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Particle-laden Taylor–Couette flows: higher-order
transitions and evidence for azimuthally

localized wavy vortices
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Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

(Received 28 February 2020; revised 29 May 2020; accepted 28 July 2020)

We extend upon the known flow transitions in neutrally buoyant particle-laden
Taylor–Couette flows by accessing higher suspension Reynolds numbers (Resusp ∼
O(103)) in a geometry with radius ratio η = 0.917 and aspect ratio Γ = 21.67. Flow
transitions for several particle volume fractions (0 ≤ φ ≤ 0.40) are investigated by means
of flow visualization experiments, in a flow driven by a rotating inner cylinder. Despite
higher effective ramp rates, we observe non-axisymmetric patterns, such as spirals, in
the presence of particles. A novel observation in our experiments is the azimuthally
localized wavy vortex flow, characterized by waviness present on a fraction of the
otherwise axisymmetric Taylor vortices. The existence of this flow state suggests that in
addition to the already established, destabilizing effect of particles, they may also inhibit
the growth of instabilities. Flow topologies corresponding to higher-order transitions
in particle-laden suspensions appear to be qualitatively similar to those observed in
single-phase flows. A key difference, however, is the visible reduction in the appearance
of a second, incommensurate frequency at higher particle loadings, which could have
implications for the onset of chaos. Simultaneous torque measurements allow us to
estimate an empirical scaling law between the Nusselt number (Nuω), the Taylor number
(Ta) and the relative viscosity (χ e) : Nuω ∝ Ta0.24χ e 0.41. The scaling exponent of Ta is
non-trivially independent of the particle loading. Apparently, particles do not trigger a
qualitative change in the nature of angular momentum transfer between the cylinders.

Key words: Taylor–Couette flow, particle/fluid flow

1. Introduction

The Taylor–Couette system, a canonical flow geometry, has been bestowed with
honorifics such as ‘hydrogen atom of fluid dynamics’ (Tagg 1994) as well as ‘Drosophila’
(van Gils et al. 2012). This is with good reason, as it has served as a very simple system
to address fundamental problems in physics such as instabilities, nonlinear dynamics,
pattern formation, spatio-temporal chaos and turbulence (Grossmann, Lohse & Sun 2016).

† Email addresses for correspondence: a.dash@tudelft.nl, c.poelma@tudelft.nl
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Furthermore, this flow apparatus is also of interest to application-oriented research,
primarily concerning chemical processing (see table 1 in Zhu & Vigil 2001 for numerous
examples). This geometry also forms the skeleton of the contemporary rheometer, and is
commonly used for measuring dynamic viscosities of fluids (Guazzelli & Pouliquen 2018).

While the initial Taylor–Couette apparatus were dedicated to the determination of fluid
dynamic viscosity (Couette 1890; Mallock 1896), the now near-century old, seminal
contribution of Taylor (1923) laid the foundation for future work in this field. The
work of Taylor (1923) established the critical conditions necessary for the appearance of
secondary flow structures, subsequently known as Taylor vortices (pair of counter-rotating
vortices, stacked axially), when the flow is driven by a rotating inner cylinder. The
critical conditions are commonly quantified by means of a Reynolds number, or even
a Taylor number. Further increase in the rotational velocity of the cylinder leads to
additional instabilities, such as the appearance of wavy vortices (Coles 1965), modulated
wavy vortices (Gorman & Swinney 1982; Zhang & Swinney 1985), before the onset of
chaos (Gollub & Swinney 1975; Fenstermacher, Swinney & Gollub 1979) and turbulence
(Koschmieder 1979; Lathrop, Fineberg & Swinney 1992; Lewis & Swinney 1999). Initial
studies primarily involved the usage of Newtonian fluids, and this alone provided a
plethora of intriguing flow phenomena, by either varying the flow geometry or the
nature of the cylinder rotation (i.e. inclusion of outer cylinder rotation). Consequently,
an extensive study of the various flow patterns has resulted in the comprehensive
flow regime map compiled by Andereck, Liu & Swinney (1986). Contemporary
single-phase Taylor–Couette flows have been predominantly geared towards understanding
high-Reynolds-number turbulence (Grossmann et al. 2016), where the bulk flow as well
as the two boundary layers are turbulent in nature.

In the century since Taylor’s seminal work, the studied phenomena within this
simple flow geometry have branched significantly. Newer forms of instabilities and flow
phenomena have been uncovered by simply changing the fluid within the Taylor–Couette
geometry. Along this line, the study of unusual flow patterns in a neutrally buoyant,
non-Brownian, particle-laden suspension, arising due to inertial effects, has recently
gained traction. This is exemplified in the recent works of Majji, Banerjee & Morris
(2018) and Ramesh, Bharadwaj & Alam (2019), where both studies successfully uncover
novel flow patterns stemming from the additional presence of solid particles. Majji
et al. (2018) were the first to report the occurrence of non-axisymmetric flow structures
(ribbons and spirals) as primary instabilities. An experimental protocol with decreasing
inertia in time was preferred over one with increasing, as axial non-homogeneities in the
particle distribution were observed for the latter. Ramesh et al. (2019) extended on this
by also considering an experimental protocol with increasing inertia, which gave rise to
the so-called ‘coexisting states’ (presence of axially segregated flow states, such as the
combination of wavy and Taylor vortices or Taylor and spiral vortices). More recently,
Ramesh & Alam (2020) also reported the existence of interpenetrating spiral vortices in
such flows.

Changes in the nature of the suspension was also the theme of one of the pioneering
works in the field of non-Brownian particle-laden flows, namely the experiments of
Bagnold (1954) (later re-examined by Hunt et al. 2002). Torque measurements of neutrally
buoyant particle-laden suspensions in a Taylor–Couette geometry driven by a rotating
outer cylinder yielded two distinct flow regimes which were characterized on the basis
of their respective scaling law behaviours. Thus, besides flow visualization techniques,
torque measurements are capable of providing complementary, global information of the
flow topology, as also evidenced in several single-phase, turbulent Taylor–Couette flow
studies (Wendt 1933; Lathrop et al. 1992; Eckhardt, Grossmann & Lohse 2007).
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The flow visualization studies of Majji et al. (2018), Ramesh et al. (2019) and Ramesh &
Alam (2020) restrict their studied range of flow topologies up to the appearance of wavy
Taylor vortices. To the best of our knowledge, there are no systematic studies explicitly
pursuing the development of flow regimes beyond the appearance of wavy vortices for
neutrally buoyant, non-Brownian particle-laden suspensions in a Taylor–Couette geometry
driven by inner cylinder rotation. Studying these higher-order transitions can provide
insight into the phenomena leading to the transition to turbulence.

To this end, the current study aims to add on to the existing body of work, in an
existing Taylor–Couette facility (Ravelet, Delfos & Westerweel 2010), with the manuscript
addressing the following issues.

(i) We study the lower-order transitions in our Taylor–Couette geometry (i.e. until the
first appearance of wavy vortices), in order to verify whether the current experiments
also yield non-axisymmetric flow patterns. Differences from previous studies could
be expected since the current experiments are performed under different conditions
(discussed later in § 2.8).

(ii) We also pursue flow transitions beyond the appearance of wavy vortices, i.e.
higher-order transitions. We investigate whether there is a qualitative change in these
transitions as compared to single-phase flows.

(iii) We assimilate the effect of flow inertia and particle loading on the required torque
to sustain the flow, into an empirical scaling law.

The above points are addressed experimentally by means of simultaneous flow
visualization and torque measurements. The remainder of the manuscript is structured
as follows: In § 2 the finer details of the experimental set-up, the measurement procedure
as well as experimental uncertainties are described. Hereafter, a global overview of our
experimental results is presented in § 3, focusing on flow visualization (§ 3.1) as well
as torque measurements (§ 3.2). For the torque measurements, we derive an empirical
scaling law relating the measured torque, the driving force and the particle loading.
Three detailed flow visualization examples for different particle volume fractions are
then used to illustrate the nature of lower- as well as higher-order transitions in §§ 4
and 5, respectively. Among the lower-order transitions, special attention is given to a
novel flow state, ‘azimuthally localized wavy vortex flow’ in § 4.5. We summarize our key
findings in § 6, while also specifying possible future directions that can be undertaken to
consolidate/expand upon our findings.

2. Experimental set-up and measurement procedure

Details of the experimental set-up and the various measurement techniques employed
are presented in this section. Readers interested in further details of the experimental
set-up and procedures are referred to Anantharaman (2019). The chief components of
the set-up are illustrated in figure 1. Note that the torque measurements and the flow
visualization recordings were performed simultaneously.

2.1. Geometry of the Taylor–Couette facility
The Taylor–Couette facility used in the current investigation is composed of two vertical,
coaxial, concentric and independently rotatable cylinders. The inner cylinder has a radius
(ri) of 11 cm and the outer cylinder has a radius (ro) of 12 cm. This leads to the current
system having an annular gap width (d = ro − ri) of 1 cm and a radius ratio (η = ri/ro)
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Light source

Camera

Infrared
thermometer Taylor–Couette

facility

Particle-laden
suspension

Outer cylinder

Inner cylinder

Motor driving unit
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L
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h
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Lab VIEW
Data acquisition

systemDaVis

(a) (b)

FIGURE 1. Schematic of the experimental set-up and measurement equipment involved. Objects
are not drawn to scale. (a) Experimental set-up and measurement apparatus. (b) A close-up of
the Taylor–Couette geometry.

of 0.917. The inner cylinder has a height (L) of 21.67 cm, while the outer cylinder has
a height of 22.21 cm, leading to the formation of two end gaps, each with a height of
2.70 mm. Thus, the present geometry has an aspect ratio (Γ = L/d) of 21.67. The present
system may thus be categorized as a narrow gap (1 − η � 1) and relatively tall (Γ ≥ 20).
In the current experiments, the outer cylinder is held at rest, while the inner cylinder has
a rotational velocity, ωi, which is determined by the desired rotational frequency, fi =
ωi/(2π). The inner cylinder velocity Ui = ωiri is the source for the shear and the apparent
shear rate can be defined as the ratio between the inner cylinder velocity and the gap width,
γ̇app = Ui/d = (ωiri)/d.

With the help of these parameters, several non-dimensional control parameters can be
defined. For a working fluid with a density, ρ, and dynamic viscosity, μ (thus, kinematic
viscosity ν = μ/ρ), the inner cylinder Reynolds number is defined as Re = (ωiri)d/ν =
γ̇appd2/ν. Alternatively, the Taylor number, Ta = K Re2 may also be used, where the
prefactor K = (1 + η)6/(64η4) = 1.0971 is related to the geometry of the Taylor–Couette
facility via the geometric Prandtl number (Eckhardt et al. 2007).

Surfaces of both the cylinders are made of polymethylmethacrylate (PMMA),
facilitating optical access. However, the inner surface of the hollow, inner cylinder (thus,
not in contact with the fluid) is painted black to avoid reflections from the structural metal
bars present inside the inner cylinder. The inner cylinder is sealed shut by means of PVC
discs (which rotate with the inner cylinder), whereas the outer cylinder has end plates
made of a PMMA base with a brass ring (bottom) and aluminium (top), both of which
would rotate together with the outer cylinder.

