
Codes with relaxed weight
constraints for DNA-based

storage systems
by

J.M. Capel
to obtain the degree of Bachelor of Science

at the Delft University of Technology,

Student number: 4905180
Project duration: April, 2022 – August 24, 2022
Thesis committee: Dr. ir. J. H. Weber, TU Delft, supervisor

Dr. J. A. M. de Groot, TU Delft, supervisor
Drs. E. M. van Elderen, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface
This thesis is written as final part of the Bachelor Applied Mathematics at the Delft University of Technol-
ogy. In the second year of this Bachelor I choose to take the elective course “Applied Algebra; Codes
and Cryptography Systems” lectured by Dr. J.A.M. de Groot. This introduced me to coding theory,
which made me realise I was very interested in this subject. Therefore I was immediately enthusiastic
that Dr. ir. J.H. Weber gave me the chance to do my thesis in this field of study. I really like that this
is a topic where it becomes very clear how mathematics can be used to find solutions for our future
society.

I would like to thank my supervisors Dr. ir. Jos Weber and Dr. Joost de Groot for their guidance
during this project. They gave me a lot of feedback and supported me during the whole process of
writing this thesis. In addition, I would also like to thank Drs. E. M. van Elderen for being part of my
Bachelor committee.

Judith Capel
Delft, July 2022

iii





Abstract
Nowadays, we produce an enormous amount of data and all this data needs to be stored somewhere.
In order to store all this data in an efficient and environmentally friendly way, solutions need to be
found. A storage technique that has great potential to be a solution is synthetic DNA based storage. A
DNA-strand is made up of a sequence of four nucleotides, Adenine (A), Thymine (T), Guanine (G) and
Cytosine (C). To save our data using DNA, our binary data is encoded to quaternary data, using this
quaternary data DNA strands are made. During this process, of saving our data in DNA, errors can
occur, therefore two constraints are considered to minimise the number of errors in our codes. The
GC-weight, which is the number of G and C nucleotides in a DNA word and the maximal run-length,
which is the maximum number of identical nucleotides in a row. In addition, the Hamming distance
between words is also considered to be able to detect and even correct errors that still occur.

This research tries to find lower and upper bounds for themaximum size of DNA codes. We continue
the work of Van Leeuwen [1], Vermeer [2] and Laseur [3], who considered codes with fixed GC-weight.
In this thesis we will relax this GC-weight constraint and we will look at codes where we have a set of
GC-weights and all the DNA words in the code need to satisfy one of these weights. Furthermore, the
codes we consider have a run-length of 𝑟 = 1. We will determine the maximum size of codes where
the minimum Hamming distance 𝑑 is equal to the length 𝑛 of the DNA words. We determine lower and
upper bounds for the case where 𝑑 = 𝑛 − 1 and for specific sets of GC-weights we will determine the
maximum size. Finally we will present nine algorithms, these algorithms create DNA-codes. The size
of these codes give us lower bounds for the maximum size of DNA codes.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Organisation of the Thesis: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Prerequisites 3
2.1 What is DNA and how do we store data in DNA?. . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Basic DNA sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 The maximum size of DNA-n codes 7
3.1 An upper bound for DNA-𝑛 codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The case where the maximum size of a DNA-𝑛 code is 4 . . . . . . . . . . . . . . . . . . 7
3.3 DNA-𝑛 codes with maximum size smaller then 4 . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 The maximum size of a DNA-code with 𝑑 = 𝑛 − 1 13

5 Algorithms to compute DNA-codes 25
5.1 Reference algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Reference algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Reference algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Reference algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.4 Reference algorithm 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 New algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Algorithms 5 and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Algorithms 7 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Algorithm 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Evaluation of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusions and recommendations 35
6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Python code 39

vii





1
Introduction

1.1. Motivation
Nowadays, we produce an enormous amount of data, and all this data need to be stored somewhere.
Right now, most of this data is stored on magnetic and optical media. Although there have been im-
provements in the storage capabilities of these media, significant advances in storage density and
durability need to be sought, in order to preserve all our data [4]. Synthetic DNA based storage is
costly, but has a great potential to be a solution to this problem.

