
no. 8, pp. 1804–1814, 2018. DOI: 10.1109/TIM.2018.2807000.

[61] N. Save, Phasor Measurement Unit (PMU) based power system analysis of MV dis-
tribution grid. Delft, Sep. 2016.

https://doi.org/10.1109/TCST.2016.2628716
https://doi.org/10.1109/TCST.2016.2628716
https://doi.org/10.1201/9781420041736
https://doi.org/https://doi.org/10.1016/j.ijepes.2013.07.001
https://doi.org/https://doi.org/10.1016/j.ijepes.2013.07.001
https://www.sciencedirect.com/science/article/pii/S0142061513002986
https://www.sciencedirect.com/science/article/pii/S0142061513002986
https://doi.org/https://doi.org/10.1002/2050-7038.12714
https://onlinelibrary.wiley.com/doi/abs/10.1002/2050-7038.12714
https://onlinelibrary.wiley.com/doi/abs/10.1002/2050-7038.12714
https://doi.org/10.1109/TPAS.1982.317110
https://doi.org/https://doi.org/10.1016/j.ijepes.2021.107396
https://doi.org/https://doi.org/10.1016/j.ijepes.2021.107396
https://www.sciencedirect.com/science/article/pii/S0142061521006359
https://www.sciencedirect.com/science/article/pii/S0142061521006359
https://doi.org/10.1049/cp.2012.0034
https://doi.org/10.1049/cp.2012.0034
https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/TIM.2018.2807000


96 REFERENCES

[62] N. D. Hatziargyriou, Ed., Microgrids : architectures and control. Wiley-IEEE Press,
2014.

[63] I. Cobelo, A. Shafiu, N. Jenkins, and G. Strbac, “State estimation of networks with
distributed generation,” European Transactions on Electrical Power, vol. 17, pp. 21–
36, 2007.

[64] “IEEE Standard for Synchrophasors for Power Systems,” IEEE Std C37.118-2005
(Revision of IEEE Std 1344-1995), pp. 1–65, 2006. DOI: 10.1109/IEEESTD.2006.
99376.

[65] M. Pau, P. A. Pegoraro, and S. Sulis, “Efficient Branch-Current-Based Distribution
System State Estimation Including Synchronized Measurements,” Instrumenta-
tion and Measurement, IEEE Transactions on, vol. 62, pp. 2419–2429, Oct. 2013.
DOI: 10.1109/TIM.2013.2272397.

[66] M. Huang, Z. Wei, J. Zhao, R. A. Jabr, M. Pau, and G. Sun, “Robust Ensemble Kalman
Filter for Medium-Voltage Distribution System State Estimation,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 69, no. 7, pp. 4114–4124, 2020.
DOI: 10.1109/TIM.2019.2945743.

[67] X. Kong, Y. Chen, C. Yong, X. Ma, and J. Kong, “Stepwise robust distribution sys-
tem state estimation considering PMU measurement,” Journal of Renewable and
Sustainable Energy, vol. 11, no. 2, Mar. 2019, ISSN: 1941-7012. DOI: 10.1063/1.
5064532.

[68] A. Dubey, S. Chakrabarti, and V. Terzija, “SCADA and PMU Measurement Based
Methods for Robust Hybrid State Estimation,” Electric Power Components and Sys-
tems, vol. 47, no. 9-10, Jun. 2019, ISSN: 1532-5008. DOI: 10.1080/15325008.2019.
1627606.

[69] D. H. Foster, A Concise Guide to Communication in Science and Engineering, En-
glish. United Kingdom: Oxford University Press, Nov. 2017, ISBN: 9780198704249.

[70] MATLAB version 9.8.0.1359463 (R2020a) Update 1, Natick, Massachusetts, 2020.

https://doi.org/10.1109/IEEESTD.2006.99376
https://doi.org/10.1109/IEEESTD.2006.99376
https://doi.org/10.1109/TIM.2013.2272397
https://doi.org/10.1109/TIM.2019.2945743
https://doi.org/10.1063/1.5064532
https://doi.org/10.1063/1.5064532
https://doi.org/10.1080/15325008.2019.1627606
https://doi.org/10.1080/15325008.2019.1627606

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Motivation
	Literature review
	Literature study about static and dynamic state estimation and anomaly processing function
	Literature study about PMU-based state estimation and distribution system state estimation

	Research objectives
	Research Contributions
	Research questions
	Which SE technique is suitable in terms of accuracy to estimate the states of the distribution grid under normal operations and why?
	Is it feasible to run the real-time SE algorithm and its auxiliary function in a computationally efficient way to be compatible with the high reporting rate of the synchronized phasor measurements in the distribution grid?

	Thesis Outline

	Theory about PMU-based State Estimation
	Introduction of Distribution System State Estimation and PMU Measurements
	Formulation of the State Estimation Problem
	Distribution System State Estimation
	Role and impact of PMUs in State Estimation

	Requirements of state estimation
	Accuracy of the estimation
	Time frame
	Robustness

	Mathematical Models for State Estimation
	Modeling of Three-phase Components
	2.3.1.1 Transmission line
	2.3.1.2 Three-phase transformer

	Y-bus Construction for Network Topology Model
	Measurement Model
	2.3.3.1 Measurement function

	Process model

	Weighted Least Square-based Static State Estimation
	Weighted Least Square Technique
	Static State Estimation with Phasor Measurements
	WLS-SSE Process

	Extended Kalman Filter-based Forecasting Aided State Estimation
	State forecasting
	2.5.1.1 Holt’s Linear Exponential Smoothing Method

	State filtering
	EKF-FASE Process Algorithm


	Anomaly Detection, Discrimination, and Identification
	Classification of Anomaly
	Anomaly detection and discrimination
	Pre-estimation approach
	3.2.1.1 Largest normalized innovation test
	3.2.1.2 Skewness of Distribution of Normalized Innovations
	3.2.1.3 Skewness to the Largest Normalized Innovation Ratio
	3.2.1.4 The conventional innovation analysis method (Method 1)
	3.2.1.5 The improved innovation analysis method (Method 2)

	Combination of Pre- and Post-estimation Approach
	3.2.2.1 Largest residual test
	3.2.2.2 The combined method (Method 3)


	Anomaly identification and countermeasures
	Using the pre-estimation method (Method 1 or 2)
	Using the combined method (Method 3) 


	Implementation Aspects
	Real-time experimental setup
	Real-time Power System Model: Enduris MV Distribution Grid
	Assessment of Measurement and Process Noise Covariance Matrices
	Measurement Noise Covariance Matrix R
	Process Noise Covariance Matrix Q

	Performance Indices for State Estimation

	Results of Real-time Simulations
	State Estimation under Normal Operations
	Steady State
	5.1.1.1 Operating Conditions under Steady-State
	5.1.1.2 Validation of Network Topology Model for State Estimation
	5.1.1.3 Performance of State Estimation under Steady-state

	Quasi-steady-state
	5.1.2.1 Operating Conditions under Quasi-steady-state
	5.1.2.2 Distribution of Normalized Innovations during Quasi-steady-state
	5.1.2.3 Performance of State Estimation under Quasi-steady State


	Detection, Discrimination, and Identification  against an Anomaly
	Threshold Settings for Anomaly Detection and Discrimination
	Unexpected Sudden Load Change
	Bad Data
	Computational Time

	Verification of Capability of the Proposed State Estimation Algorithm to Track New Operating Points
	Analysis of Performance Index Jk
	Analysis of Performance Indice MAEk


	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Parameters of the Enduris MV Distribution Grid


