
An analysis of system call set extraction tools on configurable Linux binaries
Comparing the performance of various system call set extraction tools on various configurations of the

busybox application

Bryan van der Mark1

Supervisor: Alexios Voulimeneas1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Bryan van der Mark
Final project course: CSE3000 Research Project
Thesis committee: Alexios Voulimeneas, Przemyslaw Pawelczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

System calls are a primary way in which applica-
tions to communicate with the kernel. This is to
allow them to perform sensitive tasks, however, an
application will typically not require all of the sys-
tem calls available to function properly. Despite
this, the Linux kernel allows a program to perform
any system call it wishes. This is bad for security,
as it allows an attacker full access to the kernel af-
ter gaining code execution in a vulnerable program.
By extracting a minimal set of system calls for a
given program, we can sandbox it and only allow
those system calls to be executed, greatly reducing
the attack surface. In this paper, we analyze ex-
isting solutions that address system call set extrac-
tion. In particular, we will focus on applying these
to configurable binaries. That is, binaries which
can be compiled with a variety of different settings.
For this paper, we have chosen to analyze cat as a
minimal example, and busybox as the configurable
application. We compile busybox in the follow-
ing configurations, among variations: the default
configuration, a configuration containing a mini-
mal set of features and a configuration containing
a maximal set of features. We analyze the perfor-
mance of the tools Binalyzer, Sysfilter and Confine
on these binaries. We see that Confine has signifi-
cantly worse performance than both Binalyzer and
Sysfilter. We also see that Sysfilter has better per-
formance than Binalyzer when the complexity of
the busybox binary is increased. We conclude that
Sysfilter outperforms Binalyzer on binaries without
debug symbols, while the opposite is true when per-
forming analysis on binaries with debug symbols.

1 Introduction
System calls are a predominant way for programs to commu-
nicate with the operating system. For example, if a program
needs to write to a file, it can do so via a system call. The
operating system then checks if the program has sufficient
permissions to do its requested action, and then performs the
action if permitted. By default, a program is allowed to per-
form any system call, even if it does not require it to function
properly. This is usually not a problem, however, the pro-
gram could be compromised by an attacker via (for example)
a buffer overflow attack. When this happens, the attacker can
issue system calls on behalf of the compromised application
and gain further privileges. To limit an attacker’s capabili-
ties after an application has been compromised, we can limit
the set of system calls an application is allowed to execute
to contain only the ones it needs for it to function. How-
ever, identifying this set manually is a labour intensive task,
which is why research has been conducted to automate this
process. These solutions include Chestnut[2], Sysfilter[3],
Confine[4] and a temporal specialisation-based approach[5].
This research aims to answer the following research question:
How do Chestnut’s Binalyzer, Sysfilter and Confine compare

when performing system call set extraction on various con-
figurations of the busybox[9] application?

Section 2 gives additional background information. Sec-
tion 3 contains a detailed explanation of previous work and
states our main contributions. Then, section 4 gives more
insight into the used methodology. An overview of the exper-
imental setup and results is given in section 5. A reflection
on the ethics and reproducibility of this research is given in
section 6. Finally, a discussion is presented in section 7 and
section 8 contains a conclusion.

2 Background
2.1 System call sandboxing
As software has gotten more complex, the attack surface of
applications has gotten bigger. Memory safety violations are
among the most prominent attack vectors, these allow an at-
tacker to read or write data to memory that they are not sup-
posed to have access to. This, in turn, allows modification
of program behaviour. For example, an attacker could over-
write a function pointer stored on the stack, allowing diver-
sion of program execution to any executable memory address.
These memory safety violations accounted for 14% of all vul-
nerabilities reported to the Common Vulnerabilities and Ex-
posures database[7]. Along with other techniques, memory
safety violations provide attackers a powerful framework to
gain arbitrary code execution. However, this execution is con-
fined to the program which was vulnerable to memory safety
related attacks. In order for an attacker to have an effect out-
side of this program, they will need to make changes to the
system that is running the program. In a majority of cases,
this will involve system calls. As of the time of writing, the
default behaviour of Linux-based operating systems is to ex-
ecute any system calls that a program invokes. This violates
the principle of least privilege[8], as it is extremely unlikely
for a program to require every available system call (335 at
the time of writing) to function properly. This provides an
opportunity for attackers, as they can execute arbitrary sys-
tem calls after gaining code execution. To reduce the attack
surface, system call sandboxing can be employed to restrict
the set of system calls that are allowed to be executed to just
the ones strictly required by the program. This can be done
via seccomp[1], which ensures that any system call a program
makes conforms to a filter set by the program before being
executed. This paper will investigate existing solutions that
promise to automatically detect this set of system calls.

