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G U I D I N G L I G H T S

Il faut cultiver notre jardin.

Voltaire

Or set upon a golden bough to sing
To lords and ladies of Byzantium
Of what is past, or passing, or to
come.

W.B Yeats

The secret to modelling is not being perfect.

Karl Lagerfeld



A C K N O W L E D G E M E N T S

I would like to extend my sincerest thanks to my Supervisors Prof. Dr. Ir. Jan Kwakkel and
Prof. Dr. Ir. Igor Nikolic for both their academic and personal support. Without their time
and patience this project would not have reached completion and I would likely still be stuck
wandering the TPM faculty to this day. As a trio we shepherded this project through many
extended delays, at least three waves of COVID19, and a host of other personal and profes-
sional challenges. Throughout the process they were more like friends and colleagues rather
then overbearing supervisors, and I am incredibly grateful to have spent time under their
respective wings. I would also like to thank my family for their unending love and support,
without which I could, quite literally, not have completed this Master’s degree. This docu-
ment, and its corresponding examination, marks the end of a twenty two year long odyssey
in education, and I will be forever thankful to them for their support, and for setting me back
on my feet when I needed it most. My thanks to the Networks boys whose antics, voices, and
friendship was a balm during long nights in TPM. My thanks also to the Galway Braintrust
whose Wednesday power breakfasts provided motivation and succour throughout the winter
period. In conclusion, I would like to thank my girlfriend Maureen for the countless meals,
conversations, and hours spent dancing which helped shake off the effects of a day spent
computing.
. . .

v



A B S T R A C T

In light of worsening climate change and an increased interest in adapting infrastructure to
cope with its effects, model-based decision support has become an essential tool for policy
makers. In conditions of deep uncertainty, models may be used to explore a large space of
possible system behaviours and so encourage a wider consideration of the possible futures.
Such methods, where the focus is intentionally broad, fall under the remit of exploratory
modelling and are a potential antidote to traditional predictive modelling methods where
only a marginal treatment of uncertainty is attempted. One serious issue limiting the full
exploitation of exploratory modelling is its computational intensity, the many computational
experiments requiring large amounts on computing power which makes some analyses too
expensive to attempt. In order to fully exploit the promise of exploratory modelling new meth-
ods of reducing computational intensity are needed. Polynomial chaos expansions (PCEs) are
one class of methods which may fulfill this role. Our results conclusively demonstrate that
PCEs are capable of accurately reproducing statistical moments and determining Sobol sen-
sitivity indices significantly faster than direct-sampling methods, often requiring orders of
magnitude fewer function evaluations. However, we found that the curse of dimensionality
rendered conventional PCEs too costly for use with higher-dimensional models. We found
that conventional sparse grids were effective at reducing the computational cost associated
with fitting PCEs with high-dimensional models, as long as the model output was sufficiently
smooth. For models where sparse grids were able to converge with reasonable accuracy,
supplementing the PCCs with a modified Gersnter’s dimension-adaptive algorithm further
improved convergence times. The anisotropic refinement strategy employed by the algorithm
allows for accurate determination of Sobol sensitivity indices with a minimum of computa-
tional effort.
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1 I N T R O D U C T I O N

Exploratory modelling (EM) is a broad methodology which serves as a counterpoint to tra-
ditional predictive modelling approaches and can be used to augment model-based decision
support in the presence of irreducible uncertainties (Kwakkel and Pruyt, 2013). First pro-
posed by Bankes in his seminal 1993 contribution, the aim of exploratory modelling is to
understand and record the behaviour of a given model over a range of inputs by performing
computational experiments (Bankes, 1993). Such computational experiments are akin to a
’what-if’ analysis, and allow the modeller to investigate the impact of various assumptions on
the model’s behaviour and outputs.

The essence of the approach may be illustrated by considering a very simple model of dis-
ease spread in a population, where the number of infected individuals is assumed to grow
exponentially over time. The model consists of a single equation which depends on a single
growth parameter, α. The number of infected individuals at time t may be written as,

Nt = exp(αt)

The behaviour of the model is determined by the value for α which is assumed by the mod-
ellers. A traditional modelling approach would mandate assuming a value for α based on the
best available information and running the model to collect results. Any uncertainty in the
value of α will lead to uncertainty in the model’s outputs, reducing the accuracy of the results.
In our example, in the early stages of an epidemic there may be little or no information as
to the growth parameter of the disease so any assumption will come with large uncertainty.
Instead of estimating a value based on possible incomplete data, the modellers could instead
turn to exploratory modelling, and investigate how the model output changes for different
values of the growth parameter α, sampled over a large range. In this respect, exploratory
modelling allows the modellers to investigate a range of ’worlds’ typified by different values
for α.

Figure 1.1 shows the results of a computational experiment where the model was run for
different values of the growth parameter. It is immediately clear that the number of new
daily infections is highly sensitive to the value of the growth parameter, with small changes
in α leading to large changes in model behaviour as reflected in the number of new daily
infections. The sensitivity of the model output to changes in the growth parameter indicate
that the accuracy of the results relies on minimising uncertainty in the value of α as much
as possible. In the face of such parametric uncertainty, the modelling team may use their
new-found knowledge on the complete behaviour of the model to guide their response to the
epidemic. For instance, they could plan for the worst-case scenario, corresponding to α = 3,
or employ a wait-and-see approach, hoping that the growth parameter is lower. In the face of
uncertainty, exploratory modelling allows for a more holistic understanding of the different
world-states that can be produced by the model without an over-reliance on assumptions.

1



introduction 2

Figure 1.1: Figure showing the time evolution of new infections for our basic epidemiological model.
The model is ’run’ for each of the values for α pictured in the level, with significant changes
in behaviour observed for variation in the growth parameters.

While in our example we only had to deal with a single uncertain parameter, it is not uncom-
mon for decision support models to have very large numbers of uncertain parameters, each
of which may have to be sampled over a large range in an exploratory modelling study. An
example of a two-dimensional uncertainty space is illustrated in Figure 1.2. The model is run
for different points in the uncertainty space which specify a value for each of the uncertain
parameters. Sampling from such a large, multi-dimensional uncertainty spaces can quickly
become computationally prohibitive, with computational time scaling exponentially with the
number of dimensions (Gerstner and Griebel, 2003). This phenomenon is known as the curse
of dimensionality and specifically refers to the exponential scaling of hyper-cube volume with
increasing dimension (Verleysen and François, 2005). If the object of EM is to investigate the
behaviour of a model for each point in an uncertainty space then the time required for such
a study increases exponentially with the dimension of the space.

This computational bottleneck is a serious barrier to the wider implementation of exploratory
modelling in service of policy design, particularly for organisations with limited computa-
tional resources. In order to further support the growth of robust policy design, new methods
for managing the computational cost of high-dimensional exploratory modelling projects are
needed.

Polynomial Chaos Expansions (PCE), a surrogate modelling approach to the sensitivity anal-
ysis of computational models, have the potential to reduce the computational intensity asso-
ciated with EM projects. Surrogate, or meta-modelling, involves approximating the output
of model with some appropriate mathematical structure (Sobester et al., 2008). This is equiv-
alent to finding a function, which when fit to a certain number of model input-output pairs
serves as a replacement, or surrogate, for the model itself. A sufficiently good surrogate
model may then be used to calculate accurate output values for a given input without having
to run the model itself, potentially reducing the computational intensity of the study. The
concept is illustrated in Figure 1.3. PCEs can be used to approximate the response of a model
with stochastic inputs. In the context of exploratory modelling, the uncertainty associated
with a model’s input parameters may transform a deterministic model into a stochastic one.
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Figure 1.2: Figure showing a two dimensional uncertainty space and an exemplar sampling plan. In
this example, the uncertainty ranges for each parameter are indicated on the corresponding
axis. An example sampling plan is indicated by the blue points. The model which depends
on the parameters in this space would be run for each point in the parameter space. The
sampling plan can be made arbitrarily dense to better cover the uncertainty space.

Once the PCE has been fit with a certain amount of data from the model, the fitted PCE itself
may be used as an accurate surrogate of the model. In addition to the aforementioned com-
putational time advantages of surrogate modelling, PCEs have also been favoured owing to
the ease with which they can be used to ’cheaply’ calculate Sobol sensitivity indices (Sudret,
2008).

Sensitivity analysis involves assessing the influence that uncertainty in the input parameters
have on uncertainty in the model output (Saltelli et al., 2008). A thorough sensitivity analysis
is central to good modelling practice and is a central sub-method of EM . The example illus-
trated in Figure 1.1 achieves a basic sensitivity analysis in that it can readily be observed how
sensitive the model is to uncertainty in the growth parameter α.

Figure 1.3: Figure showing a representation of a response surface for a two-factor model. The surface
in the above model is approximated by a tessalation of planes, in a process not dissimilar
to the interpolation of a smooth function by polynomials.
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Figure 1.4: Figure showing a two-dimensional anisotropic sampling plan for two uncertain variables,
α and β. The anisotropy is manifested in the direction dependent sampling density.

PCEs have been supplemented in the literature through the use of a dimension-adaptive sam-
pling schemes, first developed by (Gerstner and Griebel, 2003) for the integration of high-
dimensional integrals (Edeling et al., 2021). Dimension-adaptive sampling aims to reduce the
computational cost associated with computing high dimensional integrals by concentrating
function evaluations on dimensions where the greatest resolution is required. With respect to
fitting PCEs, a process equivalent to integration, such an algorithm may be used to construct
an anisotropic-grid where certain dimensions are sampled at higher densities than others. An
example of such a grid is shown in Figure 1.4. The combination of both methods shows
promise for executing sensitivity analysis for large numbers of uncertain parameters where
traditional pseudo-random methods are computationally prohibitive (Edeling et al., 2021).

1.0.1 Research gap

The potential of exploratory modelling as a method class for supporting model-based decision
making is hampered by the curse of dimensionality. Decision makers and modellers without
access to high-performance computing resources are unable to fully leverage the power of
exploratory modelling to better understand the behaviour of their models under situations
of deep uncertainty. In order to realise the potential of EM, new methods of mitigating the
exponential cost scaling of high-dimensional models are needed. Polynomial chaos expan-
sions have been highlighted in the literature for their ability to model the output of stochastic
models. Particularly with respect to sensitivity analysis, they have been shown to converge
significantly faster than pseudo-random and brute-force methods for problems with moder-
ately low-dimensions. Studies which have aimed to assess the performance of PCEs under a
range of conditions and test functions, have so far concentrated mainly on low-dimensional,
’well-behaved’ analytical test functions. In addition, although there is precedent in the liter-
ature for the supplementation of PCEs with dimension adaptive sampling, there has been
little focus on applying the combined methods to complex policy models. Before these novel
methodologies are adopted by the EM field, a more rigorous examination of their fitness is
needed on problems which are more representative of those commonly approached in the



introduction 5

field where many-dimensional, highly non-linear and non-smooth models are the norm.

1.0.2 Reseach questions

In order to address the research gap illustrated in the previous section, the following research
questions have been formulated:

MRQ: How can polynomial chaos expansions with dimension adaptive sampling be
applied to decrease computational cost in exploratory modelling projects?

1. What are the relevant features of polynomial chaos expansions and how may they be
employed in exploratory modelling projects?

2. How can dimension-adaptive sampling be used to facilitate faster convergence of poly-
nomial chaos expansions?

3. Which measures of performance may be used to evaluate the efficacy of these methods
in exploratory modelling projects?

4. What is the relative efficacy of these methods versus other best-in-class algorithms?

1.0.3 A note on the research approach

The research questions defined above constitute a logical and summative decomposition of
the main research question. Answering each in turn should contribute to satisfactorily an-
swering the main research question. Although the sub-questions are related, their individual
nature necessitates a tailored research approach.

As a cohesive research plan, the phases outlined below form a mixed-methods research project,
with a focus on the quantitative evaluation of a novel class of algorithms. Phases I - II will
consist of desk research, with the aim of building an epistemic foundation for the quantitative
portion of the study. In Phase I, the theoretical basis for both polynomial chaos expansions
and dimension-adaptive sampling will be explored and the relevant features elaborated. This
includes their mathematical construction, as well as their implementation as computer algo-
rithms. In addition, the existing use-cases of these methods in adjacent fields of study, as well
as their likely role in EM, will be explored.

Phase III will elucidate the relevant performance measures according to which the novel meth-
ods will be judged, as well as ascertaining which existing algorithms they should be judged
against. In this respect, Phase III aims to delineate the relevant experimental parameters, test
problems, and contexts under which the performance of the novel algorithms will be evalu-
ated.

Phase IV forms the quantitative centre of this study since it will provide data as to the per-
formance of the algorithms against others in the field. The results gained in this phase will
allow for a conclusion to be made as to value of polynomial chaos expansions with dimension-
adaptive sampling for exploratory modelling applications.
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1.0.4 Research flow

The character of the research sub-questions and the research methods required to answer
them split the research project into three distinct phases, illustrated in 5.3.

Research question Research method
Phase I 1,2 Literature review
Phase II 3 Exploration & Experimental design
Phase III 4 Experiments and analysis

Table 1.1: Outline of the given project phases and research methods.

Phase I - Exploration: The algorithms, their structure, features, and applications

Phase I aims to assess the literature surrounding both polynomial chaos expansions and
dimension-adaptive sampling methods. In answering sub-questions one and two it will or-
ganise the existing literature and terminology of the field, will form the epistemic foundation
of the research project, and will contribute the knowledge necessary to implement them in
the quantitative portion of the study. The main deliverable of this research phase will be
a literature review and a detailing of the relevant mathematical foundation . As such, this
phase constitutes a desk research phase.

Aspects to be examined in this phase are: the mathematical bases of both methods, as well as
where they are positioned in their original fields of study, how they are usually implemented
as algorithms, and the problems they are usually used to address. Based on the existing use-
cases identified in the literature review a proposition will be made as to how the algorithms
may contribute to solving issues which arise in EM projects.

Phase II - Exploration: The experimental arena

Phase II involves the task of constructing the set of computational experiments which will be
used to evaluate the efficacy of both algorithms. Relevant measures of performance will be
selected with justification from the literature regarding both the orthodox use of PCE+DAS,
as well as its proposed use in EM projects.

A set of test-problems will be found which are representative of the ’real-world’, high-dimensional,
and non-smooth policy models which are commonly approached through the use of EM. In
order to provide for the widest possible applicability of our results, these models should be
chosen such that the measures of performance can be determined under a number of dif-
ferent contexts, for example, with varying model dimension or complexity. To achieve this
condition, it may be required to use more than one test-problem

The main data source for this phase will be the literature which implement PCE and DAS
for use with various models, as well as the exploratory modelling literature which deals with
similar problems.

Where we seek to implement PCE+DAS for the sensitivity analysis of high-dimensional mod-
els, the computational experiments will involve the computation of first, second, and total-
order Sobol sensitivity indices for each of the model parameters. Relevant performance mea-
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sures in this case include the speed of convergence as measured by the number of function
evaluations until a pre-defined halting condition is reached. In the case a model is used for
which the Sobol indices are known a priori an error metric can be calculated. Where an error
measure can be computed it will be of interest to examine the trade-off between computa-
tional speed and accuracy as illustrated in (Crestaux et al., 2009).

On a practical level the algorithms will be implemented in this phase in accordance with the
experimental design and factors determined through the literature review.

Phase III: Experimentation - ’A fight to the ϵ’

Phase III forms the quantitative heart of the study and aims to assess the performance of the
novel algorithms implemented in Phase II.

The algorithms will be assessed according to the performance measures decided on in Phase
II under the different experimental contexts.



2 R E L AT E D W O R K

2.1 sensitivity analysis

The field of sensitivity analysis (SA) encompasses a range of methods for evaluating how
the output of computational models are affected by changes in their inputs (Razavi et al.,
2021). Such models are subject to different types of uncertainty from epistemic, to ontic, and
Knightian or deep uncertainty, each of which may propagate through the model and effect
the model output (Pruyt and Kwakkel, 2014). Specifically, sensitivity analysis is concerned
with assessing how uncertainty in the output of a model can be apportioned to different
sources of uncertainty in the model input (Saltelli et al., 2004). In decision support, SA has
been identified as an essential step in the modelling process, since it affords a more complete
understanding of how ever-present uncertainty affects the model output, and by extension,
the fidelity of the model on which policy designs and decisions may be based (Razavi et al.,
2021), (Saltelli et al., 2000).

In general, sensitivity analysis methods use parameter value sets which are defined a priori
and for which the model is evaluated. A variety of sampling methods may be used to select
the parameter values (Santner et al., 2003). Pseudo-random sampling methods such as MC
and qMC are immune to the the curse of dimensionality and are therefore favoured for prob-
lems with high-dimensional input parameter spaces.

One of the most widespread SA methods is that of variance-based or Sobol sensitivity anal-
ysis, which apportions variance in the model output to the uncertainty in the model inputs
(Sobol, 1993). Although popular, owing to its interpretability, and its capacity to deal with
interaction effects between parameters, Sobol sensitivity analysis is computationally expen-
sive, which serves as a barrier to its widespread adoption in non-computational fields. While
pseudo-random methods do not suffer from the curse of dimensionality directly, they never-
theless converge slowly for models with high-dimensional parameter spaces (Gerstner and
Griebel, 2003). For teams with no access for high-performance computing resources such a
bottleneck serves to limit the size of the SA campaigns which can be undertaken.

This bottleneck may be side-stepped by using a meta-modelling or surrogate modelling ap-
proach, where the Sobol indices are computed from a meta-model with fewer model evalua-
tions than with direct sampling methods (Sudret, 2008). Polynomial Chaos Expansions (PCE)
are one such meta-modelling approach which have been used in a wide-range of domains for
executing SA and UQ campaigns (Edeling et al., 2021), (Loukrezis et al., 2019).

8
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2.2 polynomial chaos expansion

PCE expansions, first introduced by Wiener, can approximate any second-order random vari-
able with a series of polynomials in centered, normalised random variables (Wiener, 1938)
(Xiu and Karniadakis, 2002). With respect to simulation models, this is equivalent to project-
ing the model output joint probability density function onto a basis of orthogonal stochastic
polynomials over the random inputs (Xiu, 2010). The main advantage of the method is its
convergence speed when compared against the direct sampling approaches outlined above
(Crestaux et al., 2009). The coefficients of the PCE are determined by requiring that the meta-
model equal the actual model output at a certain number of points. As such, the model
output can be well approximated using an order of magnitude fewer model evaluations than
standard MC methods in some experimental contexts (Crestaux et al., 2009). A further ad-
vantage of PCE is that the Sobol indices may be deduced directly from the coefficients of the
PCE, making it ideal for the sensitivity analysis of complex simulation models which would
be costly to adapt for a secondary analysis (Edeling et al., 2021).

The construction of the meta-model from orthogonal polynomials allows for the determina-
tion of the expansion coefficients by taking the inner-product of the joint probability distribu-
tion with the polynomial corresponding to a given dimension. The inner-product may then be
computed by integration to yield the expansion coefficients. Since the analytical integration of
such expressions is non-trivial, the multivariate integrals are usually computed numerically
using a quadrature rule such as nested 1D Gaussian quadrature. The use of PCEs for SA then
depends on the evaluation of the following integral for each of the input parameters, k,

Ik ≈
∫

Y(ξ)Ψk(ξ)p(ξ)dξ (2.1)

where Y(ξ) is the output polynomial, Ψk(ξ) is the polynomial basis, and p(ξ) is the joint
distribution of the input uncertainties.