2.2. Preparation of the neutrally buoyant suspension
The Taylor–Couette facility was filled with a nearly neutrally buoyant suspension
consisting of rigid PMMA particles in an aqueous glycerol solution (∼67.6 % v/v),
with a density of 1187.7 kg m−3 and a dynamic viscosity of 28.7 mPa s at 20 ◦C.
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Particle-laden Taylor–Couette flows 903 A20-5

The continuous phase was prepared by mixing appropriate quantities of demineralized
water with an aqueous glycerol solution with a specific gravity of 1.23 (Boom BV, The
Netherlands). The two components were mixed together, while stirring and warming the
mixture simultaneously, before adding a small quantity of Tween-20 (0.1 % by volume),
a surfactant, which aids in suspending hydrophobic particles. The effect of the surfactant
on properties such as density and viscosity was neglected, since it is added in a very small
amount.

Rigid PMMA particles (PMMA powder – acrylic, injection moulding grade,
Goodfellow USA) were used as the dispersed phase. A sieving procedure was used to
narrow the distribution of particle sizes. An inspection of a small sample of particles
(∼675) under a microscope, equipped with a Nikon objective M × 1.0/0.4 lens, yielded
the following information. The majority of the particles are smooth spheres with a few
of them possibly having voids within, which are clearly visible as PMMA is optically
transparent. The median particle diameter (commonly referred to as dp,50, but as dp in this
manuscript) was found to be 599 μm. This results in a gap width to particle diameter ratio
(d/dp) of approximately 16.7.

The sieved particles were then dispersed in the aqueous glycerol mixture by means of
a magnetic stirrer. After mixing for a few minutes, the suspension was allowed to rest for
approximately 20 min. It was observed that there is a thicker layer of particles creaming
to the top as compared to those which sediment to the bottom. These creaming particles
could possibly be light because of the presence of internal voids, which are removed before
the batch is introduced into the flow.

Suspensions are commonly characterized by an effective suspension viscosity
(Guazzelli & Pouliquen 2018). Of the several existing viscosity laws, we utilize fits of
the nature proposed first by Eilers (1941), μsusp/μ = [1 + 1.25φ/(1 − φ/φc)]2, where φc
is the volume fraction of particles beyond which the suspensions cease to flow, which
is usually lower than the random close packing (≈0.64). We have chosen a value of
φc = 0.614 (verified with torque measurements as a reasonable choice). The subscript
‘susp’ is henceforth utilized when the effective suspension viscosity is used instead of
that of the continuous phase.

2.3. Rotation control and torque measurements
The inner cylinder is driven by a Maxon DC motor, via a shaft and flexible coupling
mechanism. The cylinder can be rotated (in both directions) up to a rotational frequency
of 10 Hz with an absolute resolution of 0.01 Hz. Furthermore, to verify whether the
desired rotational frequency matches the actual rotational frequency of the inner cylinder,
a TTL frequency counter returns a pulse every 36◦ rotated by the inner cylinder, i.e. 10
pulses for a complete rotation. The frequency determined by the TTL frequency counter is
subsequently used for estimating the apparent shear rates and Reynolds numbers. The input
to the motor is controlled by a custom-made LabVIEW program via a data acquisition
(DAQ) block (NI PCI-6035E) and a 12-bit DAQ board (NI BNC-2110).

The same data acquisition system is also used to record the torque, T , experienced by
the entire inner cylinder, via a torque meter (HBM T20 WN, 2 Nm) attached to the shaft of
the inner cylinder. This meter can measure torques up to 2 Nm with an absolute resolution
of 0.01 Nm, and is sampled at a frequency of 2 kHz in the current study.

The relative motion between the end plates of the two cylinders may also be likened
to a von Kármán swirling flow. This motion would contribute to additional torque, while
also spawning vortices due to the so-called Ekman pumping, commonly referred to as
end effects. Since the torque measurements also include contributions from the von
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903 A20-6 A. Dash, A. Anantharaman and C. Poelma

Kármán flow, the torque is simply halved, in line with previous studies in the same facility
(Ravelet et al. 2010). This assumption was later verified by Greidanus et al. (2015) to be
analytically valid for laminar flows in the current facility. We assume that this is also valid
for non-laminar, particle-laden flows. A fragmented inner cylinder design (Lathrop et al.
1992; van Gils et al. 2011) would be needed to eliminate the influence of the ends on torque
measurements.

The torque can then be modified into several non-dimensional variants, such as
dimensionless torque, G = T/(Lρν2), friction coefficient, cf = T/(πρr2

i LU2
i ) and the

Nusselt number, Nuω = T/(2πLρJω
lam), where Jω

lam = 2νr2
i r2

oωi/(r2
o − r2

i ) is the azimuthal
flux of the angular velocity between the two cylinders for purely laminar flow. The above
three quantities are related to each other (Grossmann et al. 2016).

2.4. Temperature estimation
The current facility lacks a temperature control system, which would ideally alleviate
the negative effect of heating of the fluid by viscous dissipation. As a consequence,
the dynamic/kinematic viscosity of the fluid may undergo significant changes. Previous
studies in the same facility have sought solutions such as ensuring that the temperature
did not vary by more than 0.5 ◦C (Tokgoz et al. 2012), or by running the system for a few
hours prior to the measurements, ensuring a stable temperature thereafter (Gul, Elsinga
& Westerweel 2018). Such measures were not applicable for the current investigation due
to the nature of the experimental protocol and, thus, an ad hoc approach to estimate the
varying temperature throughout the experiments is adopted (similar to Greidanus et al.
2015; Benschop et al. 2018).

Before and after each experiment, a PT-100 sensor is inserted into the system through an
opening on the top end plate attached to the outer cylinder, to measure the fluid/suspension
temperature (under the assumption of isothermal conditions). Since the above intrusive
method is not feasible during the experiment, an infrared thermometer (Calex PyroPen)
measures the temperature of the outer surface of the outer cylinder at a sampling rate
of 1 Hz. The emissivity constant in the proprietary software, CalexSoft, responsible for
these measurements, is set as 0.86 (corresponding to the PMMA surface). Combining
the above temperature measurements (PT-100 + infrared thermometer), ‘instantaneous’
temperatures of the suspension, and, thus, ‘instantaneous’ Reynolds numbers for the flow,
can be estimated. This is extremely handy as the viscosity of an aqueous Glycerol solution
is very sensitive to temperature changes (≈5 % ◦C−1 at temperatures around 20 ◦C for
the current composition of the solution). Typical temperature variations in the current
experiments were in the order of 5 ◦C, necessitating this ad hoc technique for temperature
estimation. The estimated temperatures were then utilized to compute the instantaneous
physical properties of the fluid by an open source, freely available Matlab script (based on
Cheng 2008; Volk & Kähler 2018).

2.5. Experimental protocol
In this manuscript we distinguish suspension Reynolds number (Resusp) from the Reynolds
number (Re). The former is based on an effective suspension viscosity while the latter
only on the viscosity of the continuous liquid phase. We cover a wide range of suspension
Reynolds numbers (Resusp ∼ O(101–103)) for a wide variety of volume fractions (0 ≤ φ ≤
0.40). Moreover, it is desired that these large ranges of Reynolds numbers are sampled
fine enough to have a clear picture of the transitions between various flow regimes. Recent
experiments of Majji et al. (2018) and Ramesh et al. (2019) were performed for a similar
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Particle-laden Taylor–Couette flows 903 A20-7

range of volume fractions, but for a lower range of Reynolds numbers (Resusp ∼ O(102)).
These two studies utilized slowly accelerating/decelerating ramp protocols, i.e. d Re/
dτ � 1. Here, τ = t/(d2/ν) is dimensionless time where the time t is normalized by a
time scale based on viscous diffusion (d2/ν).

Dutcher & Muller (2009) showed that the critical Re at which the flow transitions from
laminar Couette flow to Taylor vortex flow was a function of the ramp rate, and define
a critical ramp rate (ramp rate below which the critical Re is in good agreement with
linear stability theory) of dRe/dτ = 0.68 for their experiments (η = 0.912, Γ = 60.7).
Moreover, they report a low deviation in the critical Reynolds number with varying ramp
rates for higher-order transitions such as wavy vortex flow and modulated wavy vortex
flow for 0.18 < dRe/dτ < 2.93, while also finding no effect of the ramp rate on the onset
of turbulent Taylor vortices for dRe/dτ < 27.2. In a similar vein, Xiao, Lim & Chew
(2002) (η = 0.894, Γ = 94) report an absence of dependence of the characteristics of the
wavy vortex flow regime for ramp rates dRe/dτ < 11.2. Of course, a caveat is that the
above statements are valid for single-phase flows and whether the same would be directly
applicable for suspensions is unknown.

For the current experiments, following a ramp rate of |dRe/dτ | � 1 would require an
unreasonable amount of time to cover the entire span of control parameters (Re, φ), and
thus a compromise is reached, which ensures a practical approach (similar to Cagney &
Balabani 2019). The apparent ramp rate is maintained at |dRe/dτ | < 3. We define the
apparent ramp rate as the ratio between the net differential change in Reynolds number
and the net differential change in dimensionless time. These net differential changes are
the difference between the values at the start and end of the protocol, making the apparent
ramp rate a global measure of our experimental protocol. Of course, it must be noted
that if the effective suspension viscosity is taken into account for the Re as well as τ , i.e.
|dResusp/dτsusp|, the apparent ramp rates will drop sharply with increasing φ. For example,
for φ = 0.10, a reduction with a factor of 1.75 will occur, whereas for φ = 0.30, this
factor shall be approximately 9. In conclusion, we expect that our choice of ramp rate may
affect the accurate determination of precise transition boundaries for dilute suspensions.
However, the chosen ramp rate is not expected to affect the flow topologies themselves,
which is acceptable for the present study.

Two types of experimental protocols are followed: the Reynolds number of the inner
cylinder is slowly raised (reduced, respectively) with time by increasing (decreasing) the
apparent shear rate. We change γ̇app in steps of 3.5 s−1 for γ̇app ≤ 69.1 s−1 and steps
of 6.9 s−1 for γ̇app > 69.1 s−1. Maximum shear rates of 414.7 s−1 are achieved for all
suspensions with φ ≤ 0.20. For suspensions with 0.25 ≤ φ ≤ 0.35, the maximum shear
rate studied is 380.1 s−1 and 276.5 s−1 for φ = 0.40, in order not to exceed the maximum
torque acceptable for the torque meter. In summary, the shear rate is ramped up (down)
in a quasi-static manner with non-infinitesimal steps. At each step, the shear rate is held
constant for a period of 90 s and between two steps, the flow is accelerated (decelerated)
at a rate of 3.5 s−2 (thus, |dRe/dτ | ∼ 90 between two steps, which is a local measure of
the ramp rate unlike the apparent ramp rate). These protocols are henceforth referred to as
‘ramp-up’ (‘ramp-down’). Please note that these two experiments are done separately, like
Ramesh et al. (2019). A few experiments were repeated on different days, and sufficient
repeatability was observed.

