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Nomenclature

u Full velocity vector

Xs Position vector of maximum velocity deficit for a synthetic scan

∆ Cutoff scale for LES spatial filter

ν Kinematic viscocity

u Mean part of u

φ Lidar elevation angle
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θ Lidar azimuth angle

{û, v̂, ŵ} Lidar Cartesian velocity
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D Turbine diameter
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h Height above ground
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Abstract

Flows over complex terrains present uncertainties in wind farm power production and lifes-
pan. Core to these uncertainties are wake dynamics, which lack adequate models and need
further validation. In lieu of conducting field experiments, this study integrates scanning lidar
measurements and large eddy simulation (LES) to characterize wakes in complex terrain. LES
data of flow over complex terrain near Perdigão, Portugal has been generated prior to this study.
In the current study a ‘synthetic’ lidar is placed inside the LES to sample the wind field in space
and time as a commercial scanning lidar would. From the synthetic scan fields, the wake is
located and characterized using metrics of wake center location and maximum velocity deficit.
These metrics are evaluated against the same metrics as determined by LES fields. By treating
the LES metrics as the “target”, the relative accuracy of the metrics can be determined. This
accuracy is a function of the scan geometry, allowing for the geometry to be optimized for wake
characterization. Since a lidar scan represents neither an instantaneous field nor a mean field,
it is not clear whether the target should be the LES instantaneous or mean fields, therefore the
metric accuracy is assessed using different LES fields in the form of instantaneous snapshots of
the wake, fields averaged over the time of a scan cycle, and long-term averaged fields.

A set of scan geometries was tested which vary in measurement point density, scan direction,
and scan area to find that accuracy depends on a trade-off in the temporal and spatial resolution
of the geometry. The results highlight not only the dependency of accuracy on the geometry
parameters, but also on which type of LES field is used as the target. The long-term averaged
errors were found to be unsuitable for lidars in this terrain, where the longest time scales exceed
the simulation time, therefore accuracy was assessed using two types of fields, instantaneous
fields taken at the start of the scan cycle, and the cycle-averaged fields. From these results two
geometries were identified as performing the best.

Improvements are still needed in the wake detection algorithm, both in distinguishing points
in the wake from terrain-generated turbulence and the inclusion of more wake characteristics
such as size, shape, and orientation in order to develop more accurate scan geometries, hence
improving predictions of wind farm production and longevity. Other scan geometry parameters
also need to be explored, including scan paths and non-uniform measurement point densities.

1 Motivation

Sustainable energy is a burgeoning focus of the world economy in both developing and developed
countries. According to a study of global wind energy potential in 2012, there is enough kinetic
energy available in Earth’s winds to be “a primary source of near-zero-emission electric power as
the global economy continues to grow through the twenty-first century” [1]. Key challenges facing
the industry are, for wind turbines, lowering the levelized cost of energy (LCoE) and increasing
the annual power production (AEP). This will make wind energy attractive to investors and lower
government subsidies, which is essential in lessening our dependency on fossil fuel energy sources.
Growth in wind power installation over the last decade is demonstrated in Figure 2, which shows
a five-fold increase in worldwide installed capacity from 2007 to 2016, highlighting the rapid pace
of this energy source shift.

Among other factors, the AEP depends on the turbine’s electrical power curve, the percentage of
time the turbine is operational, and wind distribution at the turbine site. Most of the time, a
turbine is operating in the partial load region and full-load region, that is, at wind speeds around
the rated wind speed and rated power. This region is shown in Figure 1, colored in gray. In the
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Figure 1: Example power curve for a wind turbine. The majority of operating time is spend within
the gray region.

partial load region, the power scales with the cube of the wind speed, while in the full-load region,
the power is controlled to be approximately constant. Consequently, the electrical power output of
a wind turbine, over an average of its operational time, effectively scales with slightly less than the
average wind speed cubed. Nonetheless, since the energy available in the wind scales strongly with
the wind speed, predicting its mean and variability in time and space (and across a wide range of
scales) are critical factors in energy capture by wind turbines. For incoming flow to a wind turbine,
uncertainties of 1% in mean wind speed correspond to roughly 3% uncertainties in power generated,
for example. Therefore great economical incentive exists for predicting the incoming wind speed
to a wind turbine. Two major influences on mean speed for a turbine are the wakes of upstream
turbines and the site conditions, i.e. terrain shape and wind climatology. As will be detailed in
this study, there is ample room for improving measurement techniques to predict these effects.

1.1 Wind Farm Wakes

Driving the design of wind farms are the behavior of wind turbine wakes. At the wind turbine
rotor plane, momentum is extracted from the incoming wind. A large part of this momentum is
transferred to rotational kinetic energy of the rotor, from which power is generated, while the other
parts go to the generation of vorticity, viscous dissipation, and structural response of the turbine,
among others. This momentum extraction leaves behind a low-momentum wake with a local de-
crease in mean wind speed and less energy to be harvested by downstream wind turbines. Wakes
also produce an increase in turbulent kinetic energy (TKE), which transfers dynamic loads onto
wind turbine rotors, decreasing the turbine life-expectancy through fatigue damage and producing
unwanted fluctuations in power output. Typically, the spacing between turbines in a wind farm
is not large enough for the flow to recover its undisturbed velocity [3]. Therefore, predicting the
characteristics of wakes in wind farms is essential in the design and placement of turbines within
the wind farm. Since wakes are a key factor in wind farm power output, many engineering models
exist to predict their behavior, however the vast majority of them rely on assumptions only valid
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Figure 2: Installed wind energy capacity worldwide from 2007-2016. Source data taken from [2]

for flat terrain. Therefore, a compelling research area has opened for modeling wakes in complex
terrain, i.e. over mountains, valleys, escarpments, etc. [4]

1.2 Complex Terrain

The definition of complex terrain in this context will be adopted as “terrain composed of randomly
steep slopes” [3]. Besides the fact that the availability of windy, flat terrain sites continues to
decrease, complex terrain sites are attractive for wind farm development due to the high wind
speeds caused by local speed-up by sharp sloping terrain. For example, exposed ridges can have an
increased wind energy content of up to 50% relative to an upstream valley [5]. However, complexity
of the terrain also increases cost uncertainty levels. Unlike flat terrains, in which flows are driven by
large-scale pressure gradients (synoptic flow) and natural convection by surface heating, ABL flows
have the added influence of heating and cooling of the sloped terrain over the diurnal cycle (slope
flows) [6]. Along with other non-linear effects, this contributes to wind resource unpredictability
relative to flat-terrains. This unpredictability lowers a wind energy project’s value for investors.
In 2014, the European Wind Energy Technology Platform estimated that uncertainty levels for
complex terrain environments were 15%, and that with improvements in flow models, uncertainty
for wind resources of a site could be reduced to as little as 3%. The internal-rate-of-return (IRR) for
projects would then be reduced to 5% and the equity input reduced by 56%, subsequently lowering
the LCoE [7].

Current state-of-the-art wake models lose accuracy when implemented in complex terrain. Their
assumptions of spatial homogeneity generally cannot be used in complex terrain. For atmospheric
boundary layer (ABL) flows, terrains with steepnesses above roughly 0.2 ([3]) produce flow sepa-
ration effects, another major source of modeling error. The majority of current wake models have
been developed for homogeneous terrain or no terrain, with only a few including complex terrain [4].
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2 Project overview

In this project, LES data of wind flows around a complex terrain site near Perdigão, Portugal, will
be sampled using a synthetic (or virtual) lidar, i.e. a single lidar placed within the LES, located
downstream of a wind turbine modeled by an actuator disk. The synthetic lidar will sample the
LES wind field at the spatial and temporal coordinates as an actual scanning lidar would. Synthetic
lidar scans will be used to extract two wind turbine wake characterization metrics, the wake center
location and wake center velocity. The values of these metrics will then be compared to those as
determined using LES fields, in the form of instantaneous snapshots, fields averaged over the time
it takes to complete a scan cycle, and longer time-averaged fields. By treating the LES-determined
metrics as true, the accuracy of the synthetic wake metrics can be evaluated. Different scanning
geometries will then be constructed with different paths through space. Comparing the accuracy
of metrics from different geometries will allow for optimizing the geometry.

In this case, the task of wake characterization using only a single lidar is made challenging primarily
by these facts:

• Lidar scan fields are temporally disjunct, i.e. all points in a lidar scan are not sampled at
the same time. There is delay as a scanner head moves from one location to the next and
therefore the points in a scan field have disjunct time coordinates, ranging from the beginning
to the end of the scan period.

• Only one velocity component is available as a single lidar can only return the radial velocity.
In complex terrain, the wind cannot be assumed to have negligible vertical velocities, which
would allow determination of the horizontal wind speed from radial velocity.

• In complex terrain, the turbine wake interacts with terrain-generated turbulence as well as
other flow phenomena particular to ridges, valleys, escarpments, etc. This makes detection
of the wake characteristics especially difficult.

The project motivation is then how the tools of LES and lidar measurements can be integrated for
improving wake characterization in complex terrain, especially in terms of the scan geometry. Note
that this study is not an attempt to solve the full optimization problem, but instead investigates
the effect of certain scan geometry parameters on wake metric accuracy.

2.1 Data provided

LES data : The Perdigão LES data has been generated prior to the current study, in support of
the New European Wind Atlas’s (NEWA) atmospheric flow studies in complex terrain [5]. The
data includes:

• 45 fields of 30-min averaged velocities (u, v, w)

• 45 fields of 30-min standard deviation velocities (σu, σv, σw)

• 4000 instantaneous fields of (u, v, w), each 1.6 seconds apart

Galion lidar data : Data was also provided from a single scan taken by a Galion [8] lidar for the
Perdigão field experiments in 2017 [9]. The data includes:

• 11400 scan points, with polar coordinates (r, θ, φ), measurement time t, radial velocity ur.
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The Galion scan geometry was centered on the turbine rotor at Perdigão, the location of which
is also the actuator disk location in the LES. The Galion geometry will be used as a starting
point for developing new geometries for this study, which will maintain several attributes of the
Galion, including its scanner head speed, sampling rate, radial space between measurement points,
and maximum radial range. Further details on the LES model and lidar data will be provided in
Section 5.

2.1.1 Perdigão Field Campaign

A field campaign in the complex-terrain site in Portugal near the town of Perdigão, conducted in
2016 and 2017, collected data to characterize both mean and turbulence wind fields. An overview
of the project and its goals are described in [9]. The Perdigão (Portuguese for male partridge) cam-
paign was made possible through a European Union (EU) grant, as part of the larger ERANET+
project, which has a stated goal to “quantify error in wind resource models against benchmark
datasets”. Perdigão researchers used lidar systems as well as met-mast instruments and remote sens-
ing to investigate “multi-scale processes down to the microscale”, enabling “high-fidelity microscale
simulations and forecasting”. Mesoscale models, those with resolution on order of kilometers, give
unacceptable errors in AEP estimations [9], let alone hope for terrain-induced turbulence and wake
dynamics. Microscales, meaning on the order of seconds to hours in time and up to a few hundred
meters in space, are where predictability is most difficult and variability the highest.“The expected
outcome of the parent (EU) project is the development of a unique high-resolution database at
∼500-meter horizontal and ∼10-meter vertical resolutions for benchmarking microscale models for
wind resource assessment. [9]” The overall goal of the EU project is to improve capabilities in wind
energy prospecting and the scientific study of a little known flow regime: microscale mountain
meteorology. Quantitatively, one key goal is reducing the prediction of Annual Energy Production
(AEP) error [...] by an order of magnitude [9].

Reasons the Perdigão site was selected, are outlined below [9]:

• The relatively mild terrain complexity is suitable for fundamental studies, with easier inter-
pretation of results

• Mean incoming wind is nearly perpendicular to the ridges

• The double ridge is quasi-2D and mimics periodic terrain, suited for numerical models with
periodic boundary conditions. This feature is demonstrated in the LES data of Figure 3,
which shows the transverse velocity component v to be small compared to the streamwise.

• A met-mast has been operating at the site for several years

• The existence of a single wind turbine already (Enercon 2MW)

The terrain of Perdigão is dominated by two roughly parallel ridges separated by a valley. Pho-
tographs of the topography and turbine location are shown in Figure 4, and an overhead view of
the terrain and LES domain are shown in Figure 5. In the Perdigão campaign proposal, Lundquist
and Fernando [9] illustrated the flow complexities, i.e. the various flow and boundary-layer types in
a valley located between two mountain ridges. These include “flow separation, collisions between
flows, Coandă effect, secondary flows, convergence/divergence, internal and lee waves, roughness
effects, unsteadiness, stratification, land use and directional shear”. A transect of the Perdigão
LES is shown in Figure 6, with an sample of lidar measurements points. This instantaneous field
of the u-component (streamwise) shows flow separation on the leeward sides of the hills. Also

5



-2 0 2 4 6
0

100

200

300

400

500

600

700

u [m s-1]

h
[m

]

0.5D

-2 0 2 4 6

u [m s-1]

1D

-2 0 2 4 6

u [m s-1]

2D

-2 0 2 4 6

u [m s-1]

3D

-2 0 2 4 6

u [m s-1]

4D

-2 0 2 4 6
0

100

200

300

400

500

600

700

v [m s-1]

h
[m

]

0.5D

-2 0 2 4 6

v [m s-1]

1D

-2 0 2 4 6

v [m s-1]

2D

-2 0 2 4 6

v [m s-1]

3D

-2 0 2 4 6

v [m s-1]

4D

-2 0 2 4 6
0

100

200

300

400

500

600

700

w [m s-1]

h
[m

]

0.5D

-2 0 2 4 6

w [m s-1]

1D

-2 0 2 4 6

w [m s-1]

2D

-2 0 2 4 6

w [m s-1]

3D

-2 0 2 4 6

w [m s-1]

4D

Figure 3: Perdigão LES data of four-hour averaged velocity profiles, directly downstream of the
wind turbine. h is height above ground at each downstream location. Dashed line indicates turbine
hub height.
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(a)

(b)

Figure 4: Views of Perdigão from the (a) north ridge and (b) south ridge. Photo courtesy of Nikola
Vasiljević [10].

visible is the low-momentum wake downstream of the rotor disk, which clearly interacts with the
terrain-generated turbulence. Figure 7 shows a topographic relief map of the LES domain, includ-
ing position of the turbine on the South ridge and lidar in the valley between the ridges.
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Figure 5: LES domain (shaded region) and surrounding terrain of Perdigão. The yellow dot and
dashed line locate the turbine and turbine axis, respectively. Taken from [4].

