
 
 

Delft University of Technology

In-line monitoring of solvents during CO2 absorption using multivariate data analysis

Kachko, Alexandr

DOI
10.4233/uuid:9fa27d25-1e58-473e-828a-b219bf465438
Publication date
2016
Document Version
Final published version
Citation (APA)
Kachko, A. (2016). In-line monitoring of solvents during CO

2
 absorption using multivariate data analysis.

[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:9fa27d25-1e58-473e-
828a-b219bf465438

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:9fa27d25-1e58-473e-828a-b219bf465438
https://doi.org/10.4233/uuid:9fa27d25-1e58-473e-828a-b219bf465438
https://doi.org/10.4233/uuid:9fa27d25-1e58-473e-828a-b219bf465438


1





In-line monitoring of solvents during CO2
absorption using multivariate data analysis

Alexandr Kachko





In-line monitoring of solvents during CO2
absorption using multivariate data analysis

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.Ch.A.M. Luyben;
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
vrijdag 23 september 2016 om 12.30 uur

door

Alexandr KACHKO
Master of Science in Physics
Novosibirsk State University

Geboren te Chkalovsk, Tajikistan.



Dit proefschrift is goedgekeurd door de promotoren:
Prof. Dr. Ir. T. J. H. Vlugt
Univ.-Prof. Dr.-Ing. A. Bardow

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. Dr. Ir. T. J. H. Vlugt Promotor, Technische Universiteit Delft
Univ.-Prof. Dr.-Ing. A. Bardow Promotor, RWTH-Aachen University

Onafhankelijke leden:

Prof. Dr. Ir. B. J. Boersma Technische Universiteit Delft
Prof. Dr. J. Meuldijk Technische Universiteit Eindhoven
Prof. Dr. J. Westerweel Technische Universiteit Delft
Dr. David Dubbeldam Universiteit van Amsterdam
Dr. L. V. van der Ham ASML

The research topics presented in this work have been an integral part of
the Dutch national CCS project, CATO-2, and the European FP7 project,
OCTAVIUS. Part of this work has been supported by ADEM Innovation
Lab.

Copyright © 2016 Alexandr Kachko

ISBN: 978-94-6186-673-8
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”The difference between ordinary and extra-ordinary is so often just
simply that little word - extra. And for me, I had always grown up with

the belief that if someone succeeds it is because they are brilliant or
talented or just better than me . . . and the more of these words I heard the
smaller I always felt! But the truth is often very different . . . and for me
to learn that ordinary me can achieve something extra-ordinary by giving
that little bit extra, when everyone else gives up, meant the world to me

and I really clung to it . . . ”

Bear Grylls
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Chapter 1

Introduction

1.1 Demand for CO2 capture

In the modern world, emissions of greenhouse gases originate from various
anthropogenic sectors. Among them are fossil fuel combustion for power
generation and delivery, agriculture, waste disposal, and other industrial
processes not related to energy production [1–3]. Carbon dioxide (CO2)
is considered to be the main anthropogenic greenhouse gas responsible for
global warming [4]. In addition, the process of deforestation leads to deple-
tion of the natural drains of CO2 from the atmosphere [5]. Many activities,
aimed to alleviate the CO2 emissions, are initiated by governments all over
the world [6–9].

Carbon dioxide Capture and Storage (CCS) technologies have been de-
veloped intensely and tested since the late 1970s [10]. CCS technologies are
aimed to limit anthropogenic CO2 venting into the Earth’s atmosphere [11].
The large potential of CCS lies in its ability to assist the energy industry
to transfer from fossil fuels to renewable energy. Meanwhile, the conver-
sion efficiency of non-fossil energy sources is approaching its theoretical
limits. There are several state-of-the-art technologies being developed to
capture CO2 from flue gas emissions from stationary point sources (coal
and natural gas-fired power plants, oil refineries, steel producing plants).
The most promising solutions are Chemical Looping Combustion (CLC),
pre-combustion carbon capture, oxy-fuel combustion, and post-combustion
carbon capture [12–16].
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1.2 Amine-based CO2 absorption

In perspective of the predicted global warming up to 2 � over the next
four decades, the aforementioned Post-combustion Carbon Capture (PCC)
technology is the most suitable for retrofitting on existing fossil-fuel power
stations [17–24]. The most common method used in PCC processes is
chemical absorption using aqueous alkanolamine solutions [17, 25, 26],
which has been studied and applied for purifying gas streams from acid
gases and supplying pure CO2 since the 1930s [27]. Amine based aqueous
solutions are used for CO2 absorption from the flue gas of power plants,
in cement industry, and in natural gas processing [28–34]. A solution
of 30 wt. % of aqueous monoethanolamine (MEA) is the most widely
used solvent to absorb CO2 in industrial pilot plants. This solution has
been investigated on a laboratory table, at mini-scale absorber-stripper
units, and even at pilot plants operating on full size power stations [35–
38]. It is also a common rule of thumb in the CCS industry to use the
MEA process as a benchmark to modify properties of modern solvents
and improve the configuration of CO2 absorption processes [34]. Blended
solutions of amines are also experimentally studied for their application
to CO2 absorption. For instance, adding piperazine (PZ) to sterically
hindered amine 2-amino-2-methyl-1-propanol (AMP) or tertiary amine
methyldiethanolamine (MDEA) accelerates reaction rate and increases the
capture capacity in addition to lowering the regeneration energy require-
ments [39, 40]. MDEA on its own is applied for selective removal of H2S
and CO2 at relatively high pressures and it has been used as a component
in blended alkanolamine solutions with primary and secondary amines. It
has been shown that MDEA has a high capacity for removal of carbon diox-
ide, although this tertiary amine does not form carbamates when it reacts
with CO2 [41, 42]. A simple schematic flow diagram of a PCC absorption
plant is shown in Figure 1.1. The flue gas from a smokestack is supplied to
the absorber column, where CO2 is captured by the amine-based solvent
in a counter-current configuration. After absorption, the CO2-rich solvent
is fed to the stripper column, where the solvent is thermally regenerated
via heating. The desorbed gaseous CO2 is released from the stripper col-
umn and the regenerated solvent flows back to the absorber. The working
pressure is typically 1.0 bar in the absorber and up to 2.0 bars in the
stripper and the temperatures of the gas-liquid mixture in the absorber
and stripper are around 40-60 � and 100-120 �, respectively. Typically,
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Figure 1.1. Schematic representation of a PCC plant. Absorption of CO2 takes place in the
absorber column of the plant. The solvent, saturated with CO2, is pumped through a heat
exchanger into the stripper, where thermal regeneration takes place. The lean solvent is
pumped back to the top section of the absorber for cyclic use. A more detailed scheme and
description may be found elsewhere, for example in work of Cousins et al. [28]

a capture plant is designed to provide a capture rate of 90 % at average
CO2 concentrations in the range of 10-15 vol% in the exhaust flue gas from
coal-fired power plants [43].

According to the latest global CCS status update [44], the world’s first
post-combustion coal-fired CCS project, launched at the Boundary Dam
power station in Saskatchewan, Canada, has achieved the milestone of
one year of operation. Another CO2 capture and enhanced oil recovery
demonstration project has become operational in Saudi Arabia in July
2015. There are also 22 large-scale CCS projects in operation or under
construction around the world, most of which are in the sector of power
generation, iron and steel production, and natural gas processing [45].
PCC technology using aqueous amine-based solutions is being investigated
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extensively and improved constantly in terms of solvent capacity, capture
rate, and energy efficiency [38, 46, 47]. Chemical absorption is also often
used for Natural Gas (NG) sweetening [48]. Amine-based solvents have
been used for CO2 absorption from raw NG streams for more that 50
years [49]. Raw high-pressure NG is a complex mixture of gases, consisting
mainly of hydrocarbons and impurities such as nitrogen (N2), CO2, and
H2S. NG stream contains CO2 at concentrations in the range of 3-5 % by
volume [50]. The composition varies greatly from source to source [51, 52].
NG processing, shipping, and pipeline transportation companies set certain
standards for NG quality [53]. To adhere to these specifications and at the
same time reduce CO2 emissions during NG combustion, NG is sweetened
by removing the acid gases (CO2 and H2S) [54–56]. Compared to the PCC
processes, the increased supply pressures enhance CO2 absorption [57].

1.3 Process monitoring and control

Experimental methods for in situ measurements are used extensively for
research in fundamental and applied science. These methods are often ap-
plied for the extraction of information in the Process Analytical Technology
(PAT) and Quality by Design (QbD) concepts [58–64]. Chemical manufac-
turing continuously requires improvement of end-product characteristics,
reducing economic losses and time delays, and minimize generation of
waste product. Traditionally the processes are fixed in accordance with
flow-sheet and run with no intermediate changes affecting the product
production routine. Any possible failures that happened during the fab-
rication phase become apparent post-factum, during the product quality
assurance tests. To reduce risks and improve flexibility of manufacturing
processes the QbD concept was proposed [65]. QbD is an approach that in-
troduces principles of building quality in finished product by design of the
manufacturing process. It demands timely identification and monitoring of
all critical process parameters, which provides important information for
critical decision making leading to continuous improvement of the process
performance. Thus, the QbD approach is applied to move forward from
process development concept, that rely on empirical information, to more
systematic and risk-based method of the quality management [66]. PAT
methods combine measurement instruments and multivariate data process-
ing algorithms [67, 68] to extract valuable chemical information directly
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from the production line. The PAT approach implies in-line and on-line
measurements usually involving hardly any sample preparation. In-line
analytical methods provide process engineers with ability to quickly deter-
mine process conditions and vary critical process parameters in real time.
Thereby, PAT helps to shorten the decision-making time, in sharp contrast
to the conventional practice of off-line laboratory analysis [69, 70]. Cur-
rently, process control is typical in industries like pharmaceutical, chemical,
and biotechnological. The utilization of PAT instruments allows for signif-
icant expansion of the amount of the analytical data, i.e., measurements,
obtained from complex systems. Multivariate statistics analysis methods
applied to recognize the relations between these data and process or exper-
iment conditions have matured into the separate scientific field known as
chemometrics [71]. Chemometrics employs statistical and mathematical
data processing methods for extraction of meaningful information about
a material substance or natural phenomena. To make the PAT and QbD
concepts applicable in practice, chemometric analysis methods are used as
a connecting link [72, 73].

1.4 PCC process monitoring

Nowadays, continuous monitoring of the liquid phase of PCC absorption
processes is performed using temperature and pressure sensors [74, 75].
On rare occasions, additional instruments for pH, conductivity, and den-
sity measurements are installed on pilot plants. The introduction of these
measurement instruments helps to control and analyse process variables
like solvent-water balance or CO2 loading, during tests of new process con-
ditions, plant design and packing materials, and solvents. The analytical
monitoring of gaseous emissions from top of the columns during the CO2 ab-
sorption process in pilot plants is usually performed via Fourier Transform
Infra-Red (FTIR) spectroscopy or Gas Chromatography (GC) [76]. The
composition of the liquid phase is most commonly determined using off-line
measurements. The measurement methods that are used include FTIR,
Liquid Chromatography in combination with Mass Spectrometry (LC-MS),
titration, and Nuclear Magnetic Resonance (NMR) spectroscopy [77–81].
It should be noted that FTIR spectroscopy is widely used method for on-
line monitoring of both liquid and gaseous phase in PCC process. Mobile
FTIR spectrometers are used to carry out the online analysis of amine
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solvent during CO2 absorption [82, 83]. Off-line methods require sample
extraction and long-distance transportation. Sometimes or at some loca-
tions at the process, sampling is challenging or not possible at all when
complete operation shut-down or change of a procedure flow-sheet is re-
quired to take a sample [84, 85]. Control actions during the continuous
process are delayed by the time span between sample withdrawal and the
acquisition of the measurement results from off-line analytical technique.
If such a measurement mode is impractical for continuous process control,
the number of off-line measurements might be increased leading to high
financial expenses. Overcoming such obstacles would lead to an improved
process flexibility. It would enable introduction of rapid alterations on
the Research and Development (R&D) stage and modification of existing
technologies.

Automation of analytical measurements plays remarkable role in plan-
ning and execution of informative experiments [86]. This directive was
adopted in this thesis to conduct a consistent samples screening procedure.
The experiments were planned in accordance with the methods of the
Design of Experiments (DOE) [87] approach. Construction of the calibra-
tion database was performed via precise laboratory measurements using
different analytical methods under different conditions.

A chemometrics model is calibrated within a measurement domain
defined by a chemical process and includes many variables in this pro-
cess. PCC processes are continuously optimized using results from various
research projects carried out at pilot- and demonstration-scale plants. Ac-
cording to the literature [88], a wide selection of process parameters are
varied by the plant operator to test their qualitative and quantitative
input on the outcome of a research campaign. The modification of pro-
cess configurations includes, but not limited to, testing such parameters
as solvent circulation, desorber pressure, temperature of the lean solvent,
location and temperature of inter-stage coolers for the lean solvent flow.
Such changes in process settings may result in conditions that are outside
the calibration limits of the model, which can lead to the necessity of the
chemometrics model re-calibration. Therefore it is essential to establish
the feedback coupling between the real-time PCC process conditions and
output results of the in-line chemometrics setup, i.e., monitor how well
the process parameters correspond to the applicability boundaries of the
model in use. In other circumstances the measurement equipment installed
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in chemometrics setup might begin providing false readings due to mal-
function. In the latter case a new chemometrics model that accounts for
the absence of the readings from one or more measurement channels must
be used until the issue is resolved. Both cases, the variation of process
conditions outside the calibration range and equipment malfunction, were
encountered during the works presented in this thesis. Prior to taking mea-
sures for model re-calibration the source of out-of-boundary data should
be determined. In some instances these data may indicate faults in the
studied process itself [89, 90].

1.5 Scope of this thesis

This thesis covers the topic of in-line monitoring of the solvent composition
during CO2 absorption processes. This research describes work performed
during screening experiments in a laboratory, tests using mini plants, and
measurement campaigns performed at a pilot-plant scale CO2 absorption
process. The developed approach has been successfully applied to solvent
monitoring at three different chemical processing plants. The plants were
designed and assembled by different manufacturers for developing the
CO2 absorption processes. The scales of these pilot plants range from
5 litre to 9 m3 of solvent inventory. The main results are described in
three publications submitted to international academic journals [91–93].
Chapters 2 to 4 are based on these publications.

In chapter 2, the combined approach of DOE and chemometrics is
presented. The complete technique is described, starting at the laboratory
table and leading to a realistic case study. The research is focused on
the characterization of the solvent system of aqueous 2-amino-2-methyl-1-
propanol (AMP) activated by piperazine (PZ) used for CO2 absorption.
Five physical properties and the near infra-red (NIR) absorption spectra
have been used as multivariate data input for subsequent statistical anal-
ysis and model construction. The mathematical methods used for data
processing and noise reduction are described. To correlate the concen-
trations of species in a liquid mixture and the measured parameters, a
Partial Least Squares (PLS) regression technique was used. Temperature
dependency is included in the model. Validation of the in-line measure-
ments by off-line techniques is presented. It is shown that the NIR signal
significantly improves the prediction quality of the PLS models for both
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amines, namely AMP and PZ.
In chapter 3, in-line monitoring of the solvent composition during

high-pressure CO2 absorption is presented. Aqueous solutions of PZ-
activated methyldiethanolamine (MDEA) were used as a solvent blend
in these experiments. The developed approach is suitable for real-time
control of natural gas purification processes. During this research, a chemo-
metrics setup suitable for transportation and rapid installation on a site
has been assembled. The procedure for calibration of the statistical model
is elaborated, similar to Chapter 2. Once the predictive model is estab-
lished and the instruments of a chemometrics setup are adjusted according
to the process requirements, the setup may be run semi-automatic.

Chapter 4 deals with the comparison of three spectroscopic tech-
niques in terms of applicability for purposes of PAT in a CO2 absorption
process: Raman spectroscopy, Attenuated Total Reflectance FTIR (ATR
FTIR) spectroscopy, and NIR spectroscopy were compared qualitatively
and quantitatively. A custom-built Raman spectroscopy setup used for
observation of CO2 absorption into aqueous solution of monoethanolamine
(MEA) is presented. The results of the comparison have shown high poten-
tial of spectroscopic methods for application to PCC absorption process.
The possible areas of improvements are addressed in terms of the spectral
data processing, signal-to-noise ratio treatment, and instrumentation.



Chapter 2

Real-time process
monitoring of CO2 capture
by aqueous AMP-PZ using
chemometrics: pilot plant
demonstration

This chapter is based on:
Kachko, A.; van der Ham, L. V.; Geers, L. F. G.; Huizinga, A.; Rieder, A.;
Abu-Zahra, M. R. M.; Vlugt, T. J. H.; Goetheer, E. L. V. Real-time process
monitoring of CO2 capture by aqueous AMP-PZ using chemometrics: pilot
plant demonstration. Industrial & Engineering Chemistry Research. 2015,
54, 5769-5776.
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2.1 Introduction

The operation and monitoring of chemical processes requires reliable meth-
ods for continuous on-line control of running processes, determination
of properties of liquids and gases, and determination of the response to
changes in the process conditions [94–97]. One of the industrial processes
that is receiving a lot of attention lately is Post-combustion CO2 Capture
(PCC), a technology aimed to reduce the carbon dioxide emissions to the
atmosphere caused by the electric power industry, chemical industry, and
heavy industry [98–100]. For PCC from power plants, chemical absorption
using amine-based solvents as the chemical absorption agent is the current
standard [19, 22, 101, 102]. Counter-current flows of the amine-based sol-
vent and the exhaust stream are brought into contact inside an absorber
column, thus removing carbon dioxide from the flue gas. The resulting
CO2-rich liquid solvent is pumped towards the thermal desorption column,
where CO2 gas is released from the solvent due to increased temperature.
The regenerated CO2-lean solvent is supplied back to the absorber column.
The water-amine ratio is subject to change due to emissions of the solvent
in the absorption-desorption system, flue gas composition, gas/liquid flow
rate, and solvent degradation phenomena [103–105]. Hence, the CO2 cap-
ture rate also changes in time. Continuous monitoring of the composition
of the solvent stream is advantageous, since it provides fast feedback in
response to changing process conditions.

