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Fabricated Flips:
Poisoning Federated Learning without Data

Jiyue Huang, Zilong Zhao, Lydia Y. Chen, Stefanie Roos
TU Delft, The Netherlands. {J.Huang-4, Z.Zhao-8, Y.Chen-10, S.Roos}@tudelft.nl

Abstract—Attacks on Federated Learning (FL) can severely
reduce the quality of the generated models and limit the usefulness
of this emerging learning paradigm that enables on-premise
decentralized learning. However, existing untargeted attacks are
not practical for many scenarios as they assume that i) the attacker
knows every update of benign clients, or ii) the attacker has a
large dataset to locally train updates imitating benign parties.

In this paper, we propose a data-free untargeted attack (DFA)
that synthesizes malicious data to craft adversarial models without
eavesdropping on the transmission of benign clients at all or
requiring a large quantity of task-specific training data. We design
two variants of DFA, namely DFA-R and DFA-G, which differ in
how they trade off stealthiness and effectiveness. Specifically, DFA-
R iteratively optimizes a malicious data layer to minimize the
prediction confidence of all outputs of the global model, whereas
DFA-G interactively trains a malicious data generator network by
steering the output of the global model toward a particular class.
Experimental results on Fashion-MNIST, Cifar-10, and SVHN
show that DFA, despite requiring fewer assumptions than existing
attacks, achieves similar or even higher attack success rate than
state-of-the-art untargeted attacks against various state-of-the-art
defense mechanisms. Concretely, they can evade all considered
defense mechanisms in at least 50% of the cases for CIFAR-10
and often reduce the accuracy by more than a factor of 2.

Consequently, we design REFD, a defense specifically crafted
to protect against data-free attacks. REFD leverages a reference
dataset to detect updates that are biased or have a low confidence.
It greatly improves upon existing defenses by filtering out the
malicious updates and achieves high global model accuracy.

Index Terms—Federated learning, data-free attack, untargeted
attack, data heterogeneity

I. INTRODUCTION

Federated learning (FL) [29, 46] enables distributed training

of machine learning models, e.g., multi-class image classifiers,

without sharing the raw data. Clients train models locally and

the overall model, called the global model, is an aggregation of

these local models. The training proceeds in multiple rounds:

in each round, the central server provides a global model

that clients use to initialize their local models. They then

train on their local dataset and provide updates to the central

server, who aggregates these updates to a new global model

for the next round. In this manner, models requiring personal

data such as information about medical or financial conditions

can be obtained without explicit privacy violations. Recently,

FL has been applied to domains such as detection of credit

card fraud [57, 58], cybersecurity center operations [16], and

medical relation extraction [38].

A downside of preventing the central server from accessing

local data is that it limits the ability to detect misbehavior.

Adversarial clients may reduce the quality of the model by

manipulating the data they train on [41] or their local model

directly [10]. Cross-device [13, 15] FL, which allows arbitrary

parties to join the distributed training, is especially vulnerable

as attackers can easily infiltrate the system. The attack can

be untargeted, i.e., aiming for an overall accuracy degradation

of the trained global model. It can also be targeted, i.e., only

supposed to affect certain input, e.g., inject backdoors that lead

to wrong model output from input data with a certain chosen

feature [2]. In this paper, we focus on untargeted attacks, as they

are far-reaching denial-of-service attacks. In cross-device FL,

attackers may run such a denial-of-service attack to undermine a

competing company from getting meaningful models after their

users. Furthermore, when machine learning as a service [30]

is extended to include FL [17], untargeted attacks aiming to

cause losses for a service provider are to be expected, similar

to current denial-of-service attacks on Amazon Web Services

and Github 1.

There have been a number of untargeted attacks on FL [4,

10, 33]. Yet, some attacks [4, 33] assume that the adversary

is aware of all of the updates that benign clients send. It is

unclear how they can practically obtain such knowledge as

clients only share the updates with the benign central server

and communication can be encrypted to prevent eavesdropping

from the adversary. While not all attacks require benign updates,

attacks that can succeed without this knowledge requires that

the attacker has a considerable amount of training data to

train substitute benign updates [10]. Although this assumption

is realistic for common tasks, e.g., image classification of

common pets, the possession of such data is much less likely

for special-purpose tasks, e.g., classification of rare disease

based on detailed medical data [31].

In this paper, we consider whether it is actually necessary

to have real data (or benign updates). One may expect that in

cross-device FL, it is relatively easy to obtain data as everyone

can join, which might indicate that everyone can have data.

However, there exist scenarios where admission is not restricted

to a predefined group because there are few parties that can

contribute and it is not known who they are. For instance, for

a study on the live of people with a rare disease, it might

not be possible to access medical records on who has the

disease, so it makes sense to just publicly ask for participation.

Furthermore, not requiring parties to identify before joining

allows them to participate anonymously, possibly using tools

like Tor [9] to send in their updates without having to fear

1
https://www.a10networks.com/blog/aws-hit-by-largest-reported-ddos-attack-of-2-3- tbps/
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that they reveal that they have a certain medical condition,

which could increase their insurance premium or prevent them

from gaining employment. In such a scenario, it is also hard to

corrupt participating clients and use their data, as the identity

of the clients is not known. Even if the learning task is such

that is easy to obtain data, e.g., a software company aiming to

build a model on how users interact with their tool, it is still

additional overhead for the attackers, e.g., they have to either

use the tool themselves or obtain data from a real user. Thus,

even if the attacker can get data, the question of whether they

have to or can skip the overhead of data acquisition is essential

as without data acquisition, it is more likely that attacks can

be automated and run at scale against many FL learning tasks.

We design a novel Data-Free Attack (DFA) and evaluate it on

the example of image classification. The goal of the attack is to

reduce the overall accuracy of the model through the injection

of malicious model updates based on synthetic images. In each

round, the attacker first generates malicious images by making

use of the received global model and then trains the local

adversarial model using those images paired with a randomly

chosen class Ỹ . We design two variants of DFA, DFA-R and

DFA-G, which steer the global model to classify images to

either have low confidence or to classify incorrectly. Our first

attack variant, DFA-R, generates synthetic local data by adding

a filteR layer to the training. This data generation optimizes

towards local synthetic data that is ambiguous according to

the current global model, i.e., the current global model should

output each of the L possible classes with equal probability.

A local model corresponding to such data diverts the global

model and reduces classification accuracy. In contrast, our

second attack, DFA-G, iteratively trains a Generator that should

produce synthetic images that are not from a specific randomly

chosen class Ỹ . We then assign these images with class label

Ỹ and train on the resulting dataset, thus implicitly combining

synthetic data generation with label flipping for poisoning.

To improve stealthiness for both attacks, we add a regular-

ization term to the loss function of the classifier that steers

the update generation such that updates are not detected as

outliers and hence not removed by defenses. DFA thus stealthily

bypasses the defense by ensuring that the deviation to the global

model follows similar patterns as benign updates.