Using magnetic and optical media as storage system has a density of about 100 GB/𝑚𝑚3 [4].
Comparing this to DNA, DNA storage has a raw limit of 1 exabyte/𝑚𝑚3 = 109 GB/𝑚𝑚3[4]. So storing
data in DNA would take up a lot less physical space. Furthermore the durability of DNA is also really
good, we can still recover DNA from species that have been extinct for more than 10.000 years [5].
This while the durability of the current techniques is much worse. Rotating disks have a lifespan of 3-5
years and tape 10-30 years [4].

Although writing and reading DNA sequences is costly, DNA storage has great potential to be a
technique for archival data storage [6]. In this thesis we will focus on the research on constraints in
order to find quaternary code designs that can be used to save data using this promising technique.

1.2. Thesis statement
It is clear that, due to the durability of DNA and the fact that DNA has a dense storing capacity, DNA
would be a very good potential storing technique. In order to eventually store data in DNA, research
needs to be done into DNA codes. In [6] two constraints for DNA codes are described, DNA-words
should satisfy these constraints to avoid errors. These constraints concern the fixed number of G and C
nucleotides, the GC-weight, and the maximum number of identical nucleotides in a row, the run-length.
To make the DNA codes less error prone, the words should contain no adjacent repeated nucleotides
and the number of G and C nucleotides should be around half of the length of the DNA words. In
addition to these two constraints, the minimum Hamming distance of a DNA code is also important.
This allows errors to be detected and even corrected. As said to make the DNA words less prone the
number of G and C nucleotides should be around half of the length of the DNA words. However, how
does it effect the maximum size of codes if we don’t create and analyze codes where all the words
have the same fixed GC-weight, but where the words have to meet one of the GC-weights from a set
with multiple different GC-weights. Building on the studies of [1], [2] and [3], in this thesis we address
the question:

”Which upper and lower bounds can we determine for the maximum size of DNA-codes where the
weight constraint is relaxed?”

We determine the maximum size of a code for the case where we have 𝑑 = 𝑛 for all possible sets
with GC-weights. We determine lower and upper bounds for the case where 𝑑 = 𝑛−1 and for specific
sets of GC-weights we define the maximum size. Furthermore we will present algorithms, which create
DNA-codes. The size of these codes give us lower bounds for the maximum size of DNA-codes.

1



2 Introudction

1.3. Organisation of the Thesis:
In this section we will present how the remainder of this thesis is organised.

Chapter 2: Prerequisites: The first section of this chapter will give some basic knowledge about DNA.
Thereafter it presents some basic concepts of DNA sets, these concepts will be used throughout this
thesis.

Chapter 3: The maximum size of DNA-𝑛 codes: This chapter provides us with the maximum size of
DNA codes where 𝑑 = 𝑛. This chapter determines the maximum size of codes for all possible word-
lengths 𝑛, all run-lengths 𝑟 and all possible sets with GC-weights.

Chapter 4: The maximum size of DNA codes with 𝑑 = 𝑛 − 1: This chapter provides us with upper
bounds for DNA codes where the words can’t have two identical symbols following each other and
where the symbols of the different words must be different at every position, except for one position.
For all 𝑛 ≥ 3, except for 𝑛 = 5, we determine the largest possible code size for a specific set𝒲. For
the case where 𝑛 = 5 also a lower bound is found and a range is given in which the largest possible
size must be.

Chapter 5: Algorithms to compute DNA codes: This chapter gives algorithms from existing research
[1] [3]. In addition, new algorithms are presented. The last section of this chapter evaluates the algo-
rithms.

Chapter 6: Conclusions and recommendations: This final chapter will conclude the results found
in the preceding chapters. Furthermore, it gives recommendations for further research in DNA based
storage.