It is common practice to analyse solvent streams off-line by taking a
sample from the lean and rich streams of the capture plant and performing,
for instance, Fourier Transform Infra-red (FTIR) spectroscopy analysis [83]
or more expensive LC-MS tests [106] to determine the composition of
the liquid solvent. Accurate multi-component system characterization is
one of the main goals for informative process analysis [107]. A reliable
analytical method is especially important when substances in a mixture are
hard to distinguish from one another (mixtures of two and more amines),
but their concentrations have an impact on the overall performance of
the process. So called “at-line” analysis, using instruments placed close
to the process line, requires sample transportation and poses risks of
sample contamination during tests [108]. Direct in-line installation of
monitoring tools for analysis of both the lean and rich solvent slip streams
reduces the likelihood of external influences and increases flexibility of
the industrial process control. In this perspective, the combination of
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the multi-variate measurements with subsequent data extraction using
statistical tools and computer programming (chemometrics) has proven to
be a powerful approach for the construction of descriptive and predictive
models for chemical systems [109–112].

Recently, a chemometrics approach, similar to described in this chapter,
has been successfully implemented for in-line monitoring of monoethanol-
amine (MEA) and absorbed CO2 concentrations [113]. Another work
presented the statistical data processing of the Attenuated Total Reflec-
tion FTIR (ATR FTIR) spectral responses to analyse a solvent composed
of neutralized β-Alanine as a capture agent for CO2 absorption [82]. The
models were built to predict the concentrations of the acid gas (CO2) and
capture agent. The predictions were restricted to a single operational
temperature, which suggests frontiers for improvements in the flexibility.

This chapter is focusing on four-component mixture analysis. A sol-
vent blend of aqueous 2-amino-2-methyl-1-propanol (AMP) activated by
piperazine (PZ) and loaded with CO2 was studied in a laboratory and
also monitored at an industrial pilot plant. The AMP-PZ solvent blend
is reported to be an energy and material saving alternative to conven-
tional MEA-based solvents for the PCC process [114, 115]. In the current
chapter, the application of the in-line chemometrics approach for the dis-
crimination between the two amines that make up the solvent is described.
The following solvent properties were measured: density (ρ), conductivity
(Ω−1), pH, sound velocity (SV), refractive index (nD), and near infra-red
(NIR) absorption. A model based on partial least squares (PLS) regression
algorithm was used for prediction of the concentrations from the set of
measured data. The temperature dependency was included in the model by
using the calibration data set of measurements conducted at three temper-
atures: 25, 35, 40 �. This chapter contains a description of the screening
experiments, calibration and validation measurements, and chemometric
model construction. The confirmation of the applicability of the method
via testing at an industrial pilot plant with subsequent validation is pre-
sented as well. The developed approach is suitable for applications at
chemical processes similar to PCC, like natural-gas treatment.
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Table 2.1. Levels of concentration used for the calibration set. Low and High are the lower
and upper limits of concentrations that may be encountered during a PCC operation process;
Base defines the desired process concentrations. Extra levels of concentrations were added
to the calibration procedure in order to increase the resolution of the predictive model.

Low Base High

AMP [mol/kg] 2.00 2.50 3.00 3.25 3.50
PZ [mol/kg] 1.00 1.25 1.50 1.75 2.00
CO2 [molCO2/molAmine] 0.00 0.10 0.20 0.35 0.50

2.2 Approach

The measured physical properties of the liquids (in this chapter referring
to the set ρ, Ω−1, pH, SV, nD) are known to be highly dependent on
temperature [116, 117]. If the prediction ability of a chemometric model
is restricted to one operational temperature, then its applicability will
be too limited, since industrial processes may run at different conditions
with various temperature fluctuations. The physical properties alone may
not be sufficient for accurate model construction. Spectroscopy data of
the NIR absorbance can significantly supplement the data obtained by
the measurements of the physical parameters. However, the spectroscopic
signal is also known to be temperature dependent, though not to such an
extent as the physical parameters [118]. The calibration database for the
model construction consisted of the measurements conducted at 25, 35,
and 40 �, thus containing information on the temperature dependency of
every measured variable.

The range of applicability for the model was defined in accordance
with the requirements of the carbon dioxide capture process. The first
stage in experiment design is samples screening procedure. Five levels
of concentrations were selected for every compound. Each sample in the
calibration set was composed of a combination of the concentrations from
Table 2.1.

Given that the total number of permutations will make up 53=125
samples, the calibration procedure would become very labour-intensive,
especially taking into account the number of properties that have to be
measured and repeated every time for each of the three different tempera-
tures. Therefore, a fractional factorial design of three factors at five levels
was generated using the so-called 5**(3-1) approach [119]. Additional
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Figure 2.1. Graphical representation of the composition matrix of the calibration samples.
The 27 filled symbols represent the training compositions for the PLS model and the 26
empty symbols represent the compositions that serve for model testing. The circles are the
samples that were actually used for model calibrations. The squares denote those samples
that have contained precipitates at the targeted temperatures. During the measurement
campaign at the pilot plant, the whole set of samples, except 12 with precipitates, was used
as a calibration database for the PLS model.

samples (28) were mixed, in order to obtain an equally spaced array of
concentrations for accurate assessment of the relations between the three
compounds. Overall, 53 samples were prepared with various concentrations
of both amines and CO2 (see Figure 2.1).

It turned out that 12 samples were unusable because of precipitation
of amine within the selected experimental temperature range. The final
calibration set of samples was subjected to analysis using measurements
of six variables: density (ρ), conductivity (Ω−1), pH, sound velocity (SV),
refractive index (nD), and NIR absorbance. It is convenient to sort all
of the measured values into two sets of data: physical parameters and
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spectroscopic data.
Two separate stock solutions of aqueous AMP and PZ with CO2 con-

tents of 0.62 and 0.86 molCO2/molAmine were prepared. The calibration
set of samples was then prepared using certain amounts of liquid from
each of the stock solutions with subsequent addition of pure AMP, PZ,
and water. The final total volume of every sample was 100 ml. When
it is necessary to extend the applicability of the model to wider range
of concentrations the described samples screening procedure can be used.
Whenever the operational temperature is outside the calibration bound-
aries, or the composition of the liquid is not covered by the existing model,
extra measurements obtained in a laboratory might be added into the
calibration database. A complete list of samples with final concentrations
of the constituents as well as the measurements of physical parameters at
three different temperatures in a laboratory are provided in section B.1.

2.3 Materials and experimental procedure

2.3.1 Chemicals

AMP (≥ 99%) and PZ ( ≥ 99%) were purchased from Sigma Aldrich and
used as received without further purification. Aqueous solutions of amines
were prepared by mixing with deionized water at the needed proportions.
Compressed CO2 from a gas cylinder (≥ 99%) was used to load the stock
solutions by feeding gaseous CO2 through flasks with solutions. The
CO2 content in stock solutions was measured using method described
in subsection 2.3.2 of this chapter.

2.3.2 Measurement instrumentation

The model for in-line assessment of the solvent composition was completely
based on the values obtained from the calibration measurements. The con-
struction of the in-line chemometric setup involved the measurement de-
vices being built into the flow-through cells. The calibration measurements
of pH, Ω−1, and ρ were performed using separate equipment suitable for
laboratory environment. Every instrument was carefully calibrated every
time before making a series of measurements with the calibration samples
in the laboratory and before starting up data logging with the chemometric
setup installed at a pilot plant.
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Near Infra-Red spectroscopy

The NIR spectroscopy absorption signal was collected using a flow-through
cell with a 5 mm path length equipped with fiber-optic cables carrying the
light from the output of a tungsten halogen light source (AvaLight-HAL)
to the streaming liquid and bringing the signal to the spectrometer. The
same equipment was used for laboratory measurements as well as for in-
line solvent monitoring at a pilot plant. A NIR256-2.0 spectrometer, light
source, and software were supplied by Avantes. The wavelength range was
within 1017-2044 nm with a spectral resolution of about 4 nm. The spectra
acquisition time was between 3 and 4.5 ms and the averaging was done
over 100-200 scans. A reference spectrum was collected from deionized
water. Prior to every new measurement campaign, reference and dark
spectra were recorded again to keep the instrument calibration updated.

Refractometry

The refractive index of the studied solutions was measured by an in-line
refractometer, CM780N manufactured by Atago, calibrated in Brix %
units with an accuracy of ±0.2%. The units of Brix represent the weight
percentage of sucrose dissolved in pure water. The conversion of the
Brix scale to the refraction index, nD, was performed using the empirical
correlation provided by Atago:

nD = 1.333 + Brix · 1.335 · 10−3 +Brix2 · 7.608 · 10−6 (2.1)

Sound velocity

An immersion sensor for sound velocity measurements, Liquisonic 40-40
from SensoTech, dipped into a custom-made flow-through cell was used to
acquire values of the speed of sound in the liquid. The studied liquid fills
a gap between a piezoelectric ultrasonic-sound transmitter and a receiver
separated from each other at a well known distance. The measurement
accuracy of the sensor is ± 0.01 %.

Density measurements

The density was measured by means of: (a) an Elite MicroMotion Coriolis
flow meter (also capable of measuring solvent mass flow), installed inside
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the mobile in-line chemometrics setup, with an accuracy of ± 0.05 % and
(b) a DMA 4500 Anton Paar U-tube density meter during measurements
in the laboratory with an accuracy of ± 0.005 %.

pH and conductivity sensors

For in-line measurements, the pH readings were obtained by a pH3630
device with a 2-wire pH transmitter and the conductivity was measured by
a C7635 device equipped with a 7-wire transmitter with an accuracy for
both devices of ± 0.1 %. Both devices were obtained from Nieuwkoop B.V.
The laboratory calibrations were carried out with a portable HQ11d pH
meter equipped with an IntelliCAL pHC101 electrode with an accuracy of
± 0.1 % of value. The conductivity of the calibration samples was measured
with an Orion Star A322 meter with an Orion 013010 MD conductivity
cell (accuracy is ± 0.5 % of value), both from ThermoScientific.

Hot phosphoric acid method

In order to determine the CO2 concentration, the boiling phosphoric acid
method was used. The weight percentage of CO2 contained in a solvent is
provided as a result of these measurements. A known amount of a CO2-
loaded liquid sample was injected into a round bottom flask with a boiling
aqueous solution of H3PO4 (≥ 85 %, Sigma Aldrich). The released CO2

was dragged away from the flask with a constant rate by the flow of N2.
Then, the gas flow was fed into a Binos 100 2M carbon dioxide analyser
from Rosemount Analytical. The CO2 amount was automatically logged.
The calibration of the method was done routinely with a 1M solution of
K2CO3. The accuracy of this method has been calculated to be ± 4.1 %.

2.3.3 LC-MS measurements

The concentrations of AMP and PZ in the validation samples from a pi-
lot plant were also measured by a LC-MS technique. The samples were
diluted to 1:10 000 in water. A deuterated internal standard was added to
the diluted samples for both of the analytes. The samples were analysed
with an Agilent Infinity 1290 LC-system, combined with a 6490 Triple
quadrupole MS. The samples were run in MS-MS-mode. Prior to analysis
of the composition of validation samples the method calibration curves
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have to be build [124]. During the calibration procedure the relationship
between the instrument output signal and known concentration of the
analyte contained in the calibration standard is established. The standard
concentrations were evenly spaced across the targeted range of concentra-
tions of components contained in validation samples. This is performed by
conducting measurements of set of standards containing a known amount
of either AMP or PZ. The method calibration curves for both AMP and
PZ show a R2 value > 0.99.

2.3.4 Installation at a pilot plant

The solvent flow was monitored at the PCC pilot plant installed at the
EnBW coal-fired power plant in Heilbronn. This pilot plant has already
been used for CO2 capture with aqueous 30 wt. % MEA solution for
almost 1600 operating hours [120]. Authors report that during the cam-
paign with MEA as solvent CO2 loadings of the solvent were above 0.5 mol

CO2/molMEA. It also has been shown that solvent degradation has hap-
pened primary due to oxidation mechanism via formation of formate and
oxalate. In order to be able to reclaim degraded solvent, the electro-dialysis
technology was tested at the PCC pilot plant. The effective removal of
heat-stable salts anions from solvent stream has been demonstrated [121].
The PCC plant receives the flue gas and steam from the 7th unit of the
power station. The flue gas flow was approximately 1500 Nm3/h and the
CO2 capture rate was around 90 %. The initial composition of aqueous
solvent was 3.0 M of AMP and 1.5 M of PZ. The solvent circulation rate
in the system of the PCC pilot plant was in the range of 3-6 m3/h. The
height of the absorber and stripper column is 38 m and 30 m, respectively.
The total solvent composition is constant in the closed circulation line of
the PCC pilot plant. Due to the specifications of the measurement devices,
high solvent temperature is the limiting factor for the chemometric setup
applicability. Since temperature of the liquid in the outlet of the stripper
section may reach 90 �, it was decided to install the setup at the point
where the operating temperature is lower. The solvent for in-line analysis
was taken via a bypass from the inter-cooling section of the absorber at a
rate of around 20 l/h. After flowing through the chemometric setup, the
solvent was fed back to the absorber sump (see Figure 2.2).

Approximately five weeks of in-line solvent monitoring was conducted
accompanied by data collection and analysis. The PCC pilot plant was
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Figure 2.2. Schematic representation of the chemometric setup at the pilot plant. The
solvent supply was provided via a bypass from the absorber’s inter-cooling system between
points 1 and 2, which are connected to the inlet and outlet of the setup. The setup
consists of the following instruments: pressure sensor (P), Coriolis flow and density meter
(ρ), conductivity probe (Ω−1), pH probe, sonic velocity sensor (SV), refractometer (nD),
near infra-red spectrometer (NIR), thermocouples for temperature measurements at the
inlet, near the center, and at the outlet of the chemometric setup (T1,2,3).

operating mostly during day time when the steam supply from the power
plant was available. At night time, the solvent was only circulating, without
any flue gas and without heating in the reboiler. The plant was shut down
completely during weekends. The prediction of the concentrations was
performed using data collected when the temperature of the solvent flow
was within the calibration limits.

2.4 Data processing

2.4.1 Analytical model calibration and validation

The main functionality of chemometrics in connection with process control
is its ability to provide an operator of a plant with relevant information
about running chemical processes and reduce the time needed for the
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analysis. For this purpose, the calibration measurements were conducted
in order to obtain enough experimental data points to be able to construct
a correlation between two sets of data: the known composition of the
mixture of interest and the physical and spectroscopic responses from the
set of calibration samples.

Partial least squares (PLS) regression is a common chemometrics
method [72, 122]. To develop the calibration models the PLS-1 algo-
rithm [123] was applied. The PLS models were build for prediction of the
concentration of each chemical component separately. Thus, during the
model calibration procedure the matrix of the independent parameters
consisted of data from one vector taken from the block with controllable
factors (concentrations of chemicals) and the matrix of the dependent pre-
dictors was comprised of the measurements of all 5 physical properties and
the NIR signals from the block with the output variables. The MatLab
programming environment was used to build the models. The built-in
PLSREGRESS function was used to compute the PLS regression models.
MatLab supporting documentation contains description of this function.
PLS regression models consider the correlation between the concentrations
of the mixture components and the measured responses, by constructing la-
tent variables (LV ) that directly relate to the source data. The parameter
for model quality assessment is the Root Mean Square Error of Prediction
(RMSEP):

RMSEP =

√√√√ 1

N

N∑
i=1

(yi,exp − yi,model)
2 (2.2)

where N is the number of calibration measurements used in model con-
struction, the values of yi,exp are known, and the values of yi,model are
predicted with the PLS model. The influence of the number of LV s on the
RMSEP was examined using the leave-one-out method for cross-validation.
Following the recommendation given in works of Wise et al. [125] and Li et
al. [126], the optimal number of LV s to be included to the PLS model was
selected such that the addition of another LV does not significantly reduce
the value of RMSEP. In his discussion of the optimal number of LV s Wise
et al. [125] proposed that when the difference between RMSEP values of
two prediction models is not greater than 2 % then the model that was
build using lower number of LV s can be selected for further application.
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Two approaches have been evaluated to include temperature depen-
dence into the chemometric model. One option is Lagrange polynomial
interpolation [127]. In this approach, we used a second-order polynomial
approximation of the temperature dependence of physical parameter and
the NIR peaks. Estimating the concentrations in-line by means of such an
approach for every new temperature reading coming from the industrial
process requires an update of the model using the established polynomial
functions for every measured parameter.

The other approach, which is faster and avoids extra calculations, is
to use all available measurements of the dependent variables at different
temperatures as the source data for the model. This way the temperature
dependence is already included as an inherent feature of the correlation
between the source data and LVs used to build the PLS model. The final
predictions represented in section 2.5 of this chapter were calculated using
the second approach in order to introduce the temperature dependence.