-2 0 2 4 6 8
U [m s-1]

Figure 6: Transect of Perdigão along the streamwise direction. The rotor disk, lidar, lidar mea-
surement locations, and instantaneous u (streamwise) component wind field are shown.
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Figure 7: Elevation countours of Perdigão and lidar coordinate system orientation. White crossed
circle: wind turbine in LES and field measurements; White Square: lidar location in LES and field
measurements.

3 Flow Measurement and Modeling

Despite the inherent wind resources in complex terrain, the turbulent flows induced are non-linear
and chaotic, so flow calculation is not possible from first principles. This necessitates numerical
modeling and gathering empirical data to validate these models as well as provide new insights
into the flow physics, for example, how the wake interacts with terrain-generated turbulence and
how wake propagation is modulated by the terrain shape [11]. This section provides an overview
of current techniques used to study ABL flows. These each have their strengths and weaknesses
and must be chosen depending on, for example, the desired spatial and temporal resolution, cost
of installation, and versatility of the instrument. For wind turbines in flow over complex terrain,
the length and time scales of interest vary greatly with each experiment, as does the feasibility of
deploying the instruments. This latter consideration determines whether remote sensing or direct,
in situ measurements are more practical. Of course, the choice to measure the flow is usually
weighed against achieving the same objective using numerical modeling. In principal, simulations
take less time to generate the data and are cheaper monetarily, however models always sacrifice
computational cost to the detriment of accuracy. In ABL flows, which have high Reynolds numbers
and wide range of spatial-temporal scales, modeling assumptions and associated errors are the
perennial bane and necessitate experimental validation.

3.1 Flow Measurement Techniques

In this section, an overview is presented of some of the flow measurement techniques often used to
probe ABL flows for wind energy applications. A comparison of the strengths and weaknesses of
each technique is presented in Table 1.

3.1.1 In situ measurements

Cups: Cups feature the most simple design of all anemometers. They comprise set of cups fixed to
vertical axis, which are free to rotate under the force of wind. They operate on the principle that
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the rotational speed of the fixture is proportional to the mean wind speed. They measure the pro-
jection of the wind vector in the horizontal direction, and so do not indicate the vertical component.

Sonic Anemometers: Sonics are used when higher spatial and temporal resolution is needed. A
pair of acoustic transducers, each capable of emitting and receiving acoustic signals, send acoustic
waves back and forth and measure the transit time. Wind traveling parallel to the acoustic path
adds to or subtracts from the speed of the signal as it moves towards or away from the detector.
The temporal resolution is practically point-like with sampling rates of 10 to 20 Hz, while the
spatial resolution is an order of 10 higher than a cup’s [12]. Because a single pair of transducers
provides no information about the wind perpendicular their acoustic path, a set of three orthogonal
transducer pairs are generally used, providing the full three-component wind vector.

3.1.2 Remote Sensing

Remote sensing allows measurement of the flow at a distance from the measurement instrument.
This provides several advantages— for one, it is a non-invasive technique, as the flow does not
interact with the intrument itself. Also, remote sensors are generally mobile and can be readily
repositioned to measure different flow locations. Presented here are the two most prevalent tech-
niques for remote sensing in wind energy, sodar and lidar. These are used to measure the wind
speed at various heights and ranges in the atmosphere. Other less common techniques such as
radar scatterometry have also been used in wind energy applications.

Sodar : Sodars (Sound Detection And Ranging) are ground-based devices probe the atmosphere
by emitting sound waves which scatter and are received by a detector. The observed Doppler shift
of the signal is proportional to the relative velocity of the wind in the direction of the line-of-sight
(LOS), or radial direction. Sound emission consists of several pulses of audible sound waves in
three different direction, each slightly inclined from the others. By obtaining the radial velocity
vector from three beams, the full 3D velocity vector can be reconstructed. Velocity fluctuations
and temperature differences cause a small fraction of the sound energy to scatter in all directions.
A small fraction of the scattered sound then reaches the detector and the time delay of the signal
is then used to determine the distance from the sodar at which the sound was scattered.

Because of the loss of energy through the backscatter, the received signal strength is highly at-
tenuated. Since sound waves refract easily in the atmosphere, waves that reach the detector can
come from many sources and directions and are picked up in the detector as noise. In order to
decrease the SNR to acceptable levels, several beams must be averaged. This reduces the temporal
resolution to typically 10-minute mean values [3].

Lidar : Lidar (Light Detection And Ranging) is another ground-based device, also operating on
the principle of Doppler shift for wind speed measurement. Instead of sound waves, lidars emit
light waves. These are scattered off of aerosols (e.g. dust) in the atmosphere and return back to the
lidar. As with sodars, processing the detected signal returns the LOS wind velocity at a volume of
space in the air. The 3D wind vector can be determined in a similar way to sodar if three or more
beams (lidars) are used to reconstruct the wind vector at various heights along a vertical profile.
Since light is roughly one million times faster than sound, the sampling frequency is much higher
than in sodar. Also, light refracts much less than sound in the atmosphere, so the received signals
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have a lower SNR [3].

Table 1 provides a starting point for assessing which techniques are most effective in studying
wakes. Since wakes are dynamic flow structures, the chosen technique must be capable of captur-
ing wake motion at the appropriate temporal and spatial scales. For example, resolving the time
scales of wake meandering (movement of wake location in space and time) and velocity fluctua-
tions associated with fatigue loads is highly important to wind farm planning and wind turbine
design, as is resolving the spatial scales needed to resolve the wake edges and the velocity deficit
profile. Complex terrain also introduces new, less predictable spatio-temporal scales, so it is im-
portant to achieve the spatial and temporal resolution necessary to capture this interaction. These
requirements rule out fixed instruments like cups and sonics. Additionally, lidars’ mobility allows
relocation during a campaign to suit different areas of interest and flow characteristics. Compared
with sodars, lidars’ temporal resolution is much higher, and wake dynamics on the order of seconds
instead of minutes can be resolved. Lidars can be used to probe the wind at a wide range of dis-
tances, from inside the rotor plane, to the near wake, to several kilometers from the turbine, making
lidars apt for capturing wake interactions with a wind farm. As wind turbines are growing larger,
in situ measurement systems are unable to probe the flow at tip heights above 200 m, whereas
lidars typically reach heights up to 300 m [3]. Measurements this high above the surface are crucial
to wind model validation, as typical models lose accuracy quickly after tens of meters above the
ground. Additionally, investment costs are greatly reduced compared to met-masts, which have
high material costs. For these reasons lidar technology is expected to be a driving force in reducing
uncertainties in AEP, validating and improving flow/wake models, and reducing the LCoE [7]. The
following section will give an overview of lidar’s operating principles.

3.2 Lidar Velocity Retrieval

A lidar emits electromagnetic waves at infrared wave lengths, around 1.5 µm, which are backscat-
tered from suspended particulate matter, or aerosols. The backscattered light is received at the
lidar with a frequency shift of

∆f = fB − fE =
2fE
c
ur (3.1)

where fB is the backscattered frequency, fE the emitted frequency, c the speed of light and ur,
the LOS velocity. This gives an estimate of ur at the measurement point. Figure 8 shows the
lidar emitting and receiving the light used to determine the target’s LOS velocity. Inherent in the
velocity measurement is the assumption that the aerosols are of sufficiently small size and have a
density close to that of air in order to faithfully follow the local flow field.

Each velocity reading samples a measurement volume in space, the form of which is different de-
pending on which type of lidar is used. Two main systems of lidars used today are continous wave
(cw) and pulsed lidars.

Continous wave lidars: In cw lidars, the laser beam is constantly emitted. A lens on the laser
head focuses the beam at a specified distance along the line of sight. This focal point is where
the center of the measurement volume is located. A diagram of the measurement volume is given
in Figure 9. The beam converges at a distance r from the lidar and the effective measurement
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Table 1: Comparison of flow measurement techniques

Technique Advantages Disadvantages

Cups • Point-like spatial resolution
• Simple, robust construction
• Extremely low-maintenance

• Measures at one point only
•Measures only horizontal velocity
component
• Because of rotational inertia,
does not respond to eddies ≤ 1-2
m [12]

Sonics • Point-like temporal resolution
• Can measure 3D velocity vector
• High sampling rate
• Provides measure of buoyant heat flux
→ Important for stability

• Measures at one point only
• Cumbersome to calibrate
• Instrument distorts the flow it
measures

Sodar • Portable
• Cheaper than lidar

• Limited by CNR at wind speeds
≥ 15-20 ms−1 [3]
• Low temporal resolution
• Highly noisy

Lidar • Portable
• Higher temporal & spatial resolution
than sodar
• Less scatter than sodar
• Can measure across entire rotor plane
accurately

• More expensive than sodar
• Poor estimation of wind direction
in complex terrain (by a single li-
dar)
• Lower maximum heights than so-
dar

Figure 8: Lidar determination of LOS velocity via Doppler shift. Adapted from [12].
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Figure 9: Operating principle of a continuous-wave lidar. Adapted from [12]

volume length along the beam is L. Focal distance then increases as measurement locations move
further away. The length L is a function of r, so that as the measurement location is moved farther,
the measurement volume (proportional to L) increases. Therefore, the effective spatial resolution
decreases at far distances, leading to cw lidars being known as “short-range” lidars, since at longer
distances the spatial resolution becomes unacceptable.

As shown in Figure 9 is a weighting or filter function which spans the measurement volume. The
shape of this function, (typically a Lorentzian distribution [12]), determines how the signals from
within the measurement volume are weighted in averaging the velocities. In this way, signals
originating from aerosols close to the focal point (usually coincident with the center of weighting
distribution) are weighted most heavily and those farther away less-so.

All signals originating from the measurement volume are used in computing a representative veloc-
ity. These are effectively a long time series of voltages read by the lidar. This long time series is
then broken into shorter segments and Fourier-transformed into the frequency domain. The result-
ing spectrum of each segment shows the respective power contained in each of the backscattered
frequencies. In order to improve the signal-to-noise-ratio (SNR), the many spectra are averaged,
and a clear peak at fB is observed. By Equation 3.1, the radial wind velocity can then be deter-
mined.

Pulsed lidars: In contrast to cw lidars, which measure at one location at a time, pulsed lidars
measure several locations virtually simultaneously. Instead of sending out a continuous beam, a
sequence of short pulses are emitted. Light from these pulses is backscattered and then received,
and the arrival time can be used along with the speed of light to find the distance of the aerosol.
Figure 10 illustrates a single pulse and the relationship between detection time and aerosol distance.
Light which has an arrival time t1 is reflected off a target at a distance of c · t1/2. A pulse has a
finite duration Tp, so that backscattered light from a distance c · t1/2 will be collected from t1 to
t1 + Tp at the detector. By selecting the appropriate arrival time window, signals from a certain
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Figure 10: Aerosol distance and arrival time for a lidar pulse. Adapted from [12].

distance are analyzed. This technique is called range-gating. Therefore the length of Tp determines
the size of the measurement volume. Locations of the volumes are then called “range gates”, and
a single pulse measures velocities at multiple range gates virtually simultaneously, limited only by
the SNR at large distances. Because the size of a light pulse remains practically constant as it
propagates, the measurement volume also stays constant, in contrast with cw lidar. This allows the
same spatial resolution to be maintained far from the lidar, earning pulsed lidars the the moniker
“long-range” lidars. Resolutions are typically around half the pulse length, so 25-40 m. While the
temporal resolution is less for pulsed lidars (around 2-3 wind speed samples per second compared
to 500 for cw lidars [3]), many points (range gates) are measured at the same time. Due to the
relatively large distances needed to be measured for this study, a pulsed lidar is used, namely the
Galion [8].

Time series of signals from each measurement volume are sampled for a period of time, usually Tp.
Once the signal arrives the steps for processing are as follows [3]:

1. Separate the times series according to desired range gates

2. Compute the spectrum for each time series

3. Average the spectra for each range gate, over multiple pulses

4. Locate the peak corresponding to Doppler-shifted frequency fB

5. Compute the LOS velocity for each range gate

3.3 Lidar Scanning Techniques

A useful feature of many lidars is a scanning mode of the laser head. With a scanning lidar, a
measurement field is created and used to estimate the wind speed and/or direction. A scanning
lidar features a scanning head which emits the beams and can rotate its azimuth and pitch angle.
These two degrees of freedom and as well as the coordinate system used by the Galion is given
in Figure 11. The Galion’s coordinate system is defined as azimuth θ = 0o pointing North, and
positive clockwise; elevation angle φ = 0o pointing parallel with the horizon and positive pitching
upwards, and radial coordinate r, the distance from the scanning head. A scan pattern, or geometry,
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Figure 11: Schematic of the Galion scanning lidar. In lidar coordinates, θ = 0 points North, and
positive clockwise; φ = 0 points horizontally, and positive pitching upwards, and r is the distance
from the lidar scanning head.

consists of a set of points in space and the path of the lidar’s scanning beam through these points.
This pattern is often pre-programmed, for example, at the beginning of the day according to wind
direction forecast. Then the lidar is left to run through the pattern continuously to collect data.
Some scan patterns which are typical elements of scan geometries are given below, as well as illus-
trated in 12.

VAD Velocity azimuth display or VAD scans. These conical scans are used for determining the
wind direction, and have been shown to accurately determine the vertical wind-shear profile. A
common method is to emit a beam upward at a high elevation angle, and keep this angle constant
while the azimuthal angle is rotated in steps of 90o (see Figure 13). This gives four LOS velocity
readings along the perimeter at one height, allowing the reconstruction of the 3D velocity vector at
that height. However, combining the LOS velocities from different locations around the perimeter
assumes the wind distribution is constant, i.e. spatially homogeneous, and this assumption is not
accurate above complex terrain.

RHI: Range height indicator, also known as elevation scans. The azimuthal angle is held constant
as elevation angle changes.

PPI: Plan position indicator, also known as sector or azimuthal scans. The elevation angle is held
constant while azimuthal angle changes.

In Figure 12, the PPI and RHI scans clearly show the presence of a wake. From these data, wake
characteristics can be estimated, including

• Center location

• Height and width

• Length scales

• Wake meandering

• Velocity Deficit

For the purposes of wake detection and characterization, this study will use a series of vertical
cross-planes (perpendicular to the turbine axis) of velocity data downstream of the turbine. Often
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such planes are formed by single RHI scans, however when the mean flow direction is perpendicular
to the planes of interest, as they are in the present study, the points forming these planes must be
extracted from the volume of space probed by a stack of PPI scans, where θ is varied at constant
φ for different φs (so-called stacked sector scans). An example of the lidar beam path for a stacked
sector scan is shown in Figure 14, and an RHI path in Figure 15, where in both cases only data
points at a single r are shown.