2
Prerequisites

2.1. What is DNA and how do we store data in DNA?
DeoxyriboNucleic Acid, abbreviated as DNA, is a macro molecule, which contains the biological infor-
mation of an organism. DNA consists of two strands. These strands consist of four basic blocks, called
nucleotides [4]. The four nucleotides are Adenine, Thymine, Guanine, and Cytosine. In this thesis, we
will use the abbreviations A, T, G and C respectively. The two strands can bind to each other and form
a double helix. This will happen when they are complementary. This means that the A in one string will
bond with T in the other string, and likewise, C in one string will bond with G in the other string. This is
called complementary base pairing [7].

When a DNA based storage system is used, there are a couple of stages which the data has to go
through [6].
First the binary data needs to be encoded to quaternary data. Quaternary data is used because DNA
is made up of the four nucleotides.
Then the data needs to be written on DNA, DNA strands are created using a DNA synthesizer. These
DNA strands are stored until use.
Lastly when we want to use the data, the DNA strands need to be read. We read the data using DNA
sequencing to get the quaternary data.
However the techniques used can lead to errors in the sequence of nucleotides. This means that the
stored sequence is not the same as the sequence after the DNA strand is read. To make the sequences
less prone, we consider constraints for the sequences. In the next section we will introduce these.

2.2. Basic DNA sets
In this section we will present some basic concepts of DNA sets, using sources [8] and [9] . Suppose
we want to store some binary data using DNA, as mentioned in Section 2.1 we need to encode this
over the quaternary alphabet {0, 1, 2, 3}. For convenience we will use the following bijection between
the nucleotides and the quaternary alphabet:

𝐴 ↔ 0, 𝑇 ↔ 1, 𝐺 ↔ 2, 𝐶 ↔ 3. (2.1)

Definition 2.1. We define a word x of length 𝑛 as

x = [𝑥1, 𝑥2, … , 𝑥𝑛] (2.2)

where 𝑥𝑖 ∈ {0, 1, 2, 3} for 1 ≤ 𝑖 ≤ 𝑛.
Definition 2.2. We define the set ℬ(𝑛) as the set of all words of length 𝑛 i.e.

ℬ(𝑛) = {x ∶ x is a word of length 𝑛} (2.3)

with cardinality
𝐵(𝑛) = |ℬ(𝑛)| = 4𝑛 . (2.4)

3



4 2. Prerequisites

Example 2.1. We will present an example with the set of all words of length 2.

ℬ(𝑛) = {[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]}.

We see that the cardinality of this set is indeed 42 = 16.

𝐵(𝑛) = 16.

Definition 2.3. We define a DNA-code, denoted by 𝒞, as a subset of ℬ𝑛. The words in this subset we
call DNA-words. The size of a code is the cardinality of the set.

As mentioned in Section 2.1, when storing data in DNA errors can occur in the sequence of nu-
cleotides. Constraints are considered to make the sequences less prone. An important source of
errors in the DNA strands is the number of G and C nucleotides in the strand [6]. We say that the
GC-weight of a DNA-word x is the number of G and C nucleotides in the word, denoted by 𝑤(x) . It is
desirable to have a DNA-code where all the DNA-words have roughly the same GC-weight, because
then the melting temperatures are similar [10].

Definition 2.4. We define the GC-weight 𝑤(x) of a word x as the number of symbols in x that are
equal to 2 or 3. We say

𝑤𝑖 = {
0 if 𝑥𝑖 = 0, 1
1 if 𝑥𝑖 = 2, 3 (2.5)

and the GC-weight is defined as

𝑤(x) =
𝑛

∑
𝑖=1
𝑤𝑖 . (2.6)

Example 2.2. Let us consider two words x1 and x2 where

x1 = [0, 1, 0, 2, 3, 2, 1, 0, 1] and x2 = [1, 2, 2, 0, 3]
then x1 is a word of length 9 and x2 is a word of length 5 and both have a weight𝑤(xj) = 3 for 𝑗 ∈ {1, 2}.