In our evaluation, we determine the attack success rate, i.e.,

the decrease in model accuracy caused by the attack, and

the rate at which our attackers pass the defense. We evaluate

different levels of data heterogeneity by assigning data to clients

according to the Dirichlet distribution, which is a common

model for heterogeneous real-world distributions [43]. DFA-R

and DFA-G reduce the accuracy of the trained model by a

factor of 2 for most settings, even if defenses are applied. In

comparison to state-of-the-art attacks, DFA-R and DFA-G

achieve similar results, despite having weaker assumptions.

Indeed, for most scenarios, our attacks perform slightly better

than the existing attacks.

Having shown that data-free attacks have severe impact

on the accuracy of FL, we propose a defense strategy,

REFD, which aims to defend against DFA-G and DFA-R

by leveraging a reference dataset at the server. Based on

this reference dataset, the central server determines whether a

received model update is biased toward a certain class, which

is typical for DFA-G, or shows a low confidence, which is

typical for DFA-R. It combines these two factors into a novel

defense score, termed D-score. Our evaluation results show

that REFD successfully defends against the proposed data-free

attacks, achieving accuracies that are close to the accuracy

achieved in the absence of both attacks and defenses.

II. BACKGROUND AND RELATED WORK

A. Federated Learning Primer

As a distributed machine learning framework, FL systems

consist of a set of N clients and a central server. The global

training process considers R consecutive rounds indexed by

the round number t. After model initialization by the server,

each client i (for i = 1, 2, ..., N ) trains a local model based

on their own real data without sharing the raw data. The

server iteratively aggregates models/gradients submitted from

clients and distributes the aggregated model to the clients until

reaching global model convergence. As clients can be offline or

unresponsive, only a subset of them usually submits updates.

In this paper, we focus on image classification tasks with

L classes. Let Di be the local dataset of client i and F be

the objective function for the classification task. The client i
updates its local model weights based on the global model

w(t) by:

wi(t+ 1) = w(t)− η
∂F (w(t), Di)

∂w(t)
, (1)

where η is the global uniformed learning rate.

For aggregating models of K ≤ N clients, the predominant

method for attack-free scenarios is FedAvg [24], which

aggregates the new global model as a weighted average of the

submitted local models , i.e.,

w(t) =

K∑
i=1

ni∑K
k=1 nk

wi(t), (2)

where ni is the number of training samples of client i. However,

the above algorithm is not robust under attacks [2, 10, 33, 45],

hence defenses for securing the aggregation against maliciously

crafted updates (also called robust aggregation methods) have

been developed.

B. Existing attacks in FL systems

FL empowers clients by leaving the training to them and

not revealing the local data. However, as a consequence, FL

systems are vulnerable to malicious behaviors. Attacks can

happen during the training time [2, 4, 10, 33, 45] or inference
time [27, 35, 48]. For the inference-time attacks, attackers aim

to infer private data [27]. They may even reconstruct the private

local training data [48]. In this paper, we focus on training-time

attacks where attackers participate in the training. We classify

the training-time attacks from two perspectives: i) the attack
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Attacks LIE[4] Fang[10] Min-Max[33] Min-Sum[33] DFA (ours)

No benign updates needed � �/� �/� �/� �
Defense-agnostic � � � � �

No raw data needed � �/� �/� �/� �
Heterogeneity considered � � � � �

Attack type Statistic Statistic Statistic Statistic Optiminzation

TABLE I: Attack scenarios in the state-of-the-art and ours.

objectives and ii) the attacked component of the FL system,

e.g., data or model.

There are three attack objectives for training-time attacks:

Free-riding [11, 22] is used to obtain the global model without

contributing data and computation. Targeted attacks [2, 45]

aim to decrease the model accuracy for specific data, e.g., data

with designed triggers. Untargeted attacks [4, 10, 33], in

contrast, aim to decrease the general accuracy of the model.

There are four state-of-the-art untargeted attacks, namely

LIE [4], Fang [10] as well as Min-Max and Min-Sum [33],

which are two variants of the same attack idea. We summarize

their key differences in Table I. All attacks require knowledge

of the models of benign clients, real data, or knowledge of any

defenses applied by the server. Some of them, like Min-Max,

are flexible in that they can work with either benign updates

or real data but they need at least one of the two, which we

indicate by �/� in the respective rows in the table. In terms

of methods, all existing attacks rely on statistical methods or

heuristics to construct the malicious updates by shifting the

mean of benign updates without being detected. Concretely,

LIE [4] calculates the mean and standard deviation of all of

the benign updates and then shifts the true mean by changing

the value in one direction in such a manner that it is within the

range that is considered acceptable by the defense. Shejwalkar

et. al [33] further improve LIE by adapting the scaling factor z
of the weighted sum as well as extending the standard deviation

to the sign and unit vector of the gradient. By such means, the

maximum distance (or the sum of squared distances for Min-

Sum) of the malicious gradient from all the benign gradients

is upper bounded. Note that while the authors [33] propose a

number of attacks according to different levels of adversarial

knowledge, we only compare to the Min-Max attack, which

is the strongest in their paper. Fang et. al [10] propose an

attack that steers global model parameters in the opposite

direction of the benign updates and ensures its stealthiness

through the knowledge of the exact defense. Aforementioned

untargeted attacks, except LIE, are evaluated in junction with

the heterogeneous data, which is attribute skewed [8, 37] or

label skewed [23, 42, 49].

Moreover, attacks can also be categorized by the component

which attacks act upon: data or model. During the training time,

the adversary may inject malicious data with dirty labels or

data to train the local model, e.g., label flipping [41] and trigger

injection [2, 45]. For example, backdooring[2] is executed by

injecting trigger-based malicious samples [2, 50] into the local

training dataset. DBA [45] then extends the study [2] to bypass

Sybil defenses such as FoolsGold [12]. Modeling poisoning [2,

4, 10, 33, 45] manipulates the submitted model rather than

merely adopting malicious data to train, e.g., submit updates

of the reversed sign of training gradient [10]. Generally, model

poisoning attacks require sophisticated technical capabilities

such as eavesdropping and sufficient computation resources.

None of the existing attacks can deal with an attacker that

does not have data unless they can observe the communication

in plaintext. Our attack uses a generator, as do other attacks but

for highly different scenarios or goals: attacking centralized

learning [51, 54], attacking privacy [36, 55], or mimicking

prototypical samples of the other participants’ training set with

the goal of targeted attacks [52, 53].

C. Existing Defense Mechanism in FL

We here focus on defense mechanisms for FL, as algorithms

designed for centralized learning (e.g., [6, 20] are not directly

applicable in FL. To tackle the attacks on FL systems, existing

defense strategies can be conducted either on the server-side [5,

25, 47], or the client-side [26, 39, 56]. Server-side defenses

are effective against both targeted and untargeted attacks due

to the access to all model updates, whereas the state-of-the-art

client-side defenses are merely shown to be effective against

targeted attacks. As we are concerned with untargeted attacks,

we hence focus on server-side defenses.

Generally, there are three categories of server-side defenses:

i) Sybil defenses aim at detecting Sybil attackers who are

controlled by one entity and submit similar updates. For

example, FoolsGold [12] identifies Sybils based on the diversity

of client contributions using cosine similarity of client updates.

ii) Statistic defenses curate the aggregated model by computing

the statistics of every parameter across multiple updates.