2.4.2 NIR spectral data pretreatment

It is common practice to interpret NIR spectroscopy measurements using
Beer’s Law [128], which gives a linear functional relation between the
amount of light absorbed by a studied sample, the distance of light travel
through the sample, and the quantity of light-absorbing substance that is
contained in that sample. Therefore, the raw NIR signal was first converted
to the absorbance spectra using

A = − log10

(
Isample − Idark
Iref − Idark

)
(2.3)

where A is the absorbance spectrum of a sample, Isample is the raw NIR
spectrum of a sample and Iref and Idark are the reference and the dark spec-
tra, respectively. Spectral signal windowing was performed to specify the
region of the highest signal correlation with the change of the chemical com-
position. Subsequently, spectra were smoothed with the Savitzky-Golay
algorithm [90, 129]. Both the 1st and 2nd derivatives of the smoothed
spectra were evaluated, which results in the removal of the baseline offset
differences between spectra and the differences in baseline slopes between
spectra. Finally, the 1st derivative was selected for the PLS model con-
struction. The automated mean-centering of all of the response factors
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was used as an inherent functionality built in the MatLab PLS regression
algorithm.

2.4.3 NIR sensitivity assessment

The number of parameters monitored during calibration experiments and
later during real case measurements was quite high, especially when con-
sidering the spectroscopy data. A spectral sensitivity analysis with respect
to AMP, PZ, and CO2 concentrations was performed in order to reduce
the risks of overdetermination, which may happen in the case of the PLS
algorithm.

It is experimentally shown that the absorption coefficient α of an
electromagnetic wave in a solution is proportional to the concentration x
(number of molecules per unit volume) of the absorbing substance [130].
Light absorbance may thus be described as follows,

A (λ, x) = α (λ, x) · l =
M∑
j=1

α′
j (λ) · xj · l =

M∑
j=1

βj (λ) · xj (2.4)

where M is the number of the chemical components in a mixture; α′ is a
constant coefficient, which depends on the nature of the media and the
wavelength of the incident light λ; and l is the path length of the incident
light.

According to Eq. 2.4, the intensity of an absorbance peak at a certain
wavelength is proportional to the concentration xj of each solute that
makes up a mixture, each with its own weighting coefficient βj (λ), which
in turn may be treated as a sensitivity parameter:

βj (λ) =
∆A (λ)

∆xj/xj
(2.5)

where ∆A (λ) = A (λ)−A (λ) and ∆xj = xj − xj are the deviation of the
intensity of an absorbance peak and the deviation of the concentration of
i-th mixture component from its average value, respectively.
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2.5 Results and discussion

2.5.1 Chemometric model test and trial

The prediction accuracy of a model is dependent on the source measure-
ments that are used for its construction. Individual PLS models for predic-
tion of concentration of both amines and CO2 have been calibrated using
measurements of physical and NIR responses separately as well as with the
entire set of the measurements. A complete summary of the calibration
samples compositions as well as measurements of the physical properties
at three different temperatures can be found in supporting material given
in Appendix B. All measurements of NIR response taken from the cali-
bration samples are supplied as the Supporting Information to the article
by Kachko et al.[91] published in the journal Industrial & Engineering
Chemistry Research.

Physical parameters

The investigation of the quality of the fit by the models built using differ-
ent combinations of measured properties can be used as indication of the
importance of these properties for describing the variation of the unknown
variables (the concentrations of both amines and CO2). The quality of
the fit was evaluated using the coefficient of determination (0 ≤ R2 ≤ 1).
The R2 parameter indicates the predictive quality of the model fit [119].
Coefficient of determination is a key statistical number to explain degree of
linear correlation of variables. The R2 values are calculated as the propor-
tion between the explained variance of the observed data and the variance
of these data around its mean value. Using R2 as judging parameter the
optimal combination of response parameters (columns of X ) needed for
estimation of the concentrations (columns of Y ) may be defined, as given
below.

TSS =

N∑
i=1

(
yi,exp − yexp

)2
(2.6)

RSS =
N∑
i=1

(yi,exp − yi,model)
2 (2.7)
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R2 = 1− RSS

TSS
(2.8)

where Eq. 2.6 - Total Sum of Squares (TSS ), Eq. 2.7 – Residual Sum of
Squares (RSS ), and Eq. 2.8 - coefficient of determination (R2).

Regarding the R2 parameter, three characteristic values may be pointed
out: the closer the R2 value is to 1, the higher is the percentage of the
variance in the response variable that can be explained from measured
parameters X. This means, the model with the value of R2 closer to 1 will
lead to a less error of prediction in a real application with an unknown set
of concentrations. In the opposite case, if the R2 parameter is approaching
0, then the model fit is too rough and it does not explain the variation
of the response data around its mean value. If R2 is negative, then it is
highly probable that there are either not enough PLS components to build
the model or that the response parameters X used for model calibration
are not correlated with the variables in question (here, vectors of the
concentrations Y ).

In this chapter the R2 values were calculated for the PLS models that
were constructed based on each of the physical response factors separately,
as well as using their combinations, Table 2.2. For instance, when us-
ing only the combination of conductivity and density measurements, the
concentration of CO2 contained in the samples may be predicted quite
accurately with a deviation of 4.5 %. The model built on the combination
of [Ω−1, pH, SV, nD] allowed for the prediction of the concentrations for
AMP and CO2, but the addition of density measurements increased the
prediction quality only for CO2 and decreased it for both amines. The
results of the sound velocity and density measurements combined together
yielded the best prediction of the PZ concentration.
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Table 2.2. R2-based predictions assessment. Numbers in first column correspond to one
of the physical properties as factor for the model: 1 – conductivity (Ω−1), 2 – pH, 3 –
refractive index (nD), 4 – sound velocity (SV ), 5 – density (ρ).

Xcombinations R2
AMP R2

PZ R2
CO2

1 0.2454 0.0320 0.8239
2 0.0469 0.0090 0.4732
3 0.3705 0.2455 -0.1907
4 0.1579 0.3252 -0.1364
5 0.0342 0.0019 0.9346
1,2 0.3055 0.0385 0.7884
1,3 0.5887 0.2423 0.9214
1,4 0.4439 0.3598 0.9080
1,5 0.4246 0.1532 0.9705
2,3 0.4968 0.2320 0.4618
2,4 0.3438 0.3553 0.4054
2,5 0.0283 -0.2250 0.9353
3,4 0.5038 0.2947 -0.1012
3,5 0.6035 0.2625 0.9746
4,5 0.3859 0.3974 0.9602
1,2,3 0.5931 0.2353 0.8945
1,2,4 0.4474 0.2921 0.9148
1,2,5 0.4183 -0.1408 0.9860
1,3,4 0.6578 0.3225 0.9127
1,3,5 0.5899 0.2159 0.9703
1,4,5 0.2942 0.3718 0.9767
2,3,4 0.5451 0.3417 0.4345
2,3,5 0.4704 0.0770 0.9743
2,4,5 0.3322 0.1880 0.9596
3,4,5 0.6283 0.3648 0.9608
1,2,3,4 0.7060 0.2961 0.9159
1,2,3,5 0.4380 -0.0300 0.9866
1,2,4,5 0.2673 0.2277 0.9873
1,3,4,5 0.5819 0.3311 0.9804
2,3,4,5 0.5107 0.1893 0.9607
1,2,3,4,5 0.5357 0.2318 0.9879
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Figure 2.3. NIR absorbance sensitivity to the variation of the AMP, PZ, and CO2 concen-
trations.

NIR spectra

Figure 2.3 shows the sensitivities β calculated according to the procedure
described in the section 2.4.3 of this chapter.

This figure illustrates the significant role of NIR spectroscopy in the
distinction between the two amines. The contribution of each component
of a mixture to the absorption of the light in near infra-red region of the
electromagnetic spectrum is distributed according to the wavelength of the
incident radiation. In the studied liquid mixture the NIR absorption is
determined by the presence of amines. The addition of spectroscopic data
to the matrix of calibration measurements along with physical properties
has greatly improved the accuracy of the model in predicting the PZ
concentration, decreasing the error from 7.3 % to 3.5 %, as shown in
Table 2.3. Prior to the calculations, the NIR absorbance spectra may be
windowed to the wavelength range from 1350 nm to 1750 nm without
losing valuable information.
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Table 2.3. Symmetric mean absolute percentage error (SMAPE ) calculated based on different
sets of PLS model predictors. The combination of the physical properties and NIR spectra
into the matrix of calibration measurements yields a predictive model with higher accuracy
the model build using only physical properties.

SMAPEAMP SMAPEPZ SMAPECO2

Physical data 5.6% 7.3% 4.6%
NIR 2.1% 3.5% 7.3%
Physical and NIR data 2.1% 3.5% 4.3%

Physical and NIR data

The physical data and NIR signal were concatenated into a single vector
for every sample from the calibration data set and for every measurement
data point during in-line monitoring. The resulting information was used
as an input for PLS model construction and subsequent prediction of
the concentrations in the process flow. The symmetric mean absolute
percentage error (SMAPE ) was calculated to assess the accuracy of the
model in predicting the concentrations of both of the amines and CO2. The
SMAPE (as defined below) represents the average size of errors relative to
the actual data and reduces the influence by outliers [131].

SMAPE = 100% · 2

N∑
i=1

|yi,exp − yi,model|

N∑
i=1

(yi,exp + yi,model)︸ ︷︷ ︸
A

(2.9)

Table 2.3 shows how combinations of data sets used for model calibra-
tion influence its accuracy. Obviously, the addition of the spectroscopy
measurements improved the ability of the model in distinguishing between
the two amines that compose the solvent blend. Whereas the addition of
physical parameters measurements to the matrix with dependent parame-
ters cuts down the error of prediction for CO2 concentration.

Table 2.4 provides the quality of the chemical component predictions if
the temperature dependency is not included as a feature in the PLS model.
Each row of Table 2.4 corresponds to the prediction models constructed
using the source data measured at one of the following temperatures: 25,
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Table 2.4. Symmetric Mean Absolute Percentage Error (SMAPE) of the predictions that
show the performance of a PLS model when it is calibrated at one of the experimental
temperatures and validated with the measurements obtained at two other temperatures.

T, � SMAPEAMP SMAPEPZ SMAPECO2

25 3.8% 6.1% 6.7%
35 3.7% 7.3% 5.6%
40 3.7% 5.0% 10.6%

35, and 40 �. To obtain these SMAPE values the next action plan was
employed. First, a PLS model is calibrated using measurements obtained
at one of three temperatures. Then, the measurements of physical param-
eters and NIR signal of the same calibration samples but obtained at two
other temperatures are used for the model validation. Finally, based on
comparison of the real concentrations and predicted using the model, the
error of prediction is calculated. The same sequence of actions is used to
calculate errors of prediction for the models calibrated with measurements
recorded at two other temperatures.

The optimal number of latent variables to be used by the PLS regression
function for predictions was selected to be 3 for AMP, 2 for PZ, and 2 for
CO2. Such choice provides the lowest errors of prediction. The errors were
estimated via the leave-one-out cross validation algorithm using the whole
set of calibration samples. Standard error of the prediction (SEP), Eq. 2.10,
is a common measure used to evaluate the errors of the statistical models
such as PLS regression. The value of SEP shows that 68 % of deviations
fall within the limits of ±1 se for normally distributed variables.

se =

√√√√√ n∑
i=1

(yi,exp − yi,model)
2

(n− 2)
(2.10)

where n is number of validation tests, yi,exp is a value, measured using
validation methods, and yi,model is a predicted value.

2.5.2 Pilot plant in-line monitoring

Real-time monitoring of a carbon capture process was carried out in-line
at the PCC plant discussed in section 2.3.4 of this chapter. Continuous
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Figure 2.4. Predictions of the AMP, PZ, and CO2 concentrations in the process stream during
the state of operation using the PLS model, which includes the temperature dependency.
Time scale represents the hours of in-line measurements starting from the beginning of the
process monitoring campaign. The complete set of the measured physical parameters and
NIR spectroscopic data is used for making predictions.

process data logging together with immediate remote access to the stored
data has established the possibility for fast prediction of the amines and
CO2 concentrations in the solvent flow. To make the model applicable
for industrial conditions the temperature range was selected based on the
requirements from the PCC plant. Since every device in the chemometric
setup has its own range of applicability, within which it is calibrated, some
of the data points have to be excluded from the set of the dependent
parameters. For instance, if the readings from the Coriolis-flow density
meter start to fluctuate outside of the calibration region, it provides an
unstable signal and, as a consequence, the error of the model prediction
increases. It has been observed that during the non-operational state of
the pilot plant, the readings from the chemometric setup provide source
data outside the calibration range, which impairs the outcome of the
model. Thus, the final predictions were made using data that were collected
during those hours when the pilot plant was in operation. Every data
point in Figure 2.4 represents the predicted concentration of either AMP,
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Table 2.5. Comparison of the concentrations of solvent components, calculated by the PLS
model and measured by the off-line analytical validation techniques. The parameter se
(standard error of prediction) is presented as a measure of the accuracy of the PLS models.

Time AMPPLS AMPLCMS PZPLS PZLCMS CO2,PLS CO2,HotH3PO4

[h] [mol/kg] [mol/kg] [molCO2/molAmine]

183 3.09 2.92 1.69 1.61 0.61 0.67
225 3.24 3.02 1.57 1.59 1.30 1.14
374 3.15 3.12 1.52 1.58 0.77 0.73
564 3.14 3.07 1.63 1.64 1.33 1.30
684 3.25 3.16 1.75 1.70 1.43 1.24
754 3.11 2.90 1.55 1.55 0.63 0.61
852 3.17 2.95 1.60 1.55 0.70 0.65

se 0.19 0.06 0.12

SMAPE, ± % 1.8 1.3 3.9

PZ or CO2 at the corresponding moment in time. Thus, the developed
measurement setup and the PLS model have demonstrated the feasibility of
the chemometrics approach to in-line industrial PCC process monitoring.

Throughout the pilot plant campaign, samples were collected for sub-
sequent validation of the constructed model by means of off-line analytical
methods. The predictions of the concentrations of AMP and PZ were
validated by means of the LC-MS method. The concentration of CO2 was
measured by the hot phosphoric acid method for model validation. Demon-
stration of the performance of the off-line validation analytical techniques
is shown in Table 2.5. On average, the bias of the results obtained using
model predictions from the validation measurements is 0.05 mol/kg for
the concentration of AMP and CO2, and 0.01 mol/kg for PZ. The last
row in Table 2.5 contains the average deviations between the values of
the concentrations calculated using the PLS model and measured by the
corresponding off-line validation technique in the samples that were with-
drawn at the same date and time. The average deviations were calculated
in terms of SMAPE and equal to ± 1.8 %, ± 1.3 %, and ± 3.9 % for the
concentrations of AMP, PZ, and CO2, respectively.
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2.6 Conclusions

This chapter shows the feasibility of chemometric methods for chemical
process monitoring. A complex chemometric setup was constructed and
tested for in-line analysis of a multiamine-based liquid solvent used for
post-combustion CO2 capture. The operation and control of other similar
industrial processes may be improved with application of the developed
approach. The PLS model was created based on the measurements of
density (ρ), conductivity (Ω−1), sound velocity (SV), pH, refractive index
(nD), and NIR absorbance at 25, 35, and 40 �. The model was used to
predict concentrations of AMP, PZ, and CO2 within the carbon dioxide
capture process at the industrial scale post combustion pilot plant. The
concentrations of the chemical compounds were predicted with accuracies
of ± 2.1 %, ± 3.5 %, and ± 4.3 % for AMP, PZ, and CO2, respectively. The
method has been validated by off-line analysis of the samples withdrawn
during the measurement campaign. The deviation between the values
predicted by the PLS model and the off-line technique remains untrended in
time. A Raman spectroscopy analysis with more elaborated pretreatment
of the spectral signal (indirect hard modeling, IHM [132]) may enhance
the approach further via the introduction of chemical speciation of the
solvent on a more detailed level [133]. Moreover, one of the possible future
developments of the above presented setup would be its miniaturization,
rapid data treatment, and more user friendly approach of the technique.
This could decrease costs of the process operation by providing fast data
analysis with high accuracy.
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3.1 Introduction

3.1.1 Removal of CO2 from natural gas

Natural gas is collected from individual wells or from a group of wells placed
close to each other. Some gas wells initially produce gas at a high pressure
and at a high flow rate of gas. Over time, the pressure of a gas stream
decreases [134]. Gas compressors are used to raise the gas pressure for
transportation. Transport companies set certain standards for the natural
gas quality for feeding it through the transmission pipeline infrastructure.
Special requirements should be met for the amounts of contaminant sour
gases like H2S and CO2 contained in natural gas streams. It is gener-
ally specified that the CO2 content should not exceed 2.5 mol % [135].
Currently applied methods for CO2 separation from natural gas are mem-
brane separation and aqueous amine based absorption [136]. The chemical
absorption process using aqueous MDEA solutions activated by PZ was
considered in the study presented in this chapter.