2.2 Busybox
busybox[9] is an application that is often used in the con-
text of embedded systems, where memory and storage space
are limited. busybox is a single binary that includes com-
pact (space efficient) versions of various other commonly
used Linux binaries, called applets or functions. This means
that it is an appealing option for firmware developers, as they
can use busybox as an all-in-one solution when creating the
file system for their firmware image (assuming their project
runs on the Linux kernel). When they add the binary to the
firmware, they get access to every applet that is compiled in
the busybox binary. However, due to space constraints or



other factors, a developer may want to remove specific bi-
naries from the busybox build. This can be done at com-
pile time, as the make config and make menuconfig com-
mands will give the user (firmware developer in this example)
access to configuration options, where specific applets can be
included or excluded from the compilation process.

3 Previous work and our contributions
Chestnut
Chestnut[2] is a utility that can be used to perform system
call set extraction. This utility consists of three parts, Source-
alyzer, Binalyzer and Finalyzer. These parts can all be used
independently from each other, or in combination. Source-
alyzer analyzes the source code of an application and uses this
information to figure out an upper bound on the set of system
calls the application may use. That is, it will always produce
a super-set of the actual set (note that A = B =⇒ A ⊃ B).
Binalyzer has the same goal, however it analyses a compiled
binary instead of source code. This means that it has access
to less information, but in return, it is able to work on any
program (even closed-source applications). Binalyzer also
over-approximates the actual system call set. Finalyzer is an
optional dynamic component of Chestnut, which runs a spec-
ified binaries and keeps track of which system calls it per-
forms. This can be useful in cases where static analysis is not
possible, for example if the binary contains self-modifying
code. Finalyzer is meant to be used to further refine sets
found by Sourcealyzer and Binalyzer.

Confine
Confine[4] is a utility that is used to create system call sets
specifically for Docker containers. It does this by first run-
ning the Docker container and analyzing which applications
it starts up. Then, much like Binalyzer, it analyzes all of the
binaries that were found during this dynamic analysis phase.
Finally, it produces a set of system calls that could potentially
be called in the container’s lifetime.

Sysfilter
Sysfilter[3] has many similarities to Binalyzer. Although the
implementations are different, for the purposes of this paper,
these differences are not of concern. Sysfilter takes a binary
program as input, and produces a set of system calls that the
program could potentially use as output. Again, this set is an
over approximation of the true set of system calls used by the
application.

Temporal Specialisation
Temporal Specialisation is a technique proposed in Temporal
system call specialization for attack surface reduction[5]. In-
stead of analysing an entire application at once, it proposes
that many applications can be analysed in separate phases.
For example, a web server will often have an initialization
phase, where it reads configuration files and sets up child
processes for various tasks. Then, once this is done, it may
transition to a ”serving phase”, where it will read network re-
quests and create responses to them. These two phases may
have a different set of system calls which they require. By
analysing these separately, one can further restrict the set of
system calls available during a specific phase.

Our contribution
As explained in previous sections, this work deals with auto-
mated extraction of system call sets. The aim of this work is
not to develop a new way to achieve this, but rather to ana-
lyze the previously mentioned existing solutions in the spe-
cific case of cat[6] and busybox[9].

4 Methodology
This paper will analyze three different methods of extract-
ing system call sets on various configurations of configurable
software. Namely, Chestnut[2], Sysfilter[3] and Confine[4].
More specifically, Chestnut’s Binalyzer will be used.