For a single parameter, an approximation of level l requires the function to be evaluated
l times and for d parameters, each approximated to level l, requires ld evaluations. In this
respect PCEs suffer from the curse of dimensionality, since the number of function evaluations
scales exponentially with the dimension of the input space, potentially limiting their use on
models with more than around 10 input parameters (Crestaux et al., 2009). In this context,
the curse of dimensionality is defined by the exponential scaling of the integration error that
is made by a quadrature rule of level l with Nl points,

El = O(N
−r
d )

where d is dimension and r is the regularity of the function (Gerstner and Griebel, 2003).

Whereas PCEs have been found to converge significantly faster than direct-sampling methods
for d < 20, they begin to struggle with higher-dimensional problems (Crestaux et al., 2009).
Therefore, where PCEs are considered as a potentially useful sensitivity analysis method for
exploratory modelling purposes, especially where factor prioritisation and fixing are con-
cerned, this represents a considerable limitation to their application.

The computational intensity of PCEs arises specifically from the form of the quadrature
scheme used to approximate the integrals represented by equation 2.1. A 1D Gaussian quadra-
ture scheme of level l requires l function evaluations. In approximating multi-dimensional
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Figure 2.1: The above table well illustrates how the curse of dimensionality arises when applying
Clenshaw Curtis quadrature to high-dimensional spaces. With a constant quadrature level
of 4 for each dimension, the number of function evaluations explodes and quickly becomes
prohibitive for even modestly dimensional spaces. The table shows values for hierarchical
finite-element bases. The sparse grid approach samples at significantly fewer points and
so dodges the curse.

integrals, where each dimensions is approximated by 1D quadrature schemes at the same or-
der the number of function evaluations required scales with O(Nd), quickly making the cost
of such computations unfeasible in situations where computing power or time is limited. The
existence of this curse is the reason for ubiquity of Monte-Carlo (MC) methods in numerical
integration applications. With MC methods, the function is evaluated at pseudo-randomly
chosen points and the integrand is approximated as the average of the function values. Al-
though MC methods do not suffer from the curse of dimensionality, their computation time
scaling with the square-root of dimension, they are still too slow for problems with even mod-
est numbers of dimensions (Gerstner and Griebel, 2003). Quasi-Monte Carlo methods (QMC)
use low-discrepancy sequences to generate the evaluation points and as such converge sig-
nificantly faster than pure MC methods. Nevertheless, QMC methods suffer a logarithmic
dependence on dimension, limiting their use for high-dimensional problems.

The sparse-grid approach, pioneered by Smolyak, attempts to bypass the curse of dimen-
sionality by taking advantage of the smoothness of the integrands (Smolyak, 1963). With
this approach, the multi-variate integrand is evaluated using quadrature formulas which are
constructed from tensor-products of 1D, or univariate, quadrature formulas. The quadrature
level l for each dimensions is tracked through the use of a multi-index (Bungartz and Griebel,
2004). The sparse-grid approach results in a less fine-grained sampling of the input parameter
space and is therefore less computationally intensive. An example of a sparse grid is shown
in figure 2.2 alongside a full or Cartesian grid.
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Figure 2.2: The above diagram well illustrates the difference between a full (left) and sparse grid (right)
for R2. The full Cartesian grid is a product rule space with each dimension sampled at
the same level of refinement. The sparse grid is a tensor-product space where only rules
whose indices are on the unit simplex are considered.

2.3 adaptive sparse grids

The ’full-grid’ sampling plan described above, where each dimension is numerically inte-
grated at the same level, implicitly assumes that each of the dimensions are equally important.
With respect to sensitivity analysis, this is equivalent to assuming that each uncertain input
has a significant influence on the output variance. In reality, such models usually exhibit a
lower effective dimension, a result of the sparsity of effects principle (Box and Meyer, 1986).
The use of sensitivity analysis for factor fixing is predicated on the principle that a relatively
small proportion of the input variables will have a disproportionately large influence on the
output variance (Saltelli et al., 2008).

If the relative importance of the various dimensions was known a priori, then function evalua-
tions could be concentrated on those dimensions which confer the largest gain in approxima-
tion accuracy. This is achieved in practice by increasing the level of the cubature scheme in
those dimensions which are determined to be of greater importance. Griebel et al. proposes
one such scheme, a generalisation of Smolyak’s sparse grid approach, where the quadrature
order of important dimensions is adaptively increased, while less important dimensions are
evaluated using lower level quadrature rules (Gerstner and Griebel, 2003).

In the scheme proposed by Griebel et al. the multi-index is first populated with zeros, indi-
cating that each dimension is integrated with zeroth-order, or level-one, quadrature rules. A
’look-ahead’ step is then performed during which a local error measure is calculated. The
dimension which confers the largest decrease in approximation error has its index value in-
creased by one, indicating a higher-order level of quadrature. In this way the dimensions to
which the model output variance is most sensitive will be sampled in detail while unimpor-
tant dimensions will be sampled to a lower order degree. This dimension-adaptivity serves to
significantly decrease the computational intensivity of such numerical integration problems.

Authors in the literature from a variety of fields have applied the adaptive sparse-grid ap-
proach of (Gerstner and Griebel, 2003) to solve a range of high-dimensional modelling prob-
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lems. (Brumm and Scheidegger, 2017) utilised an adaptive-sparse grid approach to solve a
dynamic stochastic model with over 100 dimensions. In a departure for the now standard
’look-ahead’ algorithm of (Gerstner and Griebel, 2003), (Dwight et al., 2016) suggest using
sparse grids to compute Sobol indices directly and subsequently refining the sampling for
those input parameters with the largest Sobol indices. Their algorithm mitigates the compu-
tational cost of the look-ahead step by allowing the refinement of more than one dimension
during each step. This ’grouping’ approach was also implemented by (Bungartz and Dirnstor-
fer, 2003) albeit using a local error measure rather than Sobol indices. Their results suggest
that around 10% of the candidate index values should be chosen for refinement for problems
with less than 10 dimensions and 2-5% for significantly larger D. Dimension-adaptivity also
finds use in the related method class of interpolation where it has been applied to power flow
calculations (Tang et al., 2015).

2.4 supplementation of pces with dimension-adaptive sparse
grids

Given the aforementioned issues approximating high-dimensional probability density func-
tions with PCEs, the use of sparse and adaptive grid schemes has been examined in the
literature. One such project, the study of (Edeling et al., 2021) utilises PCEs with DAS for un-
certainty quantification of the CovidSim epidemiological code. Their UQ campaign analysed
the effect of 60 input parameters, and found a subset of 19 parameters to which the code was
most sensitive. Uncertainty in these parameters was found to be magnified in the outputs by
300%. The study of (Edeling et al., 2021) is in the vein of traditional sensitivity analysis, as
the authors sought to establish the extent to which the output of a large, complicated model
was dependent on uncertainty in a small subset of its parameters(< 10%). Other groups have
implemented the combined methodology for UQ in solid-rocket motor models as well as for
the calculation of robustness metrics in airfoil optimisation problems (Fang et al., 2019) (Li
et al., 2019).



3 B A C KG R O U N D T H E O R Y

3.1 sensitivity analysis

The field of sensitivity analysis (SA) encompasses a range of methods for dealing with the
presence of uncertainty in simulation models (Razavi et al., 2021). Such models are subject to
different types of uncertainty which may propagate through the model and affect the model
output (Pruyt and Kwakkel, 2014). Specifically, sensitivity analysis is concerned with assess-
ing how uncertainty in the output of a model can be apportioned to different sources of
uncertainty in the model input (Saltelli et al., 2004). Since complicated mathematical models
have become an essential part of the modern scientific toolkit, it is necessary to understand
how the presence of uncertainties in the model inputs affect the model outputs. Inputs of
interest are referred to in the literature as ’factors’, a term inherited from closely related field
of Design of Experiments (Santner et al., 2003).

In the practice of systems modelling, SA aids the researcher in understanding a number of
fundamental system properties as they are formalised in the model, such as the exploration
of how different parameters, boundary conditions, and processes affect the output of a model
(Razavi et al., 2021). For models with large numbers of input dimensions SA can also be
used to identify less influential dimensions, which may then be removed or fixed to a certain
value during subsequent analysis , a process known as model order reduction (Tarantola et al.,
2007). Finally, in decision support, SA has been identified as an essential step in the modelling
process since it affords a more complete understanding of how ever-present uncertainty af-
fects the model output, and by extension, the fidelity of the model on which policy designs
and decisions may be based (Razavi et al., 2021) (Saltelli et al., 2000). The importance of SA
in such contexts is well exemplified by the work of (Edeling et al., 2021), who executed a SA
campaign on Imperial University’s CovidSIM, the UK’s primary epidemiological model used
to guide their response to the COVID19 pandemic of 2020 and 2021. Edeling et al. found that
of the 940 free parameters which specified the structure of the model, uncertainty in a subset
of 19 parameters were most influential, with uncertainty in these parameters magnified by
300% in the model output. SA methods exploit the so called ’sparsity of factors’ principle, a
heuristic which states that often it is only a small subset of factors which have a significant
effect on a given model output (Box and Meyer, 1986).

There are two broad classes of sensitivity analysis methods, local and global. Whereas local
sensitivity analysis is concerned with how a model’s output is affected by small perturbations
in a parameter’s value around a certain fixed point, global methods vary the input factors si-
multaneously and sample each over its complete range. As such, global methods afford a
more complete picture of the sensitivity landscape of a model. Within global sensitivity anal-
ysis there are a range of distinct methods, each of which fulfill the goals of SA in a different
way. In the sequel we focus on the variance-based approach to SA, which aims to decompose
the variance of a model’s output distribution and attribute it to variance in the model’s inputs.

13
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3.1.1 Variance-based sensitivity analysis

Variance based sensitivity analysis, or Sobol sensitivity analysis, after its progenitor Ilya Sobol,
decomposes a model’s output variance and attributes it to variance, or uncertainty, in the
model’s inputs (Sobol, 1993). As an example, consider a model with two uncertain inputs
and a single output. It might be the case that, following a SA campaign, we find that 60% of
the model’s output variance is caused by the variance of the first input, 20% by the variance
of the second, while the remaining 20% is due to interactions between the two. According
to Sobol’s method, these fractional variances can be directly interpreted as measures of sensi-
tivity, describing both the main, and higher-order effects a given factor has on the output of a
model. In order to illustrate the method more completely, and to lay the theoretical founda-
tion for subsequent sections we will now derive Sobol’s decomposition as laid out by (Saltelli
et al., 2008). In the following, the terms input variable and factor are used interchangeably to
refer to the same thing.

Consider a generic model f of the form,

Y = f(x) (3.1)

where x = {x1, ..., xd}T ∈ Rd is the finite vector of deterministic input variables and Y =

{y1, ...yq}T ∈ Rq is the vector of quantities of interest which the model provides, referred to in
the sequel as the model-response. For the purposes of this derivation we will assume that the
model output is uni-variate, corresponding to a single output quantity of interest. The model
then maps Rd −→ R.

We now account for parametric uncertainty in f by assuming that the input parameters are
stochastic variables. The model input then becomes a random vector, ξ = {ξ1, ...ξd}T ∈ Rd.
Since the model output depends on these stochastic input variables, the model output Y(ξ)

may itself may be treated as a stochastic variable of unknown form and dimension q. For the
purposes of this derivation we will assume that the model output is uni-variate, correspond-
ing to a single output quantity of interest. The extent of the variance of Y(ξ) is a measure of
the uncertainty in the model output caused by uncertainty in the model inputs.

For the sake of readability, we denote the now random input variables by x in place of the
usual ξ and request that the reader keep in mind that the variables contained in the vector x
are functionals, rather than real-valued numbers. Each input variable has a non-zero range
of variation, corresponding to the assumed parametric uncertainty surrounding that input.
We now ask what would happen to the uncertainty in Y(x) if we were to fix a factor, xi at a
particular value, given by x∗i . Let Vx∼i(Y|xi = x∗i ) denote the resulting variance of Y taken
over x∼i, all factors except xi. Vx∼i is termed the conditional variance, as it is conditional
on the fixing of uncertain parameter xi to a specific value x∗i . It is tempting to think that
this quantity might serve as an appropriate measure to quantify the sensitivity of our model
output to the variable xi, since the smaller Vx∼i the greater the presumed contribution of
varying xi alone to the total variance of the output; however, such a measure would depend
on x∗i only, the specific value to which the parameter was fixed. In order to determine a
metric which accounts for all possible values over the range of xi we take the average of the
conditional variance over the same range. This may be expressed as,

Exi [Vx∼i (Y|xi)] (3.2)
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where Exi is the empirical mean, or expectation value, of Vx∼i over the range of xi.

We may apply the law of total variance to yield,

Exi [Vx∼i (Y|xi)] + Vxi (Ex∼i [Y|xi]) = V (Y) (3.3)

The above expression shows that a small Exi [Vx∼i (Y|xi)] or a large Vxi (Ex∼i [Y|xi]) will imply
that xi is an influential factor. The conditional variance Vxi (Ex∼i [Y|xi]) is then the first-order
effect of variation in xi on the variance of the model output, Y. We may then define a sensi-
tivity measure,

Sxi =
Vxi (Ex∼i [Y|xi])

V(Y)
(3.4)

which is known as the first-order Sobol sensitivity index of variable xi on Y, with higher
values indicating a more influential variable. Since it follows from the equation above that
Vxi (Ex∼i (Y|xi)) ≤ V(Y), Sxi takes a value between 0 and 1. In the rest of the document we
use S1 to denote the first-order Sobol sensitivity index of a given variable.

Computing S1 for each model variable will allow us to rank each variable by its main, or first-
order, effect on the variance of the output. That is, the expected change in output variance by
fixing each valuable alone, averaged over their ranges. In order to derive an expression for
second-order effects, we may ask, what portion of the output variance is conditional on the
values of two variables taken together? Replicating out expression for S1(xi) we have,

V(E[Y |xi, xj])

V(Y)
(3.5)

for i ̸= j. Here we have dropped the subscripts from both the variance and expectation
operators since it should be clear that the range over which we apply the inner operator is
the same as that over which we apply the outer two operators, ie we write V(· · · ) instead of
Vxixj . If we calculated the expression in equation 3.5 for two factors in a given non-additive
model we would find that the following holds,

V(E[Y |xi, xj])

V(Y)
> Sxi + Sxj (3.6)

The above inequality implies that the second-order effect cannot be written as a superposition
of the separate main order effects of xi and xj. To account for discrepancy we introduce a term
representing this higher-order effect.

V(E[Y|xi, xj]) = Vi + Vj + Vij (3.7)

where

Vi = V(E[Y|xi]) (3.8)

and,

Vj = V(E[Y|xj]) (3.9)

Dividing both sides of equation 3.7 by the variance of the model output V(Y) and rearrang-
ing yields an expression for the second-order Sobol sensitivity index of xi and xj on Y. Just
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as it is possible to calculate the first-order Sobol indices for each variable in a model, so too
is it possible to determine the second-order index of any two variables. Naturally, the only
proviso for the presence of a second-order effect is that the model output is influenced by at
least two factors. In general, for a model with k-factors there are,

(
k
2

)
(3.10)

second-order interactions for which we can calculate a second-order Sobol sensitivity index.
The same process of conditional variance can be followed to derive expressions for succes-
sively higher-order interaction effects. As the order of the interaction is increased, we expect
the calculated terms to account for a smaller amount of the output variance, as suggested by
the sparsity of effects principle (Box and Meyer, 1986). This fact, of generally diminishing
’returns’ with the addition of higher-order terms, as well as each index being normalised to
the total variance, is naturally suggestive of approximation by expansion. In calculating each
Sobol sensitivity index for each factor, or group of factors, we are attempting to fully account
for the variance of the output by apportioning it to variance in the model’s input factors. If
we followed the logic of the above expressions and attempt to sum each the Sobol indices of
each order for each model factor we would have the following,

∑
i

Si + ∑
i

∑
j>i

Sij + ∑
i

∑
j>i

∑ l > iSijl + · · ·+ S123···k = 1 (3.11)

for a model with k-factors.

We address this similarity more completely in the next section where we examine how a
given output distribution can be fully decomposed into partial variances attributable to dif-
ferent factors.

3.1.2 Sobol’s decomposition

Taking our original stochastic model as a starting point,

Y = f(x) (3.12)

where the model output Y(x) is a scalar, and each of the input factors are independent ran-
dom variables with known probability distributions which characterise our uncertainty about
their value.

Sobol’s innovation was to formulate a square integrable function f defined over the domain
of the k-dimensional unit hypercube, Ωk,

Ωk = (X|0 ≤ xi ≤ 1; i = 1, · · · , k) (3.13)

Sobol proposes decomposing the function f into a finite series of successively higher-dimension
terms where each of the constitutive function are also square-integrable over the domain of
Ωk, and each term is only a function of the factors which appear in its index, for example,
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fi = f (xi) and fij = f (xi, xj). The expansion may be written as,

f = f0 + ∑
i

fi + ∑
i

∑
j>i

fij + · · ·+ f12···k (3.14)

The decomposition has 2k terms, the first of which, f0, is a constant, followed by k first-order
terms, (k

2) second-order terms and (k
n) terms of order n. Such an expansion is termed a high-

dimensional model representation and is non-unique. If we attempt to represent the output
of a model Y(x) with the above expansion, the link with our previously derived expressions
becomes clear.

The following orthogonality relation holds for any two summands in the decomposition,∫
Ωk

fi1···ix(xi · · · ) f j1···jx(xj · · · ) = 0 (3.15)

The mutual orthogonality of the expansion terms allows us to calculate their values using the
conditional variances of the model output. For example, applying the standard expression
for the expectation value of a continuous variable we have,

E[Y(x)] = fo

∫ 1

−1
Y(x)dx = f0 (3.16)

Since, by construction, each term in the expansion is orthogonal to the model output, the rest
of the terms in the above computation reduce to zero, leaving us with an expression for f0,

f0 = E[Y(x)] (3.17)

which may be empirically determined.

Similarly, for the higher order terms we have,

fi = E[Y|xi]− E[Y(x)] (3.18)

and

fij = E[Y|xi, xj]− fi − f j − E[Y(x)] (3.19)

Representing each term in the decomposition as the conditional expectation of the model re-
sponse yields the expression from equation 3.14 and we find that the variances of each term
in the decomposition are the sensitivity measures which we desire.

∑
i

Si + ∑
i

∑
j>i

Sij + ∑
i

∑
j>i

∑
l>i

Sijl + · · ·+ S123,··· ,k = 1 (3.20)

3.2 polynomial chaos expansions

3.2.1 Mathematical basis

In essence, polynomial chaos expansions approximate any second-order random variable as
an infinite series of polynomials in normalised Gaussian variables. Given a second-order
random variable Y, and an infinite set of orthogonal random variables {ξ}∞

1 we may write,
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Y(ξ) =
∞

∑
k=0

αkΨk(ξ), ξ = {ξ1, ξ2, ...} (3.21)

where αk are the expansion coefficients and Ψk(¸) are the orthogonal basis polynomials in
each of the random variables, which are held in the random vector, ξ.

More rigorously, we define a space Ω of random events and Θ, the space of functionals
which map the elements ω ∈ Ω to a value in R. A random variable is therefore the function
θ : ω ∈ Ω 7→ R. Let {ξi}∞

1 be an infinite but countable set of independent normalised
Gaussian variables. The PC expansion of a second-order random variable is then,

Y(ξ(ω)) = a0Γ0 +
∞

∑
i1=1

ai1 Γ1(ξi1(ω)

+
∞

∑
i1

i1

∑
i2=1

ai1i2 Γ2(ξi1(ω), ξi2(ω))

+
∞

∑
i1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3 Γ3(ξi1(ω), ξi2(ω), ξi3(ω)) + · · ·

(3.22)

where Γp is the set of all polynomials of order p in the random variables {ξi}∞
1 and is called

the polynomial chaos of order p. The above expression demonstrates that the PC of order p is
the set of all polynomials of degree p in all possible combinations of the random variables in
{ξi}∞

1 . Grouping the terms in the expansion according to their polynomial families Ψk where
there is a one-to-one correspondence between Γ(· · · ) and Ψ(· · · ), returns us to the original
expression,

Y(ξ) =
∞

∑
k=0

αkΨk(ξ), ξ = {ξ1, ξ2, ...} (3.23)

In equation 3.23 we have dropped the symbol ω from out notation and will continue with
this notation for the rest of the document. The inclusion of the symbol ω is intended to rigor-
ously account for the character of the random variable ξ as a function defined over a space of
random events. With this point made we continue with the derivation.