The high CO2 pressure in natural gas increases the solvent capacity
during a CO2 absorption process [137]. At a pressure of 3 MPa, micro
channel experiments show that 99.94 % of CO2 in the gas phase is ab-
sorbed by an aqueous MEA solution while the loading was maintained at
0.5 molCO2

/molMEA [138]. Other authors show that at a pressure of 6.5
MPa, a loading of 2.77 molCO2

/molPZ could be reached in a solution of
0.3 M PZ [139]. Nakamoto et al. [140] provide a comparative study of
CO2 capture at the pressures up to 7.2 MPa using an aqueous solution of
MDEA, poly(ethylene glycol) dimethyl ether (DEPG), and an amine-based
solvent RH-x custom-developed for high pressure conditions. In terms of
capture rate and energy demand, RH-x has shown greater performance
than the other two solvents, MDEA and DEPG. High pressures, up to
5 MPa, helped to increase the capture rate and the solvent capacity during
the CO2 absorption from natural gas by water, N-methyl-2-pyrrolidone
(NMP), monoethanolamine (MEA), and MEA-NMP hybrid solutions [141].

3.1.2 In-line multivariate data analysis

In-line monitoring tools and methods can be introduced to improve the
process quality. The discipline of extracting the qualitative and quantita-
tive information from a chemical system is known as chemometrics [71, 86].
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Chemometrics combines multivariate measurements and statistical data
processing. Using the methods of chemometrics to construct predictive
models is a common approach in in-line process analysis [142]. The pre-
dictive model is calibrated using a set of samples with known chemical
composition. The concentrations of chemical compounds in the samples
are used as the matrices of independent parameters. The data set of the
measurements taken from the calibration samples comprise the matrix of
dependent parameters, known as predictors. Once the correlation between
the two sets of data is established using statistical regression analysis, the
model is ready to be used for in-line process monitoring. This approach
has been proven to be suitable for in-line monitoring of a CO2 absorption
process by monoethanolamine (MEA) aqueous solutions in a mini-scale
pilot plant [105, 113]. Geers et. al. [82] described a similar approach for
characterisation of CO2 absorption in neutralized β-alanine using Atten-
uated Total Reflection Fourier Transform Infra-Red Spectroscopy (ATR
FTIR) as measurement method.

Chapter 2 presents application of this approach to the in-line multicom-
ponent solvent monitoring during CO2 capture at atmospheric pressure
and average CO2 concentrations in exhaust gases provided by power plant.
The solvent used in this campaign was a blend of aqueous 2-amino-2-
methyl-1-propanol (AMP) activated by PZ [91]. The method has provided
predictions with accuracies of ± 2.1 %, ± 3.5 %, and ± 4.3 %, for the
concentrations of AMP, PZ, and CO2, respectively. It has been reported
that the degradation of MDEA-based solvents is slower than for the AMP-
based solvents [143]. A solvent blend of MDEA activated by PZ is com-
monly used for removal of acid gases like CO2 and H2S from natural gas
streams [144, 145]. The importance of the Near Infra-Red spectroscopy
method for differentiating between components in a mixture consisting
of more than one amine has been demonstrated for real-time monitoring
of CO2 absorption by aqueous AMP-PZ based solvent, and is described
in Chapter 2.

In this chapter provided a test case for the chemometrics approach
applied to in-line monitoring of the solvent composition during a high
pressure CO2 capture process. The initial composition of the solvent
consisted of around 35 wt. % MDEA and 5 wt. % PZ in water. Steady
states as well as transition capturing conditions were considered. The in
situ measurements were performed using an assembled line of different
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analysing probes: density (ρ), conductivity (Ω), pH, sound velocity (SV),
refractive index (nD), and NIR absorption signal were recorded in the
same manner as presented in Chapter 2. The obtained data were used for
real-time prediction of the concentrations of both amines and CO2 in a
solvent stream.

3.2 Approach

Statistical and computational methods are used to extract important
information from vast amounts of raw data generated by measurement
equipment during various industrial experiments. One of the common
approaches is construction of linear regression models to predict values of
an unknown variable based on a matrix of measured parameters. In this
study, a Partial Least Squares (PLS) regression is used to build predictive
models. Prior to in-line characterisation of the solvent composition at
the pilot plant, the PLS model has to be calibrated. The measurements
of five physical properties (ρ, pH, Ω−1, SV, nD) were conducted. Moni-
toring of these material properties gives insight into flow conditions and
helps to tailor process methodology. The matrix of dependent parameters
was complemented by the NIR spectra. The temperature of the solvent
flow fluctuated within the range of 21-25 � in the lean line after heat
exchanger and the cooler installed after the stripper column. According
to these process conditions, all calibration measurements were performed
at the minimum and maximum temperatures.

3.2.1 High-pressure CO2 separation mini-plant

A simplified scheme of an amine treating unit is shown in Figure 3.1.
The bold black lines represent high pressure pipelines and the thin green
lines represent pipelines at atmospheric pressure. For this study, a small-
sized version of such a process configuration was used. A mixture of
CO2 and N2 flows was supplied to the absorber at rates of 1000 l/h and
600 l/h at steady flow conditions, respectively. The pressure and the inlet
temperature of the absorber were set to 20 bar and 40 �, respectively. In
the stripper, the pressure and the inlet temperature were around 1.2 bar
and 120 �, respectively. Heights of the absorber column and stripper
column were approximately 1.9 m and 1.3 m, respectively. The total
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Figure 3.1. Schematic representation of a high-pressure CO2 absorption mini-plant. The
thick lines denote pipelines and sections under the high pressure, up to 20 bar. The thin
lines denote the low pressure, around 1.2 bar, part of the plant. The liquid solvent stream
was fed to the chemometrics setup via a bypass connection from the low pressure line. The
inclusion of a chemometrics setup was implemented at a location after the heat exchanger
and a tube-in-tube cooler.

volumes of the absorber and stripper columns were approximately 1.4 l
and 0.8 l, respectively. Standard structured packing of the type DX,
provided by Sulzer Chemtech, were used in both columns.

3.2.2 Design of experiments

In the studied experimental system the controllable factors are the concen-
trations of chemical reagents, temperature (T), and pressure (p). T and
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p are held-constant factors that influence the experiment but maintained
fixed during the calibration measurements. The output variables are the
measured physical parameters and the NIR signals. The mixtures under
investigation are composed of three components MDEA, PZ, and CO2

at 5 levels of concentrations. These 5 levels include low, base, high case
plus 2 center points. This implies full factorial design of experiment 5**3
and results in 125 experiments to perform tests that would provide infor-
mation about the effects of all factors at every level even without taking
into account the replication test runs. Therefore, a fractional factorial
design was employed to make the sample screening procedure effective
and labour saving. A description of the factorial analysis can be found in
the informative textbooks by Box et al.[146] and Montgomery[147]. As
it was demonstrated in Chapter 2, a 5**(3-1) fractional factorial scheme
may be used to generate the distributions of three factors at five levels. In
this case the matrix of concentrations with three columns was constructed
using the modulo operator to compute the core combinations of the cal-
ibration samples. Assume that the columns are titled as M, P, and C.
These letters denote the levels of concentrations of MDEA, PZ, and CO2

respectively (where M, P ∈ [0; 4] ∩ N). First two columns of the matrix,
M and P, are filled with unique distributions from array {0, 1, 2, 3, 4} over
each two cells. The integers in the array span from the low to high level
of concentrations through the base and both center points. The values in
the third column are calculated using equation C = 5 − mod5(M + P ).
These two manipulations fill the matrix with 25 non-replicating sets of
concentrations. After substitution of the integers in cells with the known
concentration levels the matrix of chemical compositions for 25 calibration
samples is ready, see Figure 3.2. This procedure can be done using any
available spreadsheet editor by choice. The compositions of extra calibra-
tion samples were added to the matrix of samples to increase the resolution
of the final PLS model in terms of concentrations. The concentrations of
amines and CO2 for the extra samples were obtained using the procedures
of rotation and translation operators applied to the vector space of the
calibration concentrations. The application of linear transformations to
construction of the matrix of concentrations for calibration samples is ex-
plained in Appendix A. These samples were used for construction of the
model for prediction of the concentrations in-line.
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Figure 3.2. Graphical representation of the matrix of the calibration samples compositions.
The three axes of the graph represent the concentrations of the three components of the
studied chemical mixture. According to the fractional factorial approach, 25 samples have to
be prepared to account for the first-order interactions. The symbols represent the samples.
The lines are added as a guide for the eye.

3.2.3 Sample preparation

To obtain data for the PLS model construction, the measurements from
calibration samples should be obtained. One part of the samples was
prepared using dry ice as a source of CO2. The other samples were prepared
using stock solutions of PZ-H2O and MDEA-H2O loaded with CO2. In
case of stock solutions the loading was performed via feeding gaseous CO2

through the liquid solvent. All samples were mixed gravimetrically. The
loading using dry ice was tested as an alternative method in contrary to
mixing loaded stock solutions. At room temperature, CO2 rapidly sublimes
into the surrounding. Therefore, the gas pressure builds up fast, which
could lead to the destruction of a closed container. The process of adding
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the dry ice pellets into the opened sample cups filled with amine solutions
requires maintaining a certain dosing pace. To accelerate the sampling
procedure, the required amount of amines and water were mixed in sample
cups and then the dry ice pellets of needed mass were dropped into each of
the solutions. Then, every sample cup was closed with a lid attached to a
rubber glove. Due to elasticity the rubber gloves expanded, thus providing
the necessary volume for temporary storing gaseous CO2 above the solvent
surface. The solution was rigorously stirred until all CO2 is absorbed into
the liquid. Once the samples were prepared the CO2 content was checked
using the boiling phosphoric acid method, as described in Chapter 2 of
this thesis. A complete summary of the calibration samples compositions
can be found in supporting material given in Appendix B.

3.2.4 Simulation of the solvent properties during the CO2

capture process

An Aspen Plus model [148–150] for simulation of the CO2 absorption by
aqueous MDEA solutions activated by PZ was used for additional val-
idation of the in-line predictions. The model used the unsymmetrical
electrolyte NRTL (eNRTL) method and PC-SAFT equation of state to
compute liquid and vapour properties, respectively. The model and equa-
tion parameters may be found in Aspen Plus rate-based MDEA+PZ model
description file [151]. True species including ions were used as the compo-
nents of the mixture. For liquid density, the regressions of the experimental
density data of PZ-H2O [152–154], PZ-H2O-CO2 [116], MDEA-H2O [155],
MDEA-H2O-CO2 [156] were used. The quadratic mixing rule was applied
for the solvent mixtures. The Nguyen-Winter-Greiner [157] mixing rule
was used for calculations of sound velocity for solvent mixtures. To obtain
an additional validation method, the following procedure was elaborated:
the well-known concentrations of MDEA, PZ, and CO2 from calibration
set of samples were used as input data for Aspen software. Based on these
data, the values of ρ, pH, and SV at known P and T were calculated using
the simulation model. The concentrations of both amines and CO2 were
predicted continuously in-line using the PLS model. The predicted concen-
trations were used as input data for Aspen Plus to calculate the values of
ρ, pH, and SV for the comparison with in-line measurements. According
to the correspondence between the measurements during the process and
simulations, an additional indication about the validity of the PLS model
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can be drawn. Appendix B contains tables with all input values used for
Aspen Plus calculations as well as the output results of these calculations.

3.3 Materials and instrumentation

3.3.1 Chemicals

The amines, MDEA (≥ 99 %) and PZ (≥ 99 %), were purchased from
Sigma Aldrich and used without further purification. The solvent for the
pilot plant campaign and the calibration samples were prepared by mixing
amines in the desired proportions with deionized water. The calibration
samples were prepared by mixing the required portions of stock solutions
of aqueous MDEA and aqueous PZ loaded with CO2. Compressed CO2

from a gas cylinder (≥ 99 %) and dry ice ordered from Yara in form of
pellets were used to load the solutions.

3.3.2 Measurement instrumentation

The measurements of five physical properties and NIR spectra comprised
the matrix of dependent variables used for PLS model construction. The
measurements of refractive index and sound velocity were performed using
the same instruments in the laboratory environment and for the real time
in-line data acquisition. The conductivity, pH, and density measurements
have been performed using a different set of instruments for calibration
and in-line testing campaign. All devices that took part in the in-line
solvent characterisation were assembled into one compact measurement
setup, see Figure 3.3.

The refractive index of the studied solutions was measured by an in-line
refractometer, CM780N manufactured by Atago, calibrated in Brix % units.
The NIR spectroscopy absorption signal was collected using a spectrome-
ter (Avantes AvaSpec NIR256-2.0) and software supplied by Avantes. A
tungsten halogen lamp (AvaLight-HAL) was used as an illumination light
source. An immersion sensor for sound velocity measurements, Liquisonic
40-40 from SensoTech, was used to acquire measurements of the speed
of sound in the liquid. The density was measured by means of: (a) an
Elite MicroMotion Coriolis flow meter for in-line measurements, and (b) a
DMA 4500 Anton Paar U-tube density meter during measurements in the
laboratory. For in-line measurements, pH and conductivity meters from
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Figure 3.3. (a) Front view of the in-line chemometrics setup. The screen displays time
resolved predictions of concentrations of the mixture components; (b) scheme of the in-
struments arrangement. The length of a frame rib is ca. 1 meter. The pump is installed
on the inlet point and is used to feed the liquid to the loop. The heater is used when the
temperature of the solvent has to be increased to match the calibration temperature.
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Nieuwkoop B.V were used. In the laboratory, the measurements were per-
formed using pH and conductivity probes from Hach and ThermoScientific,
respectively. A complete description of the chemometrics setup as well as
specifications of the above mentioned measurement devices can be found
in Chapter 2 of this thesis.

3.4 Calibration and validation

3.4.1 Data processing

The PLS regression method is a widely used tool for the multivariate data
analysis [69, 122]. A PLS model explains variation in both sets of source
data: independent predictors and dependent parameters, which are the
concentrations of chemicals and measured solvent properties, respectively.
The PLS regression model returns the vector of proportional coefficients
between the concentrations and the measured physical parameters and the
NIR signal. Each variable from the data matrix was mean-centered and
scaled to unit variance and then used to build a predictive model. This
way, the same weight is assigned to each variable (column of measured
parameter), giving the equal importance before model construction. The
number of latent variables (LV s) was selected according to the rule that
adding another LV does not improve the quality of a constructed model.
At the stage of model calibration its quality was assessed via RMSEP,
Eq. 2.2.

Every PLS model was validated using a leave-one-out cross validation
algorithm [158]. In this case, the model is being build n times, according to
the number of calibration samples. One sample is excluded from a calibra-
tion matrix. This way only (n-1) samples take part in model calibration.
The values of the concentrations in the omitted sample are predicted via
the constructed PLS regression model. The residuals between the pre-
dicted and experimentally measured values averaged over n runs are used
for estimating the error of the predictions. Prior to the application of the
PLS models to the in-line predictions the calibration samples were tested
to find possible outliers. An outlier sample can be detected using method
based on a comparison of the absolute difference between measured and
predicted concentrations with 4*AAD (average absolute deviation). Con-
centration of each component in each sample was tested using this method.
In the calibration set of samples prepared in the work described in this
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chapter no outliers were detected. The output readings of all measure-
ments of the physical parameters taken from the calibration samples used
to build the PLS models described in this chapter are given in Appendix B.
The raw NIR spectra recorded from all calibration samples are collected
in tables and supplied as Supporting Information to the article by Kachko
et al. [92] published in the journal Industrial & Engineering Chemistry
Research.

NIR spectra were normalized, the baseline slope was corrected by
subtraction of a line between the two ends of the spectra, also known
as the ramp function. Further, a Savitzky-Golay [159] filter was applied
for smoothing of the spectroscopic signal. The first order derivative was
generated after smoothing to locate maxima and minima of the spectra.
Two methods were used to improve the residual signal-to-noise ratio, a
moving average filter and a Fast Fourier Transform (FFT) with subsequent
cutting of the high frequencies. The moving average filter yielded PLS
models of higher quality and was used for calibration of the models.

3.5 Results and discussion

3.5.1 In-line measurements

The chemometrics setup was hooked up to the high-pressure CO2 treat-
ment mini-plant, as shown in Figure 3.1. The solvent characterisation
was performed at the lean (low pressure) stream. The monitoring of a
rich stream with its especially high CO2 loading is subject of the future
development of the approach. The tests were run during three days. All
measurement devices were calibrated before the measurement campaign.
However, some failures in operation were observed during the experiments.
These failures include sudden interruption of analogue signals, receiving
of impulsive or oscillatory transient signals during the data acquisition
process. This leads to a deviation of the measured parameters from their
calibration range. As a result, erroneous data were obtained from some de-
vices during process monitoring, yielding wrong model predictions. Taking
into account these circumstances, a new PLS model had to be constructed.
Due to the established procedure, it was possible to develop a new model
within short time. Changing the matrix of the calibration dataset, by re-
moving the column with invalid measurements, leads to a different number
of LV s and a new vector of the regression coefficients. Table 3.1 contains
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Table 3.1. The accuracy of the predictive models used for in-line monitoring during three
days of the measurement campaign. The models are indexed in order of their application,
first two correspond to first day and second and third to the other two days of measurement
campaign. Sound velocity measurements were excluded from the predictive models for both
amines. On the third day of the test campaign, the readings received from the conductivity
probe started to interrupt and deviate from the calibration range and the model had to be
recalibrated without these measurements. On the last day of the test campaign, the density
probe started to supply signals oscillating at a high frequency and the sound velocity probe
yielded a deformed signal, which could not be accounted for a system properties changes.
This leads to the concentrations calculation based only on pH, refractive index, and NIR for
the third day.