These programs will be analyzed by having them analyze
two programs, cat and busybox. The analysis of cat is used
as a simple baseline, while the main part of the analysis will
be done by examining the previously mentioned solutions on
busybox. As explained previously, busybox can be com-
piled in various configurations. In this work, we will explore
various of these configurations and investigating the effec-
tiveness of the previously mentioned solutions on said con-
figurations.

Readers may note the omission of Sourcealyzer, Finalyzer
and the temporal specialisation-based approach. The omis-
sion of Sourcealyzer is due issues with compiling a patched
version of clang, which is required to run Sourcealyzer. Fi-
nalyzer was not used as it required a binary to have seccomp
filters installed before it can analyze the binary. However,
the project’s own Binalyzer was unable to install these filters.
The temporal specialisation-based approach was not used due
to the nature of busybox. busybox does not have clearly
defined stages, as the user can choose to invoke a different
applet every time they run busybox. Therefore, it does not
make much sense to analyze busybox with this approach.

5 Experimental Setup and Results
5.1 Setup
Git repository
We have put all code and data discussed in this paper in
a Git repository, which is available at https://github.com/
bbvandermark/CSE3000SystemCallSandboxing

Versions of used tools
At the time of writing, the latest Git commits of the tools used
have SHA hashes beginning with:

• Chestnut (Binalyzer): 839c39d
• Sysfilter: 1469319b
• Confine: a75dad3

Busybox configuration
In order to analyze busybox, various different configurations
of the program will be compiled. In order to do this, the com-
mand make menuconfig is used to access the configuration
options. The following configurations are created:

• Default: Running make menuconfig will generate a
pre-populated .config file with the default settings for
busybox. This will be regarded as the default configu-
ration.

https://github.com/bbvandermark/CSE3000SystemCallSandboxing
https://github.com/bbvandermark/CSE3000SystemCallSandboxing


• Minimal: This configuration will consist of setting all
boolean settings to N, meaning that everything that can
be disabled, is disabled.

• Maximal (excluding debugging options): This config-
uration will consist of setting all boolean settings to Y,
except for those listed under the Debugging Options cat-
egory. In addition, all applets and their options are en-
abled. This is with the exception of:

– Support mounting NFS file systems on Linux <
2.6.23

– Support RPC services
– support PAM (Pluggable Authentication Modules)

These are disabled due to compilation issues with these
settings enabled.

• Maximal (including debugging options): This config-
uration is the same as Maximal (excluding debugging
options), however, it has all debugging options set to Y,
with the exception of:

– Enable runtime sanitizers (ASAN/LSAN/USAN/
etc...)

– Abort compilation on any warning
In addition, no additional debugging library is provided
to the compiler in this configuration.

• All applets: This configuration combines the previ-
ous configurations. It takes the settings from the De-
fault configuration and the applet configuration from the
Maximal configuration.

• Cat: This configuration is meant to simulate a scenario
where busybox contains a single applet, namely cat.
This configuration is the same as Minimal, however, the
cat applet is enabled. In addition, the default settings
for cat are kept. This means that the additional options
that appear when enabling cat are kept as is. Coinci-
dentally, this means that all settings are enabled, as the
default behaviour is to enable all settings. We have cho-
sen cat as we can then compare the found system call
set to a set generated by analysing the version of cat
bundled with Ubuntu 22.04.

• Cat (minimal): This configuration is the same as Cat,
however, all settings related to cat are disabled. This
means that the following settings are disabled:

– Enable -n and -b options
– cat -v[etA]

All of the configuration files can be found in the Git repos-
itory associated to this paper, under the busybox configs
directory.

Busybox binaries
Compiling Busybox using the make command results in two
binaries being created, busybox and busybox unstripped.
The main difference between these two binaries is that
busybox is compiled without debug symbols, while
busybox unstripped has debug symbols included. For Bi-
nalyzer and Sysfilter, both of these binaries are analyzed.
However, the unstripped binary is omitted from analysis in

Confine due to the extensive time Confine requires for analy-
sis.