Before the ramp-up experiments, the flow is sheared for a few minutes at a high shear
rate, homogenizing the dispersed phase as well as the visualization flakes (see § 2.6) across
the system. After allowing the system to be at rest for approximately 20 min, facilitating the
decay of residual motions, the experiments are started. For the ramp-down experiments,
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FIGURE 2. Example of the temporal variation of the control parameters for ramp-up and
ramp-down protocols (φ = 0.10). (a) Apparent shear rate. (b) Estimated kinematic viscosity of
the working fluid/suspension. (c) The estimated (suspension) Reynolds number. The dash–dotted
lines in (c) are representative of the apparent ramp rate.

the flow is accelerated to the highest desired shear rate at a rate of 3.5 s−2 (|dRe/dτ | ∼ 90,
a local measure of the ramp rate unlike the apparent ramp rate) and sheared for five minutes
before starting the actual measurements.

A typical example of the realized experimental protocol is illustrated in figure 2 for
φ = 0.10. While the apparent shear rates are in line with expectations (figure 2a), the
considerable change in the kinematic viscosity (figure 2b, on occasions up to 20 %
variations) manifests itself in nonlinear profiles between the Reynolds number and
non-dimensional time (figure 2c). In the ramp-up experiments the viscosity decreases
monotonically, as the magnitude of viscous heating only increases with time. In contrast,
for the ramp-down experiments, the viscosity profile is often non-monotonic in time. The
initial reduction in viscosity is driven by the temperature rise due to viscous heating, while
later, the increase in viscosity (thus lowering of temperature) may be attributed to heat
loss mechanisms dominating heat generated by viscous dissipation. These profiles also
suggest that solely relying on temperature measurements before and after experiments
could be misleading for a ramp-down experiment – even though the net change might
not be much, the viscosity would have varied quite significantly over the course of the
experiment. Ultimately, in the ramp-down experiments the Reynolds numbers profile
may also appear non-monotonic (reduction in viscosity dominates reduction in apparent
shear rates, initially). The apparent ramp rate, |dRe/dτ |, for the ramp-down experiment
in this example is ∼|(0 − 3000)/(1000 − 0)| ∼ 3. If suspension viscosity is considered,
|dResusp/dτsusp|, then the apparent ramp rate becomes ∼|(0 − 2271)/(1321 − 0)| ∼ 1.7.

2.6. Flow visualization
For the classification of flow regimes, the well-established technique of flow visualization
is employed. To this end, a small quantity of Iriodin 100 silver pearl (Merck KGaA,
Darmstadt, Germany) is added to the suspension, 0.1 % by mass. The size of these
anisotropic flakes is specified by the manufacturers to be between 10 and 60 μm with a
density between 2800 and 3000 kg m−3. Given the low volume fraction of these flakes
present, and their relative smaller size (by an order of magnitude, compared to the
dispersed phase as well as the geometry), their effect on the flow behaviour is assumed
to be negligible. The anisotropic flakes align themselves with the stream surfaces (Savaş
1985) and any reflected light is attributed to the rotational motion of these flakes (Gauthier,
Gondret & Rabaud 1998).
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The light source illuminating the flakes is an LED panel, which is mounted at an oblique
angle, above the flow facility, to minimize specular reflections onto the camera. The light
reflected back by the flakes is recorded by a LaVision Imager sCMOS 16-bit camera
equipped with a Nikon 35 mm lens (f# = 4). The pixel pitch of the camera is 6.5 μm
and images with sizes up to a maximum of 2560 × 2160 pixels can be captured. This
covers a field-of-view of approximately 28.1 × 23.7 cm2 in the current experiments, while
providing a resolution of 0.11 mm pixel−1 along the axial direction. Images are recorded
with an exposure time of 1500 μs and a frame rate of 50 Hz. In order to record at a higher
frame rate of 100 Hz, the sensitive region of the camera was cropped in one direction to
yield images of sizes 2560 × 200 pixels. The camera is focused onto the outer surface of
the outer cylinder by means of a custom-made calibration target. No special measures are
implemented on the set-up to circumvent the imaging artefacts that would arise due to
the curvature of the outer cylinder (such as non-uniform resolution). Accurate quantitative
analysis is thus restricted to the section of the geometry parallel to the camera sensor.
Images of the calibration target nevertheless allow for making quantitative estimates of
the flow structures along the azimuthal/streamwise direction (for example, streamwise
wavelengths), albeit with higher uncertainty.

The full field-of-view images have been utilized for qualitative purposes in this study,
while the cropped ones are further processed into space–time plots (i.e. concatenating
together a column of pixels from consecutive images). While creating space–time plots
from the flow visualization images, we compensate for the non-uniform illumination by
means of a simple intensity gradient correction, along the axial direction. All space–time
plots cover an axial extent of 20 cm or 20d, while most of them are based on recordings
lasting 30 s. The space–time plots are further processed by means of simple fast Fourier
transform analyses to extract information on axial periodicities as well as temporal
frequencies.

2.7. Experimental uncertainties
The current experiments also entail a few uncertainties that may affect the interpretation
of the results. The issue regarding temperature variations due to viscous heating is tackled
with the help of an infrared thermometer. Thus, we can make a reasonably accurate
estimate of the Reynolds number at any given step of the ramp protocol. A single value
for the Reynolds number for each step is assumed, but in practice we do observe changes
in the estimated temperature even in a single step, with maximum r.m.s. values in the
order of 0.15 ◦C, which would correspond to a 0.8 % uncertainty in viscosity as well
as Reynolds number. Similarly, maximum r.m.s. values for the apparent shear rate were
found to be of the order 0.3 s−1, which might be significant for lower Reynolds numbers
(∼1 % uncertainty), but not so much for higher ones (∼0.1 % uncertainty). In all, we
can estimate the Reynolds numbers up to an accuracy of 2 % for each step. However, the
finite size in the steps between consecutive shear rates translates to finite steps between
consecutive Reynolds numbers, ∼17.5 for finer steps and ∼35 for the coarser steps. This
has a detrimental implication on the accurate estimation of critical Reynolds numbers for
transitions between flow states.

The temperature variation in time, due to viscous heating, also has a subtle impact on the
fluid density, which can be estimated. For example, the density of the continuous phase
reduces by 0.5 % when the temperature is raised from 20 ◦C to 30 ◦C. In contrast, the
density of PMMA (the dispersed phase) seemingly increases with increasing temperature,
changing by 0.3 % as the temperature is raised from 20 ◦C to 30 ◦C (see Rudtsch &
Hammerschmidt 2004, table 2). This contrast would drive the suspension to one with
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Parameter Present Majji et al. (2018) Ramesh et al. (2019)

Taylor–Couette geometry
Radius ratio (η) 0.917 0.877 0.914
Aspect ratio (Γ ) 21.7 20.5 11

Suspension characteristics
Gap width to particle

diameter ratio
(d/dp)

16.7 30 37.5

Suspension Reynolds
numbers (Resusp)

∈ [O(101) O(103)] ∈ [80 160] ∈ [60 180]

Estimated particle
Reynolds number
(Rep)

∈ [0.17 10] ∈ [0.1 0.63] ∈ [0.04 0.38]

Particle volume
fractions (φ)

∈ [0 0.40] ∈ [0 0.30] ∈ [0 0.25]

Experimental protocol
Ramping rates |dRe/dτ | ∼ O(1) |dResusp/dτsusp| � 1 |dResusp/dτsusp| � 1
Directions Separate ramp-down

and ramp-up
Ramp-down only Separate ramp-down

and ramp-up

TABLE 1. Comparison of experimental parameters in related studies where non-Brownian
suspensions are sheared in a Taylor–Couette facility by means of pure inner cylinder rotation.
Please note that only the most salient cases from the works of Majji et al. (2018) and Ramesh et al.
(2019) are listed in this table. The particle Reynolds numbers reported here differ significantly
from those reported in Ramesh et al. (2019), their table 1. These numbers have been corrected
after private correspondence with Prof. Meheboob Alam.

‘slightly heavier’ particles. Moreover, a batch of particles often has a heterogeneous
distribution of densities (for example, Bakhuis et al. (2018) report a near 0.5 % density
heterogeneity in their particles). Another subtle factor that may affect the neutral buoyancy
of the suspension is the water absorption by the particles, which is specified as 0.2 %
increase in weight over 24 h. With all these uncertainties in mind, we believe that our
suspension can be considered to be nearly neutrally buoyant, with a weak bias towards
slightly heavier particles. Assuming a discrepancy of 0.5 % in the densities of the particles
and the fluid, the settling/creaming velocity of a single particle in a quiescent system (at
25 ◦C) would be approximately 52 μm s−1 or it would take approximately 190 s for the
particle to travel one gap width.

2.8. Comparison of current experiments against recent, similar ones
For a small range of Reynolds numbers, we primarily compare our flow visualization
results against two existing similar works (Majji et al. 2018; Ramesh et al. 2019).
For this reason, we first compare the present experimental parameters against the
salient experiments of the reference articles, in table 1. Subscripts ‘f ’ and ‘p’ refer to
corresponding properties of the fluid and particle, respectively.

Adding particles to a single-phase flow introduces new complexities to the analysis, in
terms of additional non-dimensional parameters, including the particle volume fraction,
φ, as well as the ratio between the annular gap width and particle diameter, d/dp. One
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other number is the particle Reynolds number, which provides insight into the inertia of
the fluid. We define Rep = ρf d2

pγ̇app/μf = Re(dp/d)2. Commonly, the viscosity is of the
continuous phase and not of the suspension. It must be noted that the choice of particle
radius instead of the diameter as the appropriate length scale is a common choice in
literature too, which can cause discrepancies up to a factor of four, while comparing with
other works. Key differences in the current experiments, compared to those by Majji et al.
(2018) and Ramesh et al. (2019) include the ratio between the particle diameter and the
gap width, as well as relatively higher particle Reynolds numbers, which suggests that
particles in the current study could be more inertial.

However, a better indicator of particle inertia is the Stokes number. The Stokes
number for a particle in a simple shear flow, accounting for added mass effects, may be
defined as St = γ̇appτp = (ρp + 0.5ρf )d2

pγ̇app/(18μf ). Here, τp is the relaxation time for a
particle. Under neutrally buoyant conditions, this expression simplifies to St = Rep/12.
This definition, however, is more suitable for flows with no secondary motions. Of course,
alternative definitions of the Stokes number could be used for flows with Taylor rolls i.e.
secondary structures. For example, Stroll = τp/τroll, where τroll can be estimated as the time
needed for a roll to make a complete revolution. The characteristic length scale of a roll
is O(d), while a typical velocity scale may be approximated as O(0.05–0.1ωiri) (based on
Wereley & Lueptow 1998, figure 3), i.e. τroll ≈ 0.05 − 0.1γ̇app or Stroll ≈ 10–20St ≈ Rep.
This sets a tighter constraint on the suitability of the particles as faithful tracers of the
surrounding fluid. Under such a constraint, all the studies tabulated in table 1 may include
effects of particle inertia.