MDEA

LVs SMAPEMDEA, % Probes

Model1 4 3.0 ρ, Ω−1, pH, nD, NIR

Model2 4 3.1 ρ, Ω−1, pH, nD
Model3 5 0.7 ρ, pH, nD, NIR

Model4 3 1.6 pH, nD, NIR

PZ

LVs SMAPEPZ, % Probes

Model1 5 1.3 ρ, Ω−1, pH, nD, NIR

Model2 2 3.2 ρ, Ω−1, pH, nD
Model3 8 0.4 ρ, pH, nD, NIR

Model4 3 1.6 pH, nD, NIR

CO2

LVs SMAPECO2
, % Probes

Model1 5 2.5 ρ, Ω−1, pH, SV, nD
Model2 5 2.5 ρ, Ω−1, pH, SV, nD
Model3 4 2.6 ρ, pH, SV, nD
Model4 2 3.3 pH, nD, NIR
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the parameters of the different PLS models that were eventually used for
in-line concentrations prediction. The number of LV s and the measure-
ment probes are the characteristic properties of each calibration model.
The error of the prediction varies according to the calibration procedure.
For each PLS model constructed in this work the predicted values for
concentrations from the calibration data set are biased from the measured
concentrations with the magnitude of -0.1 % for MDEA, 0.1 % for PZ, and
-0.7 % for CO2 concentration.

During the first day, the NIR signal was lost for a certain period of
time due to software errors. The transition between predicted outcome
values of the concentrations in Figure 3.4 is not observable due to the
resolution in time. The measurements were averaged over one minute and
the resulting concentrations are presented in form of continuous lines. The
manipulation of the process conditions reflects on the solvent characteris-
tics. For example, when the stripper heater was turned off at the end of
the first day at 17:24 before finishing the measurements, the concentration
of CO2 increases in lean solvent line. On the third day of the measurement
campaign the supply of CO2 was started at 10:55 and then maintained in
stable run, what may be seen in Figure 3.4.
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Figure 3.4. Continuous in-line predictions of the solvent composition during high pressure
CO2 capture process. Each figure corresponds to one day of measurements. The parameters
of the models and errors are listed in Table 3.1. The points represent concentrations of the
components measured using validation technique. For validation, the samples were extracted
from the stream flow and analysed using ATR FTIR spectroscopy.
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Figure 3.5. Deviation of the pH, density, and SV values calculated using Aspen Plus
simulation software from measured experimentally in the laboratory. The pH, density, and
SV values were measured and calculated at the temperature of 20 � and atmospheric
pressure for calibration samples. Each data point represents a sample with known content
of MDEA, PZ, and CO2.

3.5.2 Approach validation

The validation measurements were performed using ATR FTIR spec-
troscopy method. The method was calibrated using the same matrix
of calibration samples as were used for construction of the chemometrics
model. To perform the measurement was used a spectrometer, which
description is given in subsection 4.2.2 of Chapter 4. The validated con-
centrations are also plotted in Figure 3.4.

The accuracy of ATR FTIR method measurements are 2.9 %, 2.5 %,
and 5.8 % for concentrations of MDEA, PZ, and CO2, respectively. Ad-
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Figure 3.6. Deviation of the pH and density values calculated using Aspen Plus simulation
software and measured in-line during the CO2 absorption process. Each data point represents
a mixture composition of a liquid solvent flowing through the chemometric measurement
setup.

ditional qualitative validation of the measured parameters was performed
based on Aspen Plus calculations of pH, density and sound velocity of
the solvents with known compositions. The calculations were performed
for the same experimental pressure and temperature. In Figure 3.5, the
calculated values of pH and density are plotted against the experimental
measurements. In case of the SV, the residuals between calculated and
measured values are presented. Both pH and density calculated using
Aspen agree with the measured data. The average deviation is 0.7 % for
pH and 0.1 % density. Values of the SV vary on average by 7.3 % and
the deviation trend has a strong negative bias. Based on this performance
the subsequent validation was carried out using only the calculations of
pH and density. The differences between the measured physical properties
and calculated using Aspen Plus software are larger in case of the in-line
measurements due to the errors of the prediction model, Figure 3.6.
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3.6 Conclusions

A chemometrics approach was applied to the in-line characterisation of the
solvent flow during a high-pressure CO2 capture process. The concentra-
tions of MDEA, PZ, and CO2 were predicted using real-time measurements
of solvent properties. It was shown that once the procedure of the PLS re-
gression construction is elaborated, it is easy to recalibrate the model with
respect to the incoming data stream. The eNRTL model and PC-SAFT
equation of state provide calculations of pH, density, and sound velocity
of the MDEA-PZ-H2O-CO2 mixture for a wide range of concentrations.
These results of Aspen modelling are in agreement with experimental
measurements performed in a laboratory, except for the sound velocity
values.
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Comparison of Raman, NIR,
and ATR FTIR
spectroscopy as analytical
tools for in-line monitoring
of CO2 concentration in an
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4.1 Introduction

Scaling up PCC processes requires a detailed understanding of the problems
related to industrial operation. To improve the overall process performance,
process intensification is intensively investigated involving changes in the
operating conditions, the use of various absorber packing material, the per-
formance testing of different types of solvent blends, and the installation
of equipment like novel pre-scrubbers or demister filters [20, 103, 160–162].
The successful introduction of new technologies may be enhanced when
complemented by fast in situ analytical feedback [163–165]. The solvent
composition and its capacity inevitably become subject to changes during
testing campaigns of a chemical process. Spectroscopic techniques are
widely used for qualitative and quantitative characterisation of gas, liquid,
and solid materials in equilibrium as well as in transient states [83, 166–
172]. Advantages of spectroscopic methods include their non-invasive na-
ture [173], fast response time [174], and high content of chemical and molec-
ular information about the studied media [175]. Spectroscopic techniques
are highly recommended for studying both homogeneous and multiphase
mixtures.

Raman spectroscopy, near infra-red (NIR) spectroscopy, and attenu-
ated total reflectance Fourier transform infra-red spectroscopy (ATR FTIR)
are three spectroscopic PATs that can be used for monitoring both the rich
and lean solvent flows of a PCC process. Although UV-Vis spectroscopy
has been proposed for pipeline gas content monitoring [176], it has been
shown to have low correlation when used to characterize the MEA-H2O-
CO2 system [105, 109]. The phase transition of citric acid in suspension
was monitored in situ using Raman spectroscopy by Caillet et al. [177]
An in situ Raman spectroscopy study of the hydrolysis of CCl4 in hot
compressed water is presented by Chen et al. [178] These authors quan-
titatively analysed the production of HCl and CO2 during vapour-phase
hydrolysis of CCl4 in a hot compressed water cell. Raman spectroscopy
on the level of chemical speciation has been used for quantitative analysis
of alkanolamine aqueous solutions (monoethanolamine, diethanolamine,
and N-methyldiethanolamine) loaded with CO2 [168]. The concentration
variations of ionic components in the system of CO2-NH3-H2O was stud-
ied as function of the ratio between carbon dioxide and ammonia using
Raman spectroscopy as analytical technique [179, 180]. Several research
groups have determined Raman scattering molar intensities [168, 179–181]
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using the association of the characteristic wavenumbers with molecular
vibrations of the chemical species [182–184]. ATR FTIR spectra acquired
from aqueous DEA solutions have been used to define chemical speciation
at loadings up to 0.9 mole CO2 per mole of DEA [185]. The applicability
of in-line ATR FTIR measurements for monitoring the concentrations of
MEA and CO2 has been demonstrated at a pilot plant [83, 186]. The
monitoring of the CO2, SOx, and neutralized β-alanine was performed
by Geers et al. [82] via analysis of FTIR spectra during CO2 capture
in a test gas absorption setup. In-line monitoring of alkanolamine CO2

capture has also been realised using NIR spectroscopy data and several
non-spectroscopic measurement techniques in combination with chemo-
metrics data analysis [91, 105, 113]. An extensive review by Armenta et
al. [187] of vibrational spectroscopy in flow-analysis applications confirms
the large demand for in-line spectroscopic tools.

A number of research groups have presented studies, containing relative
assessments of the performance of two and more spectroscopic methods in
different industries. The comparison of Raman and IR spectroscopy for
in-line quantification of polymer melt extrusion was reported by Coates et
al. [188]. These authors show that for particular experimental conditions
in-line NIR was most suitable. It was pointed out that all spectroscopy
techniques are suitable for real-time monitoring. In an article on experi-
mental evaluation of Raman, FT-NIR, and FTIR methods for detection
of aflatoxins in maize, Lee et al. [189] concluded that the spectroscopic
methods perform well for the selected chemical process. Using the chemo-
metrics approach, the authors determined that Raman and FTIR methods
produce higher quality models than FT-NIR. Netchacovitch et al. [190]
concluded that vibrational spectroscopy methods are efficient in reducing
the production of dangerous waste reagents and solvents, which is possi-
ble due to the non-contact probing operation. The authors indicate the
importance of the Raman and NIR methods as a PAT tool for real-time
monitoring of pharmaceutical production processes. In case of biochemical
industrial processes, Sivakesava et al. [191] have shown that estimation
models based on FT-MIR (mid infra-red) signal possess better quality
than those based on Raman and NIR signals, when applied to lactic acid
fermentation. Oxygen-delignification of softwood under acidic and alkaline
regimes has been studied by Wójciak et al. [192] using spectroscopic ana-
lytical methods. Their study confirmed the potential of NIR analysis for
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this particular application. Although Raman and FTIR have performed
well in discriminating the process conditions, their spectra acquired from
the samples of kraft pulp require more thorough investigation in order to
improve the correlation between characteristic peaks and the bleaching
effect. Our overall conclusion, which may be drawn from the cited refer-
ences, is that spectroscopic techniques are highly recommended by many
research groups due to their non-invasive, fast, and robust nature. The
fact that different spectroscopic techniques were preferred in different ap-
plications proves the necessity of a comparative study of these techniques
for PCC. This chapter presents comparison of Raman, NIR, and ATR
FTIR spectroscopy with respect to their practical applicability for in-line
analysis in PCC industry.

In this chapter three spectroscopic techniques are compared for their
performance for the estimation of the molecular CO2 concentration in
an aqueous MEA solution across a range of loadings. A custom-built
Raman spectroscopy setup is presented. Data pretreatment measures to
minimise the spectroscopic noise and data pollution in the Raman, NIR,
and ATR FTIR spectra are discussed. The verification of the constructed
PLS models has been performed using a leave-one-out cross validation
algorithm.

4.2 Materials and equipment

4.2.1 Chemicals and samples

Monoethanolamine (MEA) (≥ 98%) was purchased from Sigma Aldrich
and used as received without further purification. Aqueous solutions of
amines were prepared by mixing with LC-MS grade water from Merck
(LiChrosolv®) for Raman measurements and with deionized water for
NIR and FTIR measurements. Compressed CO2 from a gas cylinder (≥
99%) was used to load the stock solutions. The number of samples and
their chemical composition is listed in Table 4.1. The temperature of the
mixtures during the NIR measurements was 40 � to match the process
requirements. These samples can be used for the calibration of a PLS
model for estimation of the CO2 concentration during absorption in a
PCC plant.

The absolute experimental errors of the CO2 loadings were calculated
using the estimation of the relative errors for the indirect measured quan-
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Table 4.1. Characteristics of the samples used for the comparison between the three spec-
troscopic techniques. All spectra were recorded at a constant temperature.

MEA, wt. % CO2, molCO2
/molMEA Number of samples Temperature, �

Raman 30 0 - 0.490 ± 0.001 6 20

NIR 28 0 - 0.517 ± 0.001 6 40

ATR FTIR 30 0 - 0.513 ± 0.001 6 20

tities. The measurement uncertainty of the laboratory weighing scale
readings was ± 0.01 g and the molar masses were used with accuracy of
± 0.01 g/mol. Aqueous solutions of MEA loaded with CO2 were studied
using Raman, ATR FTIR, and NIR spectroscopy. As result, PLS models
were built based on the spectral information obtained by each technique.

4.2.2 Raman spectroscopy

The Raman spectroscopy setup is schematically shown in Figure 4.1. For
molecular vibrations excitation, a laser was used with up to 2 W output
power at 532 nm wavelength from Coherent (Verdi G-Series, OPSL). A
spectrograph with 300 mm focal length (SP2300) and a CCD camera with
1340x400 pixels imaging array and 20 µm x 20 µm pixels (PIXIS 400B)
from Princeton Instruments were used for spectra acquisition. The width
of the spectrograph entrance slit was set to 15 µm during all experiments.
A diffraction grating with 1800 groves/mm has been used for spectra
acquisition with resolution of 2.8 cm−1. To minimize the effect of intensity
drift during experiments, the recording of each spectrum was repeated 10
times and the averaged value was used for PLS model calibration. The
acquisition time of an individual spectrum was 1 second.

ATR FT-IR spectroscopy

An FTIR spectrometer Nicolet 6700 from Thermo Electron with the ability
to collect spectra in the near-IR, mid-IR, and far-IR spectral ranges was
used to validate the estimated concentrations of CO2 in MEA aqueous
solutions. For the purposes of this study, a deuterated triglycine sulfate
(DTGS) detector with a KBr protection window was used. In this combi-
nation the DTGS detectors are sensitive in the spectral region from 400 to
6000 cm−1, covering this way the mid-IR region [193]. The spectrometer is
equipped with an MKII Golden Gate Single Reflection ATR system from
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Figure 4.1. Raman spectroscopy setup. (a) - spectrograph, (b) - CCD camera, (c) - objective
lense, (d) - measurement cell, (e) - PT100 resistance thermometer.

Specac Ltd. The data were collected with spectral resolution of 4 cm−1.
The FTIR spectrometer was configured to perform spectra averaging over
the set of 32 scans with total collection time of 39 seconds.

Near Infra-Red spectroscopy

The raw NIR spectroscopy signal was collected using the same equipment
as described in subsection 2.3.2 of Chapter 2. The light portion from the
spectral region of 1016-2044 nm was used. The spectral resolution of the
spectrograph was about 3.36 nm. The spectra acquisition time was 20 ms
and the averaging was performed over 10 scans. A reference spectrum
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was collected from deionized water. To keep the instrument calibration
updated, prior to every new measurement campaign, the reference and
dark spectra were freshly recorded.

4.3 Data processing

Each raw spectrum was subjected to data pretreatment algorithms before
being used for PLS model building. Whatever spectroscopic technique is
used for solvent analysis, the resulting raw data contain some parasitic
components along with valuable information about the studied system.
Variation of the environmental illumination, stray light, or laser intensity
drift and fluorescence (in case of Raman spectroscopy) can cause signal
drift, fluctuations, and background variation [194]. The intensity of the
Raman spectroscopy signal is directly proportional to the concentration of
the scattering species in studied media. The infra-red spectroscopy signal
needs to be transformed in order to provide quantitative calculations. All
spectra acquired using the ATR FTIR spectrometer were automatically
displayed and stored in form of percent transmittance signal:

T =
I

I0
· 100% (4.1)

where I is the intensity of infra-red irradiation passed through the sample
and I0 is the intensity of the background infra-red signal. Conventionally,
published databases of the spectral libraries contain reference spectra in
form of transmittance signals. According to the Beer-Lambert law [90],
the absorbance scale is more useful for quantitative characterisation of the
solvent. Thus, the raw signal was converted into absorbance mode

AFTIR = log10

(
100

T

)
= log10

(
I0
I

)
(4.2)

The infra-red signal recorded using the DTGS detector of the FTIR
spectrometer does not require dark current correction. Both transmittance
and absorbance are functions of infra-red light frequency.

Near infra-red data were converted using a similar approach. The light
beam that passed through the sample and reference has been corrected for
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the dark signal:

ANIR = − log10

(
Isample − Idark
Ireference − Idark

)
(4.3)

It is necessary to subtract accumulated dark current that originates
from thermal sensitivity of the usually amorphous silicon TFT pixels of
a CCD detector used to record near-IR spectra. Following the initial
data collection and averaging, the acquired spectra have been subjected to
background reduction via subtracting a baseline between the end points of
each spectrum. Normalization of the recorded spectra has been performed
using a standard normal variate method [195] applied to each spectrum
after the background subtraction. Following the normalization procedure,
the spectral information has been subjected to windowing by multiplication
of the spectra with a rectangular function, which left the spectra untreated
within the most important spectral range with respect to each spectroscopic
method and set to zero the values outside the selected range. For the PLS
model construction, Raman spectral signals have been taken from the
region of 727-1743 cm−1, NIR absorbance signal contain valuable data in
the region of 5280-7800 cm−1, and ATR FTIR transmittance data have
been taken from the region of 800-1750 cm−1. Noise reduction using
Savitzky-Golay smoothing [159] followed by taking the first derivative has
provided the source data for the PLS models construction. The frame size
for the smoothing filter has been selected in such a way that the choice
provides the lowest error of the final outcome produced by each of the
PLS model. Consequently, frame sizes were chosen to be 61, 55, and 47
for spectra from Raman, ATR FTIR, and NIR, respectively. The PLS
regression models were computed using only relevant latent variables (LVs)
for concentration estimation in case of each spectroscopic method. The
selection conditions for number of LVs were the errors of estimation and
the correlation coefficient (0 ≤ R2 ≤ 1) [119]. For each of the considered
spectroscopic techniques, only 2 LVs were used for the models construction.
The models built using 3 LVs produced results with SMAPE increased by
0.1 for Raman, 0.9 for NIR, and 0.2 for ATR FTIR data.
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4.3.1 Method performance assessment

Regression models are a statistical method for establishing the relationships
between the measured parameters and variations of independent variables,
like concentration of CO2 in a solvent. Once the model is constructed,
its estimation accuracy is calculated. The best performing model can be
routinely applied for estimation of the concentrations of CO2. SMAPE,
Eq. 2.9, was calculated to assess the accuracy of the models. To provide an
easily interpretable meaning to SMAPE, part A of Eq. 2.9 may be reduced
to the approximated value in the following way:

A =

N∑
i=1

|yi,exp − yi,model|

N∑
i=1

(yi,exp + yi,model)

(4.4)

The value in numerator is the sum of the absolute estimation errors, |∆yi|.
The denominator of A may also be represented by ∆yi.