Since the random variables in ¸ were defined to have Gaussian distribution functions, the
expansion given above is a homogeneous chaos expansion as originally defined by (Wiener,
1938). As such, it employs Hermite polynomials in terms of the Gaussian random variables as
basis functions for the expansion (Xiu and Karniadakis, 2002), where the general expression
for Hermite polynomials of order n in all random variables is,

Hn(ξi1 , · · · , ξin) = e
1
2 ξTξ(−1)n ∂n

ξi1 · · · ξin

e−
1
2 ξTξ (3.24)

While the Hermite-chaos expansion as defined above is effective in approximating stochastic
variables using Gaussian inputs, its convergence suffers with non-Gaussian inputs. Where
the order of the expansion is to be truncated for application in computational studies this will
adversely affect the ability of finite PCEs to approximate variables of interest.

In order to deal with more general random inputs (Xiu and Karniadakis, 2002) introduced
the Wiener-Askey polynomial chaos, where the approximating polynomials are not restricted
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Random variables ξ Wiener-Askey Chaos {Ψ(ξ)} Support
Continuous Gaussian Hermite-chaos (− inf, inf)

gamma Laguerre-chaos [0, inf]
beta Jacobi-chaos [a, b]

Uniform Legendre-chaos [a, b]
Discrete Poisson Charlier-chaos {0, 1, 2, · · · }

binomial Krawtchouk-chaos {0, 1, 2, · · · , N}
negative binomial Meixner-chaos {0, 1, 2, · · · }
hypergeometric Hahn-chaos {0, 1, 2, · · · , N}

Table 3.1: The correspondence between the input variable type and the corresponding polynomial
chaos. The supports for each polynomial family are also given. Since each of the polyno-
mial families form a complete Hilbertian basis they can be expected to converge to any L2
functional in the L2 sense for their respective variable types as a result of the generalised
Cameron-Martin theorem. Of interest to sensitivity analysis applications is the uniform dis-
tribution which assumes no prior knowledge of the form of the parametric uncertainty and
is well approximated by Legendre polynomials. Proper table here

to Hermite polynomials. Instead, they can be any type of orthogonal polynomial from the
Askey scheme where input random variable types are matched with the polynomial family
that best provides for their convergence in a chaos expansion (Koekoek and Swarttouw, 1996) .

3.2.2 Computation

For practical calculations a finite number d, of random variables are used, which leads to a
finite dimensional PCE,

Y(ξ) =
∞

∑
k=0

αkΨk(ξ), ξ = {ξ1, ..., ξd} ∈ Rd (3.25)

This is not a limitation since in practical contexts we are usually only concerned with a finite
number of random input variables corresponding to parametric uncertainty in a model’s in-
puts. Note that at this stage, although the expansion is finite-dimensional, it still contains an
infinite number of terms owing to the infinite series of basis polynomials in each of the d
variables.

In order to implement PCEs practically the expansion may be truncated to a certain order,
p. A PCE truncated to order p contains only those multi-variate polynomials in the complete
multi-variate basis with combined order ≤ p, where all polynomials of order p are termed the
pth polynomial chaos and are contained in Ψp. We therefore have the following expression
for a truncated PCE,

Y(ξ) =
P

∑
k=0

αkΨk(ξ) (3.26)

where the number of terms in the PCE, and consequently the number of basis vectors P is
given by,

P + 1 =

(
d + p

p

)
(3.27)
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where d is the dimension of the input space and p is the truncation order of the PCE.

3.2.3 Surrogate modelling

We now consider the case of the above technique when applied to the kind of finite model
which might be encountered in the field of sensitivity analysis.

Consider first a physical model M with the deterministic mapping given by,

Y = M(x) (3.28)

where x = {x1, ..., xd}T ∈ Rd is the finite vector of deterministic input variables and Y =

{y1, ...yq}T ∈ Rq is the vector of quantities of interest which the model provides, referred to
in the sequel as the model-response.

We now account for parametric uncertainty in M by assuming that the input parameters are
stochastic variables. The model input then becomes a random vector, ξ = {ξ1, ...ξd}T ∈ Rd

corresponding to an event ω ∈ Ω. At this stage, given the redefinition of the input vector as
a set of random variables, our once deterministic model may now be considered equivalent
to a stochastic model, where internal parameters and inputs take values drawn from a distri-
bution. Although at its core the model defined above is completely deterministic, we have
introduced random variables in order to account for our uncertainty about the true values of
the deterministic input parameters.

The random variables in ¸ are assumed to be independent, which allows for the following
definition of the input joint probability distribution,

Pξ(ξ) =
d

∏
j=1

Pξ j(ξ j) (3.29)

The model output is also assumed to have finite variance such that,

E[Y2] =
∫
Dξ

M2(ξ)Pξ(ξ)dξ < ∞ (3.30)

Since the model takes random variables as input, the model output Y(ξ) may itself be treated
as a second-order random variable of unknown form and of dimension q.

The techniques outlined in the previous section allow us to recast the unknown model output
as an infinite sum of polynomials in the uncertain inputs. This is equivalent to projecting the
output probability density function onto a basis of orthogonal polynomials in the random
inputs (Xiu, 2010). For a finite set of d random inputs we may write the model output as,

Y(ξ) =
∞

∑
k=0

αkΨk(ξ̂), ξ = {ξ1, ..., ξd} (3.31)

Truncating to a fixed order p the infinite series reduces to a finite sum over P + 1 = (d+p
p )

terms, namely,

Y(ξ) =
P

∑
k=0

αkΨk(ξ̂), ξ = {ξ1, ..., ξd} (3.32)
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It is important to note at this point that the polynomials, Ψk which form the basis of the
expansion are multi-variate, and are constructed by tensorisation of uni-variate polynomials,
each only depending on a single random variable ξ j. We will now to proceed with an exam-
ple to illustrate how such a polynomial basis may be formed.

Consider a model which takes as input two random Gaussian variables with zero mean and
unit variance, contained in a random vector ξ ∈ R2. The model produces an output Y(¸)
which is dependent on the two inputs. We assume for the case of illustration that the model
output is uni-dimensional. In line with the Wiener-Askey scheme we will use Hermite poly-
nomials in ξ1 and ξ2 to construct the basis vectors over which to expand Y(ξ). For the sake
of brevity, we compute only the first three Hermite polynomials in each variable. These are
shown in Table 3.2.

Ξ1(ξ1) Ξ2(ξ2)

He0(ξ j) 1 1

He1(ξ j) ξ1 ξ2

He2(ξ j) ξ2
1 − 1 ξ2

1 − 1
...

...
...

Hen(ξ j) Hen(ξ1) Hen(ξ2)

Table 3.2: Table showing the first three Hermite polynomials for the two input variables ξ1 and ξ2.

The polynomials in each of the columns form a complete uni-variate, ortho-normal basis in
each of the uncertain model inputs. To construct the full set of multi-variate basis vectors
we take the tensor product of both sets, where Ξ1 and Ξ2 are the infinite sets of Hermite
polynomials in ξ1 and ξ2 respectively. The basis vectors arising from tensorising the first
three terms in each set are,

Ξ1
⊗

Ξ2 =
[
ξ1, ξ2, ξ1ξ2, ξ2

1 − 1, ξ2
2 − 1, ξ1ξ2

2 − ξ1, ξ2ξ2
1,−ξ2 ξ2

2ξ2
1 − ξ2

1 − ξ2
2 + 1, · · ·

]
(3.33)

If we truncate the set of basis vectors to order three, constructed by tensorising the infinite
series of Hermite polynomials in each variable, we are left with a set of 10 basis vectors.
Grouping these terms according to their combined order yields the polynomials, Ψp, which
feature in equation 3.23. To arrive at the simplified expression given in eq 3.23, we no longer
sum over the polynomials in each of the polynomial chaoses of different orders but rather
sum over the group as a whole in a single sum with a single index variable, k.

We may now write the complete polynomial chaos expansion of Y in terms of the basis
polynomials in ξ1 and ξ2,

Y(ξ) =
P

∑ βkΨk(ξ̂) = α0 + α1ξ1 + α2ξ2 + α3ξ1ξ2 + α4(ξ
2
1 − 1)+

α5(ξ
2
2 − 1) + α6(ξ1ξ2

2 − ξ1) + α7(ξ2ξ2
1 − ξ2)+

α8(ξ
2
2ξ2

1 − ξ2
1 − ξ2

2 + 1) + α9(ξ
3
1 − 3ξ1) + α10((ξ

3
2 − 3ξ2))

(3.34)

Since constructing the multi-variate basis for a finite set of inputs is trivial, the task of approxi-
mating a random variable in a PCE reduces to computing each of the P expansion coefficients.
Once the coefficients have been determined the polynomial expansion constitutes a surrogate
model of M(ξ) and can be used to approximate the output of M without requiring potentially
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j
p, Order of the
Homogeneous Chaos

jth Polynomial Chaos
Ψj

0 p = 0 1

1 p = 1 ξ1

2 ξ1

3 p = 2 ξ2
1 − 1

4 ξ1ξ2

5 ξ2
2 − 1

6 p = 3 ξ3
1 − 3ξ1

7 ξ2
1ξ2 − ξ2

8 ξ1ξ2
2 − ξ1

9 ξ3
2 − 3ξ2

Table 3.3: Table showing the relationship between the various polynomial chaoses, order p, and index
j for two Gaussian variables, ξ1 and ξ1

expensive model evaluations.

There are a variety of methods by which the coefficients of a polynomial chaos expansion may
be determined. They may be divided into two main classes based on whether they require
alteration to the model code or whether they require model realisations only. Intrusive meth-
ods usually require that some alteration be made to the numerical code in order to determine
the expansion coefficients. The Galerkin projection is one such method which formulates the
problem as a set of P+1 coupled equations which may then be solved to yield the coefficients.
While such an intrusive approach may be readily achieved with a simple model, for applica-
tions with relatively complex models where ex-post alteration may be time-consuming and
difficult to achieve, so called non-intrusive methods are preferred. Non-intrusive methods are
those which require model evaluations only and do not require ex-post alteration of the model
code. Examples of non-intrusive methods include Least Square Regression and Non-Intrusive
Spectral Projection (NISP).

3.2.4 PCEs and sensitivity analysis

The astute reader will already have noticed the similarity in form between Sobol’s decompo-
sition for general square-integrable functions, f (ξ), and our surrogate model approximation
Y(ξ). It is this isomorphism, first exploited by (Sudret, 2008), which allows for Sobol’s sensi-
tivity indices to be trivially determined once we have a sufficiently accurate PCE. We begin
the derivation with our expression for a PCE, truncated to order p, and containing P + 1
terms,

Y(ξ) =
P

∑
k=0

αkΨk(ξ) P + 1 =
(p + d)!

p!d!
(3.35)

We may expand the above as follows,



3.2 polynomial chaos expansions 23

Y(ξ(ω)) = a0Γ0 +
∞

∑
i1=1

ai1 Γ1(ξi1(ω)

+
∞

∑
i1

i1

∑
i2=1

ai1i2 Γ2(ξi1(ω), ξi2(ω))

+
∞

∑
i1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3 Γ3(ξi1(ω), ξi2(ω), ξi3(ω)) + · · ·

(3.36)

where we have grouped the terms in the expansion according to which factors/random vari-
ables they depend on, and therefore revert to the gamma notation of Section 3.2.1, recalling
that there is a one-to-one correspondence between Γ(· · · ) and Ψ(· · · ).

The above expression is then equivalent to the Sobol decomposition of our PCE approxima-
tion Y(ξ) and we may write,

fi1,··· ,id(ξi1 , · · · , ξid) =
P

∑
i=1

αiΨi(ξi1 , · · · , ξid) (3.37)

Since there is a one-to-one correspondence between the terms in the truncated PCE and the
Sobol decomposition of Y it is trivial to compute Sobol’s sensitivity indices for each of the
uncertain variables ξi ∈ ξ. We compute the total variance as,

V(Y) ≈
P

∑
k=1

α2
k⟨Ψk, Ψk⟩ =

P

∑
k=1

α2
k (3.38)

with the final simplification arising from the mutual orthogonality of the terms in the PCE.
The conditional variance of a term u(xi1 , · · · , xid) in the Sobol decomposition is,

V(E[Y|ξu) ≈ ∑
k∈ku

α2
k⟨Ψk, Ψk⟩ (3.39)

where ku is the set which indexes all terms in the PCE which depend on a subset of the
uncertain variables ξu ⊆ {ξ}. Finally, each of the Sobol indices may be determined in the
usual way, by dividing the conditional variances by the complete variance,

Su =
∑k∈ku

α2
k⟨Ψk, Ψk⟩

∑P
k=1 α2

k

(3.40)

Although the above expressions are intimidating, and rely on intricate indexing, the process
is entirely intuitive. Starting with main order effects, to calculate the first-order Sobol sensi-
tivity index of a given variable, say ξ1, we find each term in the PCE which depends only on
ξ1 and take the squared sum of their coefficients. Dividing by the total variance, which we
calculate as the squared sum of every coefficient in the expansion, yields the first-order Sobol
index for ξ1. The process can then be repeated for each of the other variables.

The process is analogous for higher-order Sobol indices, but instead of searching for terms
which depend only on a certain variable, we accept interaction terms of a certain order. For
example, calculating the second-order Sobol index for ξ1 we find each term which depends on
both ξ1 and any of the other variables, and whose combined order is equal to two. Repeating
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the process of square summing the coefficients, and dividing by the total variance, yields the
second-order Sobol index of ξ1.

The total-order index of a given variable is more straight forward, we simply square sum the
coefficients of each term which contains our target variable as a factor and, again, divide by
the total variance.

The above process is implemented as a python script which can be found at
JeffreyDillonLyons/curse_breaking.git.

In the next section we examine the use of numerical integration to directly solve for each of
the expansion coefficients. Once the coefficients have been determined then the sobol indices
follow directly.

3.3 numerical integration and quadrature

As referenced in Chapter 2, the task of expanding a random variable as a series of orthog-
onal polynomials reduces to determining the expansion coefficients for each of the basis
vectors. Given the mutual orthogonality of the basis vectors, and their orthogonality with
the output random variable, we may directly extract the expansion coefficients by taking the
inner-product of the basis vectors with the random output,

βk =
⟨Y(ξ), Ψk(ξ)⟩

⟨Ψk, Ψk⟩
, ∀k (3.41)

The evaluation of the numerator in the above expression then reduces to the evaluation of
P + 1, d-dimensional integrals, one for each term in the expansion..

Ik ≡
∫

Ωd
Y(ξ)Ψk(ξ)dξ (3.42)

Since in practical applications the above integrals cannot be solved analytically, they must
instead be solved using numerical methods such as quadrature rules. In general, quadrature
rules attempt to approximate a given integral as a finite, weighted sum of function values at
a number of specified integration points, or nodes, within the domain of integration. We may
write an n-point quadrature rule approximation of the integral above as,

Ik ≈
n

∑
i=1

Y(ξ(i))Ψk(ξ
(i))w(i) (3.43)

Where Y(ξ(i)) is a vector of model evaluations at the n quadrature nodes, or abscissas, and
w(i) are the weights. The more quadrature nodes that are taken, the better the quadrature
rule approximates the integral and thus the better the approximation of the expansion coeffi-
cients. Here we a brief note on nomenclature regarding numerical integration and quadrature
rules. The terms node, abscissa and point all refer to the same mathematical object, a location
in the uncertainty space for which the function, or model, was be evaluated. A node in Rn is
represented by an n-tuple with an entry for each dimension of the integrand, or, in the case
of applying such methods to models, a value for each uncertain parameter. The terms order
and level may be used interchangeably but refer to slightly different concepts in describing
a quadrature rule. A quadrature rule of order 0 is the lowest-order quadrature rule possible
and always produces a single node. The level of a quadrature rule is simply one more than

https://github.com/JeffreyDillonLyons/curse_breaking.git
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Quadrature grid level, l Number of nodes, n Nodes,xi Weights,wi

1 1 0 2

2 2 ±
√

1
3 1

3 3 0
8
9

±
√

3
5 ±5 9

Table 3.4: Table of nodes and weights for low-order univariate Gaussian quadrature rules

its order, therefore the lowest level quadrature rule is ’1’. ’l’ is a useful index since, in the
case of non-nested Gaussian quadrature rules, the level l also denotes the number of nodes
produced by that rule.

In order to build the theoretical foundation which is required for sparse grid methods, as well
as examine the features of adaptive sparse grid methods as they pertain to PCEs, we start by
considering one-dimensional Gaussian quadrature.

Uni-variate quadrature

Uni-variate quadrature rules are used to integrate function which vary in one dimension only.
Gaussian quadrature rules are commonly used to integrate polynomial functions since an
n-point Gaussian quadrature rule will integrate polynomials of degree 2n − 1 or less exactly
for a suitable choice of integration points xi, and weights wi, for i ∈ [1, 2, ..., n]. The most
common domain of integration for such a rule is [1,-1] so we may write an n-point Gaussian
quadrature rule for an arbitrary polynomial function as,∫ 1

−1
f (x)dx ≈

n

∑
i=1

wi f (xi) (3.44)

where f (xi) are the function evaluations at the nodes, xi, and wi are the weights. It can be
shown that the nodes, xi, for which the function is evaluated are the roots of the Legendre
polynomials over the interval [1,-1], where higher-order(more points) integration rules cor-
respond to the roots of higher-order Legendre polynomials, Pn(x). If the nth polynomial is
normalised to give Pn(1) = 1 then the integration point xi is the ith root of Pn. The weights
are then given by the formula,

wi =
2

(1 − x2
i )[P

′
n(xi)]2

(3.45)

where P
′

is the first derivative of the ith Legendre polynomial. Because of the relationship
between the Legendre polynomials and the weights, a quadrature rule constructed as in equa-
tion 3.45 is often termed a Gauss-Legendre rule. The nodes and weights of an n-point Gaussian
quadrature rule can then be defined a priori. A progression of low-order quadrature rules is
given in Table 3.4. For an integral over an arbitrary interval [a, b] a change of interval must be
made to an integral over [1,−1] before Gaussian quadrature can be applied.

We may illustrate the Gaussian integration process by considering a polynomial function f (x)
which we seek to integrate numerically. For the sake of illustration we choose a function for
which the integral over [1,-1] can be also determined analytically.
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Grey box 1.1

Consider the function,

f (x) = x2 − x

a uni-variate, second-order polynomial. Analytical integration over [1,-1] yields,∫ 1

−1
f (x) =

∫ 1

−1
x2 − x dx =

2
3

By definition, the integral above is approximated exactly by a 2n − 1 = 3 point quadra-
ture rule, where n is the order of the polynomial to be integrated. We may therefore
write, ∫ 1

−1
f (x) =

n

∑
i=1

wi f (xi) =
∫ 1

−1
x2 − x dx = w1 f (x1) + w2 f (x2) + w3 f (x3)

From figure 3.4 we have the integration points and weights,

xi = [0,±
√

3
5
], wi = [

8
9

,±5
9
]

Evaluating f (x) for the given integration points yields the following result for the
integral, which is exact, as required.