Next to the GC-weight, we are also interested in the number of consecutive identical symbols in a
word x. A DNA-code satisfies a certain maximum run-length 𝑟, if for each code-word the maximum
run-length is less than or equal to this 𝑟.

Definition 2.5. We define the run-length 𝑟(x) of a word as the maximum number of subsequent
identical symbols in x:

𝑟(x) = max{𝑟 ∶ ∃𝑖 such that 𝑥𝑖 = 𝑥𝑖+1 = ⋯ = 𝑥𝑖+𝑟−1}. (2.7)

Example 2.3. Consider the word x = [0, 0, 1, 2, 2, 2, 3, 1, 2] we see that this word has run-length 𝑟(x) =
3.

We are interested in DNA-codes where this constraint is small, because long runs of the same nu-
cleotides causes errors. This is because during the DNA synthesis and sequencing, every DNA base
is read as a signal. When we have a long run of the same nucleotides, the machine may read the long
run of the same nucleotide as only one signal, and therefore the bases are lost during the sequencing.
For example if we have the DNA-word 𝐴𝑇𝑇𝑇𝑇𝐺𝐴𝐶. The machine may read the long run of 𝑇’s as a
smaller run. Thus, long runs of the same base, increases the loss rate of information and reduces the
read coverage [6].

Now that we introduced the constraints, we can select words from the set ℬ(𝑛) that match a certain
maximum run-length 𝑟 and GC-weight 𝑤, these words together will form a subset of ℬ𝑛, which we call
a DNA-code. In this thesis we will consider DNA-codes where it is not necessary that all the words in
a code have the same GC-weight. We will consider codes where we allow 𝑤 to be taken from a set
𝒲. This set contains the GC-weights for which the words in the DNA-code we consider have to satisfy
one of them.



2.2. Basic DNA sets 5

Definition 2.6. We define the set ℬ𝑟(𝑛,𝒲) as the set of all words x of length 𝑛 that satisfy maximum
run-length 𝑟 and have weight 𝑤 ∈ 𝒲, i.e.,

ℬ𝑟(𝑛,𝒲) = {x ∈ ℬ(𝑛) ∶ 𝑤(x) ∈ 𝒲 and 𝑟(x) ≤ 𝑟}. (2.8)

We denote its cardinality by 𝐵𝑟(𝑛,𝒲).

To clarify this we will consider the following example:

Example 2.4. Consider the set ℬ1(3, {1, 2}) then both x1 = [1, 0, 2] and x2 = [2, 1, 3] are in this set
since 𝑤(x1) = 1 and 𝑤(x2) = 2. But x3 = [1, 0, 1] is not in the set because 𝑤(x3) = 0.

As mentioned in the previous section, errors can occur when we want to store data in DNA. By
imposing the GC-weight and the maximum run-length we lower the chances of errors. But it is still
possible that errors occur. Therefore we want a DNA-code to also satisfy a minimum Hamming dis-
tance. The minimum distance between words in a code is an important concept to detect errors and
even correct them. First we will give the definition of the distance between two words, after that the
definition of the minimum distance of a code is defined.

Definition 2.7. Let x and y be two words of the same length. We define the Hamming distance
between two words as the number of positions at which the corresponding symbols are different i.e.

𝑑(x,y) = |{𝑖 ∶ 𝑥𝑖 ≠ 𝑦𝑖}|. (2.9)

Example 2.5. Consider two words in ℬ(5):
x = [1, 0, 2, 3, 1],
y = [1, 2, 2, 1, 3].
We see that these words have a Hamming distance of 3.

Definition 2.8. We define the Hamming distance of a DNA-code 𝒞, denoted by 𝑑(𝒞), as the smallest
distance between any two different words x and y in 𝒞:

𝑑(𝒞) = min{𝑑(x,y) ∣ x,y ∈ 𝒞 ∶ x ≠ y}. (2.10)

If a DNA-code satisfies Hamming distance 𝑑 then any two DNA-words in the DNA-code have a
distance greater than or equal to 𝑑.