Yet another relevant non-dimensional number is the Bagnold number (Bagnold 1954)
defined as Ba = ρpd2

pγ̇appλ
1/2/μf (= Repλ

1/2, under neutrally buoyant conditions), where
λ = 1/[(φc/φ)(1/3) − 1] is referred to as a linear concentration. For our experimental
parameters, Ba < 40 implying that we are always in the so-called macro-viscous regime,
where the flow behaves like a Newtonian fluid. This also holds true for the studies of Majji
et al. (2018) and Ramesh et al. (2019).

3. Global analysis of the experiments

In this work we use the conventions used by Dutcher & Muller (2009) to differentiate
between lower-order transitions (from circular Couette flow to the first appearance of wavy
vortices) and higher-order transitions (all transitions beyond the first appearance of wavy
vortices). An exhaustive validation of single-phase flow experiments in our facility with
the aid of simultaneous flow visualization and torque measurements can be found in the
supplementary material available at https://doi.org/10.1017/jfm.2020.649.

3.1. Flow visualization
We present a consolidated regime map of all our experiments in figure 3. The different
flow regimes are a function of volume fraction as well as the suspension Reynolds
number (normalized by the experimentally determined critical Reynolds number for
single-phase flows, Rec,φ=0 = 142). For simplicity, we make a crude classification by not
distinguishing between the various wavy flow states such as laminar/modulated/turbulent
wavy vortices. Instead, we only classify the wavy states as periodic (one distinct peak
in the spectrum, excluding harmonics) and quasi-periodic (multiple, incommensurate
peaks in the spectrum). To distinguish between these two, we use a mix of qualitative
(visual inspection of the space–time plot) and quantitative conventions. We define the
quantitative approach as follows: let p1 be the tallest peak, p2 be the second tallest one
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FIGURE 3. (a,b) A consolidated regime map as a function of particle volume fraction as well
as suspension Reynolds number (normalized by the experimentally determined critical Reynolds
number for single-phase flows, Rec,φ=0 = 142). In the legend, WVF (1) and WVF (2+) refer
to periodic (single, distinct peak in the spectrum) and quasi-periodic (at least two, distinct,
incommensurate peaks in the spectrum) wavy vortex flows, respectively. The single-phase flow
case has been offset to aid better comparison. The purple dashed lines are approximate isolines
for various particle Reynolds numbers. (c,d) Zoomed-in portion of the consolidated regime map
corresponding primarily to the lower-order transitions.

and pb be the median of the spectrum + 10× median average deviations. If the quantity
( p1 − pb)/( p2 − pb) < 10 then we classify the flow as quasi-periodic.

This global overview already allows us to draw a few preliminary conclusions. In
general, the critical suspension Reynolds number for the flow to display secondary
structures decreases with increasing volume fraction of the solid particles, independent
of the ramp direction. This observation is in agreement with recent experiments (Majji
et al. 2018; Ramesh et al. 2019) as well as theoretical linear stability analysis (Ali et al.
2002; Gillissen & Wilson 2019). This premature destabilization has been attributed to the
anisotropy in the suspension microstructure, with neighbouring spheres interacting in the
compressive direction of the base flow (Gillissen & Wilson 2019).

The major addition to the regime map is that the suspensions introduce what has been
marked as ‘other states’, which usually precedes the wavy vortex flow (WVF) regime.
These refer to the collection of states reported in recent literature, among others (wavy)
spiral vortex flows (reported first by Majji et al. 2018) as well as coexisting states (reported
first by Ramesh et al. 2019). Moreover, the range of Reynolds numbers over which these
states are observed increase with increasing volume fraction for both ramp protocols.
This results in increasing separation between circular Couette flow (CCF) and wavy
vortex flows. This observation seems to be in agreement with the regime map of Ramesh
et al. (2019), but not with that of Majji et al. (2018), who seemingly have the opposite
trend.
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There is a diminished appearance of axisymmetric Taylor vortex flow (TVF) as
a standalone state, with increasing volume fraction, irrespective of our experimental
protocol. This observation is in contrast to, both, Majji et al. (2018) and Ramesh
et al. (2019). While Ramesh et al. (2019) observe Taylor vortices over a finite range of
Reynolds numbers, irrespective of the particle volume fraction (φ < 0.25), Majji et al.
(2018) observe that the range of Reynolds numbers over which Taylor vortices are obtained
diminishes with increasing volume fraction (φ < 0.2), while not observing the state
altogether for φ = 0.30. One possible reason for our lack of observation of Taylor vortices,
as compared to other works, might be the nature of our experimental protocol, which
has higher effective acceleration rates, as well as the limited amount of time spent at
a constant Reynolds number. Majji et al. (2018) do observe in their transient studies that
coexisting flow states that initially appear to have axial segregation, eventually develop into
fully formed Taylor vortices after 5–10 min (see Re = 116.9, 119.0 in figure 15 of Majji
et al. 2018). The diminished appearance of Taylor vortices in our experiments prevents us
from verifying the observation of Ramesh et al. (2019) whether the transition from Taylor
vortices to wavy vortices is subcritical or not.

As far as higher-order transitions are concerned, the implications of the addition
of particles are subtler. For example, the first appearance (or last, for ramp-down
experiments) of wavy vortices may also be quasi-periodic, but a clear trend is not observed
for the same. Moreover, as shall be seen later, the onset of chaos is delayed and the nature
of transitions is seemingly qualitatively different from its single-phase flow counterpart.
These flow regimes are explored in more detail by examining three volume fractions
corresponding to different regimes of a suspension.

3.2. Torque measurements
The flow visualization measurements were complemented by global measurements of
torque, which are often used to characterize flow regimes, be it from the perspective of
rheology (Bagnold 1954) or from turbulence (Eckhardt et al. 2007). In figure 4 we show
the consolidated Nuω − Ta plot for all our ramp-up experiments. We note that between the
suspension experiments and the single-phase flow experiments, the experimental set-up
was dismantled and reassembled. For this reason, we do not consider the single-phase
flow results in the empirical fitting. We emphasize that we do not account for effective
suspension viscosity in either Nuω and Ta, as this allows us to easily interpret drag
increase/reduction as an effect of the addition of particles.

In figure 4 we distinguish the flow regimes into three: (i) CCF; (ii) intermediate states
(corresponding to all points between CCF and WVF (1/2+) in figure 3, often TVF and
‘other states’); and (iii) WVF onwards (all points from the first appearance of WVF,
irrespective of the nature of the spectrum).

We first consider points corresponding to those classified under circular Couette flow
(all crosses × in figure 4). For all suspensions with φ ≤ 0.20, we observe that Nuω is
independent of Ta. In rheological terms this simply means that the viscosity is independent
of the shear rate, i.e. the flow behaviour is Newtonian. However, for φ ≥ 0.25, at higher
Ta (in the laminar regime), there is an increase in the scaling exponent which might be
indicative of shear-thickening like effects. Picano et al. (2013) attributed the ‘inertial’
shear-thickening to the presence of anisotropy in the microstructure of the non-colloidal
suspension flow (Rep ∈ [0.4, 40]). This effect was caused by the presence of a shadow
region, and the authors account for it by means of an ‘effective volume fraction’ (volume
fraction after excluding the shadow regions).
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FIGURE 4. (Compensated) Nuω − Ta scaling for all ramp-up experiments.

From the onset of wavy vortices (all pluses + in figure 4), it was observed that Nuω

scaled approximately with Ta0.23. This is especially true for the dilute and semi-dilute
suspensions. Only for the densest suspensions (φ ≥ 0.25) it was observed that the
scaling exponent fluctuated in the range ±0.03, without any clear trend. In a global
sense, the exponent was 0.226 ± 0.014 (correspondingly, α = 1.45 ± 0.03 in G ∝ Reα).
Nevertheless, these fluctuations are subtler than the changes observed upon the onset of the
fully developed turbulence regime characterized by a transition from laminar to turbulent
boundary layers. For this transition, the coefficients are expected to gradually change from
∼0.25 to ∼0.38.

A similar observation was made in the experiments of Bakhuis et al. (2018) (η =
0.716, Γ = 11.7), albeit at extremely high Reynolds numbers (O(106)) and lower volume
fractions (φ ≤ 0.08), where only minimal changes in the scaling exponent were observed
in their relation Nuω ∝ Ta0.40. On the other end of the particle loading spectrum, the torque
measurements of Savage & McKeown (1983) (η = 0.627, Γ = 5.08) showed that the
particle size had a greater impact on the scaling between shear stress and apparent strain
rate than particle loading itself (φ > 0.4, Re ∼ O(103)). While not discussed explicitly,
their measured shear stresses and apparent strain rates appear to be related by τ ∝ γ̇ 1.2–1.4

app

(i.e. Nuω ∝ Ta0.1–0.2; see figure 7 in Savage & McKeown 1983). The relatively lower
scaling exponents for Savage & McKeown (1983) may be a result of the relatively
small aspect ratio. While not reported explicitly by the authors, the exponent for the
Taylor number appears to be a function of the particle volume fraction in the work of
Ramesh et al. (2019) (see their figure 17), in contrast to our findings. For example, in
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their ramp-down experiments for 180 ≥ Resusp ≥ 150, it appears that Nuω,susp ∝ Ta0.26
susp for

φ = 0.10 and Nuω,susp ∝ Ta0.35
susp for φ = 0.20.

Another telling observation in the current results is the nature of the curve itself
or, more specifically, how the curve transitions from Nuω ∝ Ta0 to Nuω ∝ Ta0.23. For
the dilute suspensions, there is a relatively sharp shift between the two scaling exponents.
However, for the densest suspensions, especially φ ≥ 0.35, the shift between the two
scaling regimes is visibly gradual. Similar observations were visible in skin friction
coefficient plots of recent particle-laden pipe flow experiments, and have been attributed to
the presence/absence of turbulent puffs (Hogendoorn & Poelma 2018; Agrawal, Choueiri
& Hof 2019). Similar behaviour for particle-laden channel flows was demonstrated by
Lashgari et al. (2014), by means of streamwise velocity fluctuations, which was attributed
to inertial shear-thickening effects. Moreover, Ramesh et al. (2019) too observe this
behaviour in their Taylor–Couette flow experiments (φ = 0.10, 0.20). In the current case,
this observation may be correlated with the separation between CCF and WVF (thus, all
dots in figure 4). As shown previously in figure 3, the separation between CCF and WVF
seemingly increased with increasing volume fraction of the particles, which may lead to
the smoothness of the transition. Since correlation does not necessarily mean causation,
this correlation should be revisited in the future.

As a final step in the torque data analysis, we assimilate our data into an empirical fit
of the nature: Nuω = BTakχ e n . Here, χ e is the relative viscosity (Eilers’ fit: μsusp/μ =
[1 + 1.25φ/(1 − φ/0.614)]2).