I =
5
9

f(

√
3
5
) +

8
9

f(0) +
5
9

f(−
√

3
5
) =

2
3

In addition to the straightforward Gauss - Legendre quadrature there are a variety of other
rules which may be applied to solve analogous integration problems. These rules are differ-
entiated by there weight functions but follow the same basic form. These include Chebyshev
quadrature and Clenshaw-Curtis quadrature rules. Clenshaw-Curtis rules are sometime used
due to their fully nested nature. A nested quadrature rule is one in which a rule of level l con-
tains all the point of the previous level l − 1 as well as additional nodes. Such nesting allows
for more efficient sampling plan for the adaptive integration of high-dimensional problems
since function evaluations can be reused when increasing the order of the quadrature rule.

Multi-variate quadrature

The above process may be extended to provide for the numerical integration of multi-variate
polynomials. The integration points are then points in Rd rather than points on the line. For
a d-dimensional integrand, an n-point quadrature rule results in nd nodes and nd weights.
The formula for a multi-variate Gauss-Legendre quadrature rule is a simple extension of the
univariate case outlined above. For the two-dimensional case we may write the following for
a quadrature rule of level l,
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Figure 3.1: Here we demonstrate the process of tensorisation whereby two univariate Gaussian quadra-
ture rules are used to construct a multi-variate quadrature rule. This is achieved by taking
the tensor product of two univariate rules in orthogonal directions, indicated by the basis
vectors î and ĵ. This operation results in a grid of nodes which lie in two-dimensions, as
shown above.

∫
f (x, y) =

l

∑
i=1

w(i)
x w(i)

y f (xi, yi) (3.46)

where, w(i)
x and w(i)

y are the weights for the respective dimensions, and f (xi, yi) are the func-
tion evaluations of the multi-variate function at the quadrature nodes. To compute the integral
of an arbitrary multivariate polynomial f (x, y) the function must be evaluated, or sampled,
at each point in the grid. For the two-dimensional case above the quadrature nodes are now
points in the R2 plane, as pictured in Figure 1.2.

In general, for a multi-variate quadrature rule of arbitrary dimension d the quadrature points
form a grid in the d-dimensional hypercube. The grid is constructed by taking the tensor
or Cartesian product of the respective univariate quadrature rules in each of the dimensions.
The number of nodes in a grid then rises exponentially with the number of dimensions. In
the anisotropic case where each of the univariate quadrature rules are of order l the resultant
d-dimensional grid will contain ld nodes. Since the function, or model, must be evaluated
at each of these nodes in order to compute the integral, the computational work associated
with fully-tensorised grids is proportional rises with O(n2). The process of tensorisation is
illustrated more completely in Greybox 1.2.

The exponential scaling of the computational work required to solve such multi-variate Gaus-
sian quadrature problems is where the so-called curse of dimensionality begins to affect the
feasibility of such methods for high dimensional spaces. Above we showed how such quadra-
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ture methods may be applied directly to solve for the expansion coefficients of a PCE via non-
intrusive spectral projection. The computational time required to solve for the coefficients in
the PCE then rises exponentially along with the number of nodes in the multi-variate quadra-
ture grid. Therefore while surrogate-modelling methods, such as PCEs, may certainly provide
for the efficient calculation of certain quantities if interest, they are not immune from the curse
of dimensionality. In addition, although stochastic collocation methods do not directly utilise
numerical integration to solve for the expansion coefficients, they still suffer from the curse
of dimensionality via the required collocation points which are constructed in the same way.

Owing the the plurality of fields in which the solution of high-dimensional integrals is of
prime importance, a number of methods have been devised to mitigate the curse of dimen-
sionality for certain classes of functions. In the next section we will continue with a construc-
tion of sparse grids.

3.3.1 Sparse grids

We shall begin our examination of sparse grid methods by re-clarifying the problem in the
context of PCEs. In order to utilise PCEs for the sensitivity analysis of high-dimensional
models we must sample the uncertainty space at a certain number of points or nodes. In the
case of NISP, the nodes and their corresponding function evaluations, may be used directly
to solve for the coefficients of the PCE by numerical integration as outlined above, or serve
as collocation points in order to solve for the coefficients using regression. In either case the
feasibility of the approach is severley hampered by the exponential rise in the number of
function evaluations with the dimensionality of the problem.

Sparse grids aim to mitigate this problem by reducing the number of points in the grid, with-
out compromising the interpolation accuracy of the eventual PCE. Put plainly, the sparse grid
approach assumes that for sufficiently smooth functions the number of function evaluations
may be reduced by strategically placing the position of the grid nodes. Retaining the notation
of the previous section, consider the grid defined by the linear combination of the grids in-
dexed by the following multi-index set, Ω∗ = {(0, 0), (0, 1), (1, 0)}. Each of the multi-indices
contained in Ω∗ are fully tensorised grids in their own right, created by tensorising the nodes
from each of the rules, as outlined in Greybox 1.3.

It is instructive to plot each of the sub-grids according to their index in each of the constitutive
dimensions. The grid described by Ω∗ = {(0, 0), (0, 1), (1, 0)} is said to be sparse and is
constructed by taking linear combinations of the grids shown in blue in Figure 3.1. Although
each of the sub-grids are fully tensorised, the result is clearly more ’sparse’ than for the fully
tensorised grid shown in purple (five rather than nine points). In the above case both the
sparse grid and the fully tensorised grid are isotropic in that each dimension is sampled with
the same density of points. In general, sparse grids of level L obeys the following relation,

||l||1 − d + 1 ≤ L (3.47)

where ||l||1 = l1 + l2 + · · ·+ ld is the 1-norm of the multi-index l, and d is the dimensionality
of the uncertainty space. Such a constraint selects the triangle of multi-indices highlighted
in blue above. For the d-dimensional case they describe a ’simplex’ hyperplane lying in the
hypercube.
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Figure 3.2: Here we illustrate the construction of a sparse grid in two dimensions. The sparse grid is
composed by taking a linear combination of the fully-tensorised sub-grids, pictured in the
blue box. To construct a sparse grid of level 1, we add the nodes from a sub-grid only if the
l1-norm of its index is less than 1, given the simplex shown in blue. A fully tensorised grid
of level 1 is also shown, indicated by the purple box. Note that in the case of non-nested
Gaussian quadrature, a sparse grid of level 1 in two-dimensions actually has more points
that the corresponding full grid of level one, given by {1, 1}; however, this would cease to
be the case with a higher level or higher dimension.
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Although isotropic sparse-grids are demonstrably ’sparser’ than their fully-tensorised coun-
terparts, they can still become computationally infeasible due to the scaling of the number of
quadrature nodes with dimension. Edeling cites d = 10 as a rough estimate of uncertainty
spaces for which isotropic sparse grid nodes will become a computational bottleneck (Edeling,
2022).

3.3.2 Adaptive sparse grids

For higher dimensional spaces it may therefore by efficient to actively refine the sparse quadra-
ture grid to concentrate quadrature node in those dimensions which have the largest effect
on interpolation accuracy. This may be achieved through the use of so-called adaptive sparse
grids where we iteratively add the constitutive sub-grids, pictured in Figure 3.2, which when
added to the full grid will contribute most to reducing the error of the approximation. Such
methods were first developed by (Gerstner and Griebel, 2003) for the integration of high-
dimensional functions and may be used for our purposes after some alterations.

For example, taking again the quadrature grid illustrated in Figure X, if we had knowledge
that a given factor, say x2 did not significantly affect the output of the model then we would
avoid refining the sparse grid in that direction, choosing instead to refine x1. Such a sparse
grid would then be anisotropic and is composed of the sub-grids given in the multi-index
ΩA = (0, 0), (1, 0). In the absence of foreknowledge about which factors in the model are in-
fluential we utilise a local error measure which is assumed to be a roughly effective surrogate
for a global method. In (Gerstner and Griebel, 2003)’s original formulation those dimensions
were chosen which contributed the greatest reduction in error once added to the grid. Such
a determination is more difficult in the case of PCEs given the number of terms whose co-
efficients must be approximated, in contrast to the single answer produced by integrating a
single functions. (Edeling et al., 2021) proposes using the the hierarchical surplus of a given
grid as local error measure, building on the work of (Loukrezis et al., 2019). Before we pro-
vide a definition of the hierarchical surplus we first describe the main steps in the algorithm.

(Gerstner and Griebel, 2003)’s approach mandates starting with the lowest-order grid in each
dimension, and iteratively increasing the quadrature order of those dimensions which are
deemed important by the local error measure, thereby keeping the majority of dimensions
sampled at a low resolution reducing the computational burden. We therefore start with
a quadrature grid defined by the following multi-index, Λ := {(1, · · · , 1)} corresponding
to a quadrature grid which contains only a single node, where Λ is the set of all multi-
indices chosen for inclusion. The model is evaluated for the single node, and a PCE fit,
using the model evalautions. Next we consider the forward neighbours of the initial multi-
index, those that can be reached by adding the set of elementary basis vectors ej in each of
the j− dimensions to each index contained in the multi-index Λ. For example, adding the
basis vector e2 = (0, 1, 0, · · · , 0) to the single multi-index in Λ would yield the multi-index
(1,2,1,· · · , 1).The f orwardneighbourso f theinitialmulti − indexsetΛ is then the set,

{l + ej|1 ≤ i ≤ d} (3.48)

Similarly, for each of the calculated forward neighbours we can calculate their backward neigh-
bours by performing the reverse procedure, namely, subtracting each elementary basis vector
from each forward neighbour. A given multi-index l is deemed admissible if each of its
backward neighbours are also in Λ. Using the nomenclature introduced by (?), the set of
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Figure 3.3: Here we illustrate possible steps of the algorithm for a 2d uncertainty space with the cho-
sen indices (left) and (right) the path of the algorithm. For the zeroth step the polynomial
is fit using zeroth-order quadrature rules for each dimension. At each step the algorithm
chooses a new index to add the the ’old set’ of accepted indices, which defines the grid of
points over which we fit the polynomial. At step 6 the algorithm chooses to add an index
which produces points in shared dimensions, indicating that at this stage in the refinement
strategy it is most beneficial to resolve the interaction terms in the PCE. The admissible
indices, which may be added in the seventh set, are indicated by the cross marks.

admissible forward neighbours is termed the active set, and represent directions in which the
quadrature grid can be refined, whereas Λ is termed the old set and contains all those multi-
indices which have been accepted.

In order to decide which of the multi-indices in the admissible set to choose, the aforemen-
tioned hierarchical surplus of each multi-index in the active set is calculated. The hierarchical
surplus is defined as the difference between the model output Y and the prediction given by
the PCE, ỸΛ evaluated at the nodes Xl defined by an admissible forward neighbour l,

s(ξl
j) := Y(ξl

j)− ỸΛ(ξ
l
j) (3.49)

where ξl
j is a point in the input uncertainty space belonging to the quadrature grid produced

by admissible forward neighbour l. Xl and XΛ are the quadrature grids produced by the
admissiable forward neighbour and old-set respectively, with the set difference operator indi-
cating that we are computing the hierarchical surplus over new points only. For the surrogate
PCE approximation ỸΛ we use the subscript Λ to indicate that it is the PCE fit using all of
the points in the old set. We can now define the local error measure as follows,

ηl :=
1

#(Xl \ XΛ)
∑

ξl
jXl\XΛ

||s(ξl
j)|| (3.50)

The admissible index with the largest error measure is chosen and added to the old set as
well as removed from the active set. A new PCE approximation is fit from the quadrature
grid produced from the linear combination of each multi-index in the old-set. After this step
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Figure 3.4: Figure showing the two-dimensional quadrature grid produced by the dimension-adaptive
algorithm for the grid indices shown in Grey box 1.4. Note the characteristic sparsity of the
grid, with the highest sampling density along dimensions, with a lower sampling density
in the interior of the space.

the algorithm repeats, again computing new forward neighbours, checking them for admis-
sibility and computing the local error measure. It is worth noting here that additional error
measure can also be defined whose attributed may better suit different purposes, such as
those based on statistical measures as given by (Perkó et al., 2014). On a practical note in
order to ease the computational burden on the error calculation step it may be necessary to
store the node-model evaluation pairs for later use since if a given multi-index l remains in
the active set for more than one iteration of the algorithm the model will have to be evaluated
for each node defined by its multi-index.

For the sake of clarity we again point out that each of the multi-indices l = (l1, · · · , ld) ∈ Λ
are composed of one-dimensional quadrature rules which are fully tensorised. To arrive at
the complete quadrature grid defined by Λ we take the linear combination of the quadrature
nodes produced by each of the multi-indices in Λ. Once added together these points make
up an anisotropic sparse grid. In order that the contributions from each of the multi-indices
are added together correctly a coefficient, cl is introduced which acts as a weight function
and accounts for the fact that there contributions of some sub-grids cancel each other out. We
define ci as,

ci = ∑
ej∈N,i+ej∈Λ

(−1)||i||1 (3.51)

In the case of NISP these coefficients may be readily included in the expansion by multiplying
the weights produced by a given multi-index by the coefficient for that multi-index.
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4.1 measures of performance

4.2 experimental design

In this section we specify the computational experiments which are required to answer sub-
research question IV.

sRQ - IV: What is the relative efficacy of the dimension-adaptive, polynomial chaos
expansion method versus other best-in-class algorithms?

The information gained in the exploration phase now allows for the formulation of an ex-
perimental series which will contribute to answering the main research question. Whereas
the previous sections consisted mostly of desk-research, and sought to provide the theoretical
foundation for the project, here we will specify the computational experiments with which
we will measure the performance of dimension-adaptive polynomial chaos expansions in the
context of exploratory modelling.

Since the main research question concerns two separate methods which may be used in tan-
dem, for completeness both must be first tested in isolation before their combined efficacy is
assessed. Each of the algorithms will be assessed under a variety of experimental conditions
according to the performance measures set out in Section 4.1. We therefore have the following
main experiments.

4.2.1 Experiment I - Full quadrature grids

Q: What is the relative efficacy of polynomial chaos expansions in calculating Sobol sensitivity
indices versus quasi-Monte Carlo methods?

The goal of this experiment is to assess the baseline performance of PCEs versus the incum-
bent algorithms when applied to our selected test cases. Since PCEs are favoured for the
calculation of Sobol sensitivity indices, the main output for all experiments will be the the
first-order, second-order, and total-order Sobol sensitivity indices. Since the test models may
not be solved analytically for the Sobol indices, an absolute error measure cannot be used
to measure the level of convergence. Instead, a qMC experiment with a very large sample
size will be performed to calculate the ’ground truth’ for each of the sensitivity indices. The
indices calculated from the fitted PCEs may then be compared against these figures and er-
ror measures calculated. Error measures may be calculated in the same manner both for the
Sobol indices or for the base quantities of interest or statistical measures which we extract
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from the test models.

The main factors in this experiments are the number of qMC samples, the truncation order of
the PCE, and the order of the quadrature rule used to calculate the coefficients. A full-factorial
design of the aforementioned factors will facilitate a full assessment of the PCEs performance
by comparing the determined Sobol indices and statistical moments with groundtruth, for
varying truncation order and quadrature order.

Since PCEs may find particular use in the sensitivity analysis of many-dimensional models
it will be instructive to compare their performance for increasing model dimension. Such
experiments have precedent in the literature albeit with analytical test functions (Crestaux
et al., 2009). The dimensionality of many analytical test-functions can be chosen arbitrarily
to fit the experimenter’s needs which allows for a straigh-forward analysis of its effect on
performance. In our case, where the analysis must be carried out on a model for which the
dimensionality of the input space is fixed a priori, it will be necessary to artificially constrain
the dimensionality of the model. This may be done by fixing the values of certain input pa-
rameters to their given default values, thereby confining the sensitivity analysis to a certain
number of ’free’ dimensions which remain uncertain. Usually the least influential parameters
are fixed after prioritised according to their Total-order Sobol index as described in (Homma
and Saltelli, 1996). The performance of the PCE in computing the Sobol indices for varying
dimension may then be measured.

4.2.2 Experiment II - Sparse grids

Q: What is the relative efficacy of dimension-adaptive sampling in providing for faster conver-
gence of polynomial chaos expansions versus constant and sparse cubature?

The goal of experiment two is to examine the improvement conferred on the convergence
speed of PCE by the adaptive increase of quadrature levels in certain dimensions. Since
sensitivity-based order reduction of high-dimensional models is based on the presence of
a lower effective dimension the convergence speed of PCEs may be significantly increased by
concentrating function evaluations on only those dimensions which contribute to output vari-
ance. The incumbent method in this case is the sparse grid approach based on Smolyak’s
tensor-product space construction. It is of value to examine the relative effectiveness of both
approaches under different dimensionality. Since it can be proven that both the sparse grid
and dimension-adaptive approaches will always converge quicker than constant cubature it
is not necessary to test the algorithm against constant cubature integration.

The PCE will be implemented using the level-order heuristic derived in Experiment I and ap-
plied to the toy-model(s) with the three different grid-schemes outlined above. Both constant
cubature and Smolyak sparse grids may be directly implemented through Chaospy whereas
dimension-adaptive sampling will have to be supported by a purpose-written procedure. As
in Experiment I the main measure of performance will be the speed of convergence as mea-
sured in function evaluations until a halting condition is reached.
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4.2.3 Experiment III - Adaptive sparse grids

Q: What is the relative efficacy of polynomial chaos expansions with dimension-adaptive
sampling in calculating Sobol sensitivity indices versus quasi-Monte Carlo methods?

This experiment involves comparing the performance of the combined method of PCE+DAS
against the Monte Carlo and quasi-Monte Carlo methods. Although this is a separate experi-
mental question from those outlined above, the outputs of experiments one and two provide
all the data necessary for this step. As such this step is a data analysis step rather than a
computational experiment. Nevertheless it will prove valuable insight with respect to the
main research questions, namely, on how the combination of PCE with DAS performs on
high dimensionality models.

4.3 case selection

In order to draw conclusions as to the efficacy of the methods examined in this project a num-
ber of test-cases must be selected. The chosen test cases will be the basis of the experiments
described above and should constitute good analogs of models used in exploratory modelling
projects. In this section we outline the broad requirements that the chosen models must fulfill
and give a brief description of their characteristics and use cases.

In order to provide for the widest applicability of our results the careful selection of cases or
test-models on which to execute the experiments is of prime importance. At this stage we can
delineate a number requirements which may be used to narrow the choice of models.

Given that the central problem addressed by this project arises from the exponential scaling
of computational cost with model dimension, it is essential that the algorithms be tested for
varying dimensions. With reference to the literature a threshold of interest can already be
defined (Crestaux et al., 2009) notes that PCEs struggle to reach convergence faster than qMC
methods for d > 20.

In this case the some models chosen must allow for us to test the algorithms either side of this
threshold. Most deterministic models have a static number of input dimensions, therefore we
may have to resort to factor fixing in order to vary dimension. Since this study will use Sobol
sensitivity indices as its main output parameter the use of factor fixing requires a model for
which the Sobol indices are known a priori or can be feasibly calculated given available com-
putational resources.

Since approximation methods such as PCEs assume a certain regularity of the function be-
tween evaluation points, the effect of output smoothness on algorithm performance should
also be probed. Whereas the regularity of analytical functions can be readily determined, this
is not the case for most policy models where the propensity for highly non-linear behaviour
cannot be determined by inspection.

Therefore it would be advantageous to compare algorithm performance on cases which ex-
hibit both smooth and non-smooth output. However, since the smoothness of the output
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Parameter Interpretation
α Exponential growth rate of prey
β Predation rate
δ Predator growth rate
γ Exponential death rate of predators

Table 4.1: Table showing the physical interpretation of parameters in the Lotka-Volterra model of
predator-prey population dynamics (Kinoshita, 2013)

cannot be determined by inspection model selection is not trivial.