Definition 2.9. We define a DNA-d code 𝒞𝑑 as a code which has minimum Hamming distance 𝑑.

Definition 2.10. We define the size of the largest DNA-d code as

𝐵𝑟(𝑛,𝒲, 𝑑) = max{|𝒞| ∶ 𝒞 ⊆ ℬ𝑟(𝑛,𝒲), 𝑑(𝒞) ≥ 𝑑}. (2.11)

The minimum distance is an important concept because it limits the number of words that can be
in the code. Due to this limitation, all words in the code have a certain distance from each other, which
means that there is a minimum number for the number of symbols that words must differ from each
other. By using this, errors can be detected and even corrected. For example if we consider a code
with minimum Hamming distance 2 then if one error occurs the word is not in the code so the error can
be detected. We can generalize this: In a code with minimum Hamming distance 𝑑, up to 𝑑 − 1 errors
are guaranteed to be detected. Additionally, up to ⌊𝑑−12 ⌋ errors can be corrected.





3
The maximum size of DNA-n codes

In the search for DNA-codes of maximum size, we can consider codes with an extreme value for the
minimum Hamming distance. Namely codes where the minimum Hamming distance is equal to the
length 𝑛. In [3] this case is also considered for various values of 𝑤. In this chapter we will consider
the case where we have a set of GC-weights𝒲 and the words in the code need to satisfy one of the
GC-weights in this set.

Throughout this chapter we will represent the DNA-codes in matrix form. We will do this as follows.
The rows of the matrices represent the DNA-words and the columns represent the symbols at the
positions in the words. This means that 𝑐𝑖,𝑗 is the jth symbol of word x𝑖. By representing the DNA-code
in matrix form, we number the words of the code. We say that the first row of the matrix represents the
first word of the DNA-code.

3.1. An upper bound for DNA-𝑛 codes
We first obtain an upper bound for the maximum size of a DNA-n code.

Theorem 3.1. 𝐵𝑟(𝑛,𝒲, 𝑛) ≤ 4 for all 𝑛,𝒲, 𝑟.

Proof. Suppose we have the largest possible code 𝒞𝑛, with 𝒞𝑛 ⊆ ℬ𝑟(𝑛,𝒲) and 𝑑(𝒞𝑛) ≥ 𝑛. From
Equation 2.9, we observe that for all 𝑗 ∈ {1, … , 𝑛} the constraint 𝑑 = 𝑛 requires

𝑐𝑖,𝑗 ≠ 𝑐𝑙,𝑗 ∀𝑖, 𝑙 ∈ {1, … , |𝒞𝑛|} with 𝑖 ≠ 𝑙. (3.1)

Because theDNA-words are words in the quaternary alphabet, we have four different symbols, {0, 1, 2, 3}.
Therefore Equation 3.1 implies |𝒞𝑛| ≤ 4. Thus we conclude:

𝐵𝑟(𝑛,𝒲, 𝑛) ≤ 4. (3.2)

3.2. The case where the maximum size of a DNA-𝑛 code is 4
In the previous section we found an upper bound for the maximum size of a DNA-𝑛 code, now the
question remains if we can find valid DNA-codes such that we can conclude 𝐵𝑟(𝑛,𝒲, 𝑛) ≥ 4. From
Equation 2.8 we see that DNA-codes which satisfy 𝑟 = 1, satisfy all 𝑟 > 1. So if we find a DNA-code
of size 4, satisfying 𝑟 = 1, this DNA-code is also a valid DNA-code for 𝑟 > 1.

Theorem 3.2. 𝐵𝑟(𝑛,𝒲, 𝑛) = 4 if and only if there exists𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that𝑤1+𝑤2+𝑤3+𝑤4 =
2𝑛.