Confine containers
Confine requires the user to have a Docker container that they
wish to analyse. As this research deals with standalone bi-
naries, this requires some pre-processing. This is done by
creating a Docker container that runs the binary that we wish
to analyze. This is done by copying the binary to a Docker
image based on Ubuntu 22.04, followed by copying a script
that manages running the binary. This is important, as Con-
fine analyzes a container over a period of time. By having an
associated script that runs the binary, we can ensure that the
program is running through all phases of Confine’s analysis.
In addition, the script also makes sure that all relevant parts
of the program are executed. As this can vary depending on
the programs usage, two variations of scripts are made, and
each binary is analyzed with each variation. These variations
are:

• Minimal: This variation does a minimal amount of work
and only ensures that the binary is ran inside the con-
tainer for at least 5 minutes. For the standalone and
busybox versions of cat, this means using echo to di-
rect a dummy input to the standard input of the program.
This process is then repeated after sleeping for one sec-
ond. For the remaining configurations of busybox, the
script repeatedly calls the binary without arguments and
sleeping for one second.

• Regular use: This variation attempts to emulate regu-
lar usage of the program. For the standalone and busy-
box versions of cat, this is understood as reading in-
put from a pipe and reading from a file on disk. For
the other busybox configurations, the busybox binary
is invoked various times with different applets. The ap-
plets are chosen such that they capture, among others,
file system navigation (ls), file interaction (touch, rm)
and network interaction (ifconfig, ping).

As with the busybox configurations, the details of these
scripts can be found in the Git repository associated to this
paper, under the confine scripts directory.

Running analysis tools
To ensure reproducible results, the analysis is done inside
Docker containers wherever possible. This is done for Bin-
alyzer and Sysfilter. Confine, however, is run without con-
tainerization. This is because Confine itself analyses Docker
containers by running them. As running Docker containers
inside of a Docker container is not trivial and could add ad-
ditional variables to the analysis, it has been decided to run
Confine on the host operating system. The Docker images use
Ubuntu 20.04 as a base image, and install only the required
dependencies to run the tools needed for analysis.

Analysing results
In order to parse results, the set of system call numbers gen-
erated for each binary by each tool will be gathered. As Bi-
nalyzer and Sysfilter both perform static analysis on a stan-
dalone binary, and they both over-approximate the sets, it is



interesting to take the intersection of these two sets. This re-
sults in another super-set of the actual system call set, but
with potentially better bounds. Confine performs analysis on
entire Docker containers, and therefore it may include sys-
tem calls of background processes that were ran during the
container’s lifetime, which is why the set that it generated
is excluded from the previously mentioned intersection. For
Confine, multiple analyses are performed with different vari-
ations of runner scripts, as described previously. As Confine
uses dynamic analysis (alongside static analysis), the result-
ing sets of these analyses are then combined together in a
union. For completeness, a final set is constructed that con-
tains the intersection of the previously constructed sets.

Any analysis that resulted in an empty set is marked as Did
Not Finish. As every program analyzed in this research writes
to the standard output, every set generated must include the
write system call. Therefore, empty sets are invalid. When
a set is invalid, we exclude it from any intersections that are
calculated. For example, if a set S is invalid, then we regard
B ∩ S to be equivalent to B. This is because the intersec-
tion is taken as a way to further refine the set of system calls
acquired, and since an invalid analysis gives no further infor-
mation to the actual set of system calls, it can be disregarded.