We assume that drag augmentation in our experiments is brought upon solely by a rise in
the effective viscosity. With the above expression, we implicitly neglect drag increase due
to the formation of a particle-wall layer that has been observed in turbulent, particle-laden
channel flows (Costa et al. 2016). Such an assumption may be valid since the investigated
flows in the current study are not turbulent, and, thus, the existence of a particle-wall
layer may be questioned. Nevertheless, it must be noted that Sarabian et al. (2019) report
particle layering near both the cylinder walls in the circular Couette flow regime for 0.20 ≤
φ ≤ 0.50 in their experiments with non-Brownian suspensions. The relative contributions
of particle-wall layering and rise in effective viscosity to drag augmentation should be
explored in the future.

We fit data corresponding to all particle-laden flows from the onset of wavy vortices
(thus, all the pluses in figure 4, except φ = 0). We neglect the single-phase case for the
fitting due to the aforementioned arbitrary correction employed, and this correction is
expected to primarily affect the prefactor B, which is not of much interest. The results
are tabulated in table 2. The fitted exponent for the Taylor number for the ramp-up
experiments, k, is ∼0.23, in accordance with the visual observation of the scaling, Nuω ∝
Ta0.23. The fitted exponents for the ramp-down experiments do not deviate significantly
from the ramp-up ones.

The scaling exponent of 0.23 corresponds to α ∼ 1.46 (G ∝ Reα). Eckhardt et al. (2007)
provide an explanation for the physical origin of these scaling exponents for single-phase
flows. An exponent of α ∼ 1.5 is attributed to the dominance of boundary layer and hairpin
contributions to the transport of angular velocity, as compared to that from the bulk and
the background. The authors also propose relationships for the thickness of the boundary
layers, for the azimuthal velocity as well as axial velocity, relative to the gap width. For
the range of Reynolds numbers studied here, it may be expected that the boundary layers
are thick and occupy a large fraction of the annular gap width. The absence of deviation
in the scaling exponent between Nuω and Ta across all the volume fractions might suggest
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Protocol B k n R-square of fit

Ramp-up 0.1373 0.2258 0.3996 0.964
(0.1276, 0.147) (0.221, 0.2306) (0.3898, 0.4095)

Ramp-down 0.0784 0.2634 0.4159 0.924
(0.0686, 0.0882) (0.2551, 0.2717) (0.4021, 0.4297)

TABLE 2. Coefficients (95 % confidence bounds in parentheses) obtained by a surface fit of
data (all the pluses in figure 4, except φ = 0) to the equation Nuω = BTakχe n , as well as the
corresponding R-square.

that the particles do not influence the nature of the angular momentum transfer between
the cylinders (at least for the parameters studied here).

Another relevant non-dimensional number is the Bagnold number (Bagnold 1954). The
Bagnold number is the ratio between grain collision stresses to viscous stresses and, for
all our experiments, it is found to be Ba < 40, implying that all our experiments were
in the so-called ‘macro-viscous regime’. Beyond Ba > 450, the grain collision stresses
also play a major role and can shift the nature of the torque scaling significantly. Thus,
despite our experiments spanning a wide range of suspension topologies, we do not notice
a major impact on the scaling exponent, probably because all our experiments were in
the ‘macro-viscous regime’. But again, it has also been reported that the Bagnold number
is insufficient to distinguish contributions from turbulence and particles (Lashgari et al.
2014), which highlights the complexity of explaining the observation.

In the end, even though the results are not completely unambiguous, we can still report
an approximate empirical scaling law from our observations, which approximately reads
as Nuω ∝ Ta0.24χ e 0.41. Alternatively, this scaling behaviour may also be written as G ∝
Re1.49χ e 0.41 or cf ∝ Re−0.51χ e 0.41. We reiterate that the above terms are defined using the
fluid viscosity and not the suspension viscosity, except χ e, and that this scaling is valid
beyond the first appearance of wavy vortices.

4. Lower-order transitions: from circular Couette flow to the
first appearance of wavy vortices

In this section we coarsely traverse the flow regimes studied exhaustively by Majji et al.
(2018), Ramesh et al. (2019) and Ramesh & Alam (2020). All these studies performed
their experiments at a very low ramp rate, in contrast to our experiments. We primarily
intend to verify the existence of non-axisymmetric flow structures and coexisting states in
our flow facility, which appear in the presence of particles. Thus, we perform a qualitative
comparison with the findings in the above works. We also tested slower ramp rates in
the limited range corresponding to the lower-order transitions, which are known to be
especially sensitive to ramping protocols. This gave results similar to those obtained using
ramp rates corresponding to our experiments.

As a reference, in single-phase flows, the flow transitions from circular Couette flow to
laminar wavy vortex flow via Taylor vortex flow. By the first appearance of wavy vortices,
we only consider patterns where the wave travels solely in the azimuthal direction and not
axially. Thus, wavy spiral vortices are not considered as the demarcation between lower-
and higher-order transitions.
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4.1. Dilute suspension: detailed example of φ = 0.034
In general, the nature of the lower-order transitions for the dilute suspensions did not
vary significantly from that of single-phase flows, in both experimental protocols. The
first significant appearance of anomalies in our experiments occurs at φ = 0.034, slightly
lower in comparison to φ = 0.05 reported in other similar experiments (Majji et al. 2018;
Ramesh et al. 2019), possibly owing to the difference in experimental protocols as well as
higher particle Reynolds numbers.

Select regions of flow transitions for φ = 0.034 are shown in figure 5, primarily to
demonstrate the differences from single-phase flow. In the ramp-up experiments the flow
from CCF (Resusp = 118) transforms to a state with a presence of mildly visible spirals
with Taylor vortices towards the ends (Resusp = 134). Hereafter, the flow transforms to
a state with Taylor vortices barring a defect at the mid-height of the Taylor–Couette
system (Resusp = 151), which has a trident like shape on a space–time plot. We conjecture
that there is a competition between the Taylor vortices arriving from the top and the
bottom, and that this could possibly be a transient state. Hereafter, we observe a flow
state seemingly developing into a fully wavy vortex flow (Resusp = 172). This is visible in
the space–time plot as a small portion of the Taylor vortices eventually transforms into
wavy vortices (Resusp = 185).

The route for the ramp-down experiments is very similar to the ramp-up ones. We
observe wavy vortex flow (Resusp = 187) devolve into Taylor vortex flow (Resusp = 146)
via a partially wavy vortex flow (Resusp = 173). While in the ramp-up experiment it was
observed that the waviness of the vortices grew in time, the same is observed here, while
one might expect a slow devolution into a state entirely occupied by Taylor vortices.
A possible reason is that the waviness (even partially occupying the system) may be
considered as a destabilizing perturbation, which allows the wave to grow. The Taylor
vortices are then suppressed upon reducing the shear rate (Resusp = 124), and the flow is
nearly free of secondary structures thereafter. It must be noted that the developing wavy
vortices have not been reported either by Majji et al. (2018) or Ramesh et al. (2019). We
revisit the flow state with developing wavy vortices in § 4.5.

4.2. Semi-dilute suspension: detailed example of φ = 0.15
With increasing particle loading, it was noted in figure 3 that the gap separating CCF and
WVF grew. We look into the example of a semi-dilute suspension, by considering the
case of φ = 0.15. Examples of the lower-order transitions are shown in figure 6 for both
experimental protocols.

In the ramp-up experiments CCF (Resusp = 117) transforms into a state with a sharp
distinction between the topologies in the top and bottom halves (Resusp = 132). The top
half has axisymmetric Taylor vortices, whereas the bottom half has non-axisymmetric
spiral vortices. This flow topology is very reminiscent of the coexisting states reported
recently by Ramesh et al. (2019). Upon increasing the shear rate (Resusp = 144, 152), the
overall flow topology remains unchanged, but the following can be observed. A very
low-frequency waviness appears along the spiralling structure, accompanied by a crest
on the Taylor vortices at the corresponding azimuthal location. A similar flow state was
achieved in the transient evolution experiments of Majji et al. (2018) for their Resusp =
107.6, a particle loading of φ = 0.10 and particle diameter of dp = 230 μm, which
they describe as ‘a combination of spirals and Taylor vortices with azimuthal waviness’.
Upon increasing the shear rate further, the segregation still persists, but a high-frequency
waviness is now evident as well, with the inclination of the spirals slowly reducing
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FIGURE 5. Lower-order transitions for a dilute suspension (φ = 0.034). Only for the stretched
space–time plots, the x-axis is time normalized by the time period of the inner cylinder rotation.
The numbers in the figures represent the suspension Reynolds numbers, Resusp. (a) Ramp-up
experiments. (b) Ramp-down experiments.

(Resusp = 164, 178, 192), until they are completely horizontal (Resusp = 201, 211), with the
absence of any structures travelling axially. The signature of the crests/defects appearing at
lower Reynolds numbers (Resusp = 152) are also the possible reason for the wavy vortices
initially appearing distorted (Resusp = 201). We observe wavy spirals at volume fractions
as low as φ = 0.10. This is in contrast with other similar experiments. For example, while
Majji et al. (2018) begin to observe these structures only from φ ≥ 0.20, Ramesh et al.
(2019) do not observe this flow regime altogether. Moreover, the wavy spirals observed by
Majji et al. (2018) seemingly do not have any visible higher-frequency waviness, observed
in the current experiments.
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FIGURE 6. Lower-order transitions for a semi-dilute suspension (φ = 0.150). See caption of
figure 5 for other details.

The ramp-down experiments, in contrast, show a relatively different behaviour. Wavy
vortex flow (Resusp = 197), upon a reduction of shear (Resusp = 181), devolves into a
state similar to the developing wavy vortices also observed for φ = 0.034. Upon further
reduction of shear (Resusp = 166), we observe a state with a mix of inclined vortices (with
opposite inclinations either side of the mid-height), with wavy vortices occupying the
circumference partially, possibly at the same locations of the partially developed wavy
vortex flow state. Further reduction of the shear rate (Resusp = 155, 144) led to a segregated
state, wherein the region around the mid-height had spiralling structures while the ends
had Taylor vortices. Similar observations have been made in counter-rotating, single-phase
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FIGURE 7. Lower-order transitions for a dense suspension (φ = 0.30). An image adjustment
procedure has been employed to enhance the contrast. See caption of figure 5 for other details.

flow as well, with spirals existing between rotating defects (Hoffmann, Lücke & Pinter
2005). This served as a precursor to the formation of ribbons (Resusp = 130), albeit fainter
than those observed by Majji et al. (2018). We do not regularly observe ribbons structures,
unlike Majji et al. (2018), possibly due to the pace of our experimental protocol, as
well as the limited regions over which this flow state is found to be stable. The lowest
volume fraction we observed ribbons was at φ = 0.075. Then, the flow reaches CCF at
Resusp = 117.