3.3.1 Lidar Uncertainty

The accuracy of quantifying wake characteristics by scanning lidars will depend on the capabilities
of the particular lidar instrument. For instance, spatial and temporal resolution are a limited by
scanner head speed and measurement volume size. Additionally, the geometry of the scan has been
shown to be directly related to the error in wake characteristics, in particular, two parameters, the
density of measurement points and the area covered by the scanned points, both of which vary
with downstream distance from the lidar. Since the laser head takes time to move from point to
point, there is a lag between consecutive measurements, that is to say the measurement points
are temporally disjunct and the scan data represent neither an instantaneous snapshot of the flow
nor a mean field, which introduces error in flow measurements compared to true instantaneous
and mean fields [13]. The duration of a scan is then dependent on the choice of path through the
points, which becomes an important parameter for quantifying the error. The optimal scanning
geometry is expected to weigh trade-offs between spatial and temporal resolution, or measurement
point density and flow area probed.

With the exception of a VAD scan, a single lidar can only ever determine the LOS component of the
wind vector, while a system of three lidars with beams intersecting at a single location have been
used to retrieve all three-components. In cases of horizontal homogeneity, e.g. flat terrain, single
lidars can be used to estimate the 2D horizontal velocity components by assuming the vertical
velocity component to be much smaller than the two horizontal components (averaged over the
collection time). However, complex terrain introduces strong turbulent fluctuations and mean flow
in the vertical component, and a single lidar can only estimate ur.

3.4 Modeling Tools

Modeling allows probing of the flow when use of instrumentation is infeasible due to monetary/time
costs, or physically impossible. This is especially pertinent in the ABL, where the largest length

scales are in the ratio `/η ∼ R
3/4
t . The turbulent Reynolds number is Rt = ue`/ν, where ` is the

typical size of energy-containing eddies (and scales with the ABL height) and ue the typical velocity
of these eddies relative to the mean. In the ABL, typical Rt numbers are on the order of 108. This
would require on the order of 1018 grid points, far exceeding the capacity of industrial computers
[14]. Therefore a direct numerical simulation (DNS), which computes all turbulent length scales, is
not feasible for ABL flows. Instead, numerical models are formulated which reduce the order of the
governing equations by time/spatial averaging, neglecting smaller terms, and making assumptions
to reduce complexity.

A comparison of common numerical modeling techniques is given in Table 2. These flow models
have all been applied to ABL flows and can be divided into the following groups, which are in order
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(a)

(b)

(c)

Figure 12: Scanning lidar measurement geometry for a) VAD (velocity-azimuth-display) b)PPI,
and c) RHI scan patterns. Instantaneous LES data of radial velocity ur, color-scaled with red
indicating towards the lidar. The lidar (white box) and turbine locations are also indicated.
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Figure 13: Lidar retrieving the 3-component velocity profile via the VAD technique

Figure 14: Example lidar beam path in a stacked sector (PPI) scan.
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Figure 15: Example lidar beam path for an RHI scan

of increasing fidelity/computational cost.

Engineering Models: These are highly simplified models that can be solved algebraically. They
can be empirically and/or theoretically derived and rely on a high number of assumptions that in
reality are rarely fulfilled completely. They are so-called zero-equation models because they do not
require the solution of any additional equations and are calculated directly from the flow variables.

Linearized Models: The governing equations of linear models are derived from the Navier-Stokes
(NS) equations. Linearization relies on the small-disturbance assumption, and therefore holds up
well near the ground or in the far wake [15].

In these models and several others it proves useful to decompose the velocity field u = (u, v, w) at
point x = (x, y, z) and time t into two parts:

u(x, t) = U(x, t) + u′(x, t) (3.2)

where U(x, t) is the velocity, averaged in some way, and u′(x, t) is the fluctuating part, or differ-
ence from this averaged velocity. This split is called the Reynolds decomposition of the velocity. In
linear models, the NS equations are linearized by assuming that the fluctuating part of the velocity
is small compared to the mean part, that is u′ � U . Then higher order terms are considered small
and in turn neglected.

Reynolds-Averaged Navier-Stokes Models: Here again Reynolds decomposition splits the
velocity into a fluctuating and mean part, which is then plugged into the NS equations and an
ensemble-averaging of the equations is performed. The resulting RANS equations look like the
original NS equations but with an added term, the turbulent fluxes or Reynolds stress term. These
equations provide information on the mean flow quantities but tell little to nothing about the in-
stantaneous flow. To achieve problem closure, these terms are modeled. Among the best known
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Table 2: Comparison of flow model types

Model Advantages Disadvantages

Engineering Models • Analytical solution - no numerical arti-
facts
• Simple, computationally cheap imple-
mentation

• Oversimplified for most applica-
tions

Linearized Models • Captures effects of roughness change,
gentle hills, and obstacles
• Computationally cheaper than non-
linear models

• Cannot model non-linear effects,
e.g. flow separation→ not suitable
for complex terrain

RANS • Computationally cheaper than LES and
DNS

• Only steady flows can be com-
puted
• Less widely applicable than LES
and DNS

LES • Can model complex geometry flows
• Computes mean and unsteady flow so-
lution

• Larger computational cost than
RANS

DNS • Computes full range of turbulent fluc-
tuations, down to Kolmogorov scales

• Largest computational cost
• Infeasible tool for many appli-
cations, except simple geometries
and low Re flows.

models are the k-ε and Reynolds stress model.

Large-Eddy Simulation In LES, instead of ensemble-averaging the NS equations, a spatial filter-
ing is applied to the equations. This avoids the computation of eddies smaller than a chosen cut-off
scale ∆. This is in contrast to ensemble-averaging in RANS, which removes all eddies. Filtering
decomposes the turbulent variables into a resolved and subfilter-scale part. Unlike RANS in which
all of the turbulent flux is modeled, LES resolves part of the turbulent flux and models the other
(the sub-grid stresses) [14]. The solution is a time-varying, 3D, turbulent flow.

Direct Numerical Simulation Here the unsteady NS equations are solved on a grid with spatial
resolution fine enough to resolve to smallest (Kolmogorov) turbulent length scales, and at time
steps small enough to resolve the fastest turbulent fluctuations. The result is both the mean and
fluctuating turbulent flow [16]. Since all scales are resolved, computational costs are enourmous
and ABL flows are still far from suitable for DNS.

3.5 LES Governing Equations

The challenge for generation of the wind field is creating a numerical model which accurately cap-
tures the effects of turbulent flow in complex terrain, finding the balance between complexity e.g.
computational costs and accuracy. For such flows, a wide range of length scales are involved, from
those of the atmospheric boundary layer O(km), to those turbulent length scales relevant to wind
turbine loads O(m). Large Eddy Simulations (LES) represent a way to compute the large-scale
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motions, which depend on the terrain shape and are not universal, and represent the smaller-scale
motions, which are to some extent universal, through modeling. Computing small-scale motions is
an enormous computational cost, which LES-based models avoid, making them an apt choice for
modeling unsteady ABL flows [17].

Here the basic formulation of governing equations will be described for a typical LES. Before this,
it must be mentioned that there are several types of averaging, and indeed the models of Table
2 rely on different averaging methods. Therefore it is practical to differentiate these with unique
notation. We will use 〈·〉 to denote an ensemble average of a random variable, i.e. its arithmetic
mean over all realizations. An example of an estimate of the ensemble average for the streamwise
velocity component u is given in Equation 3.3.

〈u〉 =
1

n

n∑
i=1

ui, (3.3)

where all n realizations are independent. Realizations in this context could be separate simulations
with the same control parameters set, e.g. mean wind speed and direction, terrain shape, grid
resolution, etc. The true ensemble average is obtained by applying Equation 3.3 over an infinite
amount of realizations.

The time average of u will be denoted as

u =
1

T

∫ T

0
u(t) dt (3.4)

where u is averaged over the duration 0 ≤ t ≤ T .
The spatial average of u over a volume Ω will be denoted as

u =

∫
Ω
u dΩ (3.5)

In LES, this spatial averaging is done over a small volume with sides ∆x,∆y,∆z through the appli-
cation of a filter function G, as discussed below. This function determines the weighting distribution
of the average within the volume. For cases when u is stationary in time, the time average in a
single realization will converge to the ensemble average as the average time T increases, i.e. u = 〈u〉
as T → ∞. Similarly when u is homogeneous in direction x, for example, the spatial average in
a single realization converges to the ensemble average as the averaging distance L increases, i.e.
u = 〈u〉 as L→∞ [14].

Depending on the type of averaging being performed, the two components of the Reynolds decom-
position in Equations 3.2 are interpreted in different ways, i.e. U ≡ 〈u〉,u, or u. For ensemble
averaging, U is the ensemble mean and u′ is the fluctuating (turbulent) part. For time averaging,
the same is true but for the time mean. For spatial averaging, the decomposition is into a resolved
and unresolved (or subgrid-scale) part.

The basic steps in performing an LES are given by Wyngaard [14] and outlined below.
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1. A spatial filter is applied to the velocity (or other flow variable) field to obtain the filtered
velocity

uf (x, t) =

∫∫∫ ∞
−∞

u(x + x′, t)G(x− x′)dx′1dx
′
2dx
′
3 (3.6)

where the filter function G can take any number of desired forms. This can be thought of
a local average around the neighborhood of point u(x, t), with weighting function G [14].
In LES, this amounts to low-pass filtering of the flow variable field, allowing the field to be
resolved on a relatively coarse grid, with grid spacing proportional to filter width ∆.

Since the governing equations’ solution will be computed on a grid, it is natural to decompose
the turbulent variable into a spatially filtered component with ()r, which is computationally
resolvable, and that which is not, that is, the subgrid-scale part ()s. Then,

u = uf + (u− uf ) = ur + us (3.7)

2. The spatial filtering is then applied to the Navier-Stokes equations. A derivation of the fol-
lowing equations can be found in [14]. Here is assumed a Newtonian fluid, of constant density
(incompressible) and viscosity, a safe assumption in the ABL. An inertial reference frame is
used, so the Coriolis force is neglected. Einstein notation will be employed, and ui ≡ u.

The continuity equation is filtered as

∂ui
∂xi

=
∂uri
∂xi

+
∂usi
∂xi

= 0

∂uri
∂xi

=
∂usi
∂xi

= 0

(3.8)

Consider the unfiltered momentum equation

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.9)

where p is the pressure and ν the kinematic viscosity. The spatial filter is applied and,
neglecting the viscous term on account of the high Re in the surface layer, this yields

∂uri
∂t

+
∂(uiuj)

r

∂xj
= −1

ρ

∂pr

∂xi
(3.10)

The filtering has created the quantity (uiuj)
r which, in turbulent flow, is different than uriu

r
j

and is therefore unknown. We can write this as

(uiuj)
r = uriu

r
j +

[
(uiuj)

r − uriurj
]

= uriu
r
j −

τij
ρ

(3.11)

In filtering the momentum equation, the Reynolds stress τij appears. It is shown in [14] to
have both a subfilter-scale part and a resolved part, and is called the subfilter-scale Reynolds
stress. It is responsible for the transfer of kinetic energy from the resolved to the subfilter
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scales, modeling the universal property in turbulence of energy cascade [14]. Equation 3.10
rewritten in terms of this stress yields

∂uri
∂t

+
∂

∂xj

[
uriu

r
j −

τij
ρ

]
= −1

ρ

∂pr

∂xi
(3.12)

3. The continuity and momentum equations provide four equations, but unknowns in the subfilter-
scale Reynolds stress leave the equations unclosed. Therefore a model is needed for τij ; often
an eddy-viscosity model is chosen.

4. The filtered N-S equations are solved numerically for the uri and p fields at one realization of
the flow.

Comparing this spatial filter (or averaging) to an ensemble average of the NS equations, as one
uses in a RANS formulation, reveals insights about the degree to which each technique relies on
modeling. Ensemble averaging Equation 3.12, and comparing to the Ensemble-averaged unfilterd
NS equations reveals the relationship

〈uriurj〉 −
〈τij
ρ

〉
= 〈uiuj〉 (3.13)

This indicates that of the total kinematic momentum flux 〈uiuj〉, the spatially filtered equations
resolve a part 〈uriurj〉 and model a part

〈 τij
ρ

〉
. Typically, the spatial cut-off scale is in the inertial

range, so that the energy-containing eddies which contribute to 〈uiuj〉 are mostly made up of the
resolved part, hence the modeled part is much smaller. For a RANS model, 〈uiuj〉 is completely
modeled; no part is resolved.
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4 State of Literature

Analytical studies of topographical flows began in the 70s with linear models over gently sloping
hills [18]. Indeed historically, linear models have been the basis for commercial CFD codes, e.g.
AMDS, WAsP,MSFD, and MS3DJH [9]. In 1975, Jackson and Hunt [19] observed a lack of attempts
to relate the wind velocity measurements with the local topography. This motivated a model for-
mulation based on a division of the flow into any outer, inviscid layer and an inner layer, where
turbulent transfer processes are significant. This linear theory (so-called Jackson-Hunt theory) for
terrain-induced flow perturbations over 2D hills was extended to 3D terrain in 1979 by Mason and
Sykes, who took surface wind measurements over Brent Knoll, a circular-shaped hill in Somer-
set, England [20], marking the first experimental study over non-flat terrain. The development of
non-linear models began in the mid-70s with 2D and 3D solutions over gently sloping terrain [18].
The Askervein hill project in 1982-83, comprised of two field experiments over a 116 m high hill
on the island of South Uist, Scotland. To date, this experiment provides a benchmark case for
testing numerical and analytical models for flow over topography [21]. In addition to field exper-
iments, wind tunnel tests of topographical flows continued through the 80s using simple shapes,
2D hills, triangular ridges, and surface roughness elements. Then in the 90s, 3D hills were explored.

LES has been around since the 1960s but computational resources have only facilitated its practical
applicability as of fairly recently [16]. In the 90s, LES gained popularity in simulating atmospheric
boundary layer (ABL) flows, including investigations into wake dynamics. In 1991, Taylor and
Smith [22] performed wind tunnel studies on wakes in ABL flow over a 2D hill. Then in 2014, an
LES by Yang et al. modeled flow through a wind farm situated downstream of complex terrain.
Although extensive studies have addressed wakes in flat or gently sloping terrain, very few have
included complex terrain, and even less have been validated with experimental data [18]. However,
one recent study of Shamsoddin and Porté-Agel performed an LES over a 2D hill with and with-
out wind turbines and compared the results to wind tunnel experiments of the same terrain, with
promising agreement between the two. Still, further investigations into more realistic terrain are
needed [18].