In order to ensure that the implemented algorithms work as expected, and that the attendant
processes concerning data preparation and storage are well optimised, we have chosen to
stagger the complexity of each of the test cases. The algorithms and processes are first trialled
with the simplest test-case before being trialled on a more complicated model. With regards
to model complexity both model dimension and run-time are the two most salient factors. To
ensure timely testing the simplest possible model is chosen as a starting point.

4.3.1 Lotka - Volterra Predation Models

The Lotka - Volterra equations are a pair of first-order nonlinear differential equations that
model the dynamics of biological systems in which two species interact as predator and prey.
Solving the coupled differential equations for a given set of boundary conditions yields the
population trajectories of both species over time. The model structure is defined by four
positive, real-valued parameters and may be written as,

dx
dt

= αx − βxy

dy
dt

= δxy − γy

Where x(t) and y(t) are the prey and predator populations at time t respectively. The bound-
ary conditions are the initial populations of both species at t0. The values of the parameters
determine how the populations of both species by reproduction and through interaction with
the opposite species in the antagonistic pair. Example interpretations of these parameters
taken from (Kinoshita, 2013) are given in Table 4.1.

First proposed by Alfred J. Lotka in 1910 to describe auto-catalytic chemical reactions, the
equations were later extended to include the model competitive predator-prey systems which
behaved analogously to auto-catalytic systems (Lotka, 1925). In 1928, Vito Volterra modelled
predator-prey population dynamics using the same set of equations in order to account for
the apparent periodic nature of Adriatic Sea fish catches (Volterra, 1928).

Under a number of simplifying assumptions the equations model the interdependent evolu-
tion of predator and prey populations as they interact in the environment. For certain param-
eter values the equations produce periodic solutions, with the populations of each species
rising and falling in response to increasing or decreasing numbers of its food source or preda-
tor. An example solution to the model for a given set of parameters and initial conditions is
shown in Figure ??.
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Figure 4.1: Figure showing an example solution to the Lotka-Volterra equations for an arbitrary set
of parameters and initial conditions. Note the periodic nature of both predator and prey
population trajectories. The peaks and troughs of both traces are slightly out of phase
owing to the reponse time in population growth or decline. Note how the ’atto-fox’ prob-
lem is demonstrated in the figure. Within each cycle both species are seen to recover from
populations of less than one individual.

As a model of biological systems the equations suffer from a number of drawbacks which
arise from the initial assumptions. The ’atto-fox’ problem is the name used to describe the
unphysical nature of the model solutions where population growth occurs continuously rather
than in discrete steps corresponding to the birth, or death, of single organisms. As a conse-
quence, species populations within the model can recover from numbers less than one, and,
as such, the model does not account for the population structures that are necessary for ani-
mal reproduction.

For our purposes the accuracy of the model in describing physics systems in unimportant
since we intend only to use the model as a simple test case. The Lotka-Volterra model is an
appropriate choice for a test-case since it depends on only four parameters, resulting in a
low-dimension input parameter uncertainty space. In addition, the equations may be solved
numerically using a fourth-order Runge-Kutte method in less than a second on a personal
PC. Such computational tractability allows for algorithms to be rigorously tested before being
implemented on a more powerful computing cluster with a more demanding model.

The dimensionality of the input parameter space associated with the Lotka-volterra Model can
be supplemented by the addition of a third species. The Three-species Lotka-Volterra Model
features a seven-dimensional uncertainty space as well as high-order interaction effects and
an output character that may prove difficult for surrogate modelling methods. Below, the
constitutive equations of the Three-species model are presented. The increase in the number
of interaction terms in the model is readily evident.

dx
dt

= αx − βxy

dy
dt

= −δy + γxy − ezy

dz
dt

= − f z + hy
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Figure 4.2: Figure showing an example solution of the Three-Species Lotka-Volterra Equations for an
arbitrary set of parameters. The periodic nature of the solutions observed for the two
species model is replicated here.

4.3.2 Energy Transition Model

The EU Energy Transition Model is a System Dynamics model designed to investigate plausi-
ble future states of the EU energy system as it transitions away from fossil fuels as well as find
adaptive policy pathways which might help in aiding its stated transition goals. Developed
by (Loonen et al., 2013) of TU Delft, it has found particular use in helping researchers assess
how parametric and structural uncertainties may affect the bloc’s energy transition. In one
study, Loonen et al. employ exploratory modelling and analysis methods to propose plausi-
ble models of the EU energy system, identify the most important uncertainties, and generate
possible future states of the system as it transitions.

The model represents distinguishes seven distinct regions and models the deployment and
use of nine different generation technologies. The mode is sufficiently detailed to represent
such system mechanisms as competition between generation technologies, market behaviour,
and interconnection between regions (Hamarat et al., 2014).

Figure 4.3 illustrates the model’s main elements and the direction of their influence on other
sub-mechanisms of the model. These sub-models are realised as a series of 33 ordinary dif-
ferential equations and 499 auxiliary equations in 632 variables, some of which are pictured
in Figure ??. In (Hamarat et al., 2014), Hamarat et al. focus their analysis on how a set of
46 uncertain parameters affect three quantities of interest, namely, the fraction of renewable
technologies in operation, the fraction of carbon emissions reductions realised, and the aver-
age total costs of electricity production.

A model composed of such a quantity of interdependent equations is capable of hosting in-
fluential, high-order interaction. The strength of the System Dynamics formalism is that it
provides an intuitive, and tractable, method of composing a complex model with diverse in-
teractions. Such a model can present difficulties to modellers owing to the large number of
free parameters, the potential for non-linear, and chaos-like behaviour.
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Figure 4.3: Figure showing the main sub-models of the EU Energy Transition model as described in
(Loonen et al., 2013).

4.4 measures of performance

The algorithms investigated in this study will be judged both on their speed in converging as
well as the accuracy of the result upon convergence. In order to draw concrete conclusions
as to both of the aforementioned measures of performance the result will be compared with
the ’so-called’ ground truth values established via direct sampling methods. ’Speed’ in this
context is measured as the number of model evaluations required to reach convergence and
is analogous to the computational cost associated with a given algorithm.

In this case of Sobol sensitivity indices we define a vector Sx in which we store the given
Sobol index for each parameter. The Sobol indices may then be directly compared with the
ground truth values by computing the following error metric,

ϵ =
||Sx − SGT||

||SGT||
where x is the order of the Sobol index in question, and || · · · || is L2-norm operator. In this
study we primarily focus on the total-order Sobol indices since they fully capture inter-action
effects of all orders and may be directly applied as the basis for model order reduction by
factor fixing.

4.5 software

With the exception of Vensim, in which the Energy Transition Model is realised, all of the
software utilised over the course of this study is open-source and freely available for use. All
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of the packages used, again with the exception of Vensim, lie within the Python ecosystem.

The majority of the calculations concerning polynomials and polynomial chaos expansions
were completed using Chaospy, which provides a well documented API for uncertainty quan-
tification using PCEs and other direct sampling methods.

Additional inspiration was drawn from EasyVVUQ, a python library for uncertainty quantifi-
cation in high performance computing (Richardson et al., 2020).

Jan Kwakkel’s Exploratory Modelling Workbench was primarily used in order to interface
with Vensim and run the Energy Transition Model. The in-built multi-processing functional-
ity facilitated running the experiments in parallel on a high-performance cluster, significantly
reducing the required computational time.

SALib, a multi-purpose Python library for the sensitivity analysis methods was used to com-
pute Sobol sensitivity indices during the quasi Monte Carlo experiments.
All of the code written in fulfillment of this thesis project is available on Github and free to
redistribute and reuse. The code base is not neatly composed as a package and, as such, some
parts may be poorly commented and opaque to the reader. However, the main functional sub-
units of the code are easy to reach and readily understandable. Please refer to the README at
https://github.com/JeffreyDillonLyons/cursebreaking.git for more information on accessing
and making use of the code base.

JeffreyDillonLyons/curse_breaking.git
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5.1 two species lotka - volterra model

5.1.1 Model characterisation

As noted in Chapter 4, solution of the coupled Lotka-Volterra equations numerically yields
two periodic traces. Each trace charts the population level of the given species as a function
of time. An example solution is illustrated in Figure 4.1. The population trajectories oscillate
in tandem, with the response of the predator population lagging by a certain phase factor.
Analytical solution of the equations yields traces which oscillates infinitely, so the numerical
results behaves as expected .

The solutions pictured in Figure 4.1 correspond to a single point in uncertainty space which
specifies the values of all four parameters. Together with the boundary conditions they specify
a unique solution to the coupled equations. The surrogate models which we are attempting
to fit are intended to represent the response of the two-species Lotka-Volterra equations over
the entire uncertainty space. As a quantity of interest (QoI), we extract the population level
of both species at a particular time-step, t = 910. The choice of quantities of interest is arbi-
trary, and depends on the requirements of the modeller. In this case, we might equally have
chosen any other relevant statistical measure or property as our QoI; however, it should here
be noted that a fitted PCE, and all statistical moments that are derived from it, are specific to
the chosen QoI. By extracting a single value for our QoI from each model run we are creat-
ing an ensemble of point-model evaluation pairs which will be used to fit the interpolating
PCEs and approximate a response-surface for the model. The response surfaces in this case
are four-dimensional surfaces which map the four input uncertainty values to the population
value at t = 910. In the sequel a ´point´ refers to a point in the n-D uncertainty space which
specifies a value for each of the four uncertain input parameters.

In order to characterise the model behaviour over the entire uncertainty space an ensemble
run was executed by sampling the uncertainty space at 327,680 points and recording the pop-
ulation values for both species. The points were chosen using Saltelli’s extension of Sobol’s
low-discrepancy sequence (Saltelli, 2002). As such, it constitutes a quasi Monte Carlo experi-
mental design. The results of this experiment are shown in Figure ?? and Table ??.

The statistical moments listed in Table 5.1 confirm what can be noted by inspection of Figure
4.1, namely, that the distribution of predator population levels over the uncertainty space is
much sharper than that of prey, featuring a dense concentration of observations to the left of
the sample mean. Both distributions feature long tails, though it is the prey population which
features the largest standard deviation and variance. As noted in Chapter 3, the convergence
speed of interpolative approximation methods depend on the smoothness of the target func-
tion, with less-smooth functions requiring higher resolution sampling schemes, and higher
order expansions, to fully capture the variability of the function over a given domain. Where
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Figure 5.1: Figure showing the output distributions produced by the model for each of the species.
The samples were drawn using a Sobol-Saltelli sequence. Note the characteristic sharpness
of the predator distribution (pink)

Moment Prey Predator
Mean 32.72 13.78

StDev (normalised) 0.6 0.8
Variance (normalised) 11.91 8.92

Skew 0.93 2.24

Kurtosis 0.25 5.89

Table 5.1: Table showing the statistical moments calculated for both predators and prey for the Two-
Species Lotka-Volterra model. These are some of the figures which we will attempt to
reproduce using the fitted PCEs.
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Figure 5.2: Figure showing the convergence of the qMC experiment for the first-order Sobol sensitivity
index of a single model paramter, α.

the two-species Lotka-Volterra model is concerned, the prey population distribution, with its
characteristic smoothness and low skewness, should be easier for the PCEs to approximate.
The predator population distribution however, is sharp and highly skewed, exhibiting a step-
like character about its mode.

Once the PCEs are fitted to both response surfaces they will be capable of reproducing the
above statistical moments to a certain degree of accuracy. In addition to the statistical mo-
ments we also calculate the first, second, and total-order Sobol Indices. These values, taken
together, form the ’ground truth’ against which the accuracy of the PCEs are judged. Figure
5.2 shows the first-order Sobol index, S1, for a single input parameter, α, as a function of
the number of qMC samples used in its calculation. The value is observed to quickly con-
verge, with little change in the determined figures after 40,960 samples. The error bars are
calculated by the SALib package using a bootstrap re-sampling procedure and illustrate the
95% confidence interval. The relatively small re-sampling errors, of 3.2% for prey, and 5.7%
for predators, with 327,680 samples at the 95% confidence interval indicates that this is an
acceptable sample size for establishing the ground truth approximations of the Sobol indices.

These results demonstrate that, accounting for first-order interactions alone, the parameters
α and δ have a larger impact on the variance of the model output than β and γ.

Figure 5.3 shows the ground truth S1, S2, and St values for both species. Comparison of
the first and total-order indices indicates the presence of significant higher order effects, an
observation confirmed by the calculated second-order indices. The second-order effects are
observed to mostly account for the difference between S1 and St across the parameters. The
remaining difference which is not accounted for demonstrates the presence of effects with an
order higher than two; however, the successive contribution of higher order terms to the vari-
ance of the output is quickly diminishing, as demonstrated in the figure. It is instructive at
this point to attempt to replicate the findings of (Box and Meyer, 1986), namely, that the influ-
ence of higher order effects follows a Pareto distribution. Taking prey as an example, we find
that first and second-order effects together account for 79.3% of the model output variance,
with the remaining 20.7% due to higher order effects, in near perfect agreement with the 80:20

heuristic. While we might have expected first-order effects alone to account for around 80%
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Figure 5.3: Figure displaying the first, second, and total-order Sobol sensitivity indices for each param-
eter and both species. The stacked nature of the plot well displays the summative nature
of Sobol indices.

Figure 5.4: Figure illustrating the sensitivity landscape which we must attempt to approximate with
PCEs.

of the model variance that is simply not possible for a model with highly-correlated inputs.
Nevertheless, our findings are a reasonably good fit and support the findings of (Box and
Meyer, 1986).

Such data provides vital information for the later evaluation of the PCEs. In this case, the
observed extent of higher order effects implies that a third-order PCE will be required to
capture the majority of the behaviour produced by the model, whereas a second-order poly-
nomial would serve as a mostly accurate (∼ 80%) and ´cheaper´ alternative.

Figure 5.4 contains a clearer illustration of the total-order indices which will serve as the main
object of comparison is assessing the performance of PCEs versus the traditional qMC meth-
ods explained above. A more complete elaboration of the results from this section is available
in Table 5.2

For the sake of brevity, in the sequel we will only make use of the total-order Sobol indices in
order to compare the performance of the PCEs.
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5.1.2 Experiment I - Full quadrature grids

We now proceed with the results for Experiment I, where we compare the statistical moments
and sensitivity measures calculated from the fitted PCEs against those presented above. While
the figures may be compared directly against ground truth in order to gauge the relative ac-
curacy of the methods, comparison of convergence speed requires more nuance. While we
required 327,680 model calls to determine ground truth, we could have saved a large amount
of computational effort for settling for slightly higher error. An advantage of quasi Monte
Carlo methods is that their convergence speed is only weakly dependent on the dimension
of the sample space they are drawing from (Gerstner and Griebel, 2003). While this still ren-
ders them too slow for use with high dimensional problems, they can approach convergence
quite quickly for spaces with lower dimensionality. The graph in Figure 5.2 illustrates the
diminishing returns inherent in such quasi-random methods, with 40,960 samples giving a
re-sampling error of 9.6% and 11.7% for prey and predators, respectively. Furthermore, the
calculated total-order index values at 40,960 samples are within 5% of the established ground-
truth values for both predators and prey. The extent of the diminishing returns means that
comparing the PCEs against ground truth in terms of convergence speed or function calls
may be misleading. We will therefore make some effort to compare the PCE convergence
rates with the figures determined for 40,960 samples.

Since the presence of higher order effects in the model has already been confirmed by the
Sobol-Saltelli sensitivity analysis, we expect to require a PCE which contains higher order
terms to adequately fit the model output. A second-order PCE is then the minimum order
surrogate model capable of capturing higher order effects. Figure 5.5 shows results for both
a first and second-order PCE in approximating the model output, with the number of nodes
in the fully-tensorized integration grid used to fit the PCEs given on the x-axis. For a fully
tensorized grid, Ωd

o , of order o, and dimension d, the number of nodes is related to the grid
order by,

o =
d
√

N

where d is the dimensionality of the uncertainty space, and N is the number of nodes in the
grid.

Since we are mainly interested in the calculation of Sobol sensitivity indices, the error measure
is determined with respect to the ground truth values for the total-order indices calculated
in the previous section. We compose the sensitivity indices for each model parameter into a
vector and calculate the relative error in the vector’s l2-norm with respect to the ground truth
values as described. The relative error metric is then,

ϵ =
||SPCE

T − SGT
T ||

||SGT
T ||

Figure 5.5 (a) demonstrates the poor fit achieved by the first-order PCE, with no gain in ap-
proximation accuracy with an increasing number of samples. By contrast, the second-order
PCE is observed to converge quickly, with the accuracy of approximation plateauing after 256

samples. Both expansion orders show large errors. These results confirm our intuition that
the resolution of the first-order PCE is too low to fully capture the present interaction effects,
and even when fully converged is only a poor surrogate of the model output. Similarly, the
second-order PCE is only capable of approximating second-order interaction effects, and will
not represent model behaviour arising from third-order effects or higher, nevertheless it is
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Figure 5.5: Figure (left) showing the error in the total-order Sobol indices for a first and second-order
PCE, as well as the calculated indices for each parameter (right). Note the relatively small
increase in accuracy ( 5%) conferred by increasing the order of the PCE, this is indicative
of potentially influential higher-order effects.

observed to be a much more accurate approximation. Once again, these results follow the
generally diminishing returns which are expected when including higher order interaction
terms as suggested by the sparsity of effects principle (Box and Meyer, 1986). The relative
error of the second-order PCE versus ground-truth is ∼ 20% because it cannot approximate
interaction effects of order higher than three which we determined in Section 5.1.1 to account
for ∼ 20% of the model variance.

The comparison of total-order indices for all parameters, shown in Figure 5.5, well illustrates
the increase in approximation accuracy gained by increasing the truncation order of the PCE.
For parameters with small higher order interaction effects, such as β and γ, the second-order
PCE confers no increase in accuracy. The results for δ are of interest, since the expected gain
in approximation accuracy with a higher order PCE was not measured. This is likely due to
approximation error inherent in the interpolation itself, rather than arising solely for the in-
clusion of interaction effects. For brevity we shall only show the results for prey as the results
for the predators are similar and differ only due to the presence of larger second-order effects
for alpha and delta, as shown in Figure ??. A full reporting of the results for both predators
and prey can be found in Table 5.2.

We may repeat the above analysis for even higher expansion orders, aiming to more com-
pletely capture the behaviour of the model. Since the ground truth values are know a priori,
it is straightforward to measure the diminishing returns with increasing order. In situations
where ground truth values are not known a priori it may be instructive to inspect the accuracy
of the model visually, as is shown in Figure 5.7. Although far from rigorous, evaluation of
the approximation error of the PCE, visual inspection is useful for quickly ascertaining how
well the surrogate model is reproducing the model values.

In Figure 5.6, the results for the entire series of truncation orders are presented. The sharply
diminishing returns in accuracy are evident in the graph. There is a large gain in accuracy for
p = 3, with the error from GT dropping to below 10% upon convergence. For higher trunca-
tion orders however the marginal gain in efficiency is significantly lower, as the successively
smaller contributions to model variance by successively higher order interaction affects are
captured by the PCE. Similarly, once converged there is no gain in accuracy with fitting an ex-
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Prey Pred
Observation p = 3 p = 6 GT p = 3 p = 6 GT

Nodes / Function evaluations 256 2401 327,680 256 2401 327,680

Mean 32.72 32.72 32.72 13.78 13.78 13.78

StDev (normalised) 0.58 0.58 0.6 0.77 0.8 0.8
Variance (normalised) 11 11 11.91 8.1 8.76 8.92

Skew 0.41 -5482 0.93 2.09 6624 2.24

Kurtosis -0.64 - 0.25 4.87 - 5.89

ST−α 0.39 0.42 0.43 0.69 0.7 0.71

ST−β 0.08 0.1 0.11 0.2 0.23 0.25

ST−δ 0.76 0.78 0.78 0.8 0.81 0.82

ST−γ 0.08 0.09 0.1 0.05 0.08 0.09

Table 5.2: Table showing a full breakdown of results for Experiment II. Both the statistical moments
and and total-order sensitivity indices which were extracted from the fitted PCEs are com-
pared directly against those determined by direct-sampling methods. Note the marginal
gain in accuracy achieved by increasing the truncation order of the expansion for three to
six.