5.2 Results
In the following tables, the following symbols are assigned
to the various sets for brevity:

Set extracted by Alias
Binalyzer B
Sysfilter S

Confine (Minimal variation) CM
Confine (Regular use variation) CR

CM ∪ CR C
In table 1, one can see the size of the acquired system call

sets for stripped binaries. From these results, we can see that
the sets CM, CR and C have the same size. As C = CM ∪CR,
we can conclude that the two variations on the runner script
do not make a difference in the generated system call set.
Furthermore, the sets generated by Confine are always much
higher than the sets generated by Binalyzer and Sysfilter. Sys-
filter produced the smallest set in every experiment, however,
it did not complete the analysis of busybox in the maximal
configuration. Despite Binalyzer producing a bigger set, it
over-approximated a different set of system calls. This is ev-
idenced by the fact that B ∩ S is smaller than both B and S
in all analyses that completed. Another interesting observa-
tion is that, despite Confine generating a significantly larger
set, it was still able to avoid over-approximating a few system
calls that Binalyzer or Sysfilter were not able to avoid. This
can be seen by noting that B ∩ S ∩ C is always one or two
elements smaller than B ∩ S , except for the the binaries that
Sysfilter was not able to analyse. This is investigated later
in the section. One can also see that the standalone version
of cat was approximated to need 48 and 47 system calls by
Binalyzer and Sysfilter, respectively. For both configurations
of the busybox binary compiled with only cat, Binalyzer ap-
proximated a set with 10 more system calls in it. This is in

contrast to Sysfilter, which generated a set that contained one
less system call than the standalone binary. The pattern of Bi-
nalyzer approximating more than Sysfilter appears to be more
extreme when more applets are added to the compilation. In
the Minimal configuration, Binalyzer generates a set which
contains 12 more elements than Sysfilter. However, in the
Default configuration, this number is 106. In the configura-
tion where all applets are compiled into busybox, Binalyzer
approximates 110 more system calls.

In table 2, one can see the size of the acquired system call
sets for unstripped binaries. Noteworthy is the sizes of the
sets generated by Binalyzer, which did not change from the
results obtained with stripped binaries, indicating that Bina-
lyzer was not able to capitalize on the additional information
provided by the debug symbols. However, this is not the case
for Sysfilter, which performed worse on unstripped binaries
than stripped binaries. Notably, in the All applets config-
uration, it went from 50 system calls found in the stripped
binary, to 176 in the unstripped binary. Sysfilter performed
worse than Binalyzer on every analysis, with the exception of
both Maximal configurations. This is especially interesting
considering that it was not able to complete the analysis of
these binaries without debug symbols.

In table 3 we mention the specific system calls that have
been removed by intersecting the set extracted by Confine
with the intersections of the Binalyzer and Sysfilter sets. More
specifically, only the resulting sets with a cardinality between
0 and 10 are shown. This gives more insight into the cases
where Confine was able to identify system calls which were
not used, which the other two approaches did not. From this
table, we can see that the sched yield, gettimeofday and send-
mmsg system calls were able to be removed from the system
call set thanks to Confine. From the appendix given in [2],
we learn that sendmmsg is an equivalent of the sendto and
sendmsg system calls. By inspecting B∩S∩C, we indeed see
that these equivalents exist in this set. This means that Con-
fine only generated only the sendmmsg system call, while Bi-
nalyzer and Sysfilter included equivalent system calls in their
sets. Interestingly, sched yield and gettimeofday are not listed
as having equivalent system calls, meaning that Confine was
the only program that was able to identify that these system
calls were not used.

The full results, along with the specific system calls in each
set, are located in the Git repository associated to this pa-
per. Specifically, a JSON representation of the results can be
found in results.json. Along with this, the specific bina-
ries used in this analysis are given in the targets directory.

6 Responsible Research
6.1 Ethics
This research deals primarily with the fields of cybersecu-
rity. In particular, it deals with the topic of preventing the
exploitation of vulnerabilities in applications. Cybersecurity
is mainly concerned with protecting sensitive data. When a
vulnerability is found, an application often needs to be up-
dated in order to patch said vulnerability. However, it is not
guaranteed that every user of the application will install this
update. This means that a malicious party may read research



Binary n(B) n(S) n(CM) n(CR) n(C) n(B ∩ S) n(B ∩ S ∩ C)
busybox all applets default settings 160 50 234 234 234 49 48
busybox cat 58 46 148 148 148 33 32
busybox cat minimal 58 46 148 148 148 33 32
busybox default 156 50 231 231 231 48 47
busybox maximal excluding debugging options 178 DNF 237 237 237 178 178
busybox maximal including debugging options 177 DNF 237 237 237 177 177
busybox minimal 58 46 146 146 146 33 32
cat 48 47 147 147 147 31 29