A =

N∑
i=1

|∆yi|

N∑
i=1

(yi,exp + yi,exp +∆yi)

=

N∑
i=1

|∆yi|

2 ·
N∑
i=1

yi,exp +
N∑
i=1

∆yi

=
1

2 ·

N∑
i=1

yi,exp

N∑
i=1

|∆yi|
+

N∑
i=1

∆yi

N∑
i=1

|∆yi|

=
1

2 ·

N∑
i=1

yi,exp

N
· N

N∑
i=1

|∆yi|
+

N∑
i=1

∆yi

N︸ ︷︷ ︸
β

· N
N∑
i=1

|∆yi|
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=
1

2 · 1

⟨|∆yi|⟩
·
(
⟨yi,exp⟩+

β

2

) (4.5)

Assuming that the average absolute error of the observed parameter is a
fraction of its measured value ⟨|∆yi|⟩ = α · ⟨yi,exp⟩ and α ̸= 0, β ≪ ⟨yi,exp⟩,
the following may be concluded:

A ∼ α

2
, (4.6)

The parameter α is a mean absolute relative difference [196] for a par-
ticular PLS model. The use of SMAPE reduces the disturbance by outliers
and its value does not depend on direction of bias between experimental
measurement and its estimated value[131]. Thus, it provides an intuitive
way to describe the magnitude of the errors between the estimated and
measured value. Using the result of the reduction 4.6 of Eq. 2.9 helps to
estimate the error of a PLS model.

4.4 Results and discussion

The spectra of the gradually loaded samples are shown in Figure 4.2. Each
subfigure shows a set of the spectroscopic signals recorded using one of
the three spectroscopy techniques. Every line corresponds to a measure-
ment obtained from a sample with different CO2 loading. The displayed
spectra are normalized and windowed to the higher energetic spectroscopic
fingerprint region of MEA, which contains most of the information about
changes in the studied chemical mixture of MEA-H2O-CO2. The posi-
tions of the characteristic scattering and absorption bands are identifiable
and assigned to the vibrations of the molecular groups according to litera-
ture [168, 184, 186, 197–199]. According to Figure 4.2, Raman and ATR
FTR measurements provide spectroscopic responses with rich information
content about the studied media.

The robustness of a PLS estimation depends on the calibration pro-
cedure and is determined by the number of training samples and the
resolution with respect to concentrations of CO2. Figure 4.3 shows the er-
rors of the PLS models as a functions of the number of the samples used for
model calibration. To obtain the first point in Figure 4.3, the matrix with
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Figure 4.2. Raman, NIR, and ART FTIR spectra recorded from aqueous MEA solutions
gradually loaded with CO2. The spectra were subjected to baseline correction, normalization
and windowing. Every spectrum represents the solution of aqueous MEA containing CO2

within the assigned range.

the source data for the model was comprised of the measurements from
three samples with different CO2 loadings. One sample with maximum
loading, one with minimum loading, and one from the center of calibration
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Figure 4.3. Errors of the estimation models built based on the signals of Raman, NIR, and
ATR FTIR spectroscopy as functions of the number of samples used in a calibration set.

range were used to calibrate and validate the estimation model. Follow-
ing the leave-one-out cross-validation algorithm [158], the PLS model was
calibrated three times based on two out of three samples leaving out the
rest. The PLS method produced regression coefficients, which then were
applied to estimate the CO2 concentration in the omitted sample. For
the following runs, more samples were added to the calibration set of the
model. The errors in terms of SMAPE were calculated and their averages
are presented in Figure 4.3. It may be concluded that NIR absorbance
signal provides estimation models of higher quality than the other two
if the same number of calibration samples is available. More calibration
samples lead to a better resolution in terms of the concentration, which
leads to an increase in the quality of each model.

In Figure 4.4, estimated concentrations of CO2 are plotted as a function
of measured concentrations. The PLS regression models for each of the
spectroscopic techniques were calibrated based on the measurements from
maximum number of the samples.

The results of the current study reveal that for the same number of
samples NIR spectroscopy provides an estimation chemometrics model
with errors lower than when using Raman and ATR FTIR. The errors
of the models that were built using the Raman and ATR FTIR data are
comparable and are larger than that of NIR. Increasing of the number
of samples included in calibration data set leads to improvement of the
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Figure 4.4. Measured versus estimated CO2 concentrations using three spectroscopic meth-
ods: Raman, NIR, ATR FTIR.

estimations by models constructed using spectroscopic data. Due to its
linearity, the PLS regression is especially useful in the region of the CO2

loading below 0.5 molCO2
/molMEA. At these loadings, CO2 almost com-

pletely captured by a solvent as a result of the amine carbamate formation.
The concentration of the carbamate increases almost linearly with the CO2

loading. At the higher loadings, the carbamate concentration decreases
and CO2 transforms into bicarbonate [200]. This change of the chemical
reaction equilibrium implies nonlinearity, which the PLS approach can not
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Table 4.2. Vibrational spectroscopy methods performance before/after spectra pretreatment
(windowing, normalization, SG with 1st derivative). The table contains important qualities
for assessment of all three techniques. The se value have been calculated using Eq. 2.10.

Raman ATR FTIR NIR

SMAPE, % 46.5/3.6 4.0/3.6 20.4/2.1

se, molCO2
/molMEA 0.15/0.01 0.02/0.02 0.10/0.01

Measurement frequency 1 - 6 min−1 1 - 2 min−1 2 - 5 s−1

Chemical speciation Possible Possible Difficult

Price, EUR 100,000(this work) 100,000 [113] 20,000 [113]

cover and the estimation of the CO2 concentration gets worse. This is
clearly shown in Figure 4.4.

Table 4.2 shows a summary of the comparative values of the three
spectroscopic techniques in application to CO2 absorption by aqueous
MEA. The spectral data pre-treatment measures helped to greatly decrease
the errors of estimation for models built using Raman and NIR spectra
and took a small, although positive, effect on the model built using ATR
FTIR spectra. In terms of se the estimation models built using data
from all three techniques possess almost the same quality. Among three
methods, NIR spectroscopy requires the shortest spectra acquisition times
providing the fastest measurement response. Raman and ATR FTIR
spectroscopy methods are more suitable for quantitative speciation of
chemical mixtures. The NIR spectra contain broad overlapping absorption
bands and are not selective. Estimated costs for the three techniques show
that NIR instrument is more favourable in terms of cost reduction. This
fact in combination with accuracies of estimation of the CO2 concentrations
makes NIR spectroscopy most useful for the chosen application.

Modern developments of the spectroscopic instrumentation industry
provide equal opportunities for all three considered methods to be used for
both off-line laboratory applications and for on-site measurements [201–
203]. However, during an industrial process solvent degradation may lead
to appearance of such spectroscopic effects like fluorescence, self-absorption,
weakening of the signal intensity. Eventually, the solvent turns yellow
due to the operation conditions and the signal-to-noise ratio is getting
worse [204]. This problem may be solved via both spectroscopy data
treatment and adjusting instrumentation, for example by increasing the
power of the light emitting sources or using immersion probes [205–208]
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suitable for real-time online diagnostics. The monitoring of the carbon
dioxide concentrations in the solvent flow during PCC process may be
performed effectively using NIR spectroscopy. All three spectroscopic
techniques that were considered in this chapter provide rich information
about the solvent. The comparative assessment may be developed further
for the case of the simultaneous analysis of the concentrations of both MEA
and CO2. When the CO2 loading exceeds 0.5 molCO2

/molMEA the species
distribution is a non-linear function with respect to the CO2 loading and
the PLS regression method delivers poor results due to its inherent linear
origin. It might be beneficial to divide the chemical speciation into the
regions of the linear behaviour and build the PLS models within the limits
of these regions. During CO2 absorption experiments using the Raman
spectroscopy setup, the effect of the solvent thermal degradation was
clearly observed. The effect has manifested itself as color change during
the gradual heating of the solvent from room temperature up to 95 �. For
this particular Raman spectroscopy setup, the fluorescence background
was notably observable and the transition from fresh to degraded solvent
can be characterised in situ. This suggests that Raman spectroscopy can
be a useful technology for solvent degradation monitoring.

The CO2 concentrations fluctuate within different ranges in a real in-
dustrial absorption process. The process temperature and pressure usually
do not stay constant and vary according to the settings. If no reclaiming
is being done to counter solvent degradation, it might also be necessary to
take the impurities into account. To cope with these effects and increase
accuracy of estimation, extra samples may be added to the calibration set.
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4.5 Conclusions

Raman, ATR FTIR, and NIR spectroscopic techniques were quantitatively
compared based on their predictive performance in case of aqueous MEA
solutions loaded with CO2. The assessment is extended to such factors as:
data pretreatment effort, acquisition time, equipment cost, and possibility
for in-line installation. During the comparison, statistical models have been
build to estimate CO2 concentrations in the studied samples. It has been
shown that the increased number of samples provides higher accuracy
of estimation. The errors decrease with the trend that suggest further
improvements of the approach. The NIR data has provided the estimations
with the best accuracy when the same number of calibration samples are
used for model construction. It is expected that the spectroscopic methods
compared in this chapter are applicable for characterisation of the liquid
solvents in similar gas capturing processes, like natural gas treatment.



Appendix A

Linear transformations for
the screening procedure of
samples

In general form, the system of equations for transformation of a vector with
coordinates (x, y, z ) to the vector (x∗, y∗, z∗) in a 3D space is presented
by:


x∗ = α1x+ β1y + γ1z + λ

y∗ = α2x+ β2y + γ2z + µ

z∗ = α3x+ β3y + γ3z + ν

(A.1)

where (λ, µ, ν) are the coordinates of a translation vector. For convenience,
this system of equations is presented in matrix form using homogeneous
coordinates ([212], pp. 35-36)

[x∗ y∗ z∗ 1] = [x y z 1] [M ] (A.2)

where [M ] is the matrix of transformation coefficients

[M ] =


α1 β1 γ1 0
α2 β2 γ2 0
α3 β3 γ3 0
λ µ ν 1

 (A.3)
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Figure A.1. The 3D representation of mixture compositions of the core set of calibration
samples. Coordinate numbers 0, 1, 2, 3, and 4 correspond to low, first intermediate, base,
second intermediate, and high level of concentrations of MDEA, PZ, and CO2. Blue balls
are the samples and line AB is the axis of rotation.

To obtain the new set of augmenting concentrations, the affine trans-
formations of translation ([T ]) and rotation ([R]) ([212], pp. 20-22) were
applied to the vector space of concentrations obtained using fractional
factorial design. For clarity, the core concentrations of both amines and
CO2 calculated using the procedure described in subsection 3.2.2 of Chap-
ter 3 are plotted in a 3D space using substitution of the real concentration
values by numbers 0, 1, 2, 3, and 4, Figure A.1.

The rotation is performed around the line AB by the angle θ = π. A
directing vector r with the origin and tail in the points with coordinates
[xo; yo; zo]=[2; 2; 2] and [xt; yt; zt]=[0; 4; 2] is selected. It is easier to
rotate an object in the 3D space around one of the coordinate axis. In this
work the OY axis is selected. To perform rotation around OY axis the
vector r should be aligned with it. The alignment operation is performed
in two steps: translation of the vector r so that its origin is nested in the
origin of the coordinate system and rotation around OZ axis by angle φ in
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the direction towards OY axis. Since vector r is parallel to the XOY plane,
only one rotation is needed to align it with OY axis. When choosing the
coordinates of the translation vector in this application as [2; 2; 2] for its
origin and [0; 0; 0] for its tail, one can write the operator of translation as

[T ] =


1 0 0 0
0 1 0 0
0 0 1 0
−2 −2 −2 1

 (A.4)

The coordinates of the vector r normalized to the vector with unit
length ê ([213], p. 18) are calculated by

ê =
[(xt − xo); (yt − yo); (zt − zo)]√

(xt − xo)2 + (yt − yo)2 + (zt − zo)2

[ex; ey; ez] =

[
− 1√

2
;
1√
2
; 0

] (A.5)

Now it is easy to determine the angle of rotation φ around OZ axis

cosφ =
ey
∥ê∥

=
1√
2

⇒ φ =
π

4
(A.6)

Thus, the operator of rotation around OZ axis is

[RZ] =


cosφ − sinφ 0 0
sinφ cosφ 0 0
0 0 1 0
0 0 0 1

 =


√
2
2 −

√
2
2 0 0√

2
2

√
2
2 0 0

0 0 1 0
0 0 0 1

 (A.7)

Once these operations have been performed the object can be rotated
around OY axis by the angle θ using the rotation operator [RY]

[RY] =


cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 (A.8)
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Figure A.2. The complete set of calibration samples. Every ball represents a mixture of
three chemical components: MDEA, PZ, and CO2. The coordinates are directly related to
the concentrations of the chemicals that should be mixed to prepare a sample. Blue balls
denote the samples from core combinations, red balls are the augmenting samples, and line
AB is the axis of rotation.

To return back to the original coordinate space, the first two transfor-
mations should be inverted. The inverted matrices [RZ]

−1 and [T ]−1 are
obtained by substitution values −φ and (−λ,−µ,−ν) in place of φ and
(λ, µ, ν) in matrices A.7 and A.4.

In the work presented in Chapter 3 the coordinate axes are the con-
centrations of MDEA, PZ, and CO2 for X, Y, and Z axis respectively.
Sequential execution of the described operations provides the needed rota-
tion around the line AB. Thus, the matrix with transformation coefficients
can be expressed as

[M ] = [T ][RZ][RY][RZ]
−1[T ]−1 (A.9)

Combining the equations A.2 and A.9, the sought coordinates for ex-
tra samples can be calculated. The final set of samples is presented in
Figure A.2.



Appendix B

Calibration measurements

In the next sections, all important data from the calibration measurements
used for the models construction for the AMP-PZ-CO2 and MDEA-PZ-
CO2 campaigns is presented. In each section, the tables are organized in the
following order: the table with concentrations of chemicals in calibration
samples is placed first, then the tables with values of density, conductivity,
pH, sound velocity, and refractive index respectively, and NIR spectroscopy
signals for each of the calibration samples is provided last.

The sample preparation procedure implies mixing amines, water, and
CO2 in proportions provided by the design of experiments. The stock
binary solutions of each amine with H2O were loaded with CO2. This CO2

was added to the solutions either by feeding it from gas bottle through the
liquid solvent or using dry ice pellets. The required amounts of solvents
were mixed in a sample cup and the pure chemical components were
added to the cup when the concentrations of either of them has to be
increased to the desired value. The mixing procedure has been conducted
gravimetrically using scales with an accuracy of ± 0.01 g.

Partial Least Square (PLS) models were constructed to provide the
regression lines between the concentrations of the used chemicals and
readings of measurement devices. In this work, six measurement devices
were employed to construct a setup for real-time in-line monitoring of
solvent composition. The properties that were monitored are density, pH,
conductivity, sound velocity, refractive index, and Near Infra-Red (NIR)
absorbance signal. All calibration measurements were conducted in a labo-
ratory. For the system of AMP-PZ-CO2 the measurements were obtained
at 25�, 35�, and 40� to provide a predictive model that takes into ac-
count a temperature resolution. For the same reason, the measurements
were performed at 20� and 25� for the system of MDEA-PZ-CO2.
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B.1 The AMP-PZ-H2O-CO2 system

B.1.1 Concentrations of chemicals in calibration samples

Table B.1. Calibration samples notation and concentrations of each component - AMP, PZ,
and CO2. The samples were used for PLS model construction.

Sample number AMP, mol/kg PZ, mol/kg CO2, molCO2
/molAmine

s1 1.99 0.97 0.00
s2 2.01 1.47 0.00
s4 2.00 0.98 0.20
s5 1.97 1.67 0.19
s7 1.99 0.97 0.50
s8 2.00 1.46 0.50
s9 1.96 1.94 0.36
s10 2.51 1.23 0.10
s11 2.52 1.47 0.10
s12 2.51 1.72 0.10
s13 2.47 1.35 0.19
s14 2.52 1.47 0.20
s15 2.51 1.71 0.20
s16 2.50 1.24 0.35
s17 2.51 1.47 0.35
s18 2.51 1.72 0.35
s19 2.97 0.97 0.00
s20 3.01 1.47 0.00
s22 3.00 1.23 0.10
s23 3.01 1.48 0.10
s24 3.02 1.71 0.10
s25 3.10 0.98 0.19
s26 3.01 1.23 0.20
s27 3.01 1.47 0.20
s28 3.03 1.71 0.20
s29 2.93 1.91 0.20
s30 3.01 1.22 0.35
s32 3.00 1.75 0.35
s33 3.08 1.03 0.46
s36 3.26 1.23 0.10
s38 3.26 1.71 0.10
s39 3.26 1.22 0.20
s41 3.26 1.72 0.20
s42 3.25 1.25 0.35
s43 3.25 1.50 0.35
s44 3.25 1.75 0.35
s45 3.51 0.98 0.00
s46 3.51 1.47 0.00
s47 3.51 1.96 0.00
s48 3.51 0.98 0.20
s49 3.51 1.47 0.20
s50 3.50 1.97 0.20
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B.1.2 Laboratory measurements of calibration samples

Table B.2. Values of the measurements of the first five properties obtained from calibration
samples of the AMP-PZ-CO2 mixtures at 25�.