Figure 5.6: Figures showing the approximation accuracy for each PCE in Experiment I. PCEs of trun-
cation order from 1-6 to six were fit using fully tensorised Gaussian quadrature grids from
levels 1-10. Once converged, the PCE with truncation order p = 3 is observed to con-
fer a large increase in approximation accuracy. This is due to third-order effects present
in model being captured by the third-order terms in the PCE. The sharply diminishing
returns for higher truncation orders are evident in the plot. Note the characteristic con-
vergence behaviour with each PCE converging to its maximum accuracy when fit by a
quadrature grid of level l = p.
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Figure 5.7: Figure showing the accuracy of the PCE surrogate models for two truncation orders as
illustrated by a scatter plot. A ’perfect’ surrogate model would be represented by a one-
to-one correspondence between the the actual model and PCE evaluations, lying along the
line shown in pink. The increase in truncation order from two to six is observed to confer
a large increase in the accuracy of the surrogate model, although this is not reflected in a
corresponding increase in the accuracy of the calculated statistical measures.

pansion of a given order with a higher resolution grid. This marginal gain in approximation
accuracy must be balanced against the computational cost inherent in fitting the higher order
models. Although certainly a more accurate surrogate model, as illustrated in Figure 5.7, the
corresponding gain in approximation for the Sobol indices is minimal. The third-order PCE
converged for 256 samples and determined the Sobol indices to within 10% error. By compar-
ison, the sixth-order PCE, which required on the order of 10 times more function evaluations
to fit, conferred only an additional 5% in approximation accuracy. As evidenced by the clear
trend in the Figure 5.6, each higher order PCE required a larger number of samples to con-
verge to its maximum accuracy.

5.1.3 Experiment II - Sparse grids

We now proceed with the results from Experiment II, testing the effect of sparse grid tech-
niques on the accuracy and convergence properties of PCEs. The characteristic sparsity of
sparse grids reduces the number of quadrature nodes used to approximate a given function,
leveraging the smoothness of the integrand to derive accurate results with less computational
cost. For high-dimensional models, where the curse of dimensionality begins to severely limit
the order of quadrature rules which may be feasibly employed, sparse grids delay the onset
of the curse until higher dimensions.

Figure 5.9 illustrates the convergence properties of the sparse grids when applied to deter-
mine the expansion coefficients of the PCE and thereby determine the Sobol indices for prey.
The data follows the same trend found in Experiment I with the fully tensorised grids, that
a PCE of a given order has a maximum attainable accuracy, and once converged, gains little
approximation accuracy with an increase in grid size. We also observe the same increase
in accuracy with increasing PCE truncation order, albeit with the same sharply diminishing
returns in accuracy after p = 3.
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Figure 5.8: Figure showing the output population distributions from both the actual model and surro-
gate PCEs of various truncation orders.

The most significant qualitative difference observed is the more gradual convergence of the
PCEs for successively higher-order sparse quadrature rules. Whereas, in the case of fully ten-
sorised grids, the PCEs converged completely once a certain threshold had been passed, the
application of sparse grids leads to a steadier approach toward convergence. This arises from
the preference of the sparse grid method for certain dimensions over others. As illustrated
by the diagram in Grey Box 1.3, sparse grids have the highest sampling density along axes
of the sample space, with fewer samples of shared dimensions. Consequently, terms in the
expansion of mixed order are integrated with lower order quadrature rules and, as such, their
coefficients are less accurately determined.

This is the central strength of the sparse grid method, that it dose not ’waste’ model eval-
uations on terms of mixed order, which are assumed to contribute only marginally to the
accuracy of the result. Indeed, it is analogous to the sparsity of effects principle, albeit ap-
plied more generally to the high-dimensional numerical methods.

The results for prey in Figure 5.9 show excellent convergence for expansions of order higher
than three, converging to within 5% of the ground truth values. Comparison with fully ten-
sorised results in Figure 5.6 shows that in actuality, the sparse grid method was costlier, with
larger number of model evaluations required for convergence. This is well exemplified for the
PCE of truncation order 6 which was integrated exactly with only 2,401 model evaluations,
required 46,721 to converge to a comparably low error. This is in direct contradiction to the
supposed aim of sparse grid methods. This phenomenon arises from the dimensionality of
the uncertainty space. For low-dimensional models, such as that investigated here, the sparse
grid construction, being based on linear combinations of low order quadrature grids leads
to more sampling points than a fully-tensorised grid of the same order. However, for high
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Figure 5.9: Figures showing the approximation accuracy for each PCE in Experiment II. PCEs of trun-
cation order from 1-6 to six were fit using sparse quadrature grids of levels 1-10. Note
the smoother approach toward convergence when compared to the spectral convergence
observed in 5.6. For the Two-Species model sparse grids are observed to be relatively more
expensive than the fully-tensorised grids.

dimensional uncertainty spaces, while the fully tensorised grids feature an exponential rise in
the number of nodes, rendering them quickly unfeasibly, the size of sparse grids rises more
slowly.

5.1.4 Experiment III - Adaptive sparse grids

Through the use of the adapted Gerstner’s algorithm, explained in detail in Chapter 3, we
attempt to iteratively choose those dimensions which of the uncertainty space (parameters)
for which the hierarchical surplus is the greatest (Gerstner and Griebel, 2003). The hierarchi-
cal surplus method, as defined in Chapter 3, provides a local error metric which can serve as
a surrogate metric for the actual global error which can be very costly to compute (Edeling
et al., 2021) (Loukrezis et al., 2019). This error metric may then be be used, over the course of
the iterative procedure, to refine the sampling plan in those dimensions which have the the
greatest impact on the accuracy of the PCE.

Owing to the correspondence between PCE coeffecients and the Sobol indices for a given
model, the adaptive algorithm should refine those dimensions which have the largest Sobol
indices. Therefore the progress of the algorithm can be tracked by contrasting its refinement
directions against the ground truth values.
Since the quadrature grids produced by the algorithm are sparse, the results from Experiment
II provide useful upper bounds on the maximum accuracy which may be attained.

As an example we seek to replicate the ’best-value’ expansion from Experiment II, that for
p = 3, which converged to an error of 6.2% with a sparse grid containing 2,929 points. The
dimension-adaptive algorithm should be able to replicate the accuracy of this results albeit
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with far fewer function evaluations.

Figure 5.10, shows the results for the dimension adaptive algorithm applied to a a third-order
expansion with the prey population at time t = 910 as its target. The tile plot in Figure 5.10

illustrates each step in the algorithms iterative refinement strategy. At the zeroth step the
grid is constructed from a linear combination of level 1 quadrature rules in each dimension,
represented as {1, 1, 1, 1} in multi-index notation. This initial grid contains 24 = 16 points
and produces the first fitted PCE from which hierarchical surpluses are calculated. In the
second iteration, δ is chosen as the dimension to refine. After the points from the chosen
index {1, 1, 2, 1} were added to the old set a new PCE is fitted and local errors calculated for
each admissable index set as outlined in Chapter 3.

In the next iteration, α is chosen for refinement and the points from the grid {2, 1, 1, 1} are
added to the old set. The final iteration sees the inclusion of a grid with terms from a shared
dimension, {1, 1, 2, 2}. The algorithm halts after the third iteration. The final sparse grid,
constructed from all the indices in the old set contains, 116 nodes. The Sobol indices calcu-
lated from the resultant PCE were within 4% of the ground truth values. This implies that
the dimension-adaptive algorithm required 25.25 times fewer function evaluations than the
sixth order sparse grid used to fit a third order PCE in Experiment II. In fact, the dimension
adaptive algorithm produced results which were more accurate than the comparable result in
Experiment 2 (p = 3, Ωs

6). This is in direct contradiction with the assertion made above that
the results from the complete sparse grids would provide upper bounds on the maximum
attainable accuracy by the algorithm. We hypothesis that the discrepancy is due to errors
introduced by the large number of nodes used in determining the figure in Experiment II.

Note the correspondence between the refinements chosen by the algorithm and the total-order
Sobol indices determined in the model characterisation step. The most influential factor, as
measured by its total-order Sobol index, δ, was chosen first, followed by α, the second most
influential variable. This result indicates that the local error measure based on the hierarchi-
cal surplus is effective in directing the algorithm toward dimensions which are influential.
The final refinement sees the addition of points from the dimension shared between δ and
γ, which suggests that higher order interaction terms involving these two uncertain variables
were more important to reducing the error of the eventual PCE versus the other grids under
consideration.

In this run of the algorithm the maximum quadrature order of each dimension is 2.

To illustrate the action of the algorithm on a higher order PCE we take the an expansion for
p = 3, the highest order expansion investigated in Experiment II. In both Experiment I and
II we concluded that although the 6

th order PCE was the most accurate, the marginal gains
in accuracy did not justify the large cost of fully fitting the PCE. It is of interest, therefore,
to investigate whether the dimension-adaptive algorithm can cheaply fit such a high order
polynomial, dedicating function evaluations to important dimensions while ignoring the rest.

The results for the 6
th order PCE are shown in Figure 5.11. The increased complexity of the

path taken by the algorithm when compared to that for p = 3 is readily seen.
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Figure 5.10: Figure showing the steps in the adaptive refinement strategy employed by the algorithm
for truncation order p = 3. Note that the algorithm was able to converge to sufficient
accuracy with a maximum quadrature order of two.

Figure 5.11: Figure showing the adaptive refinements used by the algorithm to approximate a sixth-
order PCE for the two-species Lotka-Volterra model.
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Figure 5.12: Figure showing the population distributions for each trophic level produced by the Three-
Species Lotka-Volterra Model when sampled over the entire uncertainty space. Note
the characteristic increase in the sharpness and skew of the distributions as the trophic
level increases. This behaviour is comparable to that observed in the two-species Lotka-
Volterra model albeit more severe. The owl distribution is so sharp that it frustrates
attempts to clearly illustrate it, with over 99.5% of observations occurring in the bin for
values between zero and ten.

5.2 three species lotka-volterra model

5.2.1 Model characterisation

The inclusion of a third species is achieved by adding an additional equation to the standard
Lotka-Volterra construction investigated above. The model, now composed of three interact-
ing species, produces three quantities of interest which we store in a response vector. As
above, we take the population of each species at time t = 910 as the QoI. The equations
are specified by seven parameters, giving a seven-dimensional input uncertainty space from
which samples are taken. The model is then a map R7 → R3.

Numerical solution of this equation system by a third-order Runge-Kutta method produces
population traces comparable to that of the two-species model, pictured in Figure 4.1 . The
solutions are again periodic, with the peaks and troughs of each species separated by a phase
difference from its respective prey species. The traces for the three species model, for a spe-
cific set of parameter values, are pictured in Figure 4.2. The boundary conditions for the
new parameters were chosen arbitrarily and set to values which produced sufficiently well
behaved solutions over the specified sampling ranges.

The plot of the model response in Figure 5.12 over the complete sampling space reveals the
change in behaviour produced by the inclusion of a third species. While the distributions for
the lower level species are comparable to that for the two species model, the apex predator
population distribution is observed to be highly positively skewed, with the majority of its
values occurring below its mean value, with a small subset of outliers with values far from
the mean. This is comparable to the relationship between predator and prey observed in
Figure 5.1, albeit more severe. In order to provide for interpretability the axis in Figure 5.12

has been clipped prematurely. In actuality, the bin containing the most values, that for a
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Figure 5.13: Figure showing the total-order sensitivity indices for the Three-Species Lotka-Volterra
Model’s lowest and highest trophic levels.

population between zero and ten, contains 99.5% of outcomes for a sample size of 524,288.
The kernel-density estimation plot, pictured in blue in Figure 5.12 (B), well demonstrates the
actual sharpness of the owl population distribution, with the vast majority of values lying
close to zero. Note the error on the kernel-density plot, an artefact of the smoothing algo-
rithm used in its determination. The error introduced by attempting to interpolate data with
such severe steps is analogous to the issues which may arise trying to approximate the owl
distribution using PCEs.

The three-species model was chosen specifically for this behaviour. The highly skewed nature
of the apex predator distribution, coupled with the sharpness of its peak may prove to chal-
lenging for the smooth polynomial interpolants investigated here. Furthermore, the use of
sparse grids in order to fit the given PCEs may introduce additional error. As mentioned pre-
viously, sparse grid methods leverage the assumed smoothness of the target function within
the sample space, to compute a high accuracy solution with fewer samples, and function eval-
uations, required. In situations where this assumption does not hold, sparse grids may fail
to assign enough samples to areas with large variability, thereby reducing the accuracy of the
eventual interpolation.

Figure 5.13 shows the calculated total-order indices for the lowest and highest trophic levels,
determined though a quasi Monte Carlo experiment with 524,288 samples taken from the
7D uncertainty space. A larger sample was required in this case in order to reduce the esti-
mated error at the 95% confidence interval as calculated by the SAlib package. This is again
indicative of both the distribution skew, sharpness, and the presence of outliers, all of which
contribute to large deviations in the calculated values upon resampling. No change in the
calculated confidence intervals was observed with a large number of resamples. For brevity
the indices for the middle trophic level, that of the snake, have been left out of Figure 5.13.

In addition to the aforementioned sensitivity measures, a number of statistical moments char-
acterising the population distribution of each species were calculated. Note the outsized
skewness and kurtosis of the owl distribution, which indicate a sharp, asymmetric distribu-
tion with influential outliers which lie far from the mean. The mean of the owl distribution
is another demonstration of the ’atto-fox’ problem in biological competition models. Owl
population outcomes which are less than unity are clearly un-physical but do not interfere
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Moment Mouse Snake Owl
Mean 68.77 32.54 0.14

StDev (normalised) 1.1 1.97 13.51

Variance (normalised) 83.3 126.47 16.47

Skew 1.33 2.11 18.99

Kurtosis 0.97 3.86 444.15

Table 5.3: Ground truth statistical moments for Three-Species Lotka-Volterra Model. Note the out-
sized skew, kurtosis, and stdev for the Owl.

with the structures and methods used in this study.

These figures constitute the outcomes of interest which we shall try and replicate through the
use of PCEs. The three species Lotka-Volterra equations then present challenges to surrogate
modelling methods on two fronts. In the first instance, the output distributions for animals
at successively higher trophic levels should be more difficult to approximate accurately with
PCEs. As such the more varied nature of responses produced by this model allows for a more
thorough examination of PCE performance under different experimental contexts. Secondly,
the progressively ’rough’ nature of the output distributions may lead to a lower approxima-
tion accuracy when using sparse grids though the dimension adaptive algorithm investigated
in Experiment III should be able to identify dimensions which require a higher sampling den-
sity.

5.2.2 Experiment I - Full quadrature grids

As above, in this section we only visualise the results for the lowest and highest trophic levels,
those of the mouse and owl, as these lie at either end of the difficulty spectrum and, as such,
allow for the best comparison.

The addition of an extra trophic level and three additional parameters increased computa-
tional times significantly. This was expected and for fulls grids follows directly from the
the curse of dimensionality. In addition, the number of terms in each expansion, though only
weakly dependent on dimensionality, also significantly slowed the computation of the Sobol
indices. In light of the results from Section 5.1.2, which clearly show the extent of diminishing
returns for PCEs of increasing truncation order, in this experiment we investigate expansions
with truncation order less than four. Expansions of order four or less should well represent
the range of mode behaviour and approximation ability. In executing the experiments we
used the results from Section 5.1.2 as a heuristic to decide the maximum quadrature order
required to fully fit an expansion of each order.

Figure 5.14 shows the results for the three species Lotka-Volterra model with the PCEs fit
using a fully tensorised Gaussian quadrature grid. The grid levels vary from two to six with
the resultant number of samples in each grid shown on the x-axis. We observe similar con-
vergence behaviour as for the two species model, albeit with a very significant increase in
the number of function evaluations required to fit each expansion. Again, the PCEs are ob-
served to converge to maximum accuracy when fit with a quadrature rule of order p+ 1, with
sharply diminishing returns in accuracy after p = 2. This is in agreement with the results of
the Sobol-Saltelli SA which show that the majority of the variance on the mouse distribution
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Figure 5.14: Figure showing the error for PCEs of order 1-4 fit using fully-tensorised quadrature grids
of levels 2-6. Note the absence both of higher truncation order PCEs and higher quadra-
ture grid levels. For a 7-D input uncertainty space the curse of dimensionality begins to
limits the computations which are feasible given the available computational resources.

can be accounted for with first and second-order effects alone. The addition of higher order
terms to the expansion offers little increase in approximation accuracy. It possible that the
residual error upon convergence is caused by very higher order effects. While this in contrast
with the Pareto heuristic verified for the two species Lotka-Volterra model it is not unlikely
with a model such as this which is known for demonstrating near-chaotic behaviour.

The results for the highest trophic level show comparable convergence behaviour albeit with
larger errors for expansions with lower orders. The large error for the PCE with p = 3 is
indicative of influential higher order effects, not observed in the case of the mouse. The suc-
cessive large gains in accuracy with truncation order may then be explained by the inclusion
of higher order terms which capture the variability of the higher order effects. The gain in
accuracy for the PCE with p = 4 shows that there was also significant effects of order higher
than three, contributing 10% to the approximation for p = 3. These results are supported by
the data from the Sobol-Saltelli sensitivity analysis campaign which indicate the presence of
influential higher-order effects, which in the case of the owl, contributed significantly to the
total-order indices. The difference between the character of the mouse and owl output distri-
butions with respect to the influence of higher order effects is evident in the plot in Figure
5.15. The Sobol indices for the owl distribution, also pictured in Figure 5.15., are especially
illustrative. For a given parameter the Pareto heuristic suggests that higher order terms ac-
count for a successively smaller amount of the total variance attributed to variation in that
parameter. For the parameters α and β, the reverse appears to be true, with second-order ef-
fects accounting for only a small portion of the variance as measure by the total-order index,
with higher order terms accounting for the rest. While there is no reason that a higher order
expansion should not be able to capture these effects, the curse of dimensionality renders such
endeavours infeasible. If, as we have observed, an expansion truncated to order p requires a
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Figure 5.15: Figure showing the first, second, and total-order indices for the lowest and highest trophic
levels of the Three-Species Lotka-Volterra model.

Gaussian quadrature rule of order p + 1 to converge fully, then there is a firm practical limit
on the maximum expansion order.

Such difficulty is compounded further by the scaling of the number of terms. In the case of
non-intrusive spectral projection methods, where each coefficient is solved by straight forward
numerical integration, the integration step is a O(n) process and therefore is insignificant with
respect to the model evaluation step. In contrast, in the case of the stochastic collocation the
coefficients are solved by a regression step on P equations, where P is the number of terms
in the given expansion. The resulting matrix is then of size P × P which requiresO(n2) work
to solve.
Comparison with the results for the two species Lotka-Volterra model illustrates the expected
difficulty in approximation caused by the characteristic ’roughness’ of the owl population
distribution. Although the predator population distribution showed a similarly peaked na-
ture the sharpness was not great enough to frustrate the accuracy of the high order PCEs.
In contrast, in the case of the owl for the three species model the error for the converged
fourth-order expansion is larger, and does not fall below 10%.
The number of required function evaluations for the three species model is a good demon-
stration of the difficulties caused by the curse of dimensionality. The addition of only four
parameters to the input uncertainty space resulted in a very sharp increase in the number of
function evaluations with grid order. Although the exponential dependence of grid size on
dimension is straightforward to comprehend for a mathematical standpoint is is often hard
to appreciate just how quickly the number of computations required can rise. In the case of
a simple differential equation model such an increase is not detrimental since the runtime is
less than a second.