Combining lidar with numerical models has been around since the mid-90s, however more recently,
LES and lidar measurements have been integrated to study the turbine near-wake flow and quan-
tify uncertainties [13]. In 2015, Mirocha et. al placed virtual lidars within an LES with a turbine
actuator disk representation [23]. Different weighting functions within the probe volume of the
beam were investigated and their effect on wake parameter estimates. Their results showed reason-
able agreement with field data for some of the wake parameters, while others were mis-estimated.
They argue that sources of error are due to the coarseness of the LES, limitations of the actuator
disk representation, and the lidar sampling approach. Finally, lidar scanning uncertainty has been
investigated in an LES by Doubrawa et al. in 2016, with the error of wake characteristics quanti-
fied by comparing those characteristics determined by temporally disjunct synthetic lidar scans to
those determined by LES mean fields and instantaneous fields. The same study investigated scan
geometry and found that the scan area (coverage) was important in estimating the wake center,
orientation and length scales, while the scan point density was important in determining the ve-
locity deficit [13]. This provides a logical starting point for the present project to begin testing
scanning geometries while providing direction on how to quantify uncertainty.
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5 Setup

In this section the formulation of the LES code and processing of Galion data is introduced, as well
as the steps in obtaining synthetic lidar fields from the LES.

5.1 LES

Figure 16 shows the extent of the LES domain along a streamwise transect passing through the
turbine axis. The wake is visible, as well as recirculation zones downstream of the ridges. Figure
17 shows a sub-region of this transect, which formed the domain used for wake analysis through-
out the rest of this study. Reducing the size of the domain greatly reduced computational times.
Although due to turbulent mixing, the wake is only studied at downstream distances less that four
diameters, a view of the wake extending 7 diameters downstream is given in Figure 18, illustrating
the turbulent mixing of the wake with the terrain-generated turbulence. Figures 19 and 20 show
plan views of the full domain and sub-domain, respectively. The standard deviation of the stream-
wise component in Figure 19 clearly identifies two ridges and the resulting increase in turbulence
intensity. The ensemble-average of 8 30-minute averaged u fields in Figure 20 also highlight the
low-momentum region behind the ridge.

The LES wind is driven by a constant pressure gradient dP/dx = −u2
∗/zmax, set to act in the

direction perpendicular to the two ridges, and generate high wind speeds to simulate neutrally
stable atmospheric conditions. zmax is the domain height of 3000 m, and u∗ is the friction velocity,
taken as 0.6 ms−1.

5.1.1 LES Code

The LES uses the NCAR pseudo-spectral code of Patton [24]. Subgrid-scale stresses are parameter-
ized according to Deardoff’s model [25], utilizing eddy viscosity for the momentum and temperature
fluxes, and Lilly-Kolmogorov model for viscous dissipation. Dynamic time stepping is performed
with fixed Courant–Fredrichs–Lewy (CFL) number. The LES flow variables of interest to this study
are u (streamwise),v (transverse), and w (vertical).

5.1.2 Mesh

The terrain surface forms the lower boundary of the domain and has height h = h(x, y). Terrain
shape has been smoothed from its true value using an exponential filter in wave number space,
as in [4], with maximum slope ≤ 0.77. This greatly reduces the number of iterations to solve the
Poisson equation for pressure and keeps computational times manageable. Terrain-smoothing has
shown to strongly affect the size and position of the recirculation zone behind the first ridge [4],
and is thus a major candidate for inaccuracies of the LES, however for the purposes of comparing
wake characterization methods it is deemed acceptable.

In order to properly compute the derivatives in the filtered LES equations, a mapping of the
physical space coordinates xi = (x, y, z) to the computational domain coordinates ξi = (ξ, η, ζ) is
performed. The computational grid is terrain-following and non-orthogonal. The x and y grid-
lines are regularly spaced and ∆x = ∆y. Horizontal gridlines are squeezed near the surface and
stretched moving upwards, so that resolution is highest near the surface. Figure 21 illustrates the
stretching of horizontal gridlines, i.e. lines of constant ζ, shown at every four lines for visualization.
Properties of the domain including number of cells Ni in each direction and physical domain size
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Figure 16: Instaneous LES u field, covering the extent of the domain in the x (streamwise) and z
(vertical) directions. The lidar and turbine rotor positions are marked by a white square (enlarged)
and vertical black line, respectively.
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Figure 17: Wake visualization using instantaneous LES u data. The lidar and turbine rotor posi-
tions are marked by a white square (enlarged) and vertical black line, respectively.
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Figure 18: Cross-planes of instantaneous LES field data downstream of the turbine
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Figure 19: Ensemble average of 8 30-minute σu fields at hub height

27



Out[ ]=

1500 2000 2500 3000
1100

1200

1300

1400

1500

1600

1700

1800

x [m]

y
[m

]

-0.8 0.4 1.6 2.8 4.0 5.2
〈u〉 [m s

-1]

Figure 20: Ensemble average of 8 30-minute averaged u fields at hub height

are given in Table 3. The arrangement of variables within a computational cell is shown in Figure
22. The Cartesian velocity components (u,w) are located at the cell center and (v) is pointing into
the page. Also pictured are the pressure p∗, potential temperature θ, subgrid-scale energy e, and
contravariant flux velocities U and W .

5.1.3 Spatial filter

The filter function G, mentioned in Section 3.5, takes the form of a sharp cut-off filter in wave
number space and the filter width ∆ is computed from the cell volume ∆3 = (3/2)2(∆ξ∆η∆ζ/J)
where J is the Jacobian and 3/2 is the factor accounting for de-aliasing. Because of the grid
stretching, ∆ varies with cell position.

5.1.4 Boundary conditions

Horizontally periodic boundary conditions are maintained by adding a buffer zone to the edges of
the domain [4]. At the upper boundary, a no stress condition is enforced, where gradients in the
horizontal velocities are equal to zero and there is no vertical velocity component.

5.1.5 Turbine model

The turbine is modeled as an actuator disk, non-rotating, and with constant yaw angle so that the
axis is aligned with the x (streamwise) direction. The turbine radius is 40 m and hub height 80 m.
The following description follows that of Berg et. al 2017 [4]. The thrust force the disk exerts on
the wind is

Ft = −1

2
ρC ′T 〈u〉2d

π

4
D2.. (5.1)

28



Table 3: LES computational domain properties

Nx 256 cells

Ny 128 cells

Nz 128 cells

Phys. x range 5120 m

Phys. y range 2560 m

Phys. z range 3000 m

∆x = ∆y 20 m

Temporal Resolution 0.8 s

Sampling Rate ∆t = 1.6 s

Number of 30 min. time-averaged fields 45

Number of 30 min. standard deviation fields 45

Number of instantaneous fields Ns = 4000

Total Simulation time TLES = Ns ×∆t = 1.78 hours
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Figure 21: LES domain, lines of constant ζ, shown every fourth line for visualization.
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Figure 22: Location of flow variables on an LES computational cell

where D is the rotor diameter, 〈u〉2d is the streamwise wind speed, averaged over the rotor area. C ′T
is related to the thrust coefficient by 1D momentum theory by

C ′T =
CT

(1− a)2
=

4a

1− a
(5.2)

where a is the axial induction factor, chosen to be 1/4.

5.1.6 Coordinate System

As shown in Figure 7, the x and y directions are chosen so as to be approximately perpendicular
and aligned with the ridges, respectively and right-handed x − y − z coordinate system has its
origin at the bottom corner of the domain. The positive y-direction runs 41o west of due North.
As a consequence of the pressure gradient of Section 5.1.1, the mean wind flows in the positive x
direction.

5.1.7 Additional assumptions & limitations

• No stability effects such as surface heating or cooling are modeled, so that the field most
closely simulates neutrally stable conditions.

• Compared to the ridge sizes, the LES domain is small (seen in Figure 5) and doesn’t capture
the surrounding orography, roughness changes, etc.

• As mentioned in Section 3.5, Coriolis and buoyancy forces are neglected.

5.2 Lidar

5.2.1 Galion data

The Galion data consists of a single lidar scan, around 10 minutes, and was selected from a larger
set of scans from different times and different days. Data from a Perdigão met-mast, located 200
meters from the turbine location, was available for each day of Galion measurement, and at multiple
times during day. This allowed selection of a scan with high wind speeds (8.3 ms−1 at 100 m) to
approximate neutral stability conditions, and a mean wind direction approximately perpendicular
to the ridges at 235.6o (south-westerly).
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5.2.2 Additional assumptions & limitations

As mentioned in Section 3.3, lack of spatial homogeneous conditions in complex terrain do not allow
for determination of wind direction from a singe lidar. It should be noted that spatial homogeneity
is also an implicit assumption of the data acquisition of real lidars, which sample the wind field
inside the measurement volume over a period of time to get an average speed. This assumes the
wind speed distribution is equal everywhere in the volume (spatially homogeneous). However in
practice, this volume is small and is therefore not considered a significant source of uncertainty.
Furthermore in this study, the synthetic lidar simply samples individual points in the LES, linearly
interpolating the LES velocity from neighboring points (detailed in Section 6). A filter function is
then not used on account of insufficient LES spatial resolution.

Design of scan geometries is constrained by the range of possible azimuthal and elevation angles
achievable by the Galion, as well as the scanner head speed and sampling rate, which were kept
constant for all geometries tested.

5.3 Coordinate Transformations

The coordinate system used by the lidar is given in section 3.3. In order to transform lidar scan
point locations to LES coordinates, one first needs the lidar location in LES coordinates. The
information given in Table 4 is utilized for this transformation.[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

] [
xL,T
yL,T

]
=

[
xL − xT
yL − yT

]
(5.3)

where {xL, yL} is the lidar position and {xT , yT } the turbine position in LES coordinates.

To find lidar scan point locations in the LES coordinate system, first the points are transformed
from polar θ, φ, r to cartesian coordinates x̂, ŷ, ẑ in the lidar coordinate system, where the positive
x̂-axis aligns with the θ = 0, φ = 0 direction, given as

x̂ = r cos(φ) sin(θ) (5.4)

ŷ = r cos(φ) cos(θ) (5.5)

ẑ = r sin(φ) (5.6)

The lidar measurement locations can be transformed from lidar to LES coordinates as[
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

] [
x̂
ŷ

]
=

[
x− xL
y − yL

]
, z = ẑ + zL, (5.7)

where zL is the lidar vertical position in LES coordinates, taken to be equal to the ground height
at (xL, yL).

5.4 Verification of LOS Speed Retrieval

A verification was performed of the algorithms written for retrieving synthetic lidar measurements.
These algorithms consist of coordinate system transformation of position and velocity from LES
to lidar coordinates, and subsequent projection of the velocity onto the LOS direction to calculate
the radial velocity (seen by the lidar). This verification is carried out by the generation of several
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Table 4: Turbine and Galion information

Galion Location WRT Turbine {xL,T , yL,T } [717, 676] m Easting, Northing from turbine

Turbine Location {xT , yT } [1720, 1460] m

Turbine Hub Height 80 m

Turbine Radius 40 m

fictitious wind fields, which are uniform and/or varying in time and space. These fields are imposed
within the LES environment, i.e. the terrain, lidar position are kept, but without any simulation
of the real flow (see Figure 23).

The verification consists of the lidar retrieving LOS speeds ur at five points in the flow, and for
three test cases. This is carried out in the following steps:

1. First, four cases of uniform flow fields are generated. In LES coordinates:

{u, v, w} =


{1, 0, 0} Case 1.1

{0, 1, 0} Case 1.2

{0, 0, 1} Case 1.3

{3, 2, 1} Case 1.4

(5.8)

To test the lidar retrieval in a spatially varying wind field, a logarithmic wind shear profile
was applied at every (x, y) location in the domain. The log-law profile, given in Equation 5.9
has a stream-wise component only.

Case 1.4: u(z) =
u∗
κ

log
(h)

z0
(5.9)

To test a time and space-varying velocity field, a time-varying log profile is applied through
Equation 5.10

Case 1.5: u(z) = cos(ωt)
u∗
κ

log
(h)

z0
(5.10)

where u∗ =
√
−〈u′w′〉 is the friction velocity (taken as 0.6 ms−1), κ the von Kármán constant

(0.4), h is the height above ground, and z0 the roughness length, taken as 0.5 m.

2. Select 5 different points in the flow to probe. The locations of these points with respect to
the terrain, lidar, and rotor disk are give in Figure 23.

• Points (1-4) are distance d from the lidar, measured along the x and y axes, and at a height
l above the lidar. Therefore a constant elevation angle φ = β is kept.

• Point (5) is directly above the lidar (φ = 90o), at a height l.

For each case, perform Steps 3-6.
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Figure 23: Scanning locations within verification wind field with {u, v, w} = {1, 0, 0}
from top view (left) and side view (right).

3. Transform Cartesian velocity of scan points in LES coordinates to Cartesian velocity in lidar
coordinates {û, v̂, ŵ} by solving the matrix equation[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

] [
û
v̂

]
=

[
u
v

]
, w = ŵ, (5.11)

where the rotation matrix rotates points in the xy-plane by ψ = 41o, counter-clockwise.
This corresponds to the angular displacement of the domain from the cardinal directions (see
Figure 7), in which lidar coordinates are aligned.

4. Transform scan point locations in LES coordinates to Cartesian lidar coordinates via Equation
5.7.

5. In lidar coordinates, compute the scalar projection of the velocity onto position vector to get
the magnitude in the radial direction, or LOS speed, defined positive away from the lidar.

ur =
{û, v̂, ŵ} · {x̂, ŷ, ẑ}
|{x̂, ŷ, ẑ}|

(5.12)

6. Compare this with the result of using only LES coordinates, that is projecting the LES
velocity onto the LES position vector from lidar to scan point, {x− xL, y − yL, z − zL}.

ur =
{u, v, w} · {x− xL, y − yL, z − zL}
|{x− xL, y − yL, z − zL}|

(5.13)

This procedure verified that for all 4 cases and 5 scan points, both the transformations produced
equivalent LOS speeds.

5.5 Galion data conditioning

The lidar data collected by the Galion at Perdigão has several spurious readings, which can be
caused by hitting hard targets such as the turbine and terrain, or cloud water, for example [13].
These spurious readings can be seen at the far tails of the velocity distribution, shown for a single
scan in Figure 24. Therefore, readings of −20 ≥ ur ≥ 20 m s−1 were considered unphysical and
filtered out prior to processing.
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Figure 24: Histogram of LOS velocity from the Galion over a single scan

5.6 Retrieval of Synthetic Lidar Velocities

This algorithm is key to the process of retrieving the velocities seen by the lidar. For this process,
the LES data must be sampled at times ts corresponding to lidar measurement times and only at
the locations at which the lidar is measuring at time ts. The steps are outlined as follows:

1. Calculate ur from LES Velocity Field: For each LES snapshot (at time tL), calculate ur
from the LES velocity field via Equation 5.13.