4.3. Dense suspension: detailed example of φ = 0.30
Finally, we consider an example of a dense suspension, namely φ = 0.30. It must be noted
that the image quality begins to deteriorate with increasing volume fractions, and at the
highest volume fractions studied (φ = 0.40), visual analysis becomes less straightforward,
possibly because the dispersed phase begins to block the optical path. Examples of
lower-order transitions for φ = 0.30 are shown in figure 7.
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The flow topologies for the ramp-up experiments qualitatively resemble the observations
for φ = 0.15. The flow is azimuthal to begin with (Resusp = 85), and the flow topology
slowly evolves (Resusp = 91, 98, 105, 112) until the secondary structures occupy the entire
axial extent of the system (Resusp = 119, 126). There are two noteworthy observations:
firstly, a coexisting flow state is formed with Taylor vortices at the top and spiral
vortices at the bottom, and secondly, that the flow requires a lot more time in order to
go from a purely circular state to a flow with secondary structures. The latter might
imply that the presence of particles in such large quantities suppresses the development
rate of the flow state in time. Upon increasing the Reynolds number further (Resusp =
134, 139, 152, 168, 183, 197, 209), we observe that the spiralling structures swallow one
of the Taylor vortices, while also developing waviness. The Taylor vortices too display
waviness simultaneously. Eventually, the wavy vortex flow state is obtained (Resusp = 223).
Majji et al. (2018) do not observe the wavy vortex flow regime for φ = 0.30 and also
mention that they observe only a sequence of non-axisymmetric flow states. While the
latter observation is true for the present experiments too, the former observation may be
attributed to the lower suspension Reynolds numbers (Resusp ≈ 140) achieved by Majji
et al. (2018), compounded with our observation that the separation between CCF and
WVF grows with increasing φ. The reduced speed in the formation of structures also
makes it less straightforward to demarcate whether the flow state should be considered as
CCF or not.

The ramp-down experiments show a devolution also not drastically different from that
seen for φ = 0.15. The initially wavy vortex flow state (Resusp = 202) begins to show
amplifications on the waves, at least partially (Resusp = 184), and the amplifications occupy
the entire circumferential extent upon further reduction of the shear rate (Resusp = 168).
This is followed by the appearance of spiralling structures near the mid-height of the
set-up accompanied by a damping of the waviness (Resusp = 152, 145, 137), and eventually,
we obtain a state with spiral vortices in the centre surrounded by Taylor vortices at both
ends (Resusp = 128). At Resusp = 120 an interesting flow state is observed which might
appear to be wavy vortex flow at first sight, but actually is a state with competing spirals
(left winding versus right winding). These structures appear to be visually similar to
cross-spirals (Altmeyer & Hoffmann 2010). Further reduction in the Reynolds number
(Resusp = 113) yields a flow state with spirals spanning the entire axial extent, and then
subsequent disappearance of secondary structures Resusp = 106.

4.4. Can coexisting regimes in ramp-up experiments be due to imperfect neutral
buoyancy?

The following discussion is primarily heuristic in nature and stems from the observation
that the ramp-up experiments display more radical axial segregation of flow regimes
than the ramp-down ones. Similar observations are visible in the experiments of Ramesh
et al. (2019), where their ramp-up experiments yielded the coexisting states, while the
ramp-down experiments did not (see figures 5, 12–14 in their article). An exception to
this trend was found in the experiments of Ramesh & Alam (2020) who reported axially
segregated states in their ramp-down experiments too. Majji et al. (2018) circumvent this
conundrum altogether by sticking to a ramp-down protocol, as they observed migration of
particles towards the axial boundaries (see § 3.2 of their article) in the event of following
a ramp-up protocol. Moreover, a common assumption in all relevant experiments (Majji
et al. 2018; Ramesh et al. 2019; Ramesh & Alam 2020), including the present work, is that
particles are homogeneously distributed.
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FIGURE 8. Estimated time duration needed for a homogeneous suspension to settle/rise by
one gap width in a quiescent Taylor–Couette (for the current geometry) as a function of
particle volume fraction and density mismatch. Each dotted blue line represents an isoline with
increments of 180 s from 180 s to 1800 s.

Shown in figure 8 is a contour plot of times needed for a homogeneous suspension
to settle/rise by one gap width of the annulus, in a finite container. This is done so
by calculating the settling velocity of a homogeneous suspension in a confined vessel
vs,h = vt(1 − φ)n , where vt = (ρp/ρf − 1)(gd2

p/(18ν)) is the terminal velocity of a single
particle (Richardson & Zaki 1954). For the range of density difference uncertainties in
the current experiment, the particle terminal velocity based Reynolds number � 0.2, so
n = 4.65 + 19.5(dp/d) = 5.82. While estimating the settling velocities, we have taken the
extreme scenario of using the highest observed temperature for determining the kinematic
viscosity.

For our ramp-up experiments, the flow was sheared at a very high rate before being left
to rest for approximately 20 min prior to the commencement of experiments. After starting
the experiments, typical durations before the flow developed any secondary structures were
in the order of 5–10 min. Neglecting the influence of CCF on particle resuspension, the
suspension gets approximately 30 min or 1800 s to non-homogenize. Since the estimated
settling/rising velocities for marginal density differences are typically much smaller than
velocities of secondary flow structures, the settling/rising effect may be neglected once
secondary flow structures appear.

Assuming that the various uncertainties (including effect of temperature as well
as particle density distribution) cause a density difference of 0.005 (0.5 %), then the
suspension is able to axially migrate 3 gap widths, before the flow can develop secondary
structures for φ = 0.15, and approximately 0.8 gap widths for φ = 0.30, for example.
These are relatively large distances and can result in inhomogeneous distribution of
suspension Reynolds number across the axial direction. This in turn could cause different
instability mechanisms across the axial direction, triggering the formation of axially
segregated coexisting states.

In conclusion, it may be said with the help of the above estimates that the existence
of ‘coexisting states’ with radical axial segregation of flow states could be affected
by marginal density differences between the two phases. In virtually all experiments
using large quantities of particles, these imperfections may be unavoidable. However,
conclusively (dis)proving whether subtle density differences play a significant role
would require simultaneous measurements of particle volume fractions along the axial
direction.
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4.5. Azimuthally localized wavy vortex flow: transient or a new regime?
A question that can be raised is whether the flow structures observed in the detailed
examples here were spawned by our experimental protocol, which involves higher ramp
rates (|dRe/dτ | ∼ O(1)) as well as limited durations over which a constant Reynolds
number was maintained (90 s). The transient evolution experiments of Majji et al. (2018)
serve as a good reference for this matter (see figure 15 of their article). Over the short
term (∼5 min), several of their experiments display coexisting states (axially segregated),
and a few of these even survive for up to 30 minutes. Thus, these experiments do suggest
that flows with axial segregation and/or defects may survive for extended periods of time.
Even Chossat & Iooss (1994) state in their book, ‘For instance, for values of the parameters
where spiral waves are expected, one actually sees a flow with “defects”, and one has to
wait quite a long time before these defects disappear’. Thus, the same may be applicable
to our experiments, and that a few of our reported flow states may be transients while a
few of them might survive for an extended period of time.

One of the most intriguing flow states observed in our experiments was the
developing/intermittent/localized wavy vortex flow (Resusp = 172, ramp-up in figure 5a;
Resusp = 173, ramp-down in figure 5b; Resusp = 181, ramp-down in figure 6b). This
state primarily differs from the flow states with defects, in the sense that there are no
sinks/sources, and that any segregation occurs in the azimuthal direction (a fraction of the
circumferential span has waviness on the otherwise axisymmetric Taylor vortices). These
structures were observed in both the ramp-up as well as ramp-down experiments, ruling
out any path dependence. The space–time plot on its own does not clarify whether this
flow state is a combination of Taylor vortices and wavy vortices, coexisting at separate
azimuthal sectors, or if the Taylor vortices become wavy for a short period of time before
returning to the axisymmetric form.

In order to unveil the nature of these developing/intermittent/localized wavy vortex
flows additional experiments were performed. The rotational frequency of the inner
cylinder was manually adjusted until the desired flow state was achieved. Hereafter,
the rotational frequency or the Reynolds number was kept constant (thus, |dRe/dτ | =
0). Imaging is performed with the help of three cameras (GoPro Hero 7 Black),
simultaneously recording separate circumferential sectors of the Taylor–Couette system.
Synchronization of the three cameras is done in the post-processing stage by identifying
the time instant of a distinct sound source. Classical methods of visualizing the entire
circumference of the Taylor–Couette system typically involves using multiple mirrors and
a single camera (Gorman & Swinney 1982; Prigent & Dauchot 2000). However, these were
not pursued due to space constraints around our facility.

Shown in figure 9 is a schematic of the process depicting the transition between Taylor
vortices and wavy vortices in suspension-laden systems. Intermediate states, i.e. waves
only present partially across the circumference, are visible in two forms: a stable and
an unstable form (see online supplementary material, movies 1 and 2, respectively). In
our experiments this flow state is primarily observed in the transition process between
Taylor vortex flow and wavy vortex flow. On multiple instances, we have observed this
flow topology lasting for longer than an hour. Our longest observation of this flow state in
a stable form has been in a suspension with φ = 0.15 for approximately 5 h (approximately
15 000 inner cylinder rotations). Towards the end of its lifetime, the wavy fraction slowly
decayed to leave behind axisymmetric Taylor vortices. We have also observed scenarios
where the wavy fraction grew in extent to occupy the entire circumference. It is also
common to normalize the time with an advective time scale, γ̇ −1

app, while studying transient
structures (Borrero-Echeverry, Schatz & Tagg 2010). In such a case, the lifetime of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

64
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

21
 O

ct
 2

02
0 

at
 1

0:
35

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.649
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


903 A20-24 A. Dash, A. Anantharaman and C. Poelma

Taylor vortices

Wavy vortices

Localized states
(in suspensions)Single-phase

FIGURE 9. Schematic representation of flow topologies when Taylor vortices transform into
wavy vortices via a localized growth in a suspension-laden system. The red and blue (wavy) tori
represent a pair of counter-rotating vortices with opposing azimuthal vorticity. For suspensions,
it is also possible for the flow to stabilize at an intermediate state.

structure is ≈1 × 106. The longevity of this flow state can be better tested in a temperature
controlled facility, which truly allows for |dRe/dτ | = 0.

In figure 10 we present an example of a stable version of the azimuthally localized
wavy vortex flow state. The two bottom panels prove the existence of the localized
flow state for at least 1200 s. We estimate the wave speed to be approximately half the
speed of the inner cylinder. The recipe to achieve a stable form of the localized wavy
vortex flow state is still an open question. From our experience, an unstable version is
easily achieved by setting a constant shear rate which corresponds to a Reynolds number
slightly above the critical value needed to obtained wavy vortices. The stable version
has usually been achieved by arbitrarily varying the shear rate at the boundary between
Taylor and wavy vortices, crossing it on multiple occasions. The stable version shown
here was attained at Resusp/Rec,φ=0 ≈ 1.54 for φ = 0.10. For reference (see figure 3), the
transition between wavy vortex flow and the preceding (succeeding, alternatively) flow
state occurs between 1.20 ≤ Resusp/Rec,φ=0 ≤ 1.28 (1.60 ≥ Resusp/Rec,φ=0 ≥ 1.44) for the
ramp-up (ramp-down) experiments.