Table 1: System call set sizes for stripped binaries

Binary n(B) n(S) n(B ∩ S)
busybox all applets default settings unstripped 160 176 154
busybox cat minimal unstripped 58 62 46
busybox cat unstripped 58 62 46
busybox default unstripped 156 173 150
busybox maximal excluding debugging options unstripped 178 47 47
busybox maximal including debugging options unstripped 177 47 47
busybox minimal unstripped 58 62 46

Table 2: System call set sizes for unstripped binaries

Binary (B ∩ S) \ (B ∩ S ∩ C)
cat sched yield, gettimeofday
busybox all applets default settings sendmmsg
busybox minimal sched yield
busybox default sendmmsg
busybox cat minimal sched yield
busybox cat sched yield

Table 3: System calls removed from B ∩ S by intersecting with C in cases where 0 < n((B ∩ S) \ (B ∩ S ∩ C) < 10

about a vulnerability and decide to exploit any instance of
this application which is still on a vulnerable version. This,
in turn, means that publishing a paper of this kind can be eth-
ically questionable. However, since this research focuses on
preventing already existing vulnerabilities, this does not ap-
ply here. We do not see any reasonable ethical concerns in
regards to the methodology used in this research. In addition,
we also do not see any ethical implications in publishing this
paper.

6.2 Reproducibility
In order to allow readers to reproduce the results gathered in
this paper, we have uploaded all of the files used to gather
these results in a Git repository. Notably, this Git repository
contains Dockerfiles that automatically run analysis using Bi-
nalyzer and Sysfilter. The repository also contains a Dock-
erfile which attempts to run analysis with Sourcealyzer. As
noted, we did not get this method to work, however, we have
included the associated Dockerfile in case a reader wants to
verify this behaviour themselves. By using Docker, we can
ensure that analysis is run in exactly the same way on any
machine. However, this is with the exception of the various
apt install commands issued within these Dockerfiles. If
the behaviour of the installed packages changes after the time
of writing, then the results may not be the same anymore.

However, this is extremely unlikely, as the installed pack-
ages have large user-bases (such as the python3 package).
This makes (major) changes in the API of these packages
very unlikely. Even still, if this were to happen, a reader
could change the Dockerfiles to install specific versions of
the packages that coincide with the date on the front page of
this paper. This should ensure that the results gathered by the
reader will be exactly the same as the results shown in this
paper. This comes with the exception of Confine, which, as
discussed in section 5, was ran on the host operating system
instead of in a container. As Confine runs a Docker container
itself to perform its analysis, we believe that this is enough to
make these experiments reproducible. We have included the
script that creates the containers which are analysed by Con-
fine in the repository, which provides additional reproducibil-
ity. Along with this, we mention the hashes of the latest Git
commits of Binalyzer, Sysfilter and Confine in section 4. This
helps ensure that a reader is able to run the exact same ver-
sion of these tools as was used in this paper. Every action
performed to perform the experiments has been made into a
script, which a reader could run to ensure they are performing
the exact same steps as have been performed to acquire the re-
sults shown in this paper. These scripts have also been added
to the Git repository. Additionally, the compiled binaries are



also present in the git repository, meaning that variations in
compiler output can be avoided by using the provided bina-
ries instead of compiling new binaries with the given config-
uration files.

7 Discussion
In this paper, we have analyzed the performance of various
system call set extraction tools on cat and busybox binaries.
This has been done by running Binalyzer, Sysfilter and Con-
fine on cat and various configurations of busybox. These
configurations are chosen such that they capture a busybox
binary with a minimal amount of applets, a maximal amount
of applets and the default set of applets. On top of this, the
configuration with the maximal amount of applets was split
into three configurations, one with default settings, one with
all settings enabled except for debugging options, and one
with all settings enabled including debugging options. We
have found that Binalyzer performs worse than Sysfilter on
stripped binaries, while the opposite is true with unstripped
binaries. This is with the exception of the configuration con-
taining all applets and all settings, where Sysfilter was un-
able to complete analysis on a stripped binary, but outper-
formed Binalyzer on an unstripped binary. Furthermore, we
have seen that Confine performs significantly worse than both
Binalyzer and Sysfilter on every experiment that has been per-
formed. Sets extracted by Binalyzer scale significantly worse
than those extracted by Sysfilter with an increasing amount of
applets compiled in busybox. However, Binalyzer produced
consistent results across stripped and unstripped binaries. In
addition, it was able to complete the analysis on all binaries.