Proof. Suppose we have 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1+𝑤2+𝑤3+𝑤4 = 2𝑛 and suppose that without
loss of generality we have 0 ≤ 𝑤1 ≤ 𝑤2 ≤ 𝑤3 ≤ 𝑤4 ≤ 𝑛. We will show that we can find a valid DNA
code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑛 consisting of 4 words, and therefore that this is a lower bound for

7



8 3. The maximum size of DNA-n codes

𝐵𝑟(𝑛,𝒲, 𝑛). From Theorem 3.1 we know that we have an upper bound of 4, so if we can find such a
code we know that this is the largest possible size.
As said before we will represent the DNA code in matrix form as follows:

𝑐1,1 … 𝑐1,𝑛
𝑐2,1 … 𝑐2,𝑛
𝑐3,1 … 𝑐3,𝑛
𝑐4,1 … 𝑐4,𝑛

Table 3.1: The DNA-n code consisting of four words.

As you see in Table 3.1 the rows represent the DNA words. Because we consider the case 𝑑 = 𝑛,
the words need to differ from each other at each position. This means that in every column each ele-
ment from {0, 1, 2, 3} needs to appear exactly once.

We can find a code satisfying the constraints and consisting of four words, by splitting the code into
four parts, see Figure 3.1. In this figure the boxes are numbered, the number of the box is underlined.

Figure 3.1: Schematic overview of how the DNA-𝑛 code consisting of 4 words looks like.

The first part consists of 𝑤1 symbols, the second part of 𝑛 − 𝑤1 − 𝑤3 symbols, the third part of
𝑤1 +𝑤2 +𝑤3 − 𝑛 symbols and the fourth part consists of 𝑛 −𝑤1 −𝑤2 symbols. In this way every word
consists of 𝑛 symbols, and thus has a length of 𝑛.

• For the first word we see that the symbols in the first part, that consists of 𝑤1 symbols, alternate
between 2 and 3. Then the symbols in the three other parts are alternately 0 and 1. In this way
the first word has a GC-weight of 𝑤1.

• For the second word the first 𝑤1 symbols alternate between 0 and 1. The following 𝑛 − 𝑤1 − 𝑤3
and then also the following 𝑤1 + 𝑤2 + 𝑤3 − 𝑛 symbols are alternately 2 and 3. Lastly the last
𝑛 − 𝑤1 − 𝑤2 symbols of this word are alternately 0 and 1 again. We see that this word has
𝑛 − 𝑤1 − 𝑤3 + 𝑤1 + 𝑤2 + 𝑤3 − 𝑛 = 𝑤2 elements from {2, 3} and thus this second word has a
GC-weight of 𝑤2.

• The third word of this DNA-code has the first 𝑤1 symbols alternating between 0 and 1. Also, the
following 𝑛 −𝑤1 −𝑤3 elements are alternating between 0 and 1. The following 𝑤1 +𝑤2 +𝑤3 − 𝑛
and the last 𝑛 − 𝑤1 − 𝑤2 elements alternate between 2 and 3. So we see that this word has a
GC-weight of 𝑤1 +𝑤2 +𝑤3 − 𝑛 + 𝑛 − 𝑤1 −𝑤2 = 𝑤3.

• The last and fourth word of this code has the first 𝑤1 and the following 𝑛 − 𝑤1 − 𝑤3 elements
alternating between 2 and 3. Then the following 𝑤1 + 𝑤2 + 𝑤3 − 𝑛 symbols alternate between 0
and 1. And the last 𝑛 − 𝑤1 − 𝑤2 symbols of this fourth word alternate between 2 and 3. We see
that this word has a GC-weight of 𝑤1 + 𝑛 − 𝑤1 −𝑤3 + 𝑛 − 𝑤1 −𝑤2 = 2𝑛 − 𝑤1 −𝑤2 −𝑤3 = 𝑤4.