5.2.3 Experiment II - Sparse grids

The increase in dimensionality introduced by the three-species Lotka-Volterra model, along
with the corresponding sharp increase in the number of function evaluations required pro-
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Figure 5.16: Figure showing the error for PCEs of order 1-4 fit using fully-tensorised quadrature grids
of levels 2-6. The large increases in approximation accuracy gained by increasing the
truncation order of the interpolating PCE are evident in the plot. This is consistent with
the results displayed in 5.13 which imply the presence of significant higher-order effects.

vides an appropriate use-case for sparse grid methods. Following the logic of the sparsity of
effects principle we can expect that the majority of the model’s output variance may be ex-
plained by the variance of only a few parameters, and additionally, that lower order effects
in all parameters contribute more to the output variance that higher-order effects. Sparse
grid methods should then allow for faster convergence to sufficiently accurate solutions, as
the points in the grid sample along dimensions with a higher density. As explained earlier,
sparse grid methods rely on the assumption that that the functions to be approximated is
sufficiently ’well-behaved’, or smooth, in the interior of the sampling space.

Inspection of the model output in Section 5.2.1 has revealed certain characteristics that may
make it difficult for sparse grid methods to yield sufficiently accurate PCEs. The highly
skewed and sharp nature of the owl distribution in particular suggests chaos-like behaviour,
with certain parameter values leading to outlier values very far from the mean. This indicates
that there are ’pockets’ of parameter values within the uncertainty space to which the model
output, specifically, the QoI that we investigate here, is very sensitive to. Such behaviour
reduces the validity of the regularity conditions assumed by sparse grid methods.

The results for the highest trophic level are illustrative of the convergence behaviour expected
with sparse grids. Each of the expansion orders, illustrated in Figure 5.17, demonstrate a
gradual and linear convergence with increasing grid order. Note also the relatively grouped
convergence behaviour, with each expansion order above p = 3 converging in tandem with
comparable errors. This is in contrast to the case with the full Gaussian grids investigate
above, with each expansion order requiring a higher order quadrature rule to converge fully.
In the this case, the sparse grids are observed to provide quite accurately fitted PCEs, with
higher order expansions converging to within 20% of the ground truth values. Our compari-
son at this stage is hampered by the large resampling error found when calculating the ground
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Figure 5.17: Figure showing the approximation accuracy for each PCE in Experiment II. PCEs of trun-
cation order from 1-5 to six were fit using sparse quadrature grids of levels 1-8. Note
the smoother approach toward convergence when compared to the spectral convergence
observed in 5.16. Compared to the Two-Species case, the sparse quadrature grids now
contain far fewer points than the fully tensorised grids, allowing higher truncation order
PCEs to be fit with higher level quadrature grids. The relatively large error upon conver-
gence was expected given the character of the owl output distribution.

truth Sobol indices. Although there is a significant envelope of uncertainty around the actual
values, we nevertheless observe convergence to within the midpoint of the determined confi-
dence intervals. There is also a clear gain in approximation accuracy for high-order PCEs, for
example, p = 4 and p = 3, consistent with the observation from the model characterisation
step that owl distribution is affected by significant higher-order effects. This is in contrast to
the full grid where only a marginal increase in accuracy was conferred by very high orders.
Comparison of the number of evaluation points produced by the sparse quadrature rules
with those for the full grids in Figure 5.16 well demonstrates the eponymous sparsity of the
the grids, with significantly fewer points required to attain accurate solutions.

The result for that of the lowest trophic level, that of the mouse, are consistent with that
which is expected for a more ’well behaved’ output distribution where higher order effects
play a less influential role. The convergence behaviour is again typical of that expected from
sparse grids, with a more linear convergence toward the error minima. The best performing
PCE is that for p = 2 which converges to within 10% of the ground truth values with only
116 nodes, a significant improvement over the full grids employed in Experiment I, which
required 16,384 function evaluations for the best performing PCE, which returned an error of
20%. The increased cost of fitting PCEs of too high an order for the effects which are present
is also evident in Figure 5.18, with higher order expansion such as that for p = 4 requiring
92,360 function evaluations but converging to a similar error as that for p = 2.
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Figure 5.18: Figure showing the approximation accuracy for each PCE in Experiment II. PCEs of trun-
cation order from 1-5 to six were fit using sparse quadrature grids of levels 1-8. The
sparse grids afforded very quick convergence for PCE approximating the mouse popula-
tion distribution due to its smooth character and the absence of high order effects.

5.2.4 Experiment III - Adaptive sparse grids

The results for the traditional isotropic sparse grids outlined above give some indication of the
performance expected from the adaptive algorithm. For the mouse, where high-order effects
are observed not to play a large role in determining the output variance, we expect relatively
quick convergence to similar levels of accuracy as those shown in Figure 5.18, hopefully with
fewer function evaluations. However it is with the highest trophic level, that of the owl, where
the anisotropic nature of the adaptive algorithm is expected to improve performance the most.
The results in Figure 5.17 show that sparse grids are capable of producing an accurate PCE for
large grids. Therefore it is possible that the adaptive algorithm will provide similar accuracy
with fewer function evaluations.

In both cases the dimension adaptive algorithm failed to converge for each of the investigated
PCE truncation orders, and each of the trophic levels. In each case the error of the Sobol
indices produced at each step did not change as the algorithm progressed and adaptively
refined the sparse grid. Such behaviour was expected in the case of the highest trophic level,
where influential high-order effects may not be captured by the the low order quadrature
rules present in the the initial steps in the algorithm; however, the lowest-trophic level also
displayed the same behaviour. To illustrate this behaviour we examine the results produced
by the algorithm for the lowest trophic level with p = 2. Figure 5.19 shows each of the
refinements taken by the algorithm, with some dimensions approximated with very high-
order quadrature rules. The algorithm completed 94 refinement steps before it was manually
halted. Although the quadrature grid grew to include over 2,500 nodes, the approximation
error never fell below 88.7% and was essentially unchanged throughout the course of the run.
An expansion of p = 2 fitted to the mouse population output was specifically chosen owing
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Figure 5.19: Figure showing the iterative refinement strategy taken by the algorithm in attempting
to fit a PCE truncated to second-order for the lowest trophic level of the three-species
Lotka-Volterra model.

to the exemplary results from Experiment II, with error of less than 10% with fewer than 200

nodes. However, in this case the result could not be replicated even with far more nodes.
The same behaviour was noted for each of the other expansion orders as well as for the other
trophic levels.

These results constitute a complete failure of the algorithm to accurately approximate the out-
put of the three-species Lotka-Volterra model over the timescales afforded by the scope of this
study. In each case the algorithm had to be prematurely halted as it continued to progress
after a period of twelve hours with no discernible change in the error of the approximation.
At time of writing no error has been found in the code which can explain such behaviour.

5.3 energy transition model

5.3.1 Model characterisation

For the Energy Transition Model we extract only a single quantity of interest, that of the frac-
tion of renewables deployed at the end of the simulated period. However, this model differs
from the two investigated above in that we may dynamically alter the dimensionality of the
input uncertainty space by arbitrarily fixing a given number of factors. The sensitivity anal-
ysis and surrogate modelling campaigns are then carried out over the remaining variables
allowing us to evaluate the effect of varying dimensionality on the performance of PCEs with
a single model. The algorithms were tested for five, eight, and ten dimensional input uncer-
tainty spaces. For the remainder of this section we use the term ’dimensions’ to refer to the
dimensionality of the uncertainty space rather than referencing any one dimension in partic-
ular. In each case the input space is considered to be ’high-dimensional’ with computational
time featuring as a significant bottleneck. Figure 5.20 shows the output distributions of the
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model for each of the aforementioned input spaces, visualised using a kernel-density estimate
plot.

Each of the distributions pictured in Figure 5.20 appear ’well-behaved’, with low skew and
low kurtosis. The inclusion of more factors in the sensitivity analysis campaign does not
greatly affect the character of the output distribution aside from a slight widening the distri-
bution. The statistical moments of each distribution are comparable, with the output mean
remaining in the region of 75% renewables deployment, as illustrated by the box plot, also in
Figure 5.20. Using the results from the three-species Lotka-Volterra campaign to inform our
intuition, we would expect the energy-transition model output to be easier to approximate.

The process of factor fixing completely changes the nature of the sensitivity analysis cam-
paign as well as the its results, therefore it is necessary to carry out individual SA campaigns
on each uncertainty space. It may also be the case, due to the presence of higher-order effects
between variables, that the ranking of influential factors is not preserved as we progressively
fix more factors. We note here that the factors were chosen arbitrarily so as not to bias the
experiment. Although a rudimentary sensitivity analysis was carried out in (Loonen et al.,
2013), the results did not figure in the selection of factors for this study. The only choice made
in the selection was to avoid the inclusion of categorical variables.

Figure 5.22 shows the total-order indices for each of the uncertainty spaces. The chosen un-
certainty spaces are nested, in that each space contains the factors of the spaces with lower
dimension as a subset. A table giving the full names of each of the factors is available in
the Appendix for reference. Each of the spaces shows the distribution of effects among the
factors. While some factors have an outsized influence of the model output variance, others
do not contribute at all. In a situation where the modellers sought to reduce the order of
the ETM, these factors, for example, ’pr_igcc’, and ’pr_ngcc’ for R5 would be fixed to their
default values and excluded from further analyses.

A comparison of both the first and total-order effects for each of the factors shows that few of
the factors contribute to higher-order effects. In Figure 5.23, the coincidence of the purple tri-
angles, representing the total-order indices, and the blue square, representing the first-order
indices, demonstrate the near complete absence of second-order effects or higher. Only some
factors, such as ’pr_nuke’ in R10 and ’pr_ngcc’ show marginal higher order effects. Such a
result goes some way toward explaining the model’s behaviour around our chosen quantity
of interest.

5.3.2 Experiment I - Full quadrature grids

As expected, the output distribution of the ETM is well approximated by PCEs providing for
the expedient calculation of the Sobol indices. Figure 5.24 shows the results for the uncer-
tainty space of dimension 5. These results display the now familiar behaviour of initially high
approximation error followed by convergence with expansions of order p requiring full-grid
quadrature rules of level l in order to converge fully. There is observed to be effectively no
increase in approximation order with increasing polynomial order. The results of the quasi
Monte Carlo analysis lend support to these results. The absence of significant higher-order
effects removes the benefit conferred from using higher-order expansions to approximate
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(a)

(b)

Figure 5.20

Figure 5.21: Figures showing the output distributions of the ETM. The chosen quantitiy of interest is
the fraction of renewables deployed at the end of the simulation period. Figure (a) shows
the change in the output distribution caused by the addition of factors. Figure (b) shows
the comparable means, inter-quartile ranges, minima, and maxima of the distributions
produced by the model during the model characterisation step.
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Figure 5.22: Figure showing the total-order indices determed by direct sampling for each of the in-
vestigated uncertainty spaces. Note the expected distribution of ’influence’ among the
parameters, with come factors contributing significantly more to the variance of the out-
put than others. Note also how the ranking of parameters is not conserved as more factors
are added to the set.

Figure 5.23: First and total-order Sobol sensitivity indices for each parameter in each of the investi-
gated ETM uncertainty spaces. Note the coincidence of the purple triangles and blue
squares, indicating the absence of higher-order effects.
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Figure 5.24: Figure showing the results from PCEs of trunction order 1-6 fitted with fully-tensorised
grids of level 2-10. Each PCE is observed to converge for a quadrature grid of level l = p.
The absence of higher-order effects means that a PCe with p = 1 fit using a grid of only
243 points provides a perfect approximation according to the total-order indices.

higher-order terms. For a model such as the ETM an expansion of truncation order p = 1
is capable of accurately modelling the response. This result well demonstrates the power
of surrogate modelling techniques. Contingent on some assumptions of function regularity,
such interpolative methods can approximate the full-behaviour space of a model with very
few function evaluations.

Taking the expansion for p = 1 as an example, the algorithm converged for a quadrature rule
of level l = 2, corresponding to a quadrature grid of 35 = 243 nodes; however, the heuristic
repeatedly observed throughout this study, that a PCE will converge for a quadrature grid
of level l = p, suggests that the first-order expansion would have converged with a grid of
only 25 = 32 points. Nevertheless the PCE fit with only 243 function evaluations represents
a very cheap method of replicating the results of the traditional qMC approach which re-
quired 24,576 function evaluations. The surrogate modelling approach has the added benefit
of being able to use the fitted PCE as a cheaper surrogate for the model when carrying out
new function evaluations. The severe increase in grid size with dimension as the potential to
seriously limit the order of the PCEs which can reasonably be fit with finite computational
resources. In the case of the ETM, where there are no higher order effects, such a finding is
of little concern, but may serve to reduce the accuracy of surrogate methods for models with
significant higher-order effects.

The results for the eight and ten dimensional spaces display a similar character to those above.
For d = 8, each of the PCEs converged to a reasonably low error. Note however the residual
error for first-order PCE, which is suggestive of higher order effects. The perfect convergence
of the second-order PCE further suggest that these were second-order effects. Both the PCEs
for p = 2 and p = 3 achieve effectively perfect convergence. Note also the marked increase
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in the size of the low-order quadrature grids when compared to the case for d = 5. Although
the reader is likely accustomed to such an increase by now, it is instructive once again to con-
sider how the curse of dimensionality affects such methods as these. Although the low-order
PCEs converged remarkably quick for d = 5, upon the addition of just three extra uncertain
factors the cost of fitting even low-order PCEs has risen by orders of magnitude, reducing the
attractiveness of such methods. What may have been a feasible approach in the former case,
with respect to computational cost, is quickly being rendered unfeasible by the curse in the
case of the former. For example, fitting a third-order PCE for d = 8 cost almost twice as much
as the qMC campaign at 65,536 versus 36,864.

The number of terms in the respective expansions was also found to be an issue with increas-
ing dimension. In the case of d = 8 the model was evaluated for nodes in quadrature grids of
levels 2 − 7, providing enough data to potentially fit a 6-th order PCE. However, during the
actual PCE fitting step the logical processors involved in the computations raised memory
errors in response to the size of the array involved in the computation. While the scaling
of the number of terms which must be computed is technically a direct result of increasing
dimensionality, via P + 1 = (d+p

p ), it is the vectorised nature of the software packages used in
this study that resulted in the errors. Vectorised array operations, such as those supported by
Python’s NumPy library, can easily result in arrays which require over 5 GB of storage, which
can be challenging for a single logical processor in a cluster or a single personal computer.
Such problems could be easily mitigated by evaluating the coefficients of the expansion on a
term-by-term basis rather than all at one.

The results for d = 10 further illustrate this trend with only the first and second-order PCEs
converging for the given number of function evaluations. The errors upon convergence were
also significantly higher for d = 10, with both the first and second-order PCEs only converg-
ing to within 70% of the ground truth values. Such high errors would normally be attributable
to the presence of higher-order effects but in this case the results of the qMc campaign exclude
that possibility. This result indicates that there is an additional factor that limits the ability of
the PCEs to approximate high-dimensional response functions.

5.3.3 Experiment II - Sparse grids

We now proceed with the results from Experiment II, which sees sparse grids applied to the
ETM. The ETM presents the perfect use-case for sparse grids. The combination of a smooth
model output distribution, coupled with a high dimensional input uncertainty space should
allow sparse grids to provide satisfactory approximations with fewer function evaluations.

The results from the lowest dimension uncertainty space, that for d = 5, show that the Sobol
indices produced by evaluating the model at sparse nodes are consistently very accurate and
demonstrate a similar convergence behaviour than that seen with the full grids employed
above. In Figure 5.26 the results for d = 5 are illustrated. The lowest order expansion in
the series is observed to perform best with an error of 5.34% when approximated using only
116 nodes. Despite an temporary decrease in approximation accuracy for higher quadrature
levels, each of the expansions converges to within the region of 5% of the ground truth val-
ues. The absence of any marginal gain in accuracy with an increase in expansion order is
consistent with the distribution of effects observed in the model characterisation step. The
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Figure 5.25: Figure showing the results from Experiment II for the 8d and 10d ETM uncertainty spaces.
Not the effect of increasing dimension on the maximum truncation order and quadrature
level which can feasibly be used. Both time and memory constraints served to limit the
extent of the experiment.

smoothness and regularity of the model output for d = 5 lends itself well to approximation
by sparse grids. In addition the absence of effects other than main effects implies that the
characteristic sparsity of sparse grids in shared dimensions has no effect on the accuracy of
the calculated Sobol indices.

The results for the higher-dimensional uncertainty spaces mirror those above, and are pic-
tured in Figure 5.27. Each of the expansions in the series return errors within 10% of the
ground truth values. The ’best value’ expansion is clearly that for p = 2 which fully con-
verged for only 17 nodes and returned an error of 9.15%. The lowest error in the series
was measured for the third-order polynomial fit with 239,657 nodes and returned Sobol in-
dices which were within 5.6% of the ground truth values. Although the most accurate, the
marginal gain in accuracy is not justified by the huge increase in computational cost. Again
the smoothness and regularity of the model output distribution is observed to be the perfect
environment for sparse grids to provide savings in the required function evaluations and the
results truly demonstrate the power of surrogate modelling methods.

The errors for the 10 dimensional uncertainty space are higher than expected given the suc-
cess of the sparse grid methods with each of the lower dimension spaces. Every expansion
in the series converges to the same residual error for the largest quadrature grid in the series
containing 52,940 nodes. The minimal gain in accuracy with increasing PCE order implies
that the higher error at 75% is unlikely to be improved with higher order expansions.

Both of the data sets picture in Figure 5.27 show the same increase in errors as the quadra-
ture level of the underlying sparse grid is increased as well as a large error even for the best
performing expansion in the series. This increase in error cannot be accounted for by higher-
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Figure 5.26: Figure showing the results from the application of sparse grids applied to the 5d ETM.
Again, the absence of higher-order effects means that the PCE for p = 1 is by far the
computationally cheapest option, converging with an error of 5.34% with only 11 points.
Tese results are a good illustration of the circumstances under which sparse quadrature
grids excel, the regularity of the model output allowed for us to replicate the accuracy of
the full grid approximation with fewer points.

Figure 5.27: Figure showing the results from the application of sparse grids to the higher dimensional
ETM uncertainty spaces. These results mirror those pictured in Figure 5.25, with a high
error returned for the 10d uncertainty space.
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Figure 5.28: Figure showing the iterative refinement strategy employed by the algorithm in attempting
to parsimoniously fit a 4th order PCE over the 5d uncertainty space.

order effects or by the presence of residual error from high-order expansion terms. If the
trend in the graphs is global then it is unlikely that lower errors could be achieved with even
higher expansion orders.