The result that Confine performs worse than Binalyzer and
Sysfilter was expected, since it performs analysis on every bi-
nary that was run during the lifetime of the Docker container
that it analyzed. The resulting set is then the union of all the
individual sets. As Binalyzer and Sysfilter perform analysis
on a single binary, one can expect that the sets they extract
are significantly smaller.

An interesting result is that Sysfilter performed worse than
Binalyzer on unstripped binaries, while it performed better on
stripped binaries. However, unexpectedly, on the stripped bi-
naries that Sysfilter was not able to analyze, it completed the
analysis on their unstripped counterparts with better perfor-
mance than Binalyzer.

8 Conclusions and Future Work
In this paper, we have analyzed cat and various configura-
tions of the busybox program. We have also answered the
research question, how do Chestnut’s Binalyzer, Sysfilter and
Confine compare when performing system call set extrac-
tion on various configurations of the busybox application?
Namely, Confine performs considerably worse than both Bi-
nalyzer and Sysfilter due to performing analysis on an entire
Docker container, rather than a isolating analysis to a single
binary. Sysfilter outperforms Binalyzer on stripped busybox
binaries, but the opposite is true for unstripped binaries, with
the notable exception of performing better on binaries that it
was not able to analyzed when they were stripped. Sysfilter
showed the best scaling when more applets were included in

the compilation of busybox, meaning its extracted set of sys-
tem calls grew the slowest when adding more functionality to
busybox. Binalyzer did not produce a different set of sys-
tem calls when invoked on a stripped binary compared to an
unstripped binary.

For future work, one could analyze the performance of
Confine when using a lightweight Docker image as a base
for analyzing a binary. As well as this, the anomalous result
of Sysfilter performing better than Binalyzer could be further
investigated.

References
[1] seccomp - operate on secure computing state of the pro-

cess. https://www.man7.org/linux/man-pages/man2/sec-
comp.2.html, May 2024.

[2] Claudio Canella, Mario Werner, Daniel Gruss, and
Michael Schwarz. Automating seccomp filter generation
for linux applications, 2020.

[3] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. sysfilter: Au-
tomated system call filtering for commodity software. In
23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 459–474,
San Sebastian, October 2020. USENIX Association.

[4] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Be-
nameur, and Michalis Polychronakis. Confine: Auto-
mated system call policy generation for container at-
tack surface reduction. In 23rd International Sympo-
sium on Research in Attacks, Intrusions and Defenses
(RAID 2020), pages 443–458, San Sebastian, October
2020. USENIX Association.

[5] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra,
and Michalis Polychronakis. Temporal system call spe-
cialization for attack surface reduction. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1749–
1766. USENIX Association, August 2020.

[6] Torbjorn Granlund and Richard M. Stallman. cat - con-
catenate files and print on the standard output. https://
www.man7.org/linux/man-pages/man1/cat.1.html,
March 2024.

[7] Conor Pirry, Hector Marco-Gisbert, and Carolyn Begg.
A review of memory errors exploitation in x86-64. Com-
puters, 9(2), 2020.

[8] J.H. Saltzer and M.D. Schroeder. The protection of infor-
mation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[9] Denys Vlasenko. Busybox: The swiss army knife of
embedded linux. https://git.busybox.net/busybox/, 2024.
Commit: 2d4a3d9e6c1493a9520b907e07a41aca90cdfd-
94.


	Introduction
	Background
	System call sandboxing
	Busybox

	Previous work and our contributions
	Chestnut
	Confine
	Sysfilter
	Temporal Specialisation
	Our contribution


	Methodology
	Experimental Setup and Results
	Setup
	Git repository
	Versions of used tools
	Busybox configuration
	Busybox binaries
	Confine containers
	Running analysis tools
	Analysing results

	Results

	Responsible Research
	Ethics
	Reproducibility

	Discussion
	Conclusions and Future Work