To the best of our knowledge, this specific flow state has not been reported in the past,
even though similar observations have been made. We note that Ramesh et al. (2019)
do identify a coexisting state with Taylor vortices and wavy vortices in suspension-laden
flows, however with axial segregation. Moreover, Abshagen et al. (2012) report a flow
state with an axial localization of an azimuthally rotating wave in single-phase flows.
While the localized wavy vortex flow from our experiments appears to be similar to
the ‘very short wavelength bursts’ reported by Carey, Schlender & Andereck (2007), the
latter appears much beyond the onset of wavy vortex flow in high radius ratio systems.
Wiener & McAlister (1992) also observed a solitary wave travelling across a system
with axisymmetric Taylor vortices, but in the axial direction, while also reflecting off the
end caps. Finally, an extremely similar flow state was reported in numerical studies on a
rotating planar Couette flow by Salewski, Gibson & Schneider (2019). A localized slug of
wavy vortex flow emerged in a background of Taylor vortices via a modulational sideband
instability. However, the localization occurred along the spanwise direction (axial direction
in Taylor–Couette geometry) rather than the streamwise direction (azimuthal direction in
Taylor–Couette geometry).
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FIGURE 10. An example of a sustained version of localized wavy vortex flow in a suspension
with φ = 0.10. Coloured patches in the top panel (a) indicate the locations, where the scattered
light intensity is sampled. The panels (b and c) are time series of the light intensity at three
locations, close to the mid-height, recorded on the three individual cameras. Arrows in (b,c)
indicate the propagation of the localized wave along the circumference. The time series in panels
(b and c) are separated by 20 min. Our longest observation of this flow state has been in a
suspension with φ = 0.15 for approximately t ≈ 5 h. This corresponds to tfi ≈ 15 000 or tγ̇app ≈
1 × 106.

The transition between Taylor vortex flow and wavy vortex flow in single-phase flows
has been attributed to the ‘self-sustaining process’ also known as the ‘regeneration cycle’
(Martinand, Serre & Lueptow 2014; Dessup et al. 2018). Recent numerical work by Wang,
Abbas & Climent (2018) shed light on the regeneration cycle for the flow of (semi-)dilute
suspensions comprised of neutrally buoyant, finite-size, spherical particles in a planar
Couette flow as well as channel flow. A key conclusion was that the spatial distribution
of the particles was decisive, whether they are predominantly present in the streamwise
rolls or the streaks. We thus conjecture that the particles interfere with the self-sustaining
process in our experiments, giving birth to this localized flow state, but proving this
requires further investigation.

In conclusion, based on our observations, we can conclude that the azimuthally localized
wavy vortex flow state might be either a stable state or a long-lived transient. Since
we are unable to conclusively claim that this flow state has an infinite lifetime, there
is a possibility that it may be a long-lived transient. We can nonetheless propose that
finite-sized particles, which are known to cause premature destabilization of the flow, are
also capable of inhibiting the growth of instabilities.

5. Higher-order transitions: from the first appearance of wavy vortices

In this section we discuss the nature of higher-order transitions in particle-laden flows.
For the sake of simplicity, we classify the flows only as periodic or quasi-periodic,
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depending on the number of incommensurate peaks appearing in the spectrum. A periodic
flow has a single, distinctly identifiable peak in the spectrum, while a quasi-periodic
flow has multiple, incommensurate, distinctly identifiable peaks in the spectrum. As a
reference, in single-phase flows the flow transitions roughly in the following order with
increasing Reynolds number: laminar wavy vortex flow (periodic), modulated wavy vortex
flow (quasi-periodic), chaotic wavy vortex flow (quasi-periodic), turbulent wavy vortex
flow (periodic), turbulent Taylor vortex flow (aperiodic). The flow patterns including and
beyond chaotic wavy vortex flows additionally feature small-scale structures. A caveat,
however, is that the exact nature of higher-order transitions is not set in stone. The
supplementary material includes a detailed example for single-phase flows, and provides
an in-depth explanation of the terminology.

The primary tool we employ in this section is a simple spectral analysis along the
time axis of the space–time plots. The spectra along each axial location are averaged to
return a single spectrum. The averaging is not expected to be detrimental as fundamental
frequencies have been found to be independent of the axial location (Fenstermacher et al.
1979), even though this might not hold true for the amplitudes. Peaks in the spectra are
identified as follows. All points at least ten median average deviations away from the
median of the spectrum are marked as ‘potential peaks’. Hereafter, only the ‘potential
peaks’ that are local maxima in the neighbourhood of five points are retained as true
peaks. After isolating the true peaks, we use a mix of qualitative (visual inspection of
the space–time plot) and quantitative conventions to classify the flow as either periodic or
quasi-periodic. The quantitative approach is as follows: let p1 be the tallest peak, p2 be the
second tallest one and pb be the median of the spectrum + 10×median average deviations.
If the quantity ( p1 − pb)/( p2 − pb) < 10 then we classify the flow as quasi-periodic. The
frequencies in the spectra are normalized by the rotational frequency of the inner cylinder
(fi). Thus, all peaks close to f /fi = 1 may be associated with the system itself. We also
do not perform an extremely detailed, quantitative analysis of the spectra (for example,
identifying the significance of different peaks, and identifying all the linear combinations),
as it is not trivial (as evidenced by Gorman, Reith & Swinney 1980; Takeda et al. 1993, in
table 3 and figure 2, respectively) while also going beyond the scope of the current study.

While a similar spectral analysis can also be performed along the space axis to yield
axial wavenumbers, we restrict our discussion to the (de)generation of vortex pairs (also
referred to as vortex pinching/splitting processes by King & Swinney 1983). Given that
our system has two fixed end plates, which fix the boundary conditions for the flow, the
(de)generation of vortices in the axial direction only occurs in pairs. If the total integer
number of waves encompassing the circumference, m, is known with absolute certainty,
then the wave speed (normalized with the inner cylinder speed) can be estimated as c̄ =
( f /fi)/m (King et al. 1984). We can estimate m by extrapolating from the full field-of-view
snapshots. However, this approach is suspect to errors, which could affect the accurate
determination of the wave speeds.

5.1. Dilute suspension: detailed example of φ = 0.034
Firstly, we consider the example of φ = 0.034 in figure 11 to qualitatively probe the nature
of the higher-order transitions in dilute suspensions. In the ramp-up experiments ‘other
states’ are observed between 1.03 ≤ Resusp/Rec,φ ≤ 1.32. This is followed by wavy vortex
flow for 1.42 ≤ Resusp/Rec,φ ≤ 1.84. Hereafter, between 1.92 ≤ Resusp/Rec,φ ≤ 2.20 the
azimuthal waves undergo distortion, resulting in noisier spectra, and pave the way for a
new flow state with different axial/azimuthal wavenumbers at Resusp/Rec,φ = 2.36. This
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FIGURE 11. Compilation of frequency spectra for a dilute suspension (φ = 0.034). Here Rec,φ
is the highest suspension Reynolds number at which circular Couette flow is identified. The
size of the markers are proportional to their prominence in the spectrum. The dashed red
lines approximately represent the primary frequency. A sudden drop (rise, respectively) in
the dashed red line suggests a decrease (an increase) in the number of azimuthal waves. The
coloured markers at the bottom correspond to the flow regimes shown in figure 3. (a) Ramp-up
experiments. (b) Ramp-down experiments.

behaviour is similar to that observed in single-phase flows. This new wavy state with a
single frequency component of f /fi ≈ 3.8 is sustained in the region 2.36 ≤ Resusp/Rec,φ ≤
6.16. This is followed by flow states similar to modulated wavy vortex flow and/or chaotic
wavy vortex flow for 6.46 ≤ Resusp/Rec,φ ≤ 8.80, characterized by the appearance of finer
structures in the flow (suggesting presence of chaos) as well as spectra with multiple
peaks. The flow then returns to a state characterized by a single, dominant frequency, while
also displaying chaotic elements for 9.18 ≤ Resusp/Rec,φ ≤ 13.03 (barring Resusp/Rec,φ =
11.94, when there is a shift in azimuthal wavenumbers), reminiscent of the wavy turbulent
vortex flow in single-phase flows. The flow undergoes a spectral cascading process
between 13.42 ≤ Resusp/Rec,φ ≤ 14.1, leading to a shift in the azimuthal wavenumber
from f /fi ≈ 2.3 to f /fi ≈ 1.9. From Resusp/Rec,φ = 15.31 to Resusp/Rec,φ = 15.61, there
is a sudden shoot-up in the frequency component from f /fi ≈ 1.9 to f /fi ≈ 3.8, which is
sustained until the highest Reynolds number (Resusp/Rec,φ = 18.21). A similar observation
was made in our single-phase flow experiments, and could be likened to the ‘fast azimuthal
wave’. Originally, this structure resembling the ‘fast azimuthal wave’ was reported to
appear only after the appearance of turbulent Taylor vortices (Takeda 1999). In this sense,
our observations may be likened to the findings of Imomoh, Dusting & Balabani (2010),
who also observed this structure before the appearance of turbulent Taylor vortices.

The ramp-down experiments initially return a flow state akin to the wavy turbulent
vortex flow, characterized by a single, dominant frequency in the spectrum and fine-scale
structures in the flow between 15.11 ≥ Resusp/Rec,φ ≥ 9.29 (with the disappearance of
a vortex pair at Resusp/Rec,φ = 12.14). This is followed by a flow state with multiple,
incommensurate frequencies in the spectra between 9.09 ≥ Resusp/Rec,φ ≥ 7.97, with the
flow still displaying smaller-scale structures. This is then followed by wavy vortex flow
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FIGURE 12. Compilation of frequency spectra for a semi-dilute suspension (φ = 0.15). See
caption of figure 11 for other details.

between 7.63 ≥ Resusp/Rec,φ ≥ 4.40, characterized by a single dominant frequency (except
Resusp/Rec,φ = 6.18, when the azimuthal wavenumber undergoes a shift) and a gradually
diminishing presence of finer flow features. Between 4.14 ≥ Resusp/Rec,φ ≥ 3.34, the
flow appears to be similar to the early modulated wavy vortex flow and also precedes
the appearance of wavy vortex flow with a new azimuthal state (from f /fi ≈ 3.1 to
f /fi ≈ 3.5) as well as an axial one (reduction of a vortex pair). The flow then is wavy
in nature for 3.12 ≥ Resusp/Rec,φ ≥ 1.44. A surprising observation is the creation of
two vortex pairs between 1.87 ≥ Resusp/Rec,φ ≥ 1.65. This is then followed by an ‘other
state’ (Resusp/Rec,φ = 1.33) and Taylor vortex flow (Resusp/Rec,φ = 1.12), before becoming
purely circular.