Sample number Density, kg/m3 Conductivity, mS/cm pH Sound velocity, m/s Refractive index, brix

s1 1005.1 0.47 12.50 1700.4 25.8
s2 1009.0 0.32 12.54 1736.4 30.8
s4 1031.2 7.74 10.73 1711.5 29.4
s5 1039.0 5.74 10.86 1760.7 35.9
s7 1069.2 14.88 9.88 1720.6 34.7
s8 1080.0 11.58 9.95 1764.6 40.1
s9 1072.5 8.00 10.36 1795.2 42.7
s10 1023.3 3.63 11.17 1748.7 34.0
s11 1026.0 3.31 11.16 1765.3 36.1
s12 1028.6 2.98 11.21 1780.5 38.4
s13 1039.5 5.68 10.82 1764.8 36.8
s14 1042.8 5.43 10.84 1775.6 38.5
s15 1045.7 4.91 10.81 1790.9 40.7
s16 1062.1 8.91 10.40 1770.6 39.3
s17 1066.3 7.75 10.40 1789.4 41.7
s18 1070.8 6.73 10.44 1808.3 44.3
s19 1006.1 0.24 12.63 1745.2 33.6
s20 1009.4 0.25 12.82 1768.6 37.9
s22 1025.4 3.05 11.13 1770.3 37.6
s23 1028.2 2.74 11.23 1784.5 40.0
s24 1030.6 2.50 11.26 1794.4 41.9
s25 1039.2 5.40 10.83 1768.7 38.1
s26 1043.4 5.04 10.78 1780.6 39.9
s27 1046.4 4.53 10.85 1795.1 42.2
s28 1049.2 3.90 10.86 1808.6 44.5
s29 1051.6 3.73 10.93 1816.7 45.6
s30 1068.2 7.25 10.40 1796.2 43.3
s32 1062.1 4.85 10.68 1815.4 45.6
s33 1081.7 9.42 10.09 1789.0 43.9
s36 1026.6 2.85 11.20 1775.6 39.1
s38 1032.2 2.11 11.26 1800.8 44.6
s39 1044.8 4.55 10.78 1788.6 41.7
s41 1050.9 3.56 10.84 1815.0 46.2
s42 1050.7 10.47 9.14 1748.2 35.9
s43 1069.5 5.20 10.51 1818.7 46.8
s44 1086.0 8.08 10.11 1800.7 46.3
s45 1005.5 0.17 12.72 1754.1 37.0
s46 1008.6 0.11 12.74 1771.2 41.2
s47 1011.5 0.06 12.78 1783.3 45.3
s48 1043.7 4.75 10.78 1781.9 41.3
s49 1049.5 3.65 10.85 1806.3 45.6
s50 1056.1 2.72 10.90 1827.2 50.0
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Table B.3. Values of the measurements of the first five properties obtained from calibration
samples of the AMP-PZ-CO2 mixtures at 35�.

Sample number Density, kg/m3 Conductivity, mS/cm pH Sound velocity, m/s Refractive index, brix

s1 999.7 0.53 12.62 1689.9 26.1
s2 1003.3 0.36 12.72 1719.4 31.1
s4 1026.1 8.80 10.68 1702.8 29.7
s5 1033.3 6.70 10.73 1745.3 36.2
s7 1063.1 16.70 9.87 1718.2 35.4
s8 1074.7 13.32 9.90 1757.5 40.6
s9 1067.4 9.50 10.31 1776.7 42.6
s10 1017.8 4.22 11.10 1731.2 34.1
s11 1020.2 3.94 11.17 1742.3 36.2
s12 1022.7 3.64 11.15 1758.6 38.7
s13 1033.7 6.74 10.81 1747.6 37.0
s14 1036.9 6.48 10.80 1755.5 38.5
s15 1039.7 5.90 10.77 1770.6 41.0
s16 1056.5 10.4 10.32 1758.4 39.5
s17 1060.9 9.30 10.30 1774.7 42.1
s18 1065.4 8.17 10.41 1791.5 44.6
s19 999.7 0.28 12.73 1722.4 33.5
s20 1003.3 0.31 12.75 1737.1 38.4
s22 1019.4 3.70 11.12 1747.2 38.1
s23 1022.1 3.32 11.13 1748.9 39.0
s24 1024.0 3.07 11.20 1769.1 42.6
s25 1033.5 6.5 10.78 1749.5 38.4
s26 1037.4 6.12 10.74 1759.8 36.4
s27 1040.5 5.54 10.75 1773.0 43.1
s28 1043.5 4.87 10.80 1782.6 45.0
s29 1045.6 4.70 10.86 1788.1 45.8
s30 1062.7 8.60 10.30 1775.5 43.6
s32 1055.9 6.08 10.60 1792.8 45.6
s33 1076.8 11.36 10.00 1771.8 43.7
s36 1020.3 3.47 11.16 1752.0 39.6
s38 1025.3 2.70 11.18 1785.5 44.7
s39 1038.7 5.58 10.75 1764.6 42.8
s41 1045.1 4.51 10.84 1787.5 46.5
s42 1044.9 10.58 10.42 1734.0 35.8
s43 1063.7 6.54 10.43 1795.8 46.8
s44 1079.8 9.94 10.01 1779.6 46.4
s45 998.7 0.20 12.80 1726.0 37.4
s46 1001.2 0.13 12.93 1741.5 41.4
s47 1003.6 0.09 13.10 1733.3 45.6
s48 1037.3 5.80 10.70 1760.1 41.7
s49 1043.3 4.52 10.72 1781.5 45.9
s50 1049.2 3.62 10.83 1797.0 50.2
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Table B.4. Values of the measurements of the first five properties obtained from calibration
samples of the AMP-PZ-CO2 mixtures at 40�.

Sample number Density, kg/m3 Conductivity, mS/cm pH Sound velocity, m/s Refractive index, brix

s1 997.2 0.54 12.00 1684.8 26.2
s2 1000.3 0.36 12.09 1712.0 31.0
s4 1023.5 9.11 10.34 1700.7 29.5
s5 1030.7 7.14 10.48 1742.7 36.3
s7 1059.9 17.45 9.53 1717.5 34.8
s8 1071.2 13.88 9.61 1757.0 40.3
s9 1064.1 9.96 10.01 1777.6 42.7
s10 1014.8 4.48 10.71 1726.1 34.1
s11 1016.8 4.16 10.76 1737.2 36.1
s12 1019.3 3.90 10.83 1748.8 38.4
s13 1030.7 7.06 10.40 1741.4 36.9
s14 1033.5 6.90 5.35 1750.2 38.5
s15 1036.6 6.31 10.46 1762.8 40.8
s16 1052.8 11.10 9.97 1751.6 39.4
s17 1057.7 9.67 10.05 1768.2 41.7
s18 1062.3 8.80 10.07 1784.4 44.4
s19 996.6 0.28 12.10 1712.8 33.6
s20 999.1 0.33 12.48 1730.8 38.1
s22 1016.1 3.94 10.76 1736.4 37.7
s23 1018.6 3.54 10.78 1748.9 40.1
s24 1020.5 3.41 10.82 1757.4 42.1
s25 1029.9 6.85 10.38 1740.3 38.4
s26 1034.2 6.60 10.38 1754.0 40.0
s27 1037.1 5.88 10.44 1763.8 42.4
s28 1040.0 10.40 10.44 1774.5 44.8
s29 1041.6 5.11 10.05 1782.2 45.6
s30 1059.5 9.48 10.01 1788.5 43.5
s32 1051.3 6.52 10.24 1786.0 45.7
s33 1072.2 12.14 9.70 1769.0 44.1
s36 1016.7 3.76 10.73 1740.1 39.3
s38 1021.6 2.94 10.82 1762.6 44.7
s39 1034.9 6.16 10.38 1757.9 42.1
s41 1041.5 4.90 10.5 1777.4 46.4
s42 1041.9 11.15 10.07 1731.9 36.0
s43 1059.4 7.06 10.12 1788.2 46.8
s44 1075.7 10.54 9.80 1776.0 46.6
s45 995.3 0.21 12.30 1715.0 37.2
s46 997.7 0.15 12.25 1729.4 41.3
s47 1000.1 0.10 12.38 1741.6 45.5
s48 1034.1 6.30 10.38 1751.6 41.4
s49 1039.4 5.01 6.95 1773.7 45.9
s50 1045.5 3.95 10.51 1787.2 50.4
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B.2 The MDEA-PZ-H2O-CO2 system

B.2.1 Concentrations of components in calibration samples

Table B.5. Calibration samples notation and concentrations of the components: MDEA, PZ,
CO2. For some of the samples within this campaign dry ice pellets were used to adjust the
level of CO2 content.

Sample MDEA PZ CO2

mol/l mol/l mol/l
m1 2.50 0.20 0.00
m2 2.50 0.40 0.52
m3 2.50 0.58 1.79
m4 2.48 0.79 0.88
m5 2.60 0.60 0.48
m6 2.74 0.20 1.12
m7 2.74 0.40 1.10
m8 2.75 0.58 0.93
m9 2.74 0.80 0.57
m10 2.75 1.00 0.00
m11 2.93 0.20 0.94
m12 2.93 0.42 1.04
m13 2.92 0.58 0.46
m15 2.94 1.00 0.71
m16 3.19 0.23 0.48
m17 3.20 0.40 0.50
m18 3.18 0.58 0.00
m19 3.20 0.80 1.20
m21 3.40 0.20 0.43
m20 3.20 1.01 1.43
m22 3.39 0.40 0.00
m23 3.40 0.58 1.83
m24 3.40 0.81 1.09
m25 3.40 1.01 1.06
m27 2.74 0.21 0.38
m28 2.93 0.20 0.00
m31 2.50 0.40 0.35
m32 2.75 0.40 0.00
m35 3.39 0.40 0.95
m36 2.49 0.58 0.00
m39 3.20 0.58 0.95
m40 3.39 0.59 0.48
m42 2.75 0.80 1.53
m43 2.92 0.80 0.93
m44 3.20 0.80 0.48
m45 3.40 0.80 0.00
m46 2.50 1.01 1.51
m47 2.74 1.00 0.94
m48 2.93 1.01 0.47
m49 3.20 1.00 0.00
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B.2.2 Laboratory measurements of calibration samples

Table B.6. Values of the measurements of the first five properties obtained from calibration
samples of the MDEA-PZ-CO2 mixtures at 20�.

Conductivity, mS/cm pH Density, g/cm3 SV, m/s Refractive index, brix

m1 0.21 11.57 1.0293 1679.4 29.3
m2 5.15 9.41 1.0519 1705.4 34.0
m3 15.43 8.77 1.0992 1748.7 40.5
m4 5.97 9.53 1.0669 1741.3 39.2
m5 3.93 9.79 1.0530 1726.2 36.6
m6 11.86 9.08 1.0776 1720.0 37.3
m7 9.75 9.17 1.0782 1735.5 39.0
m8 6.62 9.37 1.0719 1744.3 39.9
m9 3.47 9.88 1.0584 1749.0 40.0
m10 0.13 11.75 1.0379 1751.6 39.3
m11 8.74 9.27 1.0714 1727.2 38.1
m12 7.32 9.3 1.0754 1746.3 40.5
m13 2.77 9.92 1.0537 1742.8 39.3
m15 2.96 9.94 1.0651 1774.1 43.9
m16 3.56 9.66 1.0567 1736.3 38.9
m17 2.92 9.76 1.0571 1747.4 40.4
m18 0.12 11.84 1.0401 1745.4 39.8
m19 4.78 9.41 1.0879 1791.5 46.9
m20 4.74 9.34 1.0989 1810.0 49.7
m21 3.06 9.70 1.0579 1745.0 40.6
m22 0.11 11.74 1.0411 1743.8 39.9
m23 8.04 9.02 1.1120 1808.6 49.0
m24 3.75 9.47 1.0860 1798.5 48.4
m25 3.02 9.96 1.0855 1806.4 49.9
m27 4.10 9.66 1.0476 1704.3 33.9
m28 0.16 11.59 1.0343 1706.8 33.7
m31 3.72 9.81 1.0450 1703.0 33.2
m32 0.18 11.72 1.0333 1710.1 33.7
m35 5.10 9.39 1.0781 1772.5 44.5
m36 0.21 11.81 1.0316 1707.2 32.8
m39 4.78 9.42 1.0765 1772.4 44.3
m40 2.29 9.85 1.0617 1769.2 43.9
m42 8.59 9.12 1.0963 1777.6 44.6
m43 4.57 9.55 1.0746 1770.3 43.6
m44 2.23 9.97 1.0612 1772.0 44.1
m45 0.08 11.86 1.0436 1768.1 43.5
m46 8.10 9.19 1.0936 1774.1 44.0
m47 4.45 9.63 1.0743 1771.5 43.6
m48 2.37 10.14 1.0589 1771.5 43.4
m49 0.09 11.93 1.0433 1772.0 43.4
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Table B.7. Values of the measurements of the first five properties obtained from calibration
samples of the MDEA-PZ-CO2 mixtures at 25�.

Conductivity, mS/cm pH Density, g/cm3 SV, m/s Refractive index, brix

m1 0.22 11.58 1.0277 1679.5 29.3
m2 5.50 9.55 1.0504 1705.3 34.0
m3 15.82 8.74 1.0988 1750.2 40.5
m4 6.39 9.48 1.0673 1739.5 39.2
m5 4.16 9.77 1.0517 1724.1 36.6
m6 12.29 9.05 1.0764 1721.2 37.3
m7 10.11 9.11 1.0774 1735.4 39.1
m8 6.97 9.35 1.0709 1742.6 39.9
m9 3.74 9.81 1.0571 1745.7 40.1
m10 0.14 11.89 1.0360 1746.3 39.2
m11 9.20 9.19 1.0700 1726.8 38.1
m12 7.74 9.25 1.0741 1744.5 40.5
m13 3.01 9.89 1.0521 1739.4 39.3
m15 3.23 9.88 1.0638 1769.2 44.0
m16 3.79 9.59 1.0547 1734.0 38.9
m17 3.15 9.71 1.0556 1743.3 40.3
m18 0.13 11.8 1.0379 1739.3 39.5
m19 5.16 9.34 1.0865 1787.0 47.1
m20 5.10 9.28 1.0976 1805.5 49.7
m21 3.31 9.62 1.0560 1740.4 40.6
m22 0.11 11.74 1.0390 1737.0 40.0
m23 8.50 8.98 1.1107 1805.0 49.0
m24 4.07 9.45 1.0848 1791.5 48.5
m25 3.28 9.56 1.0843 1798.6 49.9
m27 4.31 9.63 1.0462 1703.4 33.9
m28 0.17 11.55 1.0329 1704.1 33.8
m31 3.90 9.75 1.0435 1702.5 33.3
m32 0.19 11.66 1.0314 1707.2 33.7
m35 5.40 9.32 1.0768 1767.8 44.5
m36 0.22 11.74 1.0298 1704.6 32.8
m39 5.10 9.38 1.0759 1768.6 44.3
m40 2.52 9.80 1.0601 1763.0 43.9
m42 9.08 9.07 1.0958 1776.0 44.7
m43 4.92 9.48 1.0735 1766.5 43.6
m44 2.44 9.94 1.0595 1766.0 44.2
m45 0.09 11.83 1.0415 1760.0 43.5
m46 8.61 9.13 1.0930 1773.0 44.1
m47 4.78 9.57 1.0727 1768.1 43.6
m48 2.59 10.08 1.0577 1766.0 43.5
m49 0.09 11.90 1.0407 1763.2 43.5
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B.3 Input and output of Aspen Plus modeling

The ability of Aspen Plus model was checked to calculate physical prop-
erties for mixtures of MDEA, PZ, and CO2 taken in proportions used to
prepare calibration samples. The results of Aspen Plus calculations are
presented in Table B.8 along with the values of pH, density, and SV that
were measured in laboratory conditions. To test quality of Aspen Plus
model, it was used to calculate pH, density, and SV for mixtures with
chemical composition predicted in-line using PLS models, Table B.9. The
results of these concentrations were compared with measurement obtained
in-line, see Table B.10.
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Table B.8. Input variables for Aspen Plus modeling. The calibration samples case. All
measurements are taken at the temperature of sample at 20 � and the pressure at 1 bar.

pH pH Density, g/cm3 Density, g/cm3 SV, m/s SV, m/s
measured Aspen Model measured Aspen Model measured Aspen Model

11.57 11.82 1029 1027 1679 1770
9.41 9.50 1052 1051 1705 1769
8.77 8.66 1099 1105 1749 1756
9.53 9.36 1067 1069 1741 1795
9.79 9.69 1053 1050 1726 1811
9.08 8.95 1078 1075 1720 1775
9.17 9.05 1078 1079 1736 1786
9.37 9.28 1072 1073 1744 1810
9.88 9.68 1058 1057 1749 1856
11.75 12.10 1038 1033 1752 1917
9.27 9.07 1071 1071 1727 1806
9.30 9.13 1075 1079 1746 1819
9.92 9.72 1054 1053 1743 1863
9.94 9.67 1065 1064 1774 1917
9.66 9.50 1057 1056 1736 1863
9.76 9.61 1057 1057 1747 1885
11.84 12.01 1040 1035 1745 1937
9.41 9.27 1088 1092 1792 1905
9.34 9.21 1099 1104 1810 1925
9.70 9.54 1058 1056 1745 1900
11.74 11.97 1041 1037 1744 1951
9.02 8.83 1112 1118 1809 1905
9.47 9.36 1086 1090 1799 1953
9.96 9.44 1086 1088 1806 1992
9.66 9.56 1048 1046 1704 1791
11.59 11.86 1034 1031 1707 1837
9.81 9.71 1045 1044 1703 1776
11.72 11.92 1033 1030 1710 1833
9.39 9.26 1078 1079 1773 1902
11.81 11.97 1032 1029 1707 1814
9.42 9.34 1077 1079 1772 1887
9.85 9.73 1062 1059 1769 1953
9.12 8.99 1096 1101 1778 1813
9.55 9.42 1075 1074 1770 1870
9.97 9.83 1061 1057 1772 1949
11.86 12.09 1044 1038 1768 2021
9.19 9.04 1094 1098 1774 1798
9.63 9.46 1074 1073 1772 1867
10.14 9.98 1059 1055 1772 1926
11.93 12.13 1043 1037 1772 2011
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Table B.9. In-line predicted concentrations of the components: MDEA, PZ, CO2. Tempera-
ture and pressure readings are taken at the same time as the predictions were made.

