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Abstract—In recent years, we are witnessing a trend moving away from
conventional computer architectures towards Computation-In-Memory
(CIM) based on emerging memristor devices. This is due to the fact that the
performance and energy efficiency of traditional computer architectures
can no longer be increased at the same pace as before. The main barriers
which limit the performance and energy improvement are the memory and
power walls. Thus far, the main effort from researchers is toward enabling
CIM as an accelerator for specific applications. Consequently, this current
application-specific nature/approach has put less emphasis on the potential
general-purpose applicability of CIM, i.e., merging several accelerators
into one that is less than the sum of the parts. In this paper, we demonstrate
the CIM concept using a broader and generalized model. Considering
this model, the state-of-the-art CIM-based logic and arithmetic primitive
functions, which can be the building blocks for complex functions, are
investigated. Besides, we present potential applications of CIM which
provides insights into the challenges and opportunities of a generic CIM
system design. Finally, we highlight the future directions regarding the
construction of CIM-based systems.

I. INTRODUCTION

Over the past decades, (1) improvements in transistor down-
scaling and (2) enhancements in processor (micro)architectures
led to significant improvements in reducing energy consumption
and increasing performance. However, both advances also led to
their own set of issues. For example, transistor downscaling led
to issues as reliability, leakage power, and the cost wall [1], [2].
On the other hand, microprocessors were (are still) confronted
with (1) the memory wall and (2) the instruction-level paral-
lelism (ILP) wall. The memory wall describes the performance
gap between the processor and the main memory leading to
increasingly longer data access times (latency) relative to the
processor clock. Besides latency, the relative energy consumption
of data accesses compared to basic processor operations also
grew. The ILP wall made it increasingly harder to extract
parallelism from applications due to their inherent sequential
nature [3]. Consequently, in order to achieve the “next” major
energy-consumption and performance improvements, alternative
technologies as well as architectures are needed.

Recently, Computation-in-Memory (CIM) is being researched
as a promising alternative to conventional Von-Neumann ar-
chitectures. The motivation is to reduce the number of trans-
actions between storage and compute units by enabling the
storage unit to perform some primitive functions rather than
solely relying on the compute units [4]. Until now, the main
points of attention from the researchers were enabling more
primitive functions in the memory while some accelerator-based
designs were also proposed targeting a certain application or
specific kernels. From the technology perspective, emerging non-
volatile memories called memristors [5], [6] are the promising
candidates for computational storage units. This is due to their
special characteristics such as great scalability, high density,
near-zero standby power, and non-volatility [5]. Current designs
that exploit these technologies rely on an (analog) memristive
crossbar array accompanied with analog and digital peripheries
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Fig. 1: Generic illustration of CIM-tile comprising four steps:
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- collectively called a CIM-tile. The memory and compute
functionalities are embedded in such a CIM-tile. Until now, many
works focus on further improving the characteristics of these
devices. In parallel, other works propose novel circuit designs
based on memristive devices to enable more primitive functions
inside the storage unit. However, these functions and their asso-
ciated circuits have different requirements and implementations
(e.g., different crossbar structures or voltage levels). As a few
examples, some logic bitwise operations are proposed based on
non-stateful logic where inputs served as voltage level while
the output is presented as device resistance level [7]. On the
other hand, MAGIC and IMPLY demonstrate a new approach
to implement some stateful logic operations where the state
of device used for both input and output [8], [9]. Similar to
MAGIC, more bitwise logical operations are covered in [10]
by modifying the MAGIC design. Alternatively, scouting logic
[11] implements some bitwise logic operations by changing
the reference of the Sense Amplifier (SA) and generating the
result in the periphery rather than within the crossbar. Apart
from logical operations, some accelerators are proposed [12]–
[14] to exploit Vector-Matrix-Multiplication (VMM) operation
inside the memristor crossbar by employing an Analog-to-Digital
Converter (ADC). Despite the promising results provided by
these designs, they are limited to the specific applications they
were tailored for. Hence, there is a need to contemplate how
to enable a CIM-based approach for general-purpose systems
(e.g., servers) to make it accessible for as many as possible
applications.