Median [47] utilizes the median value of all updates for each

parameter whereas Trimmed mean (TRmean) [47] excludes

the minimum and maximum value from the average of each

parameter. iii) Outlier detection [5, 25] removes updates based

on the pairwise distances of returned models. Higher distance

implies that data owned by a client is of low quality or unrelated

to the training task. Krum [5] only uses one update sent from

the client whose cumulative distance of updates to the other

updates is the lowest, taking the squared L2 Norm as a metric.

mKrum [5] extends this idea by choosing multiple updates.

Bulyan [25] first selects updates using mKrum and further

computes the trimmed mean of the selected gradients.

III. AN OPTIMIZATION-BASED DATA-FREE ATTACK

In this section, we first introduce the threat model for our

work. Then we propose our data-free attack (DFA) with two

variants to generate malicious data inputs and local model

updates: DFA-R and DFA-G.
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DFA-R

DFA-G

Fig. 1: The framework of our proposed data-free attack (DFA)

without knowing benign updates and owning raw data.

A. Threat Model

We assume that communication between clients and the

central server uses encrypted and authenticated channels,

which prevent eavesdropping and manipulation of data during

transmission. As a consequence, attackers are unaware of

benign client updates. Benign clients always follow the protocol

whereas malicious clients may arbitrarily deviate. All attackers

may submit the same update. We add these assumptions for

simplicity as we can easily circumvent Sybil defenses by adding

small perturbation noise, as shown in the related work [2]. The

central server applies a defense mechanism, which is not known

to the clients.

We focus on cross-device FL, which means that anyone

can join and at the same time there is client selection each

round. Furthermore, the adversary inserts their own clients in

the system rather than corrupt other clients. Corrupting other

clients requires knowing the identities of other clients, which

is not explicitly shared in cross-device FL. In the absence of

anonymous communication, the adversary could obtain the

identities only from observing network traffic but the ability to

observe network traffic is restricted to internet service providers

and other parties, so we do think it is more realistic to assume

that the adversary does not know the other clients and hence

also cannot easily corrupt them.

Additionally, we assume that malicious parties do not have

any data so as to enhance the versatility of the adversary. In

practice, the difficulty of obtaining data varies between tasks.

It is reasonable to assume that there are tasks relying on rare

data that an attacker cannot easily obtain. We assume that all

computations are executed by one adversarial party, who then

sends the updates to individual malicious clients.

Objectives: The overall objective of an untargeted attack

in Federated Learning is reducing the accuracy of the global

model maintained by the central server. As a part of achieving

this objective, clients need to craft malicious updates that

bypass the applied defense.

Capabilities: First, we assume that the number of malicious

users controlled by the adversary in the system does not

exceed 50% of the total clients. It seems implausible that a

defense can overcome a higher number of attackers as defenses

typically need a reference for benign behavior. The attacker

cannot break cryptographic primitives. More generally, it is

computationally bounded so that it cannot solve NP-complete

or NP-hard problems. Otherwise, they can arbitrarily control

the communication and computation of the malicious clients

but not of any other parties in the system.

Knowledge: Neither the defense algorithm nor benign

updates are known to the adversary. As the attacker also does

not have data, the only knowledge of the adversary is the

classification task in general, i.e., the number of classes, which

is necessarily accessible as the server distributes the model.

B. Attack Optimization Framework

The overall framework of our proposed attack DFA is

illustrated in Fig. 1. The server first distributes the current

global model (classifier) w(t) to all of the clients. The benign

clients truthfully follow the protocol and send the trained

model wb(t + 1) back to the server. Malicious clients send

the adversarial model wm(t + 1) instead. Then the server

aggregates the submitted updates according to the deployed

defense. As attackers do not have real data or benign updates,

intuitively, the most obvious approach to attack is to directly

change w(t).
We experimented with using random weights but the attack

was detected almost always. Concretely, only 2.62% and

6.57% of all updates submitted by malicious clients with

random model weights bypassed the mKrum defense for

Fashion-MNIST and Cifar-10, respectively. For the Bulyan
defense, the attack only bypassed the defense in 3.27% of the

cases for Fashion-MNIST and always failed for Cifar-10. As

manipulating the model directly does not seem a promising

approach, we optimize the generation of synthetic malicious

images according to w(t) and then use it to train the local

adversarial model every round. The attack process consists of

the following two steps.

1. Malicious image generation. We propose two optimiza-

tion methods to synthesize malicious images based on different

optimization methods, objectives of adversarial models and,

importantly, the feedback of the global model. The first method

is DFA-R, which introduces an additional filter input layer2

and optimizes it from a dummy image with the objective to

reduce the confidence on all outputs of the global model. Our

second method, DFA-G, designs a generator network to

synthesize malicious images such that the output of the global

model biases toward a randomly chosen class. As such, the

generated noisy images paired with incorrect labels are applied

to malevolently update the current model. The details on DFA-

R and DFA-G are discussed in the following subsections.

2. Adversarial classifier training with distance-based loss.
In this step, the attacker uses synthetic data as generated by

step 1 to train the classifier wm(t + 1). The optimization

problem of the attack then becomes minwi
F (wi, S), where S

is the generated image set. In order to enhance the stealthiness

and hence pass the unknown defense, we propose to train

with a distance-based loss function minwi(F (wi, S) + Ld)
with regularization term Ld to enhance stealthiness (detailed

2Such a layer has the same input dimension as the original image.
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illustration in Sec. III-E). The size of S, |S|, is a hyper

parameter of our attack framework that depends on the task. In

the evaluation, we find that using a similar number of images

as benign clients results in an effective attack. The adversary

can estimate the size during training based on the aggregated

results of the global model and the duration that other clients

require for training.

C. DFA-R synthetic data generation

Fig. 2: Synthetic data generation process of DFA-R.

When constructing the synthetic dataset S, DFA-R aims

to aggressively lower the confidence of all outputs of the

global model by introducing a malicious filter layer(i.e., a

convolutional layer). DFA-R optimizes this image layer such

that per-class probability output of global model is equally

low, i.e., YD = [ 1L ,
1
L , ...,

1
L ], where L is the total number

of classes. Such data is bound to confuse the global model.

Fig. 2 depicts the optimization procedure to find |S| malicious

images iteratively via two steps: i) generating the malicious

image through mapping a random dummy image via a filter

layer [19], and ii) optimizing the filter layer by minimizing

cross-entropy loss of the global model between the predicted

class probabilities and YD.
Concretely, we first generate a random image A (size a×a),

with each pixel being drawn from a uniform distribution, and

apply the filter layer to transform it into an image B(size b×b).
In this manner, we train a mapping from randomness to images

that have the desired properties. The size of image B is the same

as the real image. We let this convolutional layer have kernel

size J×J , i.e., the square filter layer between image A and B in

Fig. 2. After being filtered from the convolution layer, the image

B is then classified by the current global model. The attack

works for various network structures and datasets, e.g., Alexnet,

VGG on other image datasets, as long as the relation between

input and output are maintained. Concretely, for stride size St
and padding size P [21], we require a = b×(St+1)−2P +J .