From this we see that we can make codes where the four words have GC-weight 𝑤1, 𝑤2, 𝑤3 and
𝑤4. To make sure that the maximum run length constraint 𝑟 = 1 is satisfied and to make sure all the
words from the code have Hamming distance 𝑑 = 𝑛 from each other we need to determine with which
of the two symbols the alternation in each box starts.



3.3. DNA-𝑛 codes with maximum size smaller then 4 9

For box 1 and 2 this choice is free and by these two choices also for the rest of the boxes it is determined
with which symbol the alternation starts. The figure below shows the order in which you know how to
fill in the boxes.

Figure 3.2: Schematic overview of the order in which you can fill in the boxes to create a valid DNA-𝑛 code.

To give an example: if you start the alternation in box 1 with 2, then because we need 𝑑 = 𝑛 the
alternation in box 13 has to start with 3, then because we need 𝑟 = 1 we also know with which symbol
we need to start the alternation in box 14 and in this way you can fill in the rest of the boxes.
In addition, it is also possible that one of the four parts has a length of 0. In that case, this part will be
omitted, but still all the boxes can be filled through the other boxes. The order in which you can fill in
the boxes will only change a little.

So we found that we can make a DNA-code satisfying 𝑟 = 1 consisting of four words that have a
Hamming distance of 𝑑 = 𝑛 from each other, and thus we can conclude 𝐵𝑟(𝑛,𝒲, 𝑛) ≥ 4 if there exists
𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 2𝑛.

Hence together with the upper bound we found in Theorem 3.1 we conclude:
If there exists 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 2𝑛 then 𝐵𝑟(𝑛,𝒲, 𝑛) = 4.

Now suppose we have 𝐵𝑟(𝑛,𝒲, 𝑛) = 4 so there exists a code 𝒞 with 4 words. Then because we
have 𝑑 = 𝑛 the words need to differ from each other in each position. Because we have a code with
four words, this means that in every column each element from {0, 1, 2, 3} appears exactly once. This
means that every column contains 2 elements from {2, 3}. We have words of length 𝑛 so the GC-weight
of all the words together is equal to 2𝑛. So if we let𝑤1 be the GC-weight of c1 ∈ 𝒞 , 𝑤2 be the GC-weight
of c2 ∈ 𝒞, etc. Then we have 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 and 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 2𝑛.
Hence we conclude 𝐵𝑟(𝑛,𝒲, 𝑛) = 4 if and only if ∃𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1+𝑤2+𝑤3+𝑤4 = 2𝑛.

3.3. DNA-𝑛 codes with maximum size smaller then 4
In Section 3.2 we proved the case when 𝐵𝑟(𝑛,𝒲, 𝑛) = 4. Now we will consider the case when there is
no 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 with 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 2𝑛 and thus the cases where 𝐵𝑟(𝑛,𝒲, 𝑛) < 4.

Theorem 3.3. 𝐵𝑟(𝑛, 𝑤, 𝑛) = 3 if and only if there does not exist 𝑤𝑖 , 𝑤𝑗 , 𝑤𝑘 , 𝑤𝑙 ∈ 𝒲 such that 𝑤𝑖 + 𝑤𝑗 +
𝑤𝑘 +𝑤𝑙 = 2𝑛 but we have 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 such that 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛.

Proof. We will first show that there is a valid code satisfying the constraints and that consist of three
words, and thus that we can conclude that we found a lower bound for 𝐵𝑟(𝑛, 𝑤, 𝑛).

Suppose have 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 such that 𝑛 ≤ 𝑤1+𝑤2+𝑤3 ≤ 2𝑛. Furthermore suppose without loss
of generality that we have 0 ≤ 𝑤1 ≤ 𝑤2 ≤ 𝑤3 ≤ 𝑛. We will consider the code in matrix form again:

𝑐1,1 … 𝑐1,𝑛
𝑐2,1 … 𝑐2,𝑛
𝑐3,1 … 𝑐3,𝑛

Let the first row of the matrix, so the first word from the code be as followed:

Let



10 3. The maximum size of DNA-n codes

• 𝑐1,1, … , 