5.2. Semi-dilute suspension: detailed example of φ = 0.15
Next, we consider the example of a semi-dilute suspension using the case φ = 0.15 in
figure 12. As seen in the section describing the lower-order transitions, proper wavy
vortices are not observed in the ramp-up experiments until Resusp/Rec,φ = 1.63 with f /fi ≈
3.5, and this flow state persists until Resusp/Rec,φ = 1.87. Between 1.87 ≤ Resusp/Rec,φ ≤
2.62, the flow transitions to a state with wavy vortices, albeit with a different azimuthal
wavenumber (reflected in f /fi ≈ 3.8), and with the loss of a vortex pair. This transition
occurs with the appearance of distortion on parts of the waves (at Resusp/Rec,φ = 2.06),
which then give rise to a flow state with dislocations appearing in the form of wavy
spiral vortices. Even for single-phase flows, splitting/merging of vortex pairs in the
axial direction occurs by means of spiralling structures. Thus, it is fathomable that
these spiralling structures are in fact intermediate states, and if more time were spent
at each of the Reynolds numbers, the spiral might not have survived. Nevertheless, this
observation throws weight behind our proposition that the presence of particles could
lead to a reduction in the growth rate of instabilities. Hereafter, the flow states primarily
sustain their waviness even until the highest Reynolds numbers we achieved 2.62 ≤
Resusp/Rec,φ ≤ 13.91. Moreover, the waviness usually has a single dominant frequency and
quasi-periodicity is primarily observed when there is a shift in the azimuthal wavenumber.
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While not shown here, the spectra begin to appear noisier beyond Resusp/Rec,φ ≥ 7.89,
while the flow also appears to display finer structures beyond Resusp/Rec,φ ≥ 9.69. Thus,
the transition to chaos appears more vague compared to single-phase flows as it is
not preceded by a flow state with two distinct, incommensurate frequencies. It may be
concluded that the presence of higher number of particles can inhibit the appearance of
the second, incommensurate frequency.

The ramp-down experiments start of with a flow state with waviness, characterized by
a spectrum with a single, dominant frequency (f /fi ≈ 2.2) while also being amply noisy.
The flow itself appears to have smaller-scale structures, and, thus, the flow may initially
be chaotic. We note that in the ramp-down experiments, the Reynolds number initially
increases from Resusp/Rec,φ = 10.65 to a maximum of Resusp/Rec,φ = 10.77, despite
decreasing shear rates. This is caused by sharp reductions in the viscosity arising from
viscous heating. Nevertheless, this wavy flow state is sustained for Resusp/Rec,φ ≥ 8.24.
Between 8.05 ≥ Resusp/Rec,φ ≥ 7.00, the spectrum has multiple peaks, reminiscent of the
chaotic wavy vortex flow state in single-phase flows. We note that such a flow state was
not observed in the corresponding ramp-up experiments. Between 6.77 ≥ Resusp/Rec,φ ≥
1.59, the flow is wavy, predominantly with a single frequency component (2.5 ≤ f /fi ≤
3.7), with the exception of Resusp/Rec,φ = 2.76, 2.57, where the space–time plots appear
similar to the early modulated wavy vortex flow seen for single-phase flows. The ‘other
states’ are obtained between 1.46 ≥ Resusp/Rec,φ ≥ 1.05, before the flow becomes purely
circular in nature.

5.3. Dense suspension: detailed example of φ = 0.30
Finally, we consider an example of a dense suspension, φ = 0.30 in figure 13. The
lower-order transitions, as shown previously, consisted primarily of the ‘other states’
(1.06 ≤ Resusp/Rec,φ ≤ 1.99), before wavy vortices are obtained. However, as can be
noticed from the compilation of spectra from the ramp-up experiments, the initial
appearance of wavy vortices is accompanied by the presence of a secondary frequency
( f /fi ≈ 1.25). This behaviour persists for 2.12 ≤ Resusp/Rec,φ ≤ 2.92. Moreover, between
2.80 ≤ Resusp/Rec,φ ≤ 2.92, additional apparent modulations are clearly visible on the
space–time diagrams (visible as additional peaks in the spectra, near the primary peak
f /fi ≈ 4), which then give way to a wavy vortex flow regime characterized by a single
peak for the remainder of the experiments (3.10 ≤ Resusp/Rec,φ ≤ 8.88), with the exception
of locations where the flow transitions from one wavy state to another (Resusp/Rec,φ =
5.53, 6.62). Curiously, between 5.69 ≤ Resusp/Rec,φ ≤ 8.88, a peak with a low amplitude
(relative to the primary peak) is persistently present at f /fi ≈ 3. This also appears to be
independent of the value of the primary frequency which varies from 3.1 ≥ f /fi ≥ 2.3.
A key difference here from the single-phase flows is the lack of an extended region with
a second, incommensurate frequency, which also has implications for the onset of chaos.
A similar behaviour was also observed for φ = 0.15. Thus, it indeed appears that the
presence of particles inhibits the appearance of the second, incommensurate frequency.
The peak at f /fi ≈ 3 seems to be the sole feature that may insinuate the appearance of a
second frequency component, but we disregard it given its lack of strength. Of course, the
studied range of Reynolds numbers (Resusp/Rec,φ ≤ 8.88) disallows us from drawing a firm
conclusion on this matter, and can be a topic of interest in the future. In our single-phase
flow experiments the wavy turbulent vortex flow state was attained at Re/Rec = 9.00,
preceded by flow regimes with apparent chaos. Thus, even though the presence of particles
causes a premature appearance of secondary flows, their presence possibly delays the onset
of chaos.
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FIGURE 13. Compilation of frequency spectra for a dense suspension (φ = 0.30). See caption
of figure 11 for other details.

The ramp-down experiments produce even less complicated transitions, and the
dominant flow state is the wavy vortex flow between 7.16 ≥ Resusp/Rec,φ ≥ 1.92. The
flow eventually transitions back to ‘other states’ via wavy flow states with multiple
incommensurate frequencies (1.75 ≥ Resusp/Rec,φ ≥ 1.60). This is clearly visible in the
space–time plots for Resusp = 178, 162 in figure 7. Similar to the ramp-up experiments, an
extremely weak peak is also present at f /fi ≈ 3 for 7.16 ≥ Resusp/Rec,φ ≥ 4.31. However,
its significance remains unclear.

In conclusion, based on the three detailed examples considered here, we can claim
that higher-order transitions in dilute suspensions are not qualitatively different from
single-phase flows. However, with increasing particle volume fractions, there is evidence
for the suppression of a second, incommensurate frequency. This frequency is commonly
observed in single-phase flows (usually implying modulated waves) and serves as a
precursor to the arrival of chaos (Gollub & Swinney 1975; Fenstermacher et al. 1979).
The inhibition of the second, incommensurate frequency implies that at higher particle
loadings, the route to chaos is altered.

6. Conclusions and outlook

In this section we summarize the key findings and their implications in § 6.1 and propose
possible future investigations to extend upon the current study in § 6.2.

6.1. Summary of key findings
We set off with the target of addressing the following: previously unreported anomalies in
lower-order transitions; nature of higher-order transitions; and the possibility to derive an
empirical scaling law for the torque measurements. All these targets were in the context
of experimentally studying neutrally buoyant, non-Brownian, particle-laden suspensions
(solid spheres dispersed in a liquid) in a vertical Taylor–Couette geometry, driven by a
rotating inner cylinder. The varied parameters include particle loading (φ ∈ [0 0.40]), the
(suspension) Reynolds number (up to O(103), by varying the apparent shear rate) as well
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as experimental protocol (increasing and decreasing Reynolds numbers). The key findings
are listed below.

(i) Despite higher acceleration/deceleration rates (table 1), previously reported
non-axisymmetric flow regimes (such as spirals and ribbons) as well as ‘coexisting
states’ (constituted of two separate states axially segregated) are observed in the
particle-laden flows. These are observed as a part of the lower-order transitions for
suspensions (figures 5–7). Moreover, we identify that particle-laden flows are likelier
to display ‘defects’.

(ii) We speculate in § 4.4 that ‘coexisting states’ (axial segregation of flow states) could
potentially arise due to imperfect satisfaction of the neutral buoyancy. This stemmed
from the observation that experiments with increasing Reynolds numbers in time,
display radical segregation in flow states more often. Conclusively (dis)proving the
above proposition would require accurate measurements of particle volume fraction
profiles along the axial direction.

(iii) A novel flow regime is reported in the form of an azimuthally local wavy vortex flow,
with a fraction of the circumference composed of Taylor vortices and the remainder
being wavy (see figures 9 and 10). It may be considered as a ‘coexisting state’, with
segregation in the azimuthal direction. Based on our observations, it is either a stable
state or a long-lived transient.

(iv) Based on the increased appearance of defect-laden flow patterns as well as an
example of a sustained azimuthally localized wavy vortex flow, we propose that the
presence of a dispersed phase, which is known to trigger premature destabilization,
is also capable of inhibiting the growth rate of instabilities. This is also proposed in
the framework of the particles interfering with the self-sustaining process.

(v) The gap between circular Couette flow and the appearance of wavy vortices clearly
increases with increasing particle loading (figure 3). Moreover, the first appearance
of wavy vortices is sometimes quasi-periodic in nature, predominantly for dense
suspensions undergoing ramp-up experiments.

(vi) Flow topologies corresponding to higher-order transitions in dilute suspensions are
qualitatively similar to those observed in single-phase flows (figure 11). At the higher
particle loadings, though, there are indications that the route to chaos is altered. This
is based on the absence of a clear, second, incommensurate frequency (figures 12 and
13). This at least holds for the range of Reynolds numbers studied here.

(vii) We obtain an empirical scaling law from our torque measurements, which reads as
Nuω ∝ Ta0.24χ e 0.41 (figure 4 and table 2). This is valid for all our measurement points
beyond the first appearance of wavy vortices, or for higher-order transitions in our
study.

6.2. Possible future investigations
Given that the study of inertial instabilities in neutrally buoyant, non-Brownian,
particle-laden Taylor–Couette flow is in a relatively nascent phase, a wide variety of
questions can still be addressed experimentally in the future. This manuscript focused
on characterizing flow transitions by evaluating global quantities, such as torque and
classifying the flow regimes based on flow visualization. Commonly, changes in global
quantities are intimately linked with changes in the microstructure of the flow. This alludes
to the need for understanding the microstructure of the flow, which would consist of the
velocities of the two phases as well as inhomogeneities in the spatial distribution of the
dispersed phase. In fact, advances along this line have recently been made in understanding

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

64
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

21
 O

ct
 2

02
0 

at
 1

0:
35

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.649
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


903 A20-32 A. Dash, A. Anantharaman and C. Poelma

the internal properties of the flow structures (Ramesh et al. 2019), enhanced mixing by
particles (Dherbécourt et al. 2016; Rida et al. 2019) as well as radial migration of particles
(Majji & Morris 2018; Sarabian et al. 2019).

Even though this study aimed at expanding the studied parameter space, there
still are several uncharted territories. For example, even higher Reynolds numbers
(Resusp ∼ O(104)) can be accessed, in order to assess the effect of particles on the onset
of ultimate turbulence. Moreover, rotating the outer cylinder should also be a tantalizing
prospect, given that counter-rotating single-phase Taylor–Couette flows are known to
have non-axisymmetric modes arising as primary instabilities (Krueger, Gross & Di
Prima 1966). Torque measurements can also allow for determining ‘optimal’ conditions,
characterized by the ratio between the rotation rates of the two cylinders at which the
transport of angular momentum between the cylinders is maximized (van Gils et al. 2012).

On the other hand, state-of-the-art, fully resolved numerical simulation techniques
for particle-laden flows (de Motta et al. 2019) can complement measurements
by state-of-the-art experimental techniques (Poelma 2020) and provide a deeper
understanding of the underlying physical mechanisms.
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