The attack can be extended to other tasks, e.g., text processing,

by replacing the filter model and using a Seq2Seq model [40]

instead of a convolutional layer. In this manner, the random

text (mapped from random values to a dictionary) is filtered

by the Seq2Seq model and fed in the text processing network,

similar to Fig. 2.
To optimize the convolutional layer that results in ambiguous

YD, we first consider the dummy image A, the filter layer, syn-

thetic image B, and the global model as one big classification

problem. Its training objective is to minimize the cross-entropy

loss of predicted probabilities of image B and YD, such that the

model cannot predict classes reliably. Different from the regular

training of a classification problem, we keep certain parts of

the model and input constant. Specifically, the model weights

of the global model and the image A are static. Otherwise,

without keeping A static, we would need to re-train whenever

we change the randomness. Keeping the number of trainable

parameters to a minimum, we optimize the efficiency of the

attack. The only trainable parameters here are the parameters

of the filter layer. It takes E epochs to train this convolutional

layer. Upon finishing training, the image B is one data instance

of S. To increase the diversity of the training dataset S, for

each FL training round, we repeat the above process for |S|
times to construct S.

D. DFA-G synthetic data generation

Fig. 3: Synthetic data generation process of DFA-G.

In contrast to DFA-R, DFA-G synthesizes images through

a generator network, which misleads the global classifier

to confidently make incorrect classifications. In order to do

so, we generate images that are not supposed to be from a

class Ỹ but classify all of them as Ỹ , which is a randomly

chosen label and never changes through the training procedure.

The training/optimization of the generator network is through

the feedback of the global model, i.e., we assume that the

classification provided by the global model is the correct

classification of the synthetic image. Typically, benign training

minimizes the cross-entropy of the prediction and true label

so that the model can output an accurate prediction. However,

as our goal is to reduce the model accuracy, we maximize the

cross-entropy of the prediction and Ỹ to train G, steering the

generated images away from Ỹ . As DFA-R, DFA-G works for

various network structures, with input and output size needing

to match the training data.
The training procedure for the generator is shown in Fig. 3.

We first draw a random noise vector Z from the Gaussian

distribution and input Z into a generator G to synthesize

malicious images. We use the same random seed over multiple

rounds so that the trained generator is able to consistently

produce synthetic data different from class Ỹ , as our training

goal is to optimize the mapping from the generated vector

to the targeted synthetic data. The network structure of the

generator is a transpose convolution neural network (TCNN),
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which outputs task-specific image size data S = G(Z). The

size of real data can be obtained from w(t). Specifically,

we use a lightweight TCNN of two transposed convolutional

layers and one convolutional layer following the structure of

the popular WGAN paper [1]. The model parameter of the

generator G is randomly initialized before training, denoted

as θ. As the generator aims at synthesizing images that differ

from the chosen class Ỹ , the objective function of G is

maxθ F (w(t), (S, Ỹ )) where S is generated from θ. After

training G locally for E epochs until convergence, the synthetic

images are leveraged to train wm(t + 1). When it comes to

other tasks, e.g., text processing, the generator is a recurrent

neural network such as GRU [7] in order to generate random

texts rather than just random numbers.

In summary, differences between the two variants are i) the

optimization network, ii) the objective functions, iii) the use

of Ỹ , and iv) the randomness in their inputs.

E. Distance-based Regularization

State-of-the-art defenses in a FL system are mainly based

on the pairwise distances among multiple updates. In order to

bypass the defense mechanisms, we introduce a distance-based

regularization term when training the adversarial classifier with

the aim to further enhance stealthiness of the adversarial model

updates. The concrete regularization term is

Ld = ‖w −w(t)‖2 − ‖w(t)−w(t− 1)‖2. (3)

In Eq. 3, the first term refers to the weight differences of the

adversarial update and the current model. Analogously, the

second term refers to the difference between the current model

and the model of the previous round. This term varies over

rounds and the optimization variable is the model parameter w.

We add Ld to the vanilla cross-entropy loss in the objective

function of the adversarial classifier to avoid extremely high

differences in model changes over rounds, which could be

easily detected. Thus, in both DFA-R and DFA-G, we guide

the training such that the differences in weights are similar

to the ones in previous rounds, as achieved by using the two

most recent global models.

IV. EXPERIMENTAL EVALUATION

We empirically evaluate the effectiveness of our proposed

data-free untargeted attack, on three commonly used classifi-

cation benchmarks. We compare the attack success rate and

defense pass rate for various settings, for four state-of-the-art

defenses and in comparison to three existing attacks. All of

the results reported in this section are averaged over three runs.

The source code of DFA is provided in github3

A. Experiment Setup

FL system. Our FL system considered contains 100 clients.

In typical real-world FL systems, some of the clients could be

offline or unavailable temporarily and hence not all of them

might be able to participate in the whole training process. Thus,

3https://github.com/GillHuang-Xtler/DSN2023DFA. For any question about
code, please contact {J.Huang-4, Z.Zhao-8}@tudelft.nl.

as in previous work [2, 24, 33], 10 of the available clients

are selected uniformly at random each round. Clients train

the classifier locally for one epoch. For the main results, we

assume that the adversary can compromise 20% of the clients

following [10, 33], unless stated otherwise, and further evaluate

10% and 30% in Sec. IV-E. Lower percentages of attackers

have been shown to be ineffective [34].

Datasets and networks. In this work, we consider three

datasets. Fashion-MNIST [44] consists of a training set of

60,000 and a test set of 10,000 fashion-related images. Each

instance is a 28 × 28 grayscale image. Cifar-10 [18] contains

50,000 training images of 3-channel RGB images and 10,000

of test images. SVHN [28] includes 73257 digit images for

training and 26032 for testing. All digits have 32 × 32 pixels.

All datasets have 10 classes in total. For Fashion-MNIST and

Cifar-10, the images are evenly distributed over classes. SVHN

in slightly imbalanced in class distribution. The total number

of images used to train in this paper is reduced to 10% for

Fashion-MNIST and Cifar-10 but maintain the original size for

SVHN. For Fashion-MNIST and Cifar-10, the data are chosen

uniformly at random in order to model real-world scenarios

that full data may not be available during the whole training.

This amount is verified to be sufficient for training on Cifar-

10 and Fashion-MNIST [3].To determine the |S| and show

hyperparameter sensitivity, we run initial experiments varying

|S| from 20, 50, and 100 based on knowing 50 samples per

client for Cifar-10. We found that DFA is able to achieve

similar attack success rate. Indeed, sometimes a lower |S|
had a higher ASR, e.g., for DFA-G on Fashion-MNIST with

β = 0.5, |S| = 20 has higher attack success rate than |S| = 50.

As they all succeed in attacking, we use the results of 50 in

the paper to keep consistency. For these three datasets, we use

representative neural networks with 2 (for Fashion-MNIST)

and 6 (Cifar-10 and SVHN) convolutional layers connected

with 1 and 2 densely-connected layers, respectively, to map

the inputs and outputs4.

Defense mechanisms. Four state-of-the-art defenses are

evaluated in our work: mKrum, TRmean, Bulyan and Median.

We do not apply Krum since mKrum interpolates between

Krum and averaging, thereby allowing the trade-off between

the resilience properties and the convergence speed [5].