5.3.4 Experiment III - Adaptive sparse grids

The results for the dimension-adaptive sparse grid algorithm are in agreement with those
illustrated above for conventional sparse grids. Although the quadrature grids constructed
by the adaptive algorithm are sparse, the iterative nature of the algorithm, with refinement
guided by the hierarchical surplus error function, allows it to increase the order of the grid
in those dimensions for which the error is greatest. While this does result in an mostly ac-
curate approximation with fewer nodes, given that the adaptive sparse grids are in actuality
’sparser’, the results obtained for the conventional sparse grids should serve as natural upper
bounds for accuracy obtainable by the dimension adaptive algorithm. However, the PCEs
produced by the dimension-adaptive algorithm are significantly more accurate with far fewer
nodes in the corresponding quadrature grid. Figure 5.28 displays the iterative strategy em-
ployed by the algorithm to fit a fourth-order PCE for d = 5. The stopping criterion was set at
20% error versus the ground truth figures. The algorithm halted after thirteen iterations with
an error of only 1.2%, computed using 928 nodes. This can be considered perfect convergence
and is directly comparable to the results obtained by the most accurate full grids in Exper-
iment I at a far lower computational cost. This is also comparable to the best conventional
sparse grid PCE from Experiment II, pictured in Figure 5.26, which returned an error of 1.3%
with 85,464 nodes. The dimension adaptive algorithm is therefore provides the most accurate
and least computationally expensive method of fitting the PCEs and thereby calculating the
Sobol indices.
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Figure 5.29: Figure showing the refinement strategy undertaken by the dimension-adapative algo-
rithm when attempting to fit a fourth-order PCE for the eight-dimension Energy Transi-
tion Model

We cannot display the iteration plot for the PCEs of order 1, 2, and 3 as in all three instances
the algorithm halted after the zeroth step for the lowest order grid corresponding to the in-
dex {1, 1, 1, 1, 1}. For these truncation orders the algorithm returned errors in the total-order
Sobol indices of between 2.1% and 2.2%. Although slightly less accurate than the result for
p = 4 they were achieved at a substantially reduced computational cost at only 32 nodes.

The algorithm also halted at the zeroth step for truncation order 1, 2, and 3 with d = 8 al-
though the errors upon convergence were slightly higher than for d = 5 at between 6% and
10%. In the case of d = 8 the lowest order quadrature grid, again corresponding to an in-
dex of the form {1, 1, 1, · · · , 1} ∈ R8 contains 256 nodes. Again the results returned by the
adaptive algorithm far outperform the results from the failed conventional sparse grid cam-
paign. Figure 5.29 shows the refinement strategy employed by the algorithm to fit the PCE
for p = 4, for which the algorithm had to be manually halted due to time constraints. Given
the extremely low errors returned by the algorithm for the lower expansion orders it is highly
likely that the algorithm would eventually meet the halting condition and return a low error.
Nevertheless in the context of this study, where computational time was limited, it had to be
halted prematurely.

We may attribute the poor performance of the algorithm in this case to two factors. First, the
curse of dimensionality naturally increases the number of computations required at certain steps
in the algorithm, thereby significantly increasing the time for each iteration. Second, the com-
putational cost of the look-ahead step, which calculates the local error measure, and chooses
the dimensions to refine, starts to become an issue for high dimensions. For the quadrature
grids arising from the indices in the Active Index Set, each new node must be evaluated. Due
again to the curse this step can involve more computations than there are nodes in the Old
Index Set. While these nodes do not have to be evaluated again they nevertheless add to the
computational time and make even the algorithm unfeasible when computational resources
are limited. This fact has no impact on the general applicability of such algorithms since it is
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straightforward to parallelise the process.

For the 10-dimensional uncertainty space the algorithm also met the halting condition after
the zeroth step and converged with an error of 7.85% for 1024 nodes and a PCE of p =

1, a very significant improvement over the results from Experiment II. The computational
difficulties arising from the large number of terms in each expansion were naturally more
severe with a 10 dimensional uncertainty space, and as such the adaptive algorithm had to
be artificially halted for p = 2 after it took over 8 hours to reach the fourth iteration.

5.4 conclusions

From the experiments carried out over the course of this study, and explained in detail above,
a number of conclusions can be drawn as to efficacy of polynomial chaos expansions in the
determination of Sobol sensitivity indices.

For each of the models investigated here, polynomial chaos expansions were found to sig-
nificantly outperform the incumbent, quasi Monte Carlo direct sampling methods by de-
termining the total-order Sobol indices to a sufficiently high degree of accuracy versus the
established ground truth values. Since the models used in this study do not admit analytical
solution, no conclusion can be made as to the absolute accuracy of the solutions provided by
the PCEs; however, when judged against the values determined by qMC methods they were
found to yield acceptable solutions with far fewer function evaluations.
In the case of the two-species Lotka Volterra model, the PCEs were observed to converge
when fit using a quadrature grid of level l = p and demonstrated sharply diminishing re-
turns in accuracy with the increase of expansion order. The link between the effects present
in the model and the order of the terms in the PCE was established for this model, with
the marginal increases in accuracy with increasing expansion order found to closely follow
the distribution of higher order effects in the model itself. This result illustrates a perfect
correspondence between the surrogate modelling methods and the qMC methods for the
two-species model. In the case of fully tensorised quadrature grids, a clear trade-off was iden-
tified between approximation accuracy and computational cost. While higher order PCEs are
demonstrably more accurate than those of lower order, the marginal gain in accuracy does not
justify the increased computational cost. The Pareto heuristic espoused by (Box and Meyer,
1986) was found to be appropriate for determining the expansion order which delivered the
highest accuracy for the lowest computational cost. A third-order PCE fit converged for only
256 function evaluation and returned Sobol indices within 10% of those determined by the
qMC campaign at the significantly higher cost of 327,680. This result represents a decrease
in computational cost of three orders of magnitude and well demonstrates the power of sur-
rogate modelling methods for lower dimensional problems. Sparse grids were also observed
to perform well for the two-species model and behaved as expected, with a more linear and
smoother progression toward convergence. They were also observed to be relatively more ex-
pensive than the fully tensorised grids in determining accurate solutions although this arose
from the low-dimensionality of the uncertainty space for the two-species model with allowed
for extremely fast convergence of the full grids.

The three-species Lotka Volterra model was chosen for its replication of ’chaos-like’ sensitivity
to conditions found in natural predator-prey systems. The inclusion of a third species and
the corresponding increase in the dimensionality of the input uncertainty space presented a
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more challenging test problem for the methods investigate here. The three-body interactions
in the model produced very sharp and skewed output distributions which are known to cause
issues for sparse grid methods in particular. The fully tensorised grids performed similarly
albeit with higher errors upon convergence. The curse of dimensionality also began to affect
the tractability of the problems, both in terms of the function evaluations required and the
computational burden of evaluating so many expansion terms. Despite the higher errors, the
full grids were still found to confer a large advantage in speed over the qMC methods which
returned results with a high resampling error. The sparse grids were observed to outperform
the full grids in providing more accurate solutions at a lower computational cost, the dimen-
sionality of the uncertainty space now sufficient to make them relatively much more ’sparse’
than the fully tensorised grids.

The Energy Transition model was chosen to represent the kind of policy models with which
surrogate modelling methods may find use in the field of Exploratory Modelling. It further
offered an opportunity to test the performance of the methods for much higher dimension
spaces. The early identification of absent higher order effects contributing to the variance of
the model output suggested that the ETM was a perfect candidate for surrogate modelling.
Both the fully tensorised and sparse grids provided near perfectly accurate Sobol indices for
d = 5 and d = 8, converging to within 10% of the ground truth values with fewer than 20

function evaluations. The accuracy of the PCEs was found to suffer for d = 10 with unexpect-
edly high errors considering the success of the methods on the lower dimension space.

Finally the adaptive sparse grid algorithm, adapted from the work of (Gerstner and Griebel,
2003) was found to provide both remarkable increases in accuracy and speed in some of
the model context investigate within this study. Since conventional sparse grids provide
rough upper bounds on the accuracy attainable by the ’sparser’ adaptive grids, the adaptive
algorithm performed well in those instances where conventional sparse grids were able to
provide accurate solutions.



6 D I S C U S S I O N A N D C O N C L U S I O N

6.1 answering the research questions

In the following section we provide a brief summation of the project by assessing the extent
to which we have answered the research question initially posed in Chapter 1.

MRQ: How can polynomial chaos expansions with dimension adaptive sampling be
applied to decrease computational cost in exploratory modelling projects?

We further decomposed the main research question into four sub-questions which we will no
address briefly in turn.

1. What are the relevant features of polynomial chaos expansions and how may they
be employed in exploratory modelling projects?

Polynomial chaos expansions are capable of approximating any second-order random vari-
able as a series expansion of orthogonal basis polynomials in normalised random variables.
In this respect, they can be used to approximate the output of a stochastic model where the
output distribution itself may be treated as a random variable. In the field of exploratory mod-
elling, where deterministic models are treated as stochastic due the presence of irreducible
uncertainty around input parameters, polynomial chaos expansions therefore find use as sur-
rogate models which are capable of reproducing the behaviour of a given model without
having to run the actual model for a given parameter set. Such a use-case is important in
reducing the computational intensity of exploratory modelling projects. Additionally, if the
uncertain model parameters themselves are used as as an orthogonal basis over which to
decompose the model output, then the polynomial chaos expansion is equivalent to Sobol’s
decomposition and, as such, all of the Sobol indices for the model can be calculated in a post-
processing step. Since polynomial chaos methods are an interpolation method, they can be
fit to a high degree of accuracy with few model evaluatations. PCEs are therefore an efficient
way of executing sensitivity analysis campaigns on models for which there is parametric or
deep uncertainty.

2. How can dimension-adaptive sampling be used to facilitate faster convergence of
polynomial chaos expansions?

Although polynomial chaos expansions provide for the more expedient calculation of sta-
tistical moments and Sobol sensitivity indices than direct-sampling methods, they are not
immune from the curse of dimensionality. Sparse grids may be used to reduce the computa-
tional cost of fitting PCEs to high dimensional models though sparse grids may also become
prohibitively expensive for high-dimensional uncertainty spaces. Dimension adaptive sparse

73



6.2 polynomial chaos expansion 74

grids, first developed by Gerstner et al. for the evaluation of high dimensional integrands,
may be used to further reduce the exponential increase in computational cost imposed by
the curse of dimensionality. This is achieved by increasing the density of the sampling plan in
only those dimensions which contribute significantly to increasing the accuracy of the PCE
through the use of a local error measure.

3. Which measures of performance may be used to evaluate the efficacy of these meth-
ods in exploratory modelling projects?

The efficacy of the methods described above depends primarily on two factors: their speed
and their accuracy. They can only be used in place of traditional sensitivity analysis methods
if they are capable of attaining reasonable accuracy with diverse models and they must also
determine the sensitivity metrics with fewer function evaluations to justify their use. In reality,
deciding on the appropriate expansion order of the PCEs, and the level of the quadrature grid
required to fit them, introduces a trade-off between accuracy and computational cost which
must be addressed.

4. What is the relative efficacy of these methods versus other best-in-class algorithms?

Polynomial chaos expansions were found to converge significantly faster than traditional
quasi Monte Carlo methods, producing accurate solutions with far fewer function evaluations,
often converging to within 10% of the ground truth values with orders of magnitude fewer
function evaluations. Nevertheless the curse of dimensionality makes the use of fully tensorised
quadrature grids infeasible for higher dimensional spaces. In these instances sparse grids
were found to provide for the expedient fitting of the PCEs with fewer function evaluations
for higher dimensional spaces owing to their characteristic sparsity. The dimension adaptive
sparse grid algorithm was found to confer yet further gains in both approximation speed
and accuracy in those situations where conventional sparse grids also provided reasonable
approximations albeit with larger grids. Although the dimension adaptive algorithm is the
most parsimonious methods of fitting such PCEs for sensitivity analysis it is still subject to
the curse of dimensionality which can limit it application for very high-dimensional spaces
(d > 10) or where computational resources are limited to a single logical processor.

6.2 polynomial chaos expansion

The results presented in this thesis conclusively show that polynomial chaos expansions are
capable of significantly reducing the computational cost associated with exploratory mod-
elling projects, under certain contexts. In Chapter 3 we derived the correspondence between
the coefficients of a PCE and Sobol’s decomposition of model variance, thereby showing how
PCEs could directly be used to execute sensitivity analyses, a vital sub-method of Exploratory
Modelling. In addition, as a surrogate modelling technique, PCEs were theoretically capable
of determining Sobol sensitivity indices’, and other measures of interest, much faster than
tradition Monte-Carlo or quasi Monte-Carlo experimental designs.

Over a set of three test-cases, each with significantly different behaviour, we tested the as-
sumed ability of PCEs to support sensitivity analyses by computing Sobol indices, and com-
pared their accuracy against results produced by quasi Monte-Carlo methods. Furthermore,



6.2 polynomial chaos expansion 75

we tested the approximation accuracy of varying truncation orders when fit using quadrature-
based sampling plans of varying size. We found that, in general, PCEs, fit using fully ten-
sorised quadrature grids, were capable of accurately reproducing Sobol sensitivity indices
at a fraction of the computational cost associated with qMC methods; however, their perfor-
mance was affected by a number of factors.

In cases where only low-order effects had a significant impact on the variance of the model
output, PCEs of low truncation orders were capable of fully reproducing the output behaviour
of the model. Given the finding that a PCE of truncation order p requires a fully tensorised
Gaussian quadrature grid of level l + 1 in order to converge, low truncation order PCEs are
significantly ’cheaper’ to fit than those of higher truncation orders. This is exemplified by
the case of the 5d Energy Transition Model, whose output was observed in the model char-
acterisation step to be determined mainly by first-order effects. As such, the variability of
the model output could be captured completely by a first-order PCE which, furthermore,
would converge for a quadrature grid containing 25 = 32 nodes, three orders of magnitude
fewer function evaluations than required for the qMC experiments. Increasing the trunca-
tion order to p = 2 yielded an even better approximation, with an error versus the ground
truth values of 0.4% with only 243 function evaluations, a sure testament to the power of
surrogate modelling techniques for models with low order effects. In cases for which higher
order effects played a large role in determining the output variance, increasing the trunca-
tion order of the interpolating PCE resulted in successively more accurate approximations as
successively higher-order interaction effects were captured by the PCE. However the gains in
accuracy were, in most cases, observed to be quickly diminishing, with the gains in accuracy
often not justifying the necessary increase in function evaluations required to fit the higher
truncation order PCE. This is a general consequence of the heuristic introduced by (Box and
Meyer, 1986) which posits that the influence of higher-order effects approximately follows a
Pareto distribution. Therefore we found PCEs of truncation order p = 3 sufficient to address
this trade-off between accuracy and computational cost, capturing the majority of the effects
while minimising computational costs. A closer analysis of the distribution of effects for the
Two-Species Lotka-Volterra Model showed they exactly followed a Pareto distribution, with
effects up to order two sufficient to explain 80% of the model variance, and the inclusion of
third-order effects sufficient to explain 96% of the model output variance. This result was
replicated almost exactly by analysing the approximation error of PCEs of varying truncation
order, with a third-order PCE returning an error of 6%, thereby replicating 94% of the model
variance.

Although extremely efficient for models with relatively low-dimensional input uncertainty
spaces (≈ d = 5) the curse of dimensionality begins to affect the computational feasibility of
PCEs for higher dimensional spaces, especially for those models with influential higher-order
interaction effects. The difficulty was observed on two fronts. Firstly, the requirement of a
quadrature grid of level l = p to fit a PCE of truncation order p introduces an exponential in-
crease in required function evaluations. Secondly, the fully vectorised nature of the software
packages used in this study lead to problems with memory allocation, with the intermediate
data structures routinely becoming larger than 5 GB.
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6.3 sparse grids

Sparse quadrature grids were investigated as a method by which to reduce the number of
function evaluations required to fit a given PCE, hopefully while retaining approximation ac-
curacy. Although sparse grids help reduce the effect of the curse of dimensionality they do not
escape it completely, but merely postpone it to higher dimensions. The convergence ability of
sparse grid methods is highly dependent on the assumption of regularity of the model output.
The test cases in this study were specifically chosen since they exhibited behaviour which do
not meet the criterion of function smoothness required by sparse grid methods. This is exem-
plified by the case of the Owl output distribution in the Three-Species Lotka-Volterra Model,
whose sharp, and highly skewed output distribution, with many outliers far from the mean,
provided a perfect test-case.

The results from the sparse grid experiments fully agree with the our expectations. In the case
of the aforementioned Owl output distribution, the sparse grids were observed to converge
slower and with higher residual errors upon convergence than the more well-behaved mouse
output distribution. Nevertheless the low errors achieved exceeded expectations given the
form of the distribution, with the PCE for p = 4 converging to within 10% of the ground
truth values.

The convergence behaviour of the sparse grids was also as expected, with a more gradual,
linear progression toward convergence observed when compared with fully tensorised grids.
The slower convergence of sparse grids introduces some nuance as to the decision about
whether to use full or sparse grids to approximate a given model. If a model can be well
approximated by a low-order PCE, and is relatively low-dimensional (≈ d = 5), then using
a fully tensorised quadrature grid will be significantly quicker and produce a result about
which the error is assured (for l = p + 1). However as the dimensionality of the input uncer-
tainty space increases, the weaker dependence of sparse grid size on dimension allows them
to outperform full grid methods, yielding fairly accurate solutions with far fewer function
evaluations. This is exemplified by the three-species Lotka-Volterra equations, where the use
of sparse grids resulted in an order of magnitude reduction in computational cost and a dou-
bling of accuracy in the case of the mouse.

Naturally, the above considerations on whether to choose a full or sparse grid to serve as
the basis of interpolating a model’s output is highly dependent on external factors, such as
whether their is sufficient knowledge of the regularity of the model output, and the computa-
tional resources available to the project.

6.4 dimension-adaptive sparse grids

Our results show that adaptive sparse grids, constructed using a modified version of (Ger-
stner and Griebel, 2003)’s original algorithm, have the potential to significantly reduce the
computational cost associated with PCE methods. In situations where the regularity assump-
tions of sparse grid methods hold, the adaptive refinement strategy of the algorithm will
produce accurate solutions at a fraction of the computational cost; however, they are not a
panacea, and are still affected by the curse of dimensionality. The curse is particularly present
in the ’look-ahead’ step during which the algorithm calculates and assigns the local error
measure to each multi-index in the active set. For models where the run time of each model
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instance is not a significant bottle neck, the look-ahead step of the algorithm may actually be
slower than computing model evaluations in parallel for a one-shot sparse grid experiment.
This was observed in the case of the three-species Lotka Volterra model, where the presence of
significant higher order effects necessitated the sampling of shared dimensions. This implies
that arriving at an accurate approximation will require many iterations of the algorithm, with
a very large active set for which errors must be calculated. In contrast, for models with sig-
nificant run times, the overhead of the look-ahead step will be likely be negligible compared
to the cost evaluating the model.

While we were able to directly compare the efficacy of dimension-adaptive methods against
both sparse and full quadrature grids, we were unable to field the algorithm in the situations
where it can confer the largest benefit, for those models with very high dimensional input
uncertainty spaces ≈ d ≥ 10. We found that the look ahead step on which the algorithm
relies was especially sensitive to the increases in dimensionality. While the iterative nature of
the algorithm, with all dimensions initially sampled with low-order rules, is definitely more
efficient than full or sparse grid methods, it may still require a computing cluster to complete
in a feasible amount of time.

6.5 recommendations for future research

To better leverage the potential benefits of dimension-adaptive sparse grids for use with PCEs,
more research should undertake to evaluate its performance with large sensitivity analysis
campaigns. In order to execute such a study it would be necessary to further refine the form
of the dimension adaptive algorithm to employ parallel computing wherever possible. While
it would be unfortunate to conclude that the use of these methods is out of reach for those
without access to HPC resources, perhaps the algorithm could be refined to allow for its use
on modestly sized clusters.

Additionally, since the performance of the algorithm is dictated in large part by its error func-
tion, more research is required on novel error measures which are suited to the problems
encountered in exploratory modelling. Novel error measures may come with the added ben-
efit of reducing the computational burden associated with the look-ahead step and provide
for more expeditious computations.
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