In an attempt to potentially define a generic CIM-tile design,
one should first establish a better understanding of all potential
capabilities of memristor-based circuits as well as a deep under-
standing of the data flows within a CIM-tile for a wide range
of applications. More precisely, it is not our goal to define an
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all-encompassing general-purpose CIM-tile. Instead, we explore
the potential merger of several such designs into a more FU-like
(function-unit-like) CIM-tile. In this paper, we:
1) Present a logical breakdown of the data flow within an ab-

stract CIM-tile and its potential to create complex functions.
2) Investigate the state-of-the-art memristor CIM-based logic

and arithmetic functions.
3) Demonstrate an overview of applications that have the oppor-

tunity to be executed inside the memory and discuss some of
their important aspects concerning generalization.

4) Highlight the future direction regarding the construction of
CIM computers.

We strongly believe that flexibly adapting the sequencing
of the functionalities within a CIM-tile can lead to new and
improved CIM-tile functions. We aim to:
• Inspire circuit-level designers to support new functionalities

within the CIM-tile as well as to design a unified circuit that
can support a wide range of functionalities rather than a one-
to-one mapping of implementations and functions.

• Help architecture and application designers to find out the
challenges and open research directions concerning a general-
ized CIM-tile.

II. OVERVIEW OF SUPPORTED FUNCTIONALITIES IN CIM
WITH A GLANCE ON GENERALIZATION

Memristor devices are non-volatile memories where their
resistance levels can represent data. The device resistance level
can be changed (programming the device) by applying proper
voltage or current pulses. Similarly, in order to read the device
without any disturbance, smaller voltage or current pulses are
applied and the current passing through the device is sensed.
By placing the memristor devices in a crossbar structure, not
only they can be used as a storage unit, but some functionalities
can be enabled in the memory as well. A CIM-tile comprises a
memristor crossbar and its digital as well as analog peripheries.
Figure 1 depicts a generic CIM-tile where the tile receives digital
data as well as instructions [15] (or control signals) as inputs.
The controller inside the tile is responsible to orchestrate all the
circuits according to the instructions. The data may pass through
four steps, 1) Input processing fin 2) Crossbar array fXbar 3)
Sensing fsens 4) Output processing fout.

Until now, some novel circuit designs were proposed to
expand the number of functionalities that can be supported

in each of these steps. Based on this knowledge, when an
application is intended to be executed using CIM-tiles, the
designer selects a certain function and its associate circuit for
each of those steps. Hence, we will end up with an accelerator
designed just for a certain application. Until now, the main
focus of researchers regarding memristor-based CIM was toward
designing accelerators that can only benefit specific applications.
However, in order to have an as general as possible design, a
wide range of functionalities should be supported in each of
these steps at the same time, rather than having a different
circuit for each function. In the following, we will describe what
primitive functionalities are already supported in these four steps.
Identifying these functions also enable us to build more complex
functionalities in the CIM-tile.

A. Primitive functions in the crossbar (fXbar)

Functions inside the crossbar can be classified into two main
categories: 1) non-stateful logic where the inputs are applied as
voltage to the both sides of the device and the resistance level
can be switched according to the initial state of the device [7]. 2)
stateful logic where the inputs and output are presented as device
resistance level. Here, we focus on stateful logic since cascading
primitive functions to implementing more complex ones is more
straightforward.
NOR and NOT [8]: As illustrated in Figure 2, in order to
perform the NOR function, two memristors are used to represent
the two input operands and the result is written to a third mem-
ristor. At first, the output memristor should be initialized to Low
Resistance State (LRS) representing a logic 1. Afterward, voltage
level V0 is connected to the bit-lines of the input memristors
while the output memristor is connected to the ground. When
one or two inputs are a logic 1, the voltage level V0 should be
sufficient enough to be able to change the resistance of the output
memristor without switching the resistance of input memristors.
By programming one input of the NOR gate to a logic 1, the
NOT function can be implemented as well.
OR [10]: The schematic of an OR function is similar to the NOR
function. However, the output memristor is initialized to the High
resistance State (HRS). In addition, despite the NOR operation,
the bit-lines of input memristors are grounded while the bit-line
of the output memristor is connected to voltage V0. Similar to
a NOR, V0 should be determined to fulfill this functionality
without being destructive.
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XOR [16]: This function requires five memristor devices among
which two of them are auxiliary memristors. Figure 2 depicts
how these memristors should be connected and initialized. In
the case memristor devices, representing input operands, are both
either ON or OFF, the common node between memristor devices
is virtually ground, keeping the output memristor at its original
state. Otherwise, the voltage on the common node is V x which
switches the output memristor to the LRS state with the help of
auxiliary memristors. The crossbar structure and the way data
mapped to it to support this function is also demonstrated in
Figure 2. More information can be found in [16].