Data heterogeneity. To emulate a heterogeneous distribution,

we assign data to clients according to the commonly used

Dirichlet distribution. It emulates a real-world data distribution

and the degree of heterogeneity is governed by the hyper-

parameter β [43], indicating the level of heterogeneity. In

Sec. IV-D, we vary β from 0.1 to 0.9 in order to demonstrate

our effectiveness for different degrees of data heterogeneity.

Higher β means a lower degree of data heterogeneity. For our

experiments, except for Sec. IV-D, we choose β = 0.5, as in

the prior work [14, 43].

Hardware. Our FL emulator is based on Pytorch and we

run experiments on a machine running Ubuntu 20.04, with 32

4We use shallow networks to simplify evaluation, consistent with [33],
higher accuracy can be achieved with deep nets.
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GB memory, a GeForce RTX 2080 Ti GPU and an Intel i9

CPUs with 10 cores (2 threads each).

B. Evaluation Metrics.

We utilize two main metrics to evaluate the effectiveness of

our attack. i) Attack success rate (ASR) is defined by:

ASR =
acc− accm

acc
× 100%, (4)

i.e., the decrease of accuracy caused by attacks. Specifically,

it is the difference between the global accuracy acc without

attacks and defenses and the maximum accuracy accm of

the global model during one experiment with attacks. Attack

success rate specifies the effectiveness of an attack strategy

through the decrease in accuracy. The Higher, the better.

ii) Defense pass rate (DPR) is a metric to measure the

stealthiness of an attack. In our paper, it is defined by the

proportion of attackers who have passed the defense (Np) from

all of the randomly selected attackers (Ns):

DPR =
Np

Ns
× 100%. (5)

DPR as defined above requires that defenses select updates

for aggregation rather than computes statistics on all updates.

Thus, as detailed Sec. II-C, DPR can only be computed for

mKrum and Bulyan, but not for TRmean and Median. High

DPR is better.

Baselines. We are the first to propose data-free untargeted

attacks. So there is no direct baseline to compare to. To

demonstrate the effectiveness, we compare our results with

the three state-of-the-art attacks LIE [4], Fang [10] and Min-
Max [33] that require knowledge of benign updates or real data.

We make the following choices regarding the parametrization

of the defenses. As defenses are unknown to the attacker in our

scenario, we implement the version of the Min-Max attack that

is designed for unknown defenses and achieves the best results.

For the Fang attack, the original paper assumed knowledge of

the defense. We here use the version of the Fang attack that

assumes TRmean or Median as the defense, which is the only

source code provided by the authors. Otherwise, we use the

parameters that produced the best results in the original papers.

C. Comparison with baselines

ASR and DPR. Our main results for the attack success

rate and defense pass rate are shown in Tab. II and Fig. 4.

Among all of the baseline methods, Min-Max attack is the

most successful attack, with high ASR even on low DPR. In

general, our experimental evaluation demonstrates that the

proposed data-free attack strategies, DFA-R and DFA-G, are

able to achieve similar or even slightly higher attack success

rate than the baseline attacks, which require full knowledge

of benign updates or a large quantity of raw data. DFA-G

outperforms DFA-R in terms of DPR for most results on

different datasets, which shows its stealthiness. During the

first rounds of training, the attack is relatively weak as the

global model does not yet provide a good enough model to

generate effective poisoning, as indicated by our experimental

results. Once the model converges, the polished model guides

the attack and the attack success increases.
Specifically, from the results of Fashion-MNIST, DFA-R

is better than DFA-G and all baselines when mKrum and

TRmean are used to defend. Bulyan rejects on average more

updates while Median merely includes the median of each

model parameter from all of the clients. Both make it hard to

inject malicious data into the model, leading to the low pass

rate for DFA-R and hence higher effectiveness of the more

stealthy DFA-G. Correspondingly, DFA-R performs better

mKrum and TRmean as they allow it to pass the defense more

frequently.
On the other hand, DFA-G performs well for Cifar-10 due

to the fact that training Cifar-10 networks with more layers

(parameters) results in slower convergence so that it favours

attacks that continuously circumvent the defenses. Also, the

use of 3-channel RGB data increases the diversity of benign

updates. As a consequence, the level of uncertainty is generally

higher during training, so that it becomes easier to pass the

defense as the benign updates are not consistent enough to act

as a reference point that can be used to detect malicious images.

For the same reason, DPR of both DFA-G and DFA-R is

higher on Cifar-10 than on Fashion-MNIST. However, Fang

and Min-Max are not more successful on Cifar-10. Min-Max,

which is aware of benign updates and hence can adapt to

different datasets, already integrates dataset-specific behavior

that allows it to adapt to Fashion-MNIST’s low diversity. Fang

rarely passes defenses, regardless of the dataset. The results of

ASR for Fang without knowing the exact defense is consistent

with the original results [10, 33].
For SVHN, both DFA-R and DFA-G achieve competitive

ASR compared with the baselines. The only exception is Median

where Min-max clearly outperforms our attacks. The result

can be explained by the complexity of SVHN. SVHN is more

complex than Fashion-MNIST, so it benefits from the additional

knowledge Min-Max leverages to craft the update. In contrast,

Cifar-10 also has a higher complexity, but experiments show

that Median has a low accuracy for Cifar-10 even in the absence

of attacks if there is data heterogeneity, as it does not include

important information in the model. So it does not make so

much of a difference which attack is applied. The DPR of

DFA is lower than most other attacks for SVHN, in contrast

to the other datasets. The results show that the effectiveness of

the attacks depends on a combination of dataset and applied

defense.

Fig. 4: Defense pass rate (DPR) on Dirichlet distribution. β =
0.5 for Fashion-MNIST, Cifar-10 and SVHN.

We now consider the baseline attacks in more detail. LIE
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TABLE II: Attack success rate (ASR) and the maximum accuracy (accm) accordingly under attacks on Dirichlet distribution.

β = 0.5. The accuracy without attacks and defenses acc for Fashion-MNIST, Cifar-10 and SVHN is 82, 50, and 86, respectively,

it is reasonable for our lightweight CNN [4].

Fang LIE Min-Max DFA-R DFA-G
Dataset Defense acc (%) ASR (%) acc (%) ASR (%) acc (%) ASR (%) acc (%) ASR (%) acc (%) ASR (%)

Fashion-MNIST mKrum 73.5 10.37 72.7 11.34 67.3 17.93 52.6 35.85 64.3 21.59
Bulyan 68.1 16.91 75.0 8.54 56.8 30.73 70.8 13.66 59.8 27.07

TRmean 30.9 62.32 59.9 26.95 37.8 53.90 21.9 73.29 51.3 37.44
Median 61.1 25.49 73.4 10.49 62.0 24.39 62.0 24.39 60.9 25.73

Cifar-10 mKrum 34.1 31.80 33.5 33.00 27.8 44.40 24.6 50.80 24.4 51.20
Bulyan 28.4 43.30 31.4 37.20 21.2 57.60 22.2 55.60 21.7 56.60

TRmean 13.9 72.20 13.1 73.80 12.6 74.80 14.4 71.20 12.5 75.00
Median 24.5 51.00 37.0 26.00 24.9 50.20 24.7 50.60 23.8 52.40