MDEA, mol/L PZ, mol/L CO2, mol/L T, � P, bar (absolute)

1.95 0.25 1.13 21.5 1.54
2.18 0.36 0.88 21.5 1.93
2.33 0.21 0.24 23.0 1.10
2.15 0.63 1.10 23.0 1.82
2.20 0.28 1.71 22.0 1.73
2.17 0.40 1.42 21.0 1.00
2.07 0.38 1.13 22.0 1.53
2.36 0.37 0.85 22.0 1.80
2.73 0.58 0.30 24.0 1.86
2.60 0.57 0.58 24.0 2.38
2.05 0.11 1.56 20.0 1.10
2.21 0.11 1.00 21.5 1.88
2.44 0.12 0.35 23.0 2.00
2.50 0.15 0.15 23.0 2.10
2.34 0.09 0.60 24.0 2.00
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Table B.10. Results of Aspen Plus modeling for mixtures combined of MDEA, PZ, and
CO2 taken in proportions from Table B.9. The real time in-line measurement case. The
measured values are the readings taken by the measurement equipment installed in the
in-line chemometrics setup.

pH pH Density, g/cm3 Density, g/cm3 SV, m/s SV, m/s
measured Aspen Model measured Aspen Model measured Aspen Model

9.11 8.75 1074 1067 1688 1678
9.31 9.04 1064 1062 1684 1716
10.18 9.66 1036 1035 1668 1749
9.48 8.99 1068 1073 1685 1735
8.75 8.49 1092 1091 1712 1711
9.03 8.70 1083 1083 1705 1708
9.26 8.83 1072 1071 1700 1701
9.50 9.09 1062 1063 1693 1744
10.32 9.93 1040 1043 1692 1848
9.78 9.45 1052 1054 1693 1822
8.97 8.51 1085 1081 1691 1674
9.46 8.87 1063 1063 1678 1705
10.15 9.39 1040 1040 1670 1754
10.56 9.84 1033 1032 1671 1771
9.72 9.09 1048 1048 1670 1737
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[61] Reis, M. M.; Araújo, P. H. H.; Sayer, C.; Giudici, R. Spectroscopic on-line monitor-
ing of reactions in dispersed medium: chemometric challenges. Analytica Chimica
Acta. 2007, 595, 257-265.

[62] Fischer, D.; Sahre, K.; Abdelrhim, M.; Voit, B.; Sadhu, V. B.; Pionteck, J.;
Komber, H.; Hutschenreuter, J. Process monitoring of polymers by in-line ATR-
IR, NIR and Raman spectroscopy and ultrasonic measurements. C. R. Chimie.
2006, 9, 1419-1424.

[63] Wu, H.; White, M.; Khan, M. A. Quality-by-Design (QbD): An integrated pro-
cess analytical technology (PAT) approach for a dynamic pharmaceutical co-
precipitation process characterization and process design space development. Inter-
national Journal of Pharmaceutics. 2011, 405, 63-78.

[64] Houson, I. Process Understanding: For Scale-Up and Manufacture of Active Ingre-
dients. Wiley-VCH Verlag GmbH & Co., Weinheim. 2011, ISBN:978-3-527-32584-
9.

[65] Rathore, A. S.; Winkle, H. Quality by design for biopharmaceuticals. Nature
Biotechnology. 2009, 27, 26-34.

[66] Nadpara, N. P.; Thumar, R. V.; Kalola, V. N.; Patel, P. B. Quality by design
(QbD): a complete review. Int. J. Pharm. Sci. Rev. Res. 2012, 17, 20-28.



REFERENCES 87

[67] Guidance for industry: PAT - a framework for innovative pharma-
ceutical development, manufacture, and quality assurance. FDA (Food
Drug Administration), Rockville. 2004, http://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/UCM070305.pdf.

[68] Hopke, P. K. The evolution of chemometrics. Analytica Chimica Acta. 2003, 500,
365-377.

[69] Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A
review of near infrared spectroscopy and chemometrics in pharmaceutical technolo-
gies. Journal of Pharmaceutical and Biomedical Analysis. 2007, 44, 683-700.

[70] Maggio, R. M.; Calvo, N. L.; Vignaduzzo, S. E.; Kaufman, T. S. Pharmaceutical
impurities and degradation products: uses and applications of NMR techniques.
Journal of Pharmaceutical and Biomedical Analysis. 2014, 101, 102-122.

[71] Wold, S. Chemometrics; what do we mean with it, and what do we want from it?
Chemometrics and Intelligent Laboratory Systems. 1995, 30, 109-115.
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Summary

Improving the efficiency of an industrial process requires precise monitoring
tools, tailored to the specific application. One of the promising practices is
to employ real-time multivariate analysis methods for continuous control of
industrial processes. The benefits of the time-resolved information extrac-
tion include the potential to quantify the composition of a process stream
at any given time, and to describe the reaction progress. Fast acquisition
of valuable information about the process on site can be used for auto-
mated monitoring, saving cost of operation, and reducing waste products.
Therefore, in-line process analytical instrumentation is being adopted ex-
tensively and it can be considered as an important part of effective and
efficient industrial manufacturing. A combination of measurement sensors
and multivariate statistics is widely applied to improve in-line process
monitoring. Currently, post combustion CO2 capture (PCC) technology
often involves the use of multi-amine based chemical solvents for carbon
dioxide removal from flue gas. The CO2 capture efficiency and overall
process performance may be improved by introduction of the chemomet-
rics analytical methods for flexible and reliable process monitoring. This
thesis is focused on the development, improvement, and demonstration
of multivariate data analysis for in-line process monitoring of PCC. The
developed methods may be applied not only to the PCC process, but are
also suitable to other similar industrial applications.

In chapter 2, the method of simultaneous acquisition and handling
of information from six measurement devices (conductivity, pH, density,
speed of sound, refractive index, and near infra-red NIR spectroscopy) is
introduced. A compact data-collecting chemometric setup was constructed
and installed at an industrial pilot plant for in-line testing. This setup was
applied to the characterisation of CO2 absorption into aqueous 2-amino-2-
methyl-1-propanol (AMP) activated by piperazine (PZ) as the absorption
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agent. A partial least squares (PLS) regression model was calibrated and
validated based on the measurements conducted in a laboratory environ-
ment. The developed approach was applied to predict the concentrations
of AMP, PZ, and CO2 with accuracies of ± 2.1 %, ± 3.5 %, and ± 4.3 %,
respectively. The temperature dependence was included in the model in
order to make it insensitive to operational temperature fluctuations during
a CO2 capture process. The setup and model have been tested for almost
850 hours of in-line measurements at a post-combustion CO2 capture pilot
plant. To validate of the chemometrics approach, an off-line analysis of
the samples has been conducted. The results of the validation techniques
are consistent with the values predicted in-line, with average deviations of
± 1.8 %, ± 1.3 %, and ± 3.9 % for the concentrations of AMP, PZ, and
CO2, respectively.

In chapter 3, the results of the in-situ monitoring of CO2 removal at
high pressure are provided. An aqueous solution of methyldiethanolamine
(MDEA) promoted by PZ for absorption rate acceleration was used. The
use of this solvent is promising for natural gas purification. The CO2 cap-
ture rate ranged from 60 % up to 96 % at a pressure in the absorber column
between 15 and 20 bar. The liquid stream composition was monitored at
low pressure, downstream of the stripper column, after the lean-rich heat
exchanger and a cooler. The temperature of the analysed solvent varied
between 21 � and 25 �. The concentration of both amines and CO2 were
predicted in-line via the chemometric approach. The prediction model was
calibrated with an accuracy of ± 0.7 %, ± 0.4 %, ± 2.5 %, for MDEA,
PZ, and CO2, respectively. Several physical properties and near infra-red
absorbance were measured for in-situ characterization of the solvent flow.
A detailed description of in-line monitoring setup is presented in this work.
This setup may be used for natural gas treatment process control.

In chapter 4, a comparative qualification of three vibrational spec-
troscopy techniques is described, namely Raman, NIR, and attenuated
total reflectance Fourier transform infra-red (ATR FTIR), in application
to monitoring of CO2 absorption by a chemical solvent. The spectroscopic
information has been used for prediction of the concentration of the CO2

captured by aqueous monoethanolamine (MEA) solutions. The study is
aimed to determine the potential applicability of the spectroscopic methods
to the in-line and real-time monitoring of a post-combustion carbon cap-
ture process. PLS regression models were built based on the spectroscopic
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data before and after spectra pretreatment procedures. The predictive
model constructed using NIR data provides the highest predictive accu-
racy with an average deviation of about 0.2 wt. % in comparison with
the models based on Raman and ATR FTIR measurements, which show
deviations of around 0.4 wt. %.

When the measurement probes are distributed along a pipe, depending
on the distance between them, the speed of a fluid in that pipe, and the
process dynamics, the readings of a probe at the inlet might be different
from the readings at the outlet at the same moment in time. Consequently,
the column of dependent parameters becomes to be comprised of the mea-
surements obtained essentially from solvent of different compositions. To
tackle this problem, a lag-time interval could be introduced to data acqui-
sition procedure. The time interval should be based on the liquid flow rate
through the measurement line. Another approach is the miniaturization
of the measurement equipment.





Samenvatting

Om de efficiëntie van een industrieel proces te verbeteren zijn precieze ob-
servatiehulpmiddelen vereist, die op maat gemaakt zijn voor een specifieke
toepassing. Eén van de veelbelovende methoden is het gebruik van multi-
variabele analyse voor de onmiddellijke en continue regeling van industriële
processen. Voordelen van deze tijdsafhankelijke methode zijn bijvoorbeeld
de mogelijkeid om de samenstelling van een processtroom op elk moment te
kwantificeren, en om de voorgang van reacties te beschrijven. Het snel bin-
nenhalen van waardevolle informatie over een proces kan gebruikt worden
voor geautomatiseerde procesregeling, wat operationele kosten kan bespa-
ren en afvalstromen kan verminderen. Analytische instrumenten die direct
in een procesleiding (in-line) kunnen meten, kunnen beschouwd worden als
een belangrijk onderdeel van effectieve en efficiënte industriële productie.
Een combinatie van meetsensoren en multivariabele statistiek wordt veel
toegepast om in-line procesregeling te verbeteren. Voor post-combustion
CO2 afvang (PCC) worden vaak mengsels van meerdere amines gebruikt
als chemisch oplosmiddel om CO2 van verbrandingsgas te verwijderen. De
CO2-afvang efficiëntie en de algehele procesprestatie kunnen verbeterd
worden door het invoeren van chemometrische methoden voor flexibele en
betrouwbare procesregeling. Dit proefschrift is gericht op het ontwikkelen,
verbeteren en demonstreren van multivariabele data-analyse ten behoeve
van het in-line regelen van PCC processen. De methoden die ontwikkeld
worden kunnen niet alleen gebruikt worden voor PCC processen, maar zijn
ook geschikt voor andere vergelijkbare industriële toepassingen.

In hoofdstuk 2 wordt een methode gëıntroduceerd waarmee de infor-
matie van zes meetapparaten (elektrische geleidbaarheid, pH, dichtheid,
geluidssnelheid, brekingsindex, en NIR (nabij infrarood spectroscopie) tege-
lijkertijd wordt uitgelezen en verwerkt. Er is een compacte chemometrische
opstelling voor data-collectie in elkaar gezet en gëınstalleerd in een indu-
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striële proeffabriek om er in-line tests mee te doen. Deze opstelling is
gebuikt voor het karakteriseren van de absorptie van CO2 in een wate-
rige oplossing van 2-amino-2-methyl-1-propanol (AMP) geactiveerd door
piperazine (PZ). Een gedeelde kleinste kwadraten (PLS) regressie model is
gekalibreerd en gevalideerd op basis van laboratorium experimenten. De
ontwikkelde aanpak is gebuikt om de concentraties van AMP, PZ, en CO2

te voorspellen met onnauwkeurigheden van ± 2.1 %, ± 3.5 %, en ± 4.3 %
respectievelijk. De temperatuurafhankelijk was onderdeel van het model
om het zo ongevoelig te maken voor de operationele temperatuursveran-
deringen in het CO2-afvang proces. De opstelling en het model zijn bijna
850 uur lang getest bij een PCC proeffabriek. Om de chemometrie-aanpak
te valideren zijn er ook monsters in het laboratorium geanalyseerd. De re-
sultaten van de validatie-analyses zijn consistent met de in-line voorspelde
waarden, met een gemiddelde afwijken van ± 1.8 %, ± 1.3 %, en ± 3.9 %
voor de concentraties van AMP, PZ, en CO2 respectievelijk.

In hoofdstuk 3 worden de resultaten gepresenteerd van het in-line ka-
rakteriseren van CO2-verwijdering op hoge druk. Een waterige oplossing
van methyldiethanolamine (MDEA) wordt gebruikt, geactiveerd door PZ
ter verhoging van de absorptiesnelheid. Dit oplosmiddel is veelbelovend
voor het zuiveren van aardgas. Ongeveer 60 % tot 96 % van de CO2 werd
afgevangen met een druk in de absorptiekolom van 15 tot 20 bar. De
samenstelling van de vloeistofstroom werd gemeten op lage druk, op een
locatie na de desorptiekolom de hoofdwarmtewisselaar en de koeler. De
temperatuur van het oplosmiddel varieerde tussen de 21 � en 25 �. De
concentraties van beide amines en van CO2 werd in-line voorspeld met
behulp van de chemometrische aanpak. Het voorspellingsmodel was geka-
libreerd met onnauwkeurigheden van ± 0.7 %, ± 0.4 %, en ± 2.5 % voor
MDEA, PZ, en CO2 respectievelijk. Meerdere fysische grootheden en de
NIR-absorptie werden gemeten ten behoeve van het in-line karakteriseren
van de vloeistofstroom. Een gedetailleerde beschrijving van de in-line mee-
topstelling is gepresenteerd. De opstelling kan gebruikt worden voor het
regelen van aardgasbehandelingsprocessen.

In hoofdstuk 4 wordt een vergelijking beschreven tussen drie vibratie-
spectroscopietechnieken, namelijk Raman, NIR en ATR-FTIR (attenuatie
van de totale reflectie van Fourier-transform-infrarood). Deze technieken
worden toegepast om de CO2-absorptie door een chemisch oplosmiddel te
meten. De spectroscopische informatie is gebruikt om de concentratie van
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CO2 te voorspellen die opgelost is in waterige oplossingen van monoetha-
nolamine (MEA). Het doel van de studie is om de toepasbaarheid vast
te stellen van deze spectroscopische technieken voor de in-line en onmid-
dellijke procesbewaking van PCC processen. PLS-regressie modellen zijn
gemaakt op basis van de spectroscopische data, zowel voor als na voorbe-
handelingsprocedures. Het voorspellingsmodel gebaseerd op de NIR data
levert de hoogste nauwkeurigheid op, met een gemiddelde afwijking van
0.2 gewichtsprocent, in vergelijking met de modellen gebaseerd op Raman
en ATR-FTIR metingen, die afwijkingen van ongeveer 0.4 gewichtsprocent
hebben.

Wanneer meetsensoren zijn verdeeld over de lengte van een buis, dan
kan, afhankelijk van de afstand tussen de sensoren, de snelheid van het
medium in de buis, en de proces dynamica, de waarde van een sensor
aan het begin van de buis anders zijn dan de waarde aan het einde van
de buis op datzelfde moment. Als gevolg hiervan bevat de kolom van
afhankelijke parameters meetwaarden die verkregen zijn voor oplossingen
met een verschillende samenstelling. Om dit probleem aan te pakken, moet
er een tijdsvertraging toegevoegd worden aan de dataverwerkingsprocedure.
De tijdsvertraging moet gebaseerd worden op de stroomsnelheid van de
vloeistof in de buis. Een andere aanpak is het miniaturiseren van de
meetapparatuur.
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who has given me an opportunity to enter the doctoral school and has been



114 Acknowledgement

providing me with his guidance at the very beginning of my PhD track.
Conduction of scientific research is an exciting career due to foremost
the infinite number of interesting problems to solve; the more time a
researcher is spending in a laboratory, brain storming with colleagues, or
conducting literature research, the longer becomes the list of potentially
fruitful ideas each of which may become a topic for a separate project.
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