2. Interpolate LES Fields in Space: For each LES snapshot, calculate a function to inter-
polate in space and find the velocity ur at the lidar scan point locations.

3. Interpolate In Time: Now each instantaneous LES field is interpolated linearly in time.
The interpolation function interpolates ur at a lidar scan time ts, from the already determined
ur values at LES times tL. Each interpolation is performed only for the lidar scan points with
temporal coordinate ts falling between the consecutive LES snapshot times tL−1 and tL+1.

The resulting cloud of synthetic lidar measurements is visualized in Figure 25.
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Figure 25: Visualization of synthetic lidar data points and lidar position (lidar size exaggerated for
visualization)

6 Wake Detection

In order to determine the shape and location of a wind turbine wake, a method is needed to
distinguish the points lying within the wake from those in the undisturbed flow. A typical wake
characterization is to use the horizontal wind speed U =

√
u2 + v2 and compute the velocity deficit

as

Ud = 1− U(y, z)/U∞(z) (6.1)

where the undisturbed velocity profile U∞(z) =
√
u2
∞ + v2

∞ is usually taken at a location far away
from the turbine, in horizontally homogeneous terrain, and so U∞(z) is approximately logarith-
mic. Ud is calculated along a profile extending vertically (z-direction) or horizontally (y-direction)
through the wake (perpendicular to the turbine axis) or in vertical cross-sections (yz-planes) at
several downstream distances. The shape of the Ud distribution across the wake is then typically
fit with a Gaussian curve to locate the wake center. The center can be defined as the maximum
of the Gaussian, for example, or, as in [13], the center of gravity of the Ud distribution. The wake
edge location is often determined by where the wind returns close to its undisturbed speed, by
applying the criteria of U(y, z)/U∞(z) = 0.95 for example, or by using the 95% confidence interval
(2 σ) of the Gaussian fit [13]. Alternatively, a finite difference scheme could used to calculate the
velocity gradients dU/dx, dU/dy, dU/dz and the vicinity of the wake center searched to find where
their magnitudes are highest.

6.1 In Complex Terrain

The aforementioned methods become more challenging with the influence of complex terrain,
wherein steep gradients induce turbulence that mixes into the wake, and wherein the wake de-
flects away from the turbine as it follows the slope. The former makes wake edges more challenging
to identify, as the velocity deficit due to the wake is not clearly differentiable from that of the
terrain, while a wake which follows the terrain also makes the wake center location less predictable.
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Figure 26: Taken from [13]. Schematic of wake metrics, including width and height, center, and
orientation (angle α from vertical).
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Figure 27: Instantaneous LES data of ur. Black circles indicates (y, z) location of turbine rotor.

Both effects also distort the shape of the wake, making a Gaussian fit less accurate. This can be
observed with an instantaneous field from the LES data in Figure 27. Downstream slices taken
every 0.5D show the low-momentum air of the wake above that of terrain turbulence. After ap-
proximately 2.5D, these low-momentum regions mix together. Also evident is the distortion of the
wake shape from nearly circular close to the turbine to vertically-elongated downstream at 1.5D

6.2 By A Single Lidar

In addition to distortion from the terrain, using a single lidar adds a significant challenge to accu-
rately determining wake characteristics. Compared to the Perdigão LES, the Galion scan geometry
has a lower resolution by 0.125D in the lateral directions and 0.3125D in the vertical (at hub
height). In terms of temporal resolution, as mentioned, a lidar scan is temporally disjunct, and
the measured wake shape is distorted by this effect. In this respect, the geometry of the scan is
of critical importance. Geometries with more points will have higher spatial resolution, but the
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Figure 28: Taken from a previous study [13]: velocity deficit for field measurements (colored dots)
and their linear interpolation onto a rectangular grid (shaded contours) at different downstream
distances. The wake edges (black dots) and center (circle) are marked.

added scan time distorts the wake shape further. Conversely, geometries with less points are better
resolved in time but with less spatial resolution, a trade-off crucial in determining wake shape and
location.

6.3 Previous Studies

Previous studies have used single lidars to characterize the wake however, to the best of the au-
thor’s knowledge, not in complex terrain environments. Doubrawa, Barthelmie, Wang, Pryor and
Churchfield (2016) [13] performed a study in non-complex terrain, benefiting from a negligible
vertical velocity component to determine both horizontal wind components. To characterize the
wake in that study, vertical slices of lidar points were obtained at specific downstream distances by
selecting all points lying at the selected distance and falling within a buffer ∆x in the streamwise
direction. These points were then interpolated onto a rectangular grid to form yz-planes in which
the wake could be measured. The velocity deficit was then calculated, along with the wake center
and edges. Fitting an ellipse to the wake edges, a wake orientation was defined, shown in Figure
26. An example of wake edge and center detection from Ud by [13] is shown in Figure 28, with the
outline of the wake shape visible, along with the wake center.

As will be shown in the following sections, the addition of sloping terrain will necessitate other
methods to differentiate the low-momentum air of the wake from that of the terrain-induced tur-
bulence.
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6.4 Interpolation Methods

The lidar scan points are scattered in space and need to be interpolated onto a regular grid, oriented
perpendicular to the mean wind direction. Several options are available for interpolating, including
nearest neighbor (zeroth order interpolation), linear interpolation (first order), and higher-order
splines. For the sake of simplicity, only nearest neighbor and linear interpolation were compared.

6.4.1 Location of Interpolation Planes

Before the interpolation is carried out, the location of each yz-plane to be interpolated onto is
determined as well as the resolution of the plane grid. The vertical and cross-stream coordinates of
the planes were chosen to be held constant, and were selected (as were the downstream locations)
based on predicted wake positions from inspecting the ensemble-averaged fields. Figures 29 to 34
show the four-hour ensemble-averaged LES field of u and ur and their standard deviations. These
informed the positioning of the interpolation planes shown in dashed lines in each figure, with only
every other plane shown, for visibility.

Figures 29 and 30 show the ensemble-averaged u fields of the LES. The vertical transect of Figure
29 shows the ensemble-averaged position of the wake in the vertical and streamwise coordinate,
as well as the ensemble-averaged low-momentum wake of the ridge. The cross-stream planes in
Figure 30 provide information on the average lateral dimensions of the wake and deflection from
the turbine axis.

In addition to the averaged position of the wake, LES fields of σu were used to estimate the spatial
variability of the wake. The vertical transect of Figure 31 was used to observe the spatial variability
of the wake in the vertical and streamwise direction, and the cross-stream planes of Figure 32 to
observe the same in the lateral direction.

Although the streamwise component u is a reliable indicator of wake position, the lidar measures
only the radial component ur, and so the ensemble averaged ur fields (Figures 33 and 34) were
also used for positioning the interpolation planes. These plots show agreement with the u fields
in terms of wake position, while the flow at higher altitudes and closer to the lidar (higher lidar
elevation angles) shows the effect of visualizing the radial component only. This occurs because at
high elevation angles, the angle between the wind vector (u, v, w) and lidar position vector (r, θ, φ)
becomes large and less of the wind vector is able to be projected onto the LOS direction.

From these fields, the locations and dimensions of the interpolation planes were chosen as given in
Table 5, where (yt, zt) are the cross-stream and vertical coordinates of the turbine hub. For the
purposes of locating downstream planes, a new coordinate has been invoked, x+, which is parallel
to x but with origin at the turbine hub. Figure 29 shows these interpolation planes as well as a slice
of lidar points of constant azimuth for one of the geometries tested. Note that for this geometry, at
(x+/D ≥ 3), the coverage of lidar points does not extend higher than the top third of the interpo-
lation plane, rendering this region of the plane inadequate for wake measurement using synthetic
lidar. A grid of points to be interpolated covers each plane with separation ∆y = ∆z = 10 m

With the interpolation planes defined, the two interpolation methods are described below:
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Table 5: Position and dimensions of interpolation planes for wake parameterization

Downstream Locations x+/D = 0.5, 0.75, 1, 1.25, .., 3.5

Cross-stream Dim. yt − 2D to yt + 1.5D

Vertical Dim. zt − 0.7D to zt + 2D

Interpolation Grid Resolution ∆y = ∆z = 10 m
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Figure 29: Turbine axis aligned four hour ensemble-averaged u with interpolation plane locations
(only every other plane is shown)

Nearest Neighbor: For each grid point in the plane, calculate the distance to every lidar scan point.
Find the closest (Euclidean distance) scan point and its velocity, then adopt that velocity at the
grid point.

Linear Interpolation: Linear interpolation of the scatterd 3D lidar points is performed with Math-
ematica’s [26] “Interpolation” function, which uses Delaunay triangulation to interpolate at each
location. In this method, each query point (point to be interpolated) is enclosed in a triangle,
the vertices of which are the 3 closest known data points. Then the weighted sum of the values of
the three vertices are computed at the query point. This is repeated for all query points in the plane.

A comparison of these two methods is given in Figure 35, which shows interpolation planes of
synthetic lidar data. Similar shape and velocity deficit of the near wake is observed in the two
cases, as is the location of the maximum velocity deficit (marked with an “X”), although the linear
interpolation better preserves the rounded wake edges, as it uses more data in computing each query
point. For this reason, the linear interpolation method is used in the remainder of the analysis.

6.5 Determination of Reference Velocity

Also, in order to compare the wakes in the LES with those of the Galion field data, a suitable
reference velocity is needed by which the velocity can be normalized. Since an undisturbed velocity
profile such as U∞(z) in Equations 6.1 doesn’t exist at Perdigão, another reference velocity is needed
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Figure 30: Cross-stream slices of four hour ensemble-averaged u

1400 1600 1800 2000 2200 2400 2600 2800
300

400

500

600

700

800

x [m]

z
[m

]

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7
σu [m s-1]

Figure 31: Turbine axis aligned transect of four hour ensemble-averaged σu
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Figure 32: Cross-stream slices of four hour ensemble-averaged σu
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Figure 33: Turbine axis aligned transect of four hour ensemble-averaged radial velocity with inter-
polation plane locations (only every other plane is shown)
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Figure 34: Cross-stream slices of four hour ensemble-averaged radial velocity
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Figure 35: Comparison of interpolation methods for synthetic lidar. Left: nearest neighbor; Right:
linear interpolation
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Figure 36: Scan point locations (solid dots) used to determine reference velocities u∞,LES and
u∞,GAL for the geometry shown.

for normalization. Normalizing the velocities in the LES and Galion data make the wake character-
istics less dependent on modeling errors. In flat terrain, a point far upstream or downstream of the
turbine is typically chosen as representing the undisturbed or free-stream wind speed. In complex
terrain, the flow is always influenced by the local terrain shape, at least at low elevations, while
higher above the turbine is more susceptible to discrepancies in the stability conditions between
the LES and field data. Since the LES does not include buoyant forces, choosing a high altitude
point would magnify this discrepancy. Furthermore, the choice of locations is limited in that it
must lie within the Galion scanning geometry. The scan points furthest upstream of the turbine,
shown in Figure 36, are least under the influence of the aforementioned effects, and are chosen to
determine the reference velocity. This is achieved in the LES by sampling a four-hour averaged
ur field at these points, then spatially averaging the points to obtain the value given in Equation
6.2. Therefore the LES data fields and synthetic lidar measurements are normalized by reference
velocity u∞,LES , given in Equation 6.3. Similarly with the Galion data, these points were spatially
averaged to determine u∞,GAL, using the data for a single scan, which was all that was available.
In Equation 6.3, the absolute value |u∞| is used for normalization to preserve the sense of negative
towards the lidar and positive away.

u∞,LES = −4.10 m s−1

u∞,GAL = −3.94 m s−1
(6.2)

u∗r = ur/|u∞| (6.3)

6.6 Wake Center Detection

A simple method to define the wake center was implemented, which locates the point of maximum
velocity deficit within the wake, at several downstream locations from the turbine. The location of
this maximum velocity deficit (typically defined via the mean streamwise component) is assumed
to coincide with the maximum ur point, where the flow is moving toward the lidar (away from the
turbine) most slowly. This assumption is considered fair since the mean flow direction is aligned
with the turbine axis, and the lidar is situated nearly directly downstream of the turbine, so that
maxima and minima in ur should follow those in u.
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6.6.1 Wake Search Region

As described in Section 6.4.1, yz-planes of data (LES,synthetic, and Galion data) have been inter-
polated onto to measure the wake (see Figure 29). Within each of these planes, a smaller subplane,
or “search plane”, (see Figure 37) is defined in which the wake center location will be “searched”
for, meaning that of the points lying in this search plane, the point with maximum velocity ur,Max

(biggest velocity deficit) is selected to be the wake center.

The size of this plane must be selected so as to enclose the wake at all times, yet small enough for
reasonable computational times. Choosing the dimensions of this region therefore requires some
inspection of the wake beforehand, by observing ensemble-averaged velocity and standard deviation
LES fields, as well as the synthetic and Galion scan data. The dimensions were also chosen to avoid
the terrain-generated turbulence, which typically occupies the bottom quarter of the interpolation
plane. This was achieved by raising the bottom of the region above most of this terrain turbulence,
as shown in Figure 38. As will be demonstrated, a major setback of this method is its inability
to avoid locating ur,Max within this turbulence. As with the interpolation planes, the search plane
yz dimensions were chosen to be constant with downstream distance for computational simplicity,
even though the elevation drops drastically downstream of the turbine (which lies on top of the
ridge), and the growth of the terrain’s turbulent boundary causes it to extend further into the
search region for the downstream planes.

Two methods were explored to track the location and value of ur,Max. Method 1 uses a fixed
search plane, shown in Figure 38, while Method 2 uses a smaller search area which moves based on
the location of ur,Max in the nearest upstream plane, while still remaining within the larger, fixed
search plane. The second method was implemented after observing that Method 1 was selecting
locations for ur,Max which were clearly far away from the wake. The following steps outline these
two approaches to locating the wake center in the LES, synthetic lidar, and lidar field (Galion) data:

Method 1: Fixed Search Region

1. For each downstream plane, the entire search plane is used to determine the location and
value of ur,Max

Method 2: Moving Search Region

1. For the plane closest to the turbine, all points with distance from the turbine axis less than
a diameter (

√
y2 + z2 ≤ 2R) are used to locate ur,Max,1.

2. For the next plane downstream, all points with distance (
√
y2 + z2 ≤ 1.5R) from the yz

coordinates of ur,Max,1 from the previous upstream plane are used to locate ur,Max,2.

3. Similarly for the ith downstream plane, the region near ur,Max,i−1 is used to locate ur,Max,i.

The distances of 2R and 1.5R in Step 1 and 2 were chosen after observing the results from both
methods on an instantaneous and 1-cycle-averaged LES field, as well as single synthetic lidar and
Galion scans, shown in Figures 38, 39,40, and 41, respectively.