SVHN mKrum 81.85 4.83 80.87 5.97 28.03 67.41 60.33 29.85 26.36 69.35
Bulyan 73.03 15.08 50.18 41.65 19.66 77.14 19.30 77.56 42.70 50.35

TRmean 19.59 77.22 46.76 45.63 42.54 50.53 42.06 51.09 41.13 52.17
Median 59.67 30.62 83.63 2.76 43.38 49.56 68.08 20.84 65.09 24.31

appears to be weaker than other attacks since it applies only a

minor static shift to the mean of benign updates in order to pass

defenses. This results in LIE’s high DPR but it limits its attack

effectiveness. In contrast, Min-Max attack trains (maximizes)

the scale of the shifting from the mean of benign updates

each round so as to enhance effectiveness, especially under

heterogeneous data. This the reason why it achieves good ASR
even with low DPR. The few times it overcomes the defense

are sufficient for the crafted malicious updates to permanently

damage the model. Fang attack has the least DPR, as it steers

the global model parameters to the reverse direction. It is even

more easily detected by the defenses than Min-Max, to the

extent that the attack effectiveness is severely reduced.

D. Data heterogeneity level

We evaluate the impact of different levels of data hetero-

geneity on the ASR of attacks. Specifically, we choose β = 0.1
as the most heterogeneous case while β = 0.9 is the least

heterogeneous case. Fig. 5 displays the results for Fashion-

MNIST and Cifar-10 when Bulyan is used as a defense, which

is a defense our attacks usually do not achieve the highest

attack success rate, as can be seen from Tab. II. In general,

the effectiveness for all attacks increases with an increased

level of data heterogeneity, since more heterogeneity means

that the benign updates are more diverse and hence detection

of outliers is harder. The global model accuracy decreases on

more heterogeneous data without attacks. This is consistent

with the intuitive expectation that data of higher heterogeneity

in an FL system results in poorer global accuracy within the

same number of training rounds.

From Fig. 5, we can observe that for the aggressive

Bulyan defense, the Min-Max attack achieves mostly the

best performance among all of the attacks. Attacks with full

knowledge of benign updates as well as adaptive weights for

maliciously shifting the mean is expected to work better. That

is especially true under aggressive defenses because in contrast

to our attacks, Min-Max has access to information necessary to

ensure their updates are less suspicious than others. Yet, thanks

to the enhanced stealthiness, DFA-G outperforms Min-Max

when data is less heterogeneously distributed among clients.

Accordingly, DFA-R achieves the best results when β = 0.1 on

Cifar-10 dataset. In this scenario, the requirement of stealthiness

is the least for all of the six scenarios because Cifar-10, as

discussed above, has more diverse updates and the high degree

of heterogeneity further increases the diversity, making it hard

to detect outliers. Additionally, the ASR of LIE and Fang attack

decreases drastically with decreased heterogeneity. LIE attack

adds a static minor shift to the true mean as it is designed

to attack independent and identical distribution scenarios. For

more heterogeneous updates, LIE attack is more likely to pass

the defense and have an impact. Fang attack usually requires

knowledge of the defense; in the absence of this knowledge,

it fares better when its behavior is harder to be detected. The

results on SVHN dataset show similar trends with regard to

data heterogeneity. As for Cifar-10, the ASR for β = 0.9 may

exceeds the ASR for β = 0.5, e.g., DFA-G on SVHN has

an ASR of 71.68% and 50.35% for β = 0.9 and β = 0.5,

respectively.

(a) Fashion-MNIST (b) Cifar-10

Fig. 5: ASR(%) for attacks under different levels of training

data heterogeneity on Fashion-MNIST and Cifar-10 dataset.

E. Different proportion of attackers

In this section, we demonstrate the applicability of our

proposed attack for different numbers of attackers. In order

to show our effectiveness, we choose TRmean, which is a
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statistic-based defense, and mKrum, which is a distance-based

defense, for our experimental results presented in Fig. 6. The

results are evaluated on the Fashion-MNIST dataset. We vary

the attacker proportion from 10% to 30% as we do not expect

the attackers of an FL learning system to exceed 30%. To

create heterogeneous data, we follow the Dirichlet distribution

with β = 0.5 as in Tab. II.

(a) mKrum (b) TRmean

Fig. 6: ASR(%) for attacks under different proportions of

attackers on mKrum and TRmean defense.

The results of Fig. 6 demonstrate the consistent effectiveness

of DFA compared with other attacks. The more attackers we

have, the higher the attack success rate, as one expects. Yet,

DFA achieves the highest attack success rate, compared to

other attacks. DFA-R usually has the best performance, with

the exception of 10% on mKrum, where Min-Max attack has

the best ASR. Indeed, it is easier to defend against a smaller

number of attacks in the simpler dataset. As Min-max has more

knowledge about the benign updates, it is then able to send in

more malicious models than DFA in this easy-to-defend case.

F. Ablation analysis on DFA components

1) Generator training epochs: Here, we empirically investi-

gate the convergence towards the optimal loss, where DFA-R

is minimizing its loss but DFA-G is maximizing it. Fig. 7

shows the results for Fashion-MNIST on all four defenses.

It can be clearly seen that the local training for generating

malicious images converges to a local optimum. For both of

our proposed attacks, DFA-R and DFA-G, we only need a

few epochs to train. For DFA-R, E is 5 for Fashion-MNIST,

and E = 10 for Cifar-10 and SVHN as Fashion-MNIST is

easier to train.

2) Comparison with non-training approach: Given that

the training converges fast, we also investigate the impact

of training in comparison to just using a randomly initialized

filter layer for DFA-R and a randomly initialized generator

for DFA-G without any updating over rounds. As explained,

according to the definition, DPR is measured only on mKrum
and Bulyan defenses. We hence report the results for TRmean
and Median as “N/A”. The maximum accuracies without attack

are the same as Tab. II.

The results can be seen in Tab. III and confirm that training

according to the current global model is indeed necessary. For

DFA-R, training a single layer aims at generating images

that confuse the global model. Without the training step, the

Fig. 7: Local training process of both DFA-G and DFA-R on

Fashion-MNIST.

injection of DFA-R is less malicious. Thus, ASR usually

decreases without training, except for Fashion-MNIST with

Bulyan defense. This observation is due to the fact that training

DFA-R reduces the stealthiness of the attack by focusing on

effectiveness and hence DFA-R passes Bulyan more often

without training. This is consistent with our results in Fig. 4

that Bulyan significantly reduces the DPR of DFA-R.

TABLE III: ASR and DPR for (non-)training approach where

“Static” refers to non-training way with only randomly initial-

ized. “Fashion” and “Cifar” is short for Fashion-MNIST and

Cifar-10 datasets.