Minority and NAND [10]: Considering the NOR function,
having one of the input memristors as a logic 1 is enough to
switch the resistance of the output memristor. Accordingly, by
reducing the voltage of V0, we can determine the minimum
number of ON resistances to be able to switch the output
device. This can effectively implement the minority function.
In addition, by further reducing the voltage V0, at one point,
all the memristor inputs should be ON to be able to switch the
output memristor, which can implement the NAND function.

By cascading the aforementioned functions inside the cross-
bar, more complex functions such as arithmetic addition or
multiplication can be implemented. However, as demonstrated
before, different functions require different voltages and cross-
bar structures. This becomes even more challenging when the
sensing step and its functions are taken into consideration.
Therefore, finding a unique solution that can cover most of
these functions with minimum cost is a valuable step toward
a generalized memristor-based CIM-tile. In addition, having a

smart tile controller to flexibly deal with different execution
flows and patterns of data mapping is an essential part of this
system.
B. Primitive functions in the sensing step (fsens)

Despite the functions mentioned before, here the results of
the functions are generated by using sense amplifier (SA) or
analog-to-digital converters (ADC). In other words, the current
generated by the crossbar is assigned to different logical values
which in turn can implement different functions.
Hamming Distance [36] and Matching [23]: Using a CIM-
tile, the Hamming Distance function can be implemented. To
calculate the distance between two vectors, one vector and its
complementary value have to be programmed to the crossbar.
As depicted in Figure 3, the second vector is given to the
select signals of the pair of multiplexers placed on top of the
crossbar. This provides data as well as its complementary value
to the memristors holding the first vector and its complement,
respectively. Subsequently, based on the similarity of the two
vectors, different current levels flow into the bit-line, which is
sensed to determine the distance of the two vectors. Similarly, a
Match function can be performed by just using a SA. A potential
crossbar structure for this function [23] is depicted in Figure 3.
Vector-Matrix Multiplication [12]: Vector-Matrix Multiplica-
tion is the main functionality for which CIM-tile is intended to
be employed. To perform this function, first, the matrix has to be
programmed to the crossbar. Subsequently, the vector is applied
to the select line of the crossbar. Finally, all the elements of the
output vector are obtained in one shot after converting analog
current/voltage levels to their digital value using ADCs.
Scouting Logic (AND-OR-XOR) [11]: Logical operations can
be implemented in the sensing step. In this approach, both
operands as vectors are programmed to the crossbar. As illus-
trated in Figure 3, depends on where to put a reference(s) of
SA, logical OR, AND, and XOR functions can be implemented.
The main advantage of this approach compared to implementing
these functions inside the crossbar is reducing the number of
device programming. This is important due to the endurance
problem and high programming energy of memristor devices.
Subtraction [38]: Element-wise subtraction can be performed in
the crossbar. The proper voltage level has to be provided to the
row corresponding to the negative operand to be able to drain
the current from the bit-line. Hence, the remaining current on
the bit-line represents the result of this function.
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TABLE I: List of some potential applications/algorithms/kernels that can be executed using memristor-based CIM
Domain Applications/Algorithms/Kernels

Network Automata processor for
network security [17]

Packet classification [18] SAMCRA [19] IP-routing -

operation AND Matching VMM Matching -

Security Security primitives
(PUF-RNG) [20]

Encrypted
communication [21]

AES [22] Regular expression
matching [23]

Salsa20/ChaCha20

operation Analogue properties Analogue properties Add-XOR-Multiply Matching Addition - XOR

Approximate computing Image property
calculation [24]

Approximate matrix
multiplication

Quantum
simulations [25]

- -

operation Addition - Subtraction VMM VMM - -

Mathematics Partial differential
equation solver [26]

Eigenvector
calculation [27]

Markov chain Vector-cosine similarity -

operation VMM VMM VMM VMM -

Signal and image processing Compressed
sensing [28]

Discrete Fourier
Transform [29]