The results of Figures 38, 39,40, and 41 show the wake center as identified by both methods, with a
black “ + ” for Method 1 and a red “X” for Method 2. The data used are from the LES, synthetic
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Figure 37: Search plane and moving search region for wake center identification.

lidar, and Galion data and for one geometry only, i.e. the scan geometry used in the Galion field
measurements. Figures 38, 39 show the LES field, averaged over the duration of one scan cycle
(tcycle = 9.8 minutes), and an instantaneous field, taken at the beginning of the first cycle, i.e. at
t = 0. For both fields, Methods 1 and 2 place the wake center at the same location, however, for
the averaged field, the wake center is identified in the terrain turbulence instead of the wake. This
occurs at planes of x+/D ≥ 3, where the terrain turbulence grows to extend to the bottom of the
search plane, in close proximity to the actual wake, which is clearly visible. For the instantaneous
field, the wake center is identified as lying within the wake for all planes, although it is clear from
the wake’s oblong shape that the actual wake center is located further in the +y direction. Also
evident is the merging of the wake with the terrain turbulence from approximately x+/D = 2 to 3.

Both synthetic and Galion lidar interpolation planes show data cut-out from the top of the plane.
This is because the planes further downstream start to extend outside of the cloud of lidar points,
as seen previously in Figure 29, and so cannot be interpolated onto in that region. The single-scan
synthetic lidar data of Figure 40 samples the same LES data as Figures 38 and 39. It is evident
that the wake shape is distorted as compared to the LES, likely due to lower spatial resolution
and most strongly by the temporally disjunct nature of the scan data. In this geometry, PPI (or
stacked sector scans) is used, which scans from low φ to high, so that the bottom row of the plane
is roughly 7-8 minutes older than the top. To illustrate the temporal variability of the wake shape
and velocity over one cycle, instantaneous planes at x+/D = 0.5 of the same LES data are shown
in Figure 42, taken each minute of the cycle. A view of this variability at different downstream
locations is given in Figures 39 and 43, taken at the first and last instantaneous LES fields of the
scan cycle, respectively. Compared to the t = 0 field, the wake at t = tcycle is stretched vertically,
displaced towards −y, and the surrounding velocity field is slower (less negative). These effects
account for the vertical wake “deformation” and displacement in the −y direction observed in the
synthetic scan with respect to the t = 0 field, as well as the more positive flow field observed at
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the top of the plane, a region more representative of the end-of-cycle flow field. In addition to this
distortion making wake center determination less accurate, Method 1 (fixed search area) identifies
ur,Max in the terrain turbulence for x+/D ≥ 3.25 instead of the wake. Method 2 avoids this issue
by restricting displacement of the wake center as it moves downstream, although for both cases the
lack of data coverage in planes x+/D ≥ 3 disallows tracking the full wake.

The single-scan Galion data of Figure 41 retains some features of the LES and synthetic scan data,
such as an identifiable wake and a growing boundary layer of terrain turbulence, while in general
wind speeds are faster and the wake shape less elongated compared to the synthetic case. However,
a matching of wake shape and speeds is not to be expected, as the Galion data was selected only on
the basis of high wind speeds (for more neutral conditions) and wind direction. From x+/D = 0.5
to 1, Method 1 identifies the wake center in some small regions of slow air, which are evidently not
part of the wake, and from x+/D ≥ 2, both wake center detection methods locate ur,Max in the
terrain turbulence.

Based on these observations, the moving search area method more consistently identifies the wake
center and will be used for the remaining analysis in the study. The performance of the wake center
detection algorithm in relation to assessing the synthetic scan accuracy will be addressed in Section
9.1.
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Figure 38: Planes of LES data downstream of the turbine, averaged over one scan cycle. Red box:
wake search region; red ”X”: Maximum ur location (moving search area); black ”+”: Maximum
ur location (fixed search area)
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Figure 39: Planes of LES data downstream of the turbine, taken at t = 0. Red box: wake search
region; red ”X”: Maximum ur location (moving search area); black ”+”: Maximum ur location
(fixed search area)
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Figure 40: Planes of synthetic lidar data downstream of the turbine. Red box: wake search region;
red ”X”: Maximum ur location (moving search area); black ”+”: Maximum ur location (fixed
search area)
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Figure 41: Planes of Galion data downstream of the turbine. Red box: wake search region; red
”X”: Maximum ur location (moving search area); black ”+”: Maximum ur location (fixed search
area)
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Figure 42: Instantaneous LES fields at x+/D = 0.5, take each minute of a scan cycle
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Figure 43: Planes of LES data downstream of the turbine, taken at t = tcycle. Red box: wake search
region; red ”X”: Maximum ur location (moving search area); black ”+”: Maximum ur location
(fixed search area)
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7 Geometries Tested

Now that an algorithm has been developed which extracts the wake center location and maximum
deficit, the results of the algorithm can be compared using a set of different scanning geometries.
In addition to the geometries created for this study, the geometry provided as part of the Galion
data taken at Perdigão in 2017 will be tested.

Constructing a scan geometry consists of defining the range gate size (radial distance between two
neighboring scan points on the same LOS), number of range gates along each beam Nrg, and a
time sequence of azimuth-elevation angle pairs, defining the direction of each beam, and the time
between successive beams ∆ts, which is effectively the sampling rate of the LES field.

The parameters which were kept constant in all geometries tested are given in Table 6, and where
chosen to equal those from the Galion data. Also, the location of the lidar for any geometry was
not changed from the Perdigão experiment. Although the Galion geometry (from here on called
GAL), does not hold the angular separation between successive beams ∆θ and ∆φ constant, the
time between each beam is still constant at ∆ts = 1.95 s. Presumably the scanner head speeds
up accordingly to keep this constant, and so this interval was also kept for all geometries tested.
The Galion also discards first two range gates, i.e. at 30m, and 60m, because of unacceptably high
SNR and therefore were also discarded for all geometries created, so that all range gate locations
are r ∈ [90 m, 1260 m].

Parameters which were varied for the geometries include the spatial resolution (measurement point
density), the scan path, and the scan area.

Table 6: Parameters common to all scan geometries

Range gate size 30 m

Number of range gates per beam Nrg = 40

Time between beams ∆ts = 1.95 s

Range gate locations r ∈ [90 m, 1260 m]

7.1 Resolution

All wake characteristics in the current study are functions of space, and therefore characterization is
sensitive to spatial resolution. The choice to vary the resolution of each geometry was motivated by
the findings of Doubrawa et al. [13], which observed a dependence of the velocity deficit statistics
on the density of measurement points in the planes used to characterize the wake. In the current
setup, wake characteristics are determined at the interpolation planes of Section 6.4.1, the spatial
resolution at these planes being a critical parameter. For the LES data, the resolution at these
cross-planes is fixed by the model at ∆x = ∆y = 20 m (see Table 3), while ∆z stretches from 5
m at the bottom of the planes to 11 m at the top. For synthetic lidar, the points are essentially
scattered, with the density of points (and spatial resolution) increasing closer to the lidar. A
nominal resolution of a scan geometry will be defined here by the distance between neighboring
points on a vertical “slice” r = 1020m, which passes through the rotor plane (see Figure 44).
Several resolutions were tested for the geometries, from 20 m on the high end, to match the LES
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Figure 44: Points at r = 1020m used to define nominal resolution of a scan geometry

resolution, to 70 m to show the results at an extremely low resolution. Resolutions lower than 80
m are larger than the rotor diameter, and so are not suitable for measuring wake length scales.
A list of the nominal resolutions and their corresponding resolutions at the first and last wake
detection planes (defined Section 6), is given in Table 9.

7.2 Scan Path

Two types of common scan patterns were tested, PPI and RHI, depicted previously in Figures 14
and 15, respectively. Typically RHI patterns are used to obtain vertical wind speed profiles and
moment fluxes [27], therefore may be of interest to include in addition to a wake measurement cam-
paign. PPI patterns have been used to measure large-scale horizontal flow structures in complex
terrain [27], and could be used for example to characterize inflow conditions ins non-homogeneous
in horizontal direction.

For PPI, the bottom and top edges of the planes are represent approximately the beginning and
end of the scan cycle, respectively, while for RHI the same is true for the left and right edges. The
temporal disjunction of the two scan patterns is visualized in Figure 45, which marks the time along
the beam path and highlights the difference in this disjunction pattern between the two. One would
expect that if there is an asymmetry in the horizontal and vertical wake dynamics, e.g. the spatial
and time scales of horizontal and vertical meandering are different, that the type of scan pattern
becomes more important in determining wake characteristics. These scales are can be dependent
on the wind direction distribution, yaw misalignment, local terrain, etc.

7.3 Scan Area

The area covered by the scan points in the plane of interest has been shown to be important in
characterizing the wake center [13]. Of course this coverage area is a function of distance from the
lidar. Figures 46 and 47 show the change in coverage area in the vertical and horizontal directions,
respectively, with distance from the lidar. In general there is a trade off between scan area and
cycle time which needs to be considered and depends on the spatial and temporal variability of the
wake.

7.4 Description of Geometries

The GAL geometry follows a PPI pattern, and has the characteristics given in Table 7. The PPI
and RHI geometries created for this study (Table 8), have different resolutions, the values of which
were chosen with using the GAL resolution as a starting point. Notice the decrease in cycle time
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Figure 45: Temporal map for PPI (left) and RHI (right) scan paths over one cycle.

tcycle with decreasing resolution. As mentioned in the previous section, the separation ∆θ and ∆φ
between beams varies for the GAL geometry, however it is kept constant for the others, and chosen
to achieve the desired resolution.

As seen in Figure 46, the GAL geometry does not completely cover all the planes of interest in the
vertical direction, starting from x+/D = 1.5 (5th plane downstream), while the coverage extends
horizontally far beyond the planes, shown in Figure 47. All of the geometries created for this study
(see table 8) were chosen to achieve complete coverage in all downstream planes while minimizing
the coverage outside of these planes, where the wake rarely extends. Minimizing unnecessary scan
coverage reduces the scan cycle time, so that a single scan more closely represents an instantaneous
field, and allows more scans cycles to be completed (and averaged) over the course of the available
simulation time TLES . Of course, narrowing the scan range required prior knowledge of the location
of the wake, from the averaged fields of Section 6. In a study where less is known about the wake
location, it is not possible to narrow this range as much. The choice to do so in this study was
based on completing more scan cycles, of which the individual wake estimates could be averaged
over and therefore produce a more reliable gauge of a geometry’s performance compared to the
others.

Both geometries have their azimuthal range approximately centered on the turbine, while the eleva-
tion range was shifted upward for those geometries created for the study (given in Table 8) relative
to the GAL geometry, as shown in Figure 46. This shift was made because the GAL geometry
intersects the ground near the turbine, leading to useless data points, and does not extend high
enough for coverage in the furthest downstream planes.

Geometry Res. Az. Range El. Range tcycle # cycles in TLES

GAL 26.7 m θ ∈ {199.5o, 253.5o} φ ∈ {7.0o, 23.0o} 9.8 min. Nc = 10

Table 7: Galion geometry
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(c) PPI, resolution = 70 m

Figure 46: Streamwise transect of GAL, PPI20 and PPI70 geometries, including wake detection
planes.

Geometry Res. Az. Range El. Range tcycle # cycles in TLES

PPI20 & RHI20 20 m θ ∈ {212.6o, 237.3o} φ ∈ {9.9o, 29.9o} 14.2 min. Nc = 7

PPI30 & RHI30 30 m θ ∈ {212.6o, 237.3o} φ ∈ {9.9o, 29.9o} 6.3 min. Nc = 16

PPI40 & RHI40 40 m θ ∈ {212.6o, 237.3o} φ ∈ {9.9o, 29.9o} 3.9 min. Nc = 27

PPI60 & RHI60 60 m θ ∈ {212.6o, 237.3o} φ ∈ {9.9o, 29.9o} 1.8 min. Nc = 57

PPI70 & RHI70 70 m θ ∈ {212.6o, 237.3o} φ ∈ {9.9o, 29.9o} 1.3 min. Nc = 78

Table 8: PPI and RHI geometries
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Figure 47: Plan view of wake detection planes and a) GAL geometry and b) PPI30 geometry.

Nominal Res. [m] Res. at x+/D = 0.5 [m] Res. at x+/D = 3.5 [m]

20 19.7 15.3
26.7 26.1 20.3
30 29.5 22.9
40 39.4 30.6
60 59.0 45.9
70 68.9 53.5

Table 9: Nominal resolutions and corresponding resolutions on wake detection planes.
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8 Results

This section will present the results of the characterization of two wake metrics (as defined in
Section 6), the wake center location, and the velocity at the wake center location, by the synthetic
lidar scans. This is performed for all geometries listed in the previous section. The values of these
metrics are then compared against those determined from the LES data. For all cases, the metrics
will be determined using data interpolated onto the y − z cross planes defined in Section 6. The
current section will detail how the LES data is processed in order to make meaningful comparisons
to the synthetic lidar scans, then will show the variability of these metrics for each scan geometry,
and finally assess their accuracy using the LES characteristics as the ground truth. The goal is to
show how certain geometry parameters affect the accuracy and precision of these two wake metrics.

8.1 Data Averaging & Notation

Since the LES data is regarded as true, it is important that the wake characteristics are determined
by the LES data in a way that they can be meaningfully compared to the synthetic wake charac-
teristics. The synthetic lidar data does not give the properties of wake at a particular instant, nor
over an averaging time, so when comparing it to the LES fields it is not expected to match the
instantaneous field or an averaged field. Therefore it must be considered how this LES data should
be processed in terms of ensemble and time averaging.

In addition, comparing a single scan gives wake characteristics associated with the scan period only,
and the error of that scan only. For this reason, scans for each geometry are completed as many
times as possible within the simulation time TLES , so that average values of the wake position and
maximum deficit can be computed (and compared to LES-derived metrics), as well as an average
of the errors of each individual synthetic scan. Averaging errors over multiple scans gives a better
estimate of how accurate a scan geometry really is. The following will give an overview of the
notation for the synthetic scan data as well as the LES fields they will be evaluated against, and
the three different ways the LES data is processed.