Static Trained
Attack Defense ASR(%) DPR(%) ASR(%) DPR(%)

mKrum 18.17 87.78 35.85 70.33

DFA-R TRmean 37.20 N/A 73.29 N/A

Fashion Bulyan 23.66 57.50 13.66 6.86

Median 21.22 N/A 24.39 N/A

mKrum 17.07 88.33 21.59 89.02

DFA-G TRmean 30.73 N/A 37.44 N/A

Fashion Bulyan 24.88 65.26 27.07 69.33

Median 22.44 N/A 25.73 N/A

mKrum 50.00 85.20 50.80 86.04

DFA-R TRmean 71.14 N/A 71.20 N/A

Cifar Bulyan 56.00 60.98 55.65 61.05

Median 48.60 N/A 50.60 N/A

mKrum 38.60 56.46 51.20 88.14

DFA-G TRmean 71.40 N/A 75.00 N/A

Cifar Bulyan 47.80 37.35 56.60 63.99

Median 50.60 N/A 52.40 N/A

When it comes to DFA-G, training helps to enhance

stealthiness. The impact can be clearly seen from the results

for DPR in Tab. III, especially for Bulyan. Only for a relatively

lenient defense like mKrum, the training has little additional

impact as DPR is already high without training. These results

also reflect the minor increase of DPR from Fashion-MNIST

to Cifar-10 dataset for mKrum in Fig. 4.
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3) Impact of the regularization term: In this part, we conduct

an ablation study for our proposed distance-based loss, which

adds a regularization term to the original cross-entropy loss

function. Tab. IV shows both ASR and DPR with and without

the regularization term on Fashion-MNIST. For DFA-R, the

effectiveness of the regularization term is more apparent for

mKrum. However, for DFA-G, the increase is most notable

for Bulyan. This is because the regularization term in the less

stealthy DFA-R is insufficient for passing Bulyan whereas it

is what enables DFA-G to pass Bulyan frequently. In contrast,

DFA-G does not require the regularization term for mKrum
as it already passes without extra regularization.

TABLE IV: ASR and DPR for ablation test of the regularization

term proposed by our distance-based loss.

without regularization with regularization
Attack Defense ASR(%) DPR(%) ASR(%) DPR(%)

DFA-R mKrum 17.68 41.92 35.85 70.33

TRmean 58.78 N/A 73.29 N/A

Bulyan 10.73 3.32 13.66 6.86

Median 23.72 N/A 24.39 N/A

DFA-G mKrum 20.98 87.34 21.59 89.02

TRmean 31.71 N/A 37.44 N/A

Bulyan 22.32 60.27 27.07 69.33

Median 23.78 N/A 25.73 N/A

4) Synthetic vs real data: In order to demonstrate the

effectiveness of our malicious synthetic data, we compare

the ASR of our attacks to a version of the attack that uses real

data, i.e., we use a set of real images instead of the synthetic

image set S. We assign the number of real images owned by

the attackers under the same Dirichlet distribution as for benign

users. The results for the four defenses on both datasets are

shown in Fig. 8 with stripped visualization. “Real-data” in the

figure refers to the results of ASR using real data paired with

the uniformly chosen label Ỹ to train w(t) with distance-based

loss as described in Sec. III similarly for the synthetic data.

Fig. 8 shows the effectiveness of our malicious synthetic data

generated by DFA-R and DFA-G as ASR outperforms the case

of using real images. That is expected because our synthetic

images are specifically constructed such that the attack is very

effective but at the same time stealthy. Thus, even if data

is present at the attacker, a data-free attack can be the better

choice. Consequently, it is usually not necessary for the attacker

to invest the overhead of obtaining data.

V. DEFENSE FOR DFA: REFD

Based on the results of the previous section, our attack is

highly effective against known defenses. Yet, the attack might

not withstand defenses that are crafted with data-free attacks

in mind. Thus, in this section, we design and evaluate a novel

defense that specifically addresses the reasons why existing

defenses are insufficient.

Let us first state why existing defenses fail. mKrum and

Bulyan reject updates that differ greatly from others. Our

regularization term ensures that our updates do not differ

too much from the global model from the previous round,

Fig. 8: Comparison of ASR (%) of real data and synthetic data

by DFA-R and DFA-G with four defenses on Fashion-MNIST

and Cifar-10.

which at least once the model starts to converge is close to

the models submitted by benign clients. Statistical methods

lose information about the distribution but medians or trimmed

means also shift easily without the need for an attacker to

provide outlier data [4].

A. Design of RefD (REFD)

The defense is designed with data-free attacks in mind and

overcomes the drawbacks of existing defenses. We rely on a

reference dataset Dr to detect unusual classification patterns.

Upon receiving an updated model from clients, the server

uses that model and executes the model inference on Dr, i.e.,

they compute predicted class probabilities. We design a novel

statistic, D-score, which identifies the model updates whose

outputs have either biased prediction or low confidence. To

evaluate the effectiveness of REFD, we apply REFD on both

our proposed attacks and the state-of-the-art attacks, for both

balanced and heterogeneous data distributions.

Assumptions. REFD is a server-side defense. REFD requires

that the server owns a small reference set Dr of real data with

correct labels. The quantity of each class label is assumed to

be balanced.

The design core of REFD is the D-score for each model

update received: a low score indicates a high risk of update

being malicious and results in the server rejecting the update.

The D-score is computed based on two parts: the balance

value and the confidence value of updates. The balance value

determines how balanced the outputs from the updated model

are, to detect updates that are biased toward a specific class,

such as DFA-G, LIE [4], and Min-Max [33]. The confidence

value measures the confidence in predicting a class and rejects

updates that result in low confidence, which are the objective

of DFA-R and Fang [10].

Before explaining those values, we first explain background

notations. wi defined as the updated classifier model received

from the client i, which maps the data input into two kinds

of output. Specifically, wp
i (·) maps the data into the per class

probability vector and wh
i (·) maps the data into the per class
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one-hot encoding vector. Both vectors have the length of L,

corresponding to the number of classes.

Balance value. To tackle the attack type which causes bias

in classification, we define the balance value Bi for the updated

model of client i as the inverse of the standard deviation of

the class label distribution:

Bi =

⎧⎨
⎩

1

std(Ai)
, if std(Ai) �= 0

1, if std(Ai) = 0

(6)

where std(·) is the standard deviation over all class labels and

Ai consists of the aggregated number of predicted labels of

each class. For instance, Ai for Cifar-10, is a set of 10 values,

i.e., the number of predicted samples per class. To compute

Ai, we first apply wh
i on each sample in Dr and aggregate

them. Overall, the non-biased output prediction from benign

clients results into a better balanced Ai across all classes and

thus a higher value of Bi. The adversarial parties on the other

hand should have a lower value of Bi.

Confidence value. This value quantifies the average con-

fidence when using the updated model on Dr. Specifically,

for a data sample j in Dr, we let the confidence of applying

classifier of client i, Mij as the biggest element of the output

probability vector wp
i (Dr(j)). We thus define the confidence

value, Vi, as:

Vi =
1

|Dr|
|Dr|∑
j=1

Mij . (7)

Low confidence values indicate higher risks of being adversarial

updates. The potential drawback of using Vi to detect adver-

sarial behaviour is that the low confidence may also appear in

the early training epochs of honest clients.