Convolutional Image
filtering

Huffman encoding GLCM feature
extraction

operation VMM VMM VMM Matching Addition

Classification and Prediction Recurrent neural
network [30]

Convolutional neural
network [12]

Hyperdimensional
computing [31]

Reservoir
computing

Auto-regressive models

operation VMM VMM AND - OR - VMM Matching VMM

Database Query-06 of the
TPC-H [32]

Pattern matching
in databases

Transitive closure Bitmap indices BitWeaving

operation Bitwise XOR Matching VMM OR - AND - XOR OR - AND - XOR

Bioinformatics DNA sequencing or
allignment [33]

Genome Base-calling [34] Genome Profiling [35] - -

operation XOR - VMM VMM VMM - -

Graph processing Graph Clustering [36] Breadth first search [37] VLSI routing PageRank All-pair-shortest-path
operation VMM - NOR - HD VMM VMM VMM VMM
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Fig. 5: Examples of digital periphery circuits designed to deliver
certain functionality (fout)

Based on the example of functions in the sensing step, when
a designer intends to perform an application using one of those
functions, having the competence to do other functions becomes
challenging due to the necessity of different array structures,
circuits, and constraints. As an example, Scouting logic just
requires SA with two determined references with a constraint on
activating two rows at a time. However, in order to generalize the
design for other functions like VMM, ADCs have to be placed
and more rows potentially should be activated. In order to have a
unified circuits performing both of the functions, Figure 4 depicts
a simple solution on how to modify SAR ADC to be able to use
it as a SA for Scouting logic. Therefore, based on the function
decides to be performed, proper reference voltage is selected and
required cycles are considered.

C. Prevalent functions in the digital periphery (fout)

Due to the complexity of the application execution flow
and the limitation of functionalities in CIM, some parts of
the application should be performed by the host. However, re-
searchers try to place customized circuit in digital peripheries to
expand the functions can be done in the memory and gain more
energy/performance improvement rather than simply assuming
unsupported parts of an application are assigned to the host
processor.

Many circuits have been considered in the digital periphery
for different applications. Figure 5 shows two examples: 1)
Cascading logic circuit [39] is customized digital periphery

to perform sequential AND and OR logic in the periphery
targeting database applications. 2) Efficient Addition Scheme
[40] is a novel structure to replace conventional shift and add
unit targeting matrix-matrix multiplication kernel. Based on the
applications, some designers also placed subtractor, sigmoid
function, vector processing unit, and register files in the digital
periphery. Due to the flexibility that can be provided by digital
design compared to the crossbar and sensing step, more attention
should be given to this step for a generalized CIM-based design.
One example of periphery design that can support a wide range
of functionalities is employing Lookup Table (LUT) [38], [41].
However, still more research has to be conducted to have a smart
and general solution with a detailed execution model for a wide
range of applications.

D. Examples of function in the input processing step (fin)
Despite other steps, this step has not been investigated much

yet in the literature. However, some digital circuits were designed
in [15] to carry out some functions. First, a buffer using
parallel-in-serial-out registers is considered to provide a clear
separation of tile from outside and facilitate data communication
considering datatype size and limited resolutions for Digital to
Analog Converters (DAC). Second, a digital circuit is placed
to be able to flexibly support different patterns of crossbar
rows selection. Other examples for this step could be data
quantization, downscaling, and alignment.

III. EXPLORING POTENTIAL APPLICATIONS

Besides the existing operations, a designer should have a good
insight into the applications that have the potential to be executed
using a memristor-based CIM system. Table I presents the list of
some applications/algorithms/kernels where a considerable part
of the program can be performed inside the memristor-based
memory and potentially gain performance and energy from the
concept of CIM. The examples in the table cover a wide range of
domains. This helps the designer to expand the generalization of
the design by finding out the corner cases regarding application
requirements and constraints. In the following, some important
aspects to be considered for a generic CIM system design
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Fig. 6: (a) Possible design choices in different abstraction levels (b) homogeneous design where each tile is capable and generalized
enough to support a wide range of functionalities vs (c) heterogeneous design where tiles are customized to execute different kernels
efficiently

targeting wide range of applications are listed:
1 Different applications require computation over different

data types and data type sizes. A generalized design should
enable computation for some basic data types. Besides, a
design that can flexibly and efficiently support computation for
different datatype sizes is valuable since it can potentially lead
to energy/performance improvement.
2 As shown in Table I, different applications consist of