8.1.1 Synthetic Scans

The velocity field for a single scan cycle (10th cycle out of 16) is shown in Figure 48, while the
field for the ensemble average of all Nc cycles for the same geometry is shown in Figure 49. The
notation

u∗r(x, t)

has been used to denote the synthetic lidar velocity field of a single scan and

〈u∗r(x, t)〉

the ensemble average of that field over all scans, where t spans the duration of the scan, i.e.
to ≤ t ≤ to + tcycle, and to is the first instant of the cycle. The location of the maximum velocity
deficit Max[u∗r(x, t)] for a synthetic scan will be denoted Xs. Note that for the ensemble-averaged
field of Figure 49, the location of the maximum velocity deficit on the plot is the ensemble-averaged
location of this point over the individual scans, that is 〈Xs〉 = 〈Max[u∗r(x, t)]〉. The velocity at the
wake center Xs for a single synthetic scan is then denoted by shorthand us = Max[u∗r(x, t)], and
its ensemble-averaged value 〈us〉. The reason that the maximum is taken of each individual scan
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Figure 48: Synthetic lidar velocity field for the 10th scan, with geometry PPI30. Black circle:
turbine rotor y − z position. Red ‘X’: location of maximum velocity deficit.

instead of the ensemble-average, Max[〈u∗r(x, t)〉], is that if the error is a random error, given suffi-
ciently large number of samples the ensemble-averaged synthetic and LES fields should converge,
producing zero error and a meaningful error should not be dependent on sample size. The effect of
using long-term averages as an indicator of error is discussed in Section 9.3.2.

8.1.2 LES 1st instantaneous fields

Each synthetic scan is compared to the first instantaneous LES field of each scan cycle, denoted

u∗r(x, to).

The ensemble average of all Nc 1st fields is denoted

〈u∗r(x, to)〉.
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Figure 49: Synthetic lidar velocity field, ensemble-averaged over all cycles, with geometry PPI30.
Black circle: turbine rotor y − z position. Red ‘X’: location of maximum velocity deficit.
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Figure 50: First instantaneous LES velocity field of the 10th cycle for geometry PPI30. Black
circle: turbine rotor y − z position. Red ‘X’: location of maximum velocity deficit.

As with the synthetic scans, the location of the maximum velocity deficit Max[u∗r(x, to)] for each
field will be denoted XLES,1st and the ensemble-averaged location 〈XLES,1st〉. Similar to the above
definition, the velocity at the wake center for each field is denoted uLES,1st = Max[u∗r(x, to)], and
its ensemble-averaged value 〈uLES,1st〉. The corresponding first field of the synthetic scan shown in
Figure 48 is shown in Figure 50. Notice that unlike the corresponding synthetic field, the search
algorithm locates the wake center within the terrain-generated turbulence instead of the wake,
which is undesirable.

8.1.3 LES Cycle-averaged fields

Each synthetic scan will be compared to an LES field which has been averaged over the correspond-
ing scan period. This cycle-averaged LES field will be denoted

ũ∗r(x),
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Figure 51: LES velocity field, averaged over the 10th cycle using geometry PPI30. Black circle:
turbine rotor y − z position. Red ‘X’: location of maximum velocity deficit.

and its ensemble-averaged field by
〈ũ∗r(x)〉,

while XLES,c and 〈XLES,c〉 denote the location of the maximum velocity deficit and its ensemble
average, defined similarly to the LES 1st instantaneous fields. Also similarly, the wake center
velocity for each cycle-averaged field is denoted uLES,c = Max[ũ∗r(x)], and its ensemble-averaged
value 〈uLES,c〉. The cycle-averaged field, again corresponding to the cycle of Figure 48, is shown in
Figure 51.

8.1.4 LES time-averaged fields

Finally, each synthetic scan will be compared to a time-averaged LES field, in which each instan-
taneous field of the LES is averaged over the total simulation time. This field is denoted

u∗r(x) ≡ u∗r(x, t) where t = 0 ≤ t ≤ TLES ,
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Figure 52: LES velocity field time-averaged over TLES . Black circle: turbine rotor y − z position.
Red ‘X’: location of maximum velocity deficit.

and is shown in Figure 52. The location of the maximum deficit for a single instantaneous LES field
is denoted XLES,t, and the time average of these locations XLES,t, while the wake center velocity
for each instantaneous field is denoted uLES,t = Max[u∗r(x, t)], and its time-averaged value uLES,t.

The procedure for averaging and detecting the wake in each field is depicted in Figure 53. This
shows the fields which are inputs to the wake detection algorithm, the output of the algorithm,
and subsequent averaging of the two wake metrics. It is important to note the order in which these
operations are performed, as it differs according to the LES field type used. In particular, for the
cycle-averaged fields, the wake detection algorithm is applied to a mean field, while in the other two
types the fields, instantaneous fields are inputs to the algorithm. This has significant implications
in the differences in wake metric values observed in the following section.
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Figure 53: Procedure for field averaging, wake detection, and wake metric calculation

To better visualize the number of scan cycles for different geometries, Figure 54 shows timelines of
the scan cycles over the simulation time TLES for two geometries, PPI20 and PPI30. Note that t0
marks the beginning of each scan cycle, so that for each geometry there are Nc instances of t0.

In the following section, synthetic wake metrics will be compared to those determined from the
three types of LES fields. When interpreting these results, it is important to consider what a time-
averaged and ensemble-averaged wake represent in reality, and how averaging changes the values of
these wake metrics. When fields are ensemble-averaged or time-averaged, the resulting field does
resolve the fast turbulent fluctuations in and outside the wake, i.e. they are smoothed out. This
directly impacts the wake center detection algorithm of Section 6, which searches for local maxima
and so is sensitive to these velocity fluctuations. Also, averaging the fields is expected to make
the wake area larger but reduce the velocity deficit, showing a temporal dependency of the wake
metrics. Following the presentation of results, these questions will be addressed as well as their
relationship to the potential goals of wake characterization.
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Figure 54: Number of scan cycles over the simulation time TLES for geometries PPI20 and PPI30

8.2 Comparison of synthetic and LES wake metrics

This section will first compare the wake metrics of synthetic scans to the LES fields as processed
by three different methods, followed by a discussion of the appropriateness of using each method
for wake prediction/characterization. The single-scan Galion field data is also briefly presented.
Again, all analysis is performed within the near-wake planes defined in Section 6.4.1, ranging from
0.5 to 3.5D downstream of the turbine. Comparison of the metrics will make use of the notation
defined in Section 8.1.

8.2.1 Wake center location

The location of the wake center for different synthetic scans resolutions (defined in Section 7.1) and
their variability is compared in Figure 55, shown for PPI scan geometries. Generally, the spread of
〈Xs〉 between the different geometries increases moving downstream, as does the variability in 〈Xs〉
for each geometry, indicated by its standard deviation in cross-stream and vertical direction. Wake
center locations for the extreme high and low resolutions diverge from the others, and increasingly
so further downstream. However, apart from the extreme resolutions, the estimated wake center
location for each resolution lies within a standard deviation in both the cross-stream and vertical
directions.

As a comparision to the PPI scans, Figure 56 shows variability in wake center location for the RHI
geometries. Similar wake locations and diverging behavior is observed, however there is increased
spread in the lateral position of 〈Xs〉 between the different resolutions. Interestingly, at the furthest
downstream planes, the resolutions with highest standard deviations differ between PPI and RHI
scans, which are 20 m and 30 m, respectively.

The ensemble-averaged wake center locations for the synthetic scan and three LES fields are shown
in Figure 57 for a single resolution. Average awake center locations 〈Xs〉 show close agreement
with 〈XLES,1st〉 and XLES,t fields, which are both ensemble-averages of instantaneous fields , while
cycle-averaged fields 〈XLES,c〉 depart, placing the wake center slightly lower. Looking at the results
for other resolutions in Figures 66 through 69 in the appendix, the higher resolutions place 〈XLES,c〉
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Figure 55: Ensemble-averaged wake center location 〈Xs〉 for PPI scan geometries. Error bars
indicate a single standard deviation.
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Figure 56: Ensemble-averaged wake center location 〈Xs〉 for RHI scan geometries. Error bars
indicate a single standard deviation.
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Figure 57: Average wake center location and standard deviation for PPI30 geometry, determined
from synthetic and LES fields.

further from the other two LES field estimates, while at low resolutions, the scan time tcycle is small
enough to make the synthetic field closer to an instantaneous field, and so 〈XLES,c〉 converges with
the ensemble-averaged instantaneous metrics 〈XLES,1st〉 and XLES,t. The same figures indicate that
the accuracy of 〈Xs〉 (with respect to the LES) is not strictly correlated with resolution, suggesting
a trade-off in wake metric accuracy between scan time and resolution, in other words spatial and
temporal resolution. However, it must be kept in mind that the number of samples Nc by which
the metrics are averaged over is smaller for 20 m compared to 70 m by an order of magnitude,
enlarging the uncertainty, comparatively. The reduced sample size increases the standard error
σ√
Nc

by a factor of roughly 2 to 5 times in the vertical and horizontal directions, respectively, at

the furthest downstream planes.

Figures 58 and 59 investigate the difference in wake center estimates between the synthetic scans and
LES fields for each resolution of the PPI scan geometries. The difference is defined as euclidean
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Figure 58: Error of synthetic wake center location with respect to two different LES fields, ensemble-
averaged over Nc cycles.

distance between wake center estimates. Again, this difference is interpreted as an error of the
synthetic metric with respect to the “real” flow field, the LES. This error is computed in two
different ways. For Figure 58, first the distance between wake centers is calculated for each cycle,
and afterwards ensemble-averaged to get an average of the errors. Normalized with rotor diameter

this becomes
〈‖Xs−XLES,c‖〉

D , for example, where ‖ • ‖ is the vector norm. For Figure 59 , first the
ensemble-averaged wake centers are computed and then the distance between the two are taken

(error of the averages). Likewise this becomes
‖〈Xs〉−〈XLES,c〉‖

D . The first method shows how accurate
a single scan is on average, while the second method shows how close the ensemble-averaged metric is
to the ensemble-averaged value in reality. Both methods can be useful, depending on the particular
goal, i.e. wanting to know how the metric behaves on shorter versus longer time scales. This point
will be discussed further in Section 9.
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Figure 59: Error of ensemble-averaged synthetic wake center location with respect to three different
LES fields
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8.2.2 Wake center velocity

To give a sense of the agreement between wake center velocity estimates, Figure 60 shows 〈us〉 and
its variability compared to that of the LES fields for a single geometry. The synthetic estimate 〈us〉
is within or nearly within a single standard deviation σus of each LES field. Likewise each 〈uLES〉
is within ±σuLES of 〈us〉.

Figure 61 extends the preceding comparison to each resolution of the PPI geometries. Observed in
general is the wake center velocity slowdown as it moves downstream until approximately 1.25D,
where it begins to recover momentum. However this recovery does not continue at the furthest
downstream locations, likely due to mixing with the low-momentum wake of the ridge and sub-
sequent identification of the wake center within this low-momentum region by the wake detection
algorithm. Highlighted is the especially strong dependency of us and uLES,c on resolution. The
expected reduction in velocity deficit due to averaging the wake, mentioned in Section 8.1, is ev-
idenced byuLES,c and us having a relatively faster (more negative) wake center velocity, and the
instantaneous fields of uLES,1st and uLES,t having relatively slower wakes. In fact, comparing the
cycle-averaged uLES,c at high resolution (longer scan times, tcycle) to the low resolution (shorter
scan times) shows that, as tcycle gets shorter, uLES,c approaches the instantaneous metrics uLES,1st
and uLES,t. Curiously, the opposite relationship holds for the synthetic data, i.e. as scan time gets
shorter, us decreases, moving further from the instantaneous values. The averaged instantaneous
fields uLES,1st and uLES,t are in very close agreement for each resolution, except for 20 m, where
values show a slight departure, assumed to be the result of a low sample number Nc = 7, and over
more samples would be expected to converge.

The error in wake center velocities between the synthetic scans and LES fields is shown Figure 62,
for different resolutions of the PPI scan geometries. Here the error is defined as the absolute value
of the difference in velocity, ensemble-averaged over the number of cycles Nc in order to produce
a reliable estimate by which to evaluate the accuracy of each geometry. Note that in computing
error 〈us〉 − uLES,t, the error is between already-averaged velocities.

Looking at errors in the first one diameter downstream of Figure 62, it is clear that high resolutions
perform better, while this is not strictly the case moving further downstream. The top two plots
show major changes in error for the extreme high and low resolutions moving downstream. This
indicates that the optimal resolution depends on which part of the wake is of most interest to a
particular study.

As with the wake center location error, the errors of the already-averaged velocities were also
computed, available in the Appendix. These errors are further discussed in the following section.

8.2.3 Galion data

The data from a single scan in May 2017 in Perdigão is also compared to the time-averaged LES
metrics in Figures 63 and 64 show the wake center location and velocities as compared to the
time-averaged metrics metrics. As expected from previously inspecting the lidar scan data in
Figure 41, the wake center is near the time-averaged location for x+/D ≤ 1.5, beyond which the
wake is detected much lower, in the terrain-generated turbulence. The same sudden shift beyond
x+/D = 1.5 is observed in values for uG, the wake center velocities. Note that the difference
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Figure 60: Averaged wake center velocity comparison for geometry PPI30. Shaded area represents
± a single standard deviation

between the Galion data and LES-derived metrics are not interpreted as errors, since the field data
was collected only for a single scan and for a different mean wind speed, but are shown simply as
a check that the LES metrics are not vastly different than the field measurements.
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Figure 61: Averaged wake center velocity comparison for PPI geometries.
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Figure 62: Error of synthetic wake center velocities with respect to three different LES fields
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Figure 63: Wake center locations for the single Galion scan XG and time-averaged wake center
locations for all LES fields XLES,t.
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Figure 64: Wake center velocities for the single Galion scan uG and time-averaged wake center
velocites for all LES fields uLES,t.

75



9 Analysis and Conclusion

It is important to consider the practical consequences of the results, for example, which are the
most useful to wind turbines/farms and the most feasible to apply to existing lidar methods to
improve their predictive power. Also the degree to which these results can be trusted must be
considered, by understanding the flaws of the methods used in their determination. One aspect to
keep under close scrutiny are flaws in the wake center detection algorithm.

9.1 Consistency of wake center detection

Before generating conclusions on geometries, it is important to keep in mind the consistency of
wake center estimates. This is visualized in Figure 65 with a histogram of the wake center positions
XLES,t. Notice the grouping of wake center locations near the bottom, around a clearly visible edge,
which is the bottom limit of the search plane of Figure 37, intended to avoid searching regions of
terrain turbulence for the wake. Notice that at x+/D ≥ 3, the number of XLES,t located at the
bottom sharply increase, as the algorithm gets caught in this terrain turbulence below. These wake
center data of x+/D ≥ 3 do not represent the wake well and so will be discarded in evaluating the
performance of each geometry in Section 9.2.