D-Score. For each client update, we combine the balance

value, B, and the confidence value, V , to detect a wide range of

adversarial behaviors. Motivated by Fβ Score [32], we define

the D-Score to evaluate the quality of an intermediate training

model from client i as:

D − Score = (1 + α2)× Bi × Vi

α2Bi + Vi
, (8)

where α is a hyper-parameter to weigh the importance between

balance value and confidence value. It can be set as a specific

value according to what the central server knows or suspects

about the executed attack. It can also be adaptive and learned

over epochs, but we consider this out-of-scope for the paper

and a good avenue for future work. Instead, we set α = 1 to

represent the equal importance of Bi and Vi. If the predictions

are perfectly balanced and have a high confidence, we have a

D-Score of 1. When Bi is reduced while Vi stays constant, the

D-Score is reduced, mirroring the increased bias. Analogously

for Vi, a lower value for Vi leads to a lower D-Score to indicate

the lower confidence. Moreover, as we designed the defense

with data-free attacks in mind, we expect it to work better for

those than for other attacks, for which defenses already exist.

Removing attackers. After calculating the D-Score for each

update of a given round, the server rejects the updates with

(a) Fashion-MNIST (b) Cifar-10

Fig. 9: Accuracy(%) for REFD on Fashion-MNIST and Cifar-

10 datasets with different levels of data heterogeneity, compared

with the maximum accuracy under Bulyan defense.

the X lowest D-Scores. The server then excludes them for

aggregation. The method is the same as used by mKrum [5]).

X is determined by the server’s assumptions about the fraction

of attacker, i.e., the more attacker they expect, the higher they

choose X .

B. Evaluation for REFD

Experimental settings. To evaluate the effectiveness of

REFD, we compare the accuracy of the global model in the

presence of the new defense. We use the full test set for the

respective dataset in the presented results but also experimented

with smaller reference datasets (1000 images instead of 10000)

and found no significant difference. Hence, smaller datasets

can be used to increase efficiency and lower the requirements

in terms of data availability at the server side. However, the

reference set has to be balanced among class labels to compute

the balance value reliably. REFD is evaluated on both Fashion-

MNIST and Cifar-10 dataset. Additionally, our experiments

include four different levels of data heterogeneity: independent

and identical distributed (i.i.d) and three heterogeneity levels

(β = 0.1, 0.5, 0.9, where β = 0.1 indicates the highest level of

heterogeneity) as in Sec. IV-D. We also evaluate the impact of

different level of data heterogeneity since defenses are sensitive

to the heterogeneity, especially for distance-based defenses.

Intuitively, a higher level of training data heterogeneity makes

defense more difficult. The robustness of a defense in presence

of high data heterogeneity is important to various of real-world

application scenarios.

As in other works [10, 33], we set the proportion of attackers

in the system to be 20% and X = 2. We compare REFD against

Bulyan, the most effective SOTA defense for our attack.

Results for defense DFA.
From Fig. 9, we see that REFD significantly outperforms

Bulyan. The advantage of our defense is obvious when the

heterogeneity of the data is high. For β = 0.1 and Fashion-

MNIST, REFD achieves an accuracy of more than 70% when

the attack is DFA-R and close to 75% for DFA-G. In contrast,

the accuracy of Bulyan is only around 40%. Bulyan is relatively

effective for i.i.d data, achieving a similar value as REFD for

both attacks.

The results on Cifar-10 confirm the superiority of REFD.

As noted in Sec. IV, the accuracy on Cifar-10 is generally
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(a) Fashion-MNIST

(b) Cifar-10

Fig. 10: Comparison of Accuracy(%) for defenses with state-

of-the-art attacks on Fashion-MNIST and Cifar-10 datasets.

lower. Yet, REFD is clearly the more effective defense. In the

presence of data heterogeneity, the accuracy is at least twice

as high for REFD than Bulyan.

For both datasets, the advantage of REFD is least pronounced

for the i.i.d setting. For i.i.d, the benign updates are very

similar, hence making it barely possible for our attacks to

deviate without being detected. Thus, there is little difference

between defenses. The results for Fashion-MNIST and Cifar-

10 differ in that the final global model accuracy difference

between REFD and Bulyan is larger for Cifar-10. The data

complexity of Cifar-10 is higher, increasing the difficulty of

defending, so that our specifically designed defense shows a

more pronounced advantage.

The achieved accuracy is close to the accuracy achieved

without attacks and defenses. For instance, for β = 0.5, the

accuracy without attacks and defenses is 82% for Fashion-

MNIST, which is less than 2% higher than the accuracy for

REFD for DFA-G. For DFA-R, the attack decreases the

accuracy by about 10%. For Cifar-10, the accuracy with and

without attacks are almost equal. Indeed, the accuracy with

attack and defense is insignificantly higher for some settings,

which is likely due to randomness.

Defending against other attacks. REFD is designed with

DFA in mind, as our goal is to show that we can defend

against data-free attacks. The design does not necessarily work

against all attacks. Here, we establish whether the defense can

nevertheless defend against Fang, LIE, and Min-Max attack

and compare it with the results for DFA.

The results are reported in Fig. 10. We also follow the setting

of 20% attacking proportion and compare the maximum global

model accuracy for the state-of-the-art defences and REFD. We

include the baseline accuracy with no attack and no defense

as the dashed line. From Fig. 10, we can see that REFD has

a good defending performance in general. However, it is not

always the best among the-state-of-the-art defenses. Specifically,

for LIE attack, REFD gets the best defending performance.

LIE shifts the true statistical features of the benign updates,

which can easily be caught by the balance value B of REFD.

Moreover, REFD also protects the model from Fang attack,

where it achieves the second best ranking on both datasets.

REFD works well for Fang since Fang updates malicious

models on the opposite direction, which causes low confidence,

i.e., low V . However, REFD is less effective against Min-Max

than other defenses, as Min-Max’s scaling technique should not

affect balance and confidence value much. In summary, REFD

protects well against data-free attacks presented in this paper

and can also protect against other attacks. However, it is not a

generic defense and hence should be applied in combination

with other defence mechanisms. It is also interesting to note

that with RefD, the global model accuracy can even be higher

than the baseline on Cifar-10. This result implies that RefD has

benefits in the presence of data heterogeneity in comparison

to FedAVG.

C. Overhead analysis for defense

The defense does not add any communication, so merely the

computation complexity is affected. The defense first evaluates

the local update of each client for each image in the reference

dataset, so the cost is O(|Dr|K) times the cost of evaluating the

update. Furthermore, the D-Score needs to be computed, which

is linear in O(|Dr|) as we compute the standard derivation

(for B) and the maximum (for V ) of O(|Dr|) values. Last,

we determine the clients with the smallest values, which has

complexity O(K). Overall, evaluating updates is of a lower

complexity than training new models, so the overhead is not

prohibitive and can be reduced by using a smaller set Dr.

VI. CONCLUSION

We propose DFA, the first data-free untargeted attack on

FL. Our results confirm that data-free attacks can be similarly

or even more effective than other attacks that require data or

benign updates, due to generating synthetic images to train

on that are particularly useful at steering the model into the

wrong directions. Furthermore, we design a defense strategy

REFD that effectively protects against the proposed DFA and

existing attacks by leveraging the statistics of model outputs

in predicting reference data. In the future, we want to explore

DFA on different data types, e.g., text, and check whether

combining synthetic and real data in an attack can improve

attack effectiveness and to what extent data is needed in a

defense.
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