different operations. However, according to what was discussed
in Section II, a designer should realize a system to cover more
functionalities. This results in offloading fewer parts of the
program into the host and in turn less communication between
host and storage unit.
3 Based on the execution flow of applications, they may re-

quire different patterns on crossbar rows and columns selection.
In other words, during the execution time, an application may
operate on different locations of a crossbar. Therefore, this is
important that a generalized system provides this flexibility and
accessibility to a programmer.
4 Memristor crossbars have limited dimensions which is

usually much less than what is required for an application.
Considering that, the application should be mapped to several
tiles. Hence, a detailed implementation of tile communication
which can flexibly cope with different data flows is essential.
5 Variability is one of the challenging aspects of memristor

devices, which can end to accuracy reduction. Some applications
can tolerate this inaccuracy while others need precise computa-
tion. Therefore, supporting algorithms to dynamically adjust the
accuracy of computations based on the application requirements
can be another research direction for a generalized system.
6 Although it is desire to offload more parts of an application

on CIM-tiles and reduced data movement more, still there might
be some parts that have to be executed on the host side.
Accordingly, this indicates the necessity of communication and
synchronization of CIM-tiles with the host. Based on the existing
works in the literature, a detailed design regarding this aspect is
missing and requires more attention from the community.

IV. FUTURE DIRECTION OF CIM-TILE AND CONCLUSION

As discussed before, despite application-specific designs, in
order to have a memristor-based CIM-tile system capable of
executing a wide range of applications, more complexity and
requirements are raised. To move toward such a system, different
strategies can be applied with respect to different abstraction
levels. As illustrated in Figure 6 (a), the system can be broken
into at least three levels. Starting from the lowest level, Nano-
level, a CIM-tile can comprise just a primitive function in one
of the steps while no major functionalities supported in other
steps in the tile. An example of this can be MAGIC [8] or
Scouting [11] where just primitive functions supported in the
crossbar fXbar or sensing steps fsens, respectively. On the other
hand, different functionalities can be supported at different steps
of the tile in order to end up with a complex function. In the
second level of abstraction, Intra-Tile/Micro level, a Static or
Programmable CIM-tile can be targeted. In the case of Static,
each step of the tile is designed (and Customized) to provide a
specific functionality while in the case of programmable tile,
more than one function are considered for the tile’s steps.
Regarding the design choices in the highest abstraction level
and considering a spectrum, on one side, a designer can aim
at a homogeneous CIM-tiles system where the tiles are the
same and each can support a wide range of functionalities
and requirements. On the other side of this spectrum, we will
have a heterogeneous design where CIM-tiles are customized
for different purposes and they all together can provide this
generality for the programmer. Finally, in the middle, we also
may have a hybrid solution where limited heterogeneity is taken
into account while CIM-tiles are pushed to support different
functions as much as possible.

Figure 6 (b and c) illustrates the design choices for inter-
tile abstraction level. Considering a homogeneous design, in
order to execute an application, more resources are available
since the tiles are generalized and can cope with different
functions. However, this might come at cost of an area, energy,
and latency overhead. In addition, due to the complexity of
the tile, an advanced controller has to be employed. Rather,
considering heterogeneous design, while fewer resources might
be available for a certain application, the tiles might have higher
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energy, area, and performance efficiency. Nonetheless, due to
the heterogeneity, a more complex task offloading scheme might
require. Finally, the communication between tiles may impose
more overhead when the tiles selected for an application are
located far from each other. The design choice heavily depends
on how flexible the circuit in CIM tile will be concerning the
applications’ functionalities and requirements. No matter which
approach is chosen, flexibly controlling this storage unit both in
the granularity of inter- and intra-tiles for different execution
flows is a crucial aspect. This can be achieved either all in
hardware or partially at the software level with the help of
a compiler (or scheduler) [42]. This becomes more important
for heterogeneous designs when different workloads have to be
mapped and scheduled for specific CIM-tiles. In conclusion, 1)
expanding the functionality of a CIM-tile with a unified circuit,
2) flexibly interfacing the CIM-tiles to each other as well as the
host, and 3) an advanced controlling system, able to flexibly cope
with different scenarios, are the key aspects toward a generalized
CIM-tile design.
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