9.2 Error Tables

We look to quantify the general performance of each geometry given by their errors, already pre-
sented in Sections 8.2.1 and 8.2.2. A simple overall estimate of a geometry’s performance is made
by averaging the error across all downstream locations. Equations 9.1 and 9.2 are definitions for an
overall error estimate for wake center velocity and wake center location, given by Eur and Ex, re-
spectively. Note that planes i being averaged are from the first x+/D = 0.5 (i = 1) to x+/D = 2.75
(i = 10), as the planes further downstream are deemed to produce inaccurate data, as mentioned
previously. Equation 9.1 defines error in wake center velocity as the mean absolute error of us and
uLES , ensemble-averaged over each cycle and each downstream plane i.

Eur =
1

10

10∑
i

〈|us − uLES |〉i (9.1)

Equation 9.2 defines error in wake center location as the euclidean distance between Xs and XLES ,
ensemble-averaged over each cycle and over each downstream location i.

EX =
1

10

10∑
i

〈‖Xs −XLES‖〉i (9.2)

Only the errors for the method of finding the average of the errors is presented, while the results
for the error of the averages, ‖〈Xs〉−〈XLES〉‖ and |〈us〉−〈uLES〉| are not used as error estimators,
for reasons discussed in Section 9.3.

The best performing geometry for each type of estimator is highlighted in Tables 10 to 12. For
the PPI geometries, the 30 m resolution scans in general show the lowest error, while the extreme
low resolution 70 m scans show the worst performance. Of the RHI scans, the best performing
geometry is less clear, optimal more or less scattered evenly over resolutions, and at error levels
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roughly similar to those of PPI scans. The GAL geometry shows higher error levels than the
optimal PPI and RHI scans by nearly every estimator.

Table 10: Error levels for PPI geometries. Green-highlighted entries mark the lowest error of each
estimator.

Table 11: Error levels for RHI geometries. Green-highlighted entries mark the lowest error of each
estimator.

 LES,1st LES,c LES,t

Resolution Eur [-] EX [m] Eur [-] EX [m] Eur [-] EX [m]

Res=26.7m 0.31 0.45D 0.23 0.43D 0.37 0.12D

Table 12: Error levels for GAL geometry.

9.3 Error Analysis

It is important to ask in what situations the above estimators are relevant, and relate the answer
to the goals of wake characterization. Then, one can ask what causes certain geometries to perform
better than others, and how they might be improved further.

9.3.1 Goals of wake characterization

It is clear that an understanding of wake location and velocity deficit is crucial for the capture of
power by downstream turbines. However, it is less clear over which time scales these metrics should
be analyzed− is knowing their short-term value (e.g. instantaneous or over a scan cycle period),
or long-term average value more important? Surely one would like to know the wake position over
the next 10 minutes, perhaps to control a downwind turbine accordingly, but also to know the long
term average wake position for planning turbine locations. The goal of this study is to compare the
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relative accuracy of wake characteristics from lidar scans, and since the wake metrics have a time
dependency, their accuracy can be different on short time scales (the error of a single scan), than
on longer scales (the error of averaged metrics). This will decide in which cases the error estimators
in Tables 10 to 12 are appropriate.

9.3.2 Applicability of Different Error Estimators

As seen in Section 8.2, the error levels change depending on whether the average of the errors, or
the error of the averages is taken. In order to judge the effectiveness of each method, one must
consider the effect of averaging time on the metrics. In general, one would like the flow statistics
to be constant throughout the averaging time, under the assumption that the wake metrics also
remain relatively constant, and therefore their averaged value is close to the true value during the
averaging period. Similar to the definition of homogeneity in space is stationarity in time, defined
as conditions when flow statistics are not time dependent [28]. This means the underlying prob-
ability distribution function of wind speeds and wind direction, for example, remain constant in
time. Also, stationarity means that ensemble averages, as their sample number increases, approach
the time average [14]. However, for wind energy applications, wind speeds in non-complex terrain
are conventionally considered stationary for up to 10-minutes [12], so the meaning of a wake metric
averaged over longer than 10 minutes is difficult to interpret, as conditions do not remain stationary
that long in reality, especially in complex terrain. However in this specific case, the LES model is
stationary over long time scales, e.g. the stability conditions remain neutral, the long-term averaged
mean wind direction and driving pressure gradient are constant in time. Furthermore, the large
characteristic length scales of the current terrain (mountain heights) produce large time scales, the
largest of which can be estimated as the largest eddy size possible in the domain, tE = zmax/u∗. For
this calculation, a lower value of u∗ than used for the pressure gradient in Section 5 is applied. This
is because in complex terrain, the pressure balance also involves the pressure differential formed
by drag on the ridges, reducing the effective friction velocity. Thus u∗ is estimated as 0.3 m s−1

in the above expression, and tE = 2.78 hours, which far exceeds TLES = 1.78 hours, meaning that
quantities XLES,t and uLES,t have not been averaged long enough to achieve stationarity, and don’t
represent the converged long-term average values. Additionally, non-stationary effects common of
complex terrain, such as drainage winds (where air close to the terrain is cooled and flows downhill
[29]), have their own time scales which need to be taken into account with respect to averaging times.

This is in contrast with the errors of the form 〈|us − uLES |〉, which evaluate the error of each scan
individually. This short-term error provides a measure of the random error of the scan which the
long-term averaged error does not. Therefore the errors 〈|us − uLES,1st |〉 and 〈|us − uLES,c|〉 are
considered a good general indicator of scan geometry performance, and will be used to evaluate
accuracy.

As mentioned, wake metrics in these fields heavily depend on performance of the wake detection
algorithm. For example the results of the algorithm for an instantaneous field u∗r(x, t0), compared
to a cycle-averaged field like ũ∗r(x), are more sensitive to random velocity fluctuations, as the wake
center is more prone to be misidentified as lying in a region of slow moving air outside the wake
center. On the other hand, using the algorithm on a cycle-averaged field, where the wake is more
spread out and its center location less definite, can lead to the problem seen in Figure 51, where
the turbine wake becomes indistinguishable from the terrain wake and the wake center is detected
in the low-momentum region behind the ridge. It is expected that the relative accuracy of uLES,1st
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and uLES,c depends on both the time scales of the wake center motion as well as of the velocity
fluctuations, the ideal case being that for the cycle-averaged field, the fluctuations are smoothed
out while the wake motion is slow enough for its location to be accurately represented. If that is
the case, the cycle-averaged field uLES,c would better for determining error in wake location, while
the first instantaneous field uLES,1st would give a better indication of error in wake center velocity.
With this criteria in mind, the error levels in Tables 10 to 12 are analyzed: geometries PPI30 and
RHI40 give the lowest combination of Eur for the LES first instantaneous fields and EX for the
cycle-averaged field, and are considered optimal.

9.3.3 Consequences of error levels

The error in wake center velocity can be analyzed in terms of consequences for wind turbine
power production. For example, the most optimistic error level (found in the PPI30 geometry) is
Eur = 0.19. Recall that this error is a non-dimensional quantity since

us − uLES,1st = Max[u∗r(x, t)]−Max[u∗r(x, to)]

and u∗r = ur/|u∞,LES |, where u∞,LES = −4.10ms−1. Then Eur is the error per unit free-stream
velocity. To give a rough idea of the implications for power production, the average wake center
velocity, taken from averaging uLES,t at all downstream locations, is u∗r = 0.33. That means, for
example, if the synthetic scan underestimates u∗r by 0.19 (equal to Eur for PPI30 with the cycle-

averaged LES fields in Table 10), the error in wake center velocity is (.19−.33)
.33 = −42%. Since the

available wind power (in the turbine’s partial load region) scales with the incoming wind speed

cubed, the percentage drop in estimated power available would be .333−(.33−.19)3

.333
= 92% for a tur-

bine directly in the wake. Of course these figures are merely illustrative — such velocity errors
cannot be assumed to hold in the far wake, at distances wind turbines are commonly placed in wind
farms, and the error in power would be more accurately determined using the rotor area-averaged
velocity. Additionally, the average wind turbine power scales with less than the average wind speed
cubed, making this error overly conservative. However, there clearly needs to be much improvement
in accuracy for these scans to be bankable, and this error far exceeds the uncertainty levels of 15%
mentioned in Section 1.2 [7]. However, the goal of this study is to optimize scan geometry, which
can be done even with error levels unacceptable for field measurement campaigns.

The consequences of error in wake position are more challenging to assess. In this LES, the wind
turbine decays rapidly downstream, making it hard to measure errors in wake position at distances
typical of wind turbine spacing. One may consider using the error trend in the near-wake to fit a
model to predict error further downstream, however in complex terrain this is not feasible, due to
the wake altering effects previously discussed.

9.4 Concluding Remarks

Each geometry that has been tested samples the same LES data, and in stationary conditions,
creating a systematic and unbiased estimate of their relative accuracy. Of course this accuracy
has been shown to be heavily dependent on the method of wake detection/characterization, and
further improvements must be made to ensure this algorithm is sufficiently robust. Although the
scan geometries were optimized for two metrics, wake center position and velocity, more metrics
need to be tested, creating a larger solution space for optimization.
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In optimizing error level, a trade-off in spatial and temporal accuracy is observed between high
spatial resolution scans with longer scan times and vice-versa. In general, optimizing this trade-
off is made more difficult when time scales introduced by complex terrains are not fully known.
The geometries created in this study outperformed the geometry provided from the Perdigão 2017
experiments, due to the much smaller scan area (and scan time). However, the geometries were
constructed with prior knowledge from the LES of wind direction and wake location, enabling the
coverage area to be narrowed around the wake region. In future studies, it may be practical to test
larger scan areas, as it is unlikely in real cases that the wind direction be aligned with the scan
geometry as it was in this study.

For overall accuracy in wake center location and velocity, the PPI30 and RHI40 geometries per-
formed best, measured by the ensemble-averaged error between the synthetic lidar metrics and those
determined from the first instantaneous field of each scan as well as from the field which has been
averaged over the duration of the cycle. These geometries correspond to an effective resolution of
23 to 39 meters on the wake characterizing planes. Although for wind energy applications the error
levels are unacceptable, the results of relative accuracy of scan geometries are still considered valid.
Several different methods of determining error were investigated, and although errors in long-term
averages may be smallest in some cases, they are not a clear an indicator of accuracy outside of
the LES, especially in complex terrain. This suggests that the best performing geometries in this
study would most appropriately be used for short-term predictions of wake behavior, to be used
for example in active wind farm control.

9.4.1 Suggested future work

1. As mentioned, the wake detection and characterization algorithm needs improvement. Cur-
rently, the wake search region is somewhat arbitrarily defined by a distance from the previously
determined upstream wake center location. The wake search area could be more informed
by incorporating an estimated wake expansion, so that as downstream location increases, the
search region expands accordingly, which would be a necessary feature anyway if the algo-
rithm were to measure additional characteristics of wake shape and orientation. Also, a more
refined definition of wake center would be beneficial, e.g. one similar to that of Doubrawa,
Barthelmie, Wang, Pryor and Churchfield (2016) [13], who defined the location as the center
of gravity of the wake’s velocity deficit distribution.

2. In this study, the lidar location was kept fixed. This was mainly a constraint for problem
simplification. Moving the lidar opens up several new possibilities for geometries to test, and
lidar uncertainties related to the angles the lidar LOS makes with the wind could also be
incorporated [30].

3. The geometry could be varied in other ways, a simple addition being to vary the resolution
as a function of distance from turbine axis, using different functions to determine clustering
of the measurement points, e.g. cosine, parabolic, or triangular functions.

4. Fourier analysis could be used to observe time scales of the wake characteristics. For example
by transforming a time series of wake center position to the frequency domain, estimates of
the wake position time scales could be made and then compared to the averaging times and
scan cycle periods.
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5. The LES could incorporate stability effects and also a less-smoothed terrain, as the latter has
shown to greatly influence flow behind the Perdigão north ridge [4].

6. The turbine model could be improved beyond a non-rotating actuator disk to incorporate
rotational effects, or replaced by an actuator line model to more accurately represent near-
wake physics.

7. The number of scan cycles are not equal for each geometry in this study, as each scan geometry
is cycled for as many times as possible within the total simulation time. Increasing the
scan sample size Nc and making them equal for all geometries would provide an improved
comparison of geometry performance.

8. Synthetic lidar scans could be used to optimize scan geometry not only for wake characteriza-
tion but also to study flow around the entire site, e.g. flow speed-up on the ridge or drainage
winds. Also, measurement of velocity profiles and turbulence statistics could be optimized to
predict the power available at prospective wind turbine sites and loadings.

9. Integrate the synthetic lidar scans with the control of a simulated wind turbine. Prediction
of the wake location could be used to actively yaw the upstream turbine to steer the wake
and pitch the blades or yaw the downstream turbine.
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Figure 66: Average wake center location and standard deviation for PPI20 geometry, determined
from synthetic and LES fields.
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Figure 67: Average wake center location and standard deviation for PPI40 geometry, determined
from synthetic and LES fields.

87



1350 1400 1450 1500 1550
500

520

540

560

580

600

620

y [m]

z
[m

]

x
+/D=0.5

◆

X◆●

1350 1400 1450 1500 1550
500

520

540

560

580

600

620

y [m]

z
[m

]

x
+/D=1.5

◆X◆● ◆ 〈Xs〉 Res.= 60m

X 〈XLES,1st〉

● 〈XLES,c〉

◆ XLES,t

1350 1400 1450 1500 1550
500

520

540

560

580

600

620

y [m]

z
[m

]

x
+/D=2

◆
X◆●

1350 1400 1450 1500 1550
500

520

540

560

580

600

620

y [m]

z
[m

]

x
+/D=3

◆

X◆
●

1350 1400 1450 1500 1550
500

520

540

560

580

600

620

y [m]

z
[m

]

x
+/D=3.25

◆
X◆
●

1350 1400 1450 1500 1550
500

520

540

560

580

600

620

y [m]

z
[m

]

x
+/D=3.5

◆X◆●

Figure 68: Average wake center location and standard deviation for PPI60 geometry, determined
from synthetic and LES fields.
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 LES,1st LES,c LES,t

Resolution Eur [-] EX [m] Eur [-] EX [m] Eur [-] EX [m]

Res=20m 0.12 0.19D 0.16 0.12D 0.06 0.16D

Res=30m 0.09 0.07D 0.08 0.07D 0.11 0.04D

Res=40m 0.14 0.12D 0.07 0.15D 0.15 0.15D

Res=60m 0.16 0.15D 0.07 0.10D 0.16 0.13D

Res=70m 0.20 0.22D 0.13 0.18D 0.21 0.22D

Table 13: Error levels of ensemble-averaged metrics for PPI geometries
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Figure 69: Average wake center location and standard deviation for PPI70 geometry, determined
from synthetic and LES fields.
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Figure 70: Error of ensemble-averaged wake center velocities with respect to two types of LES
fields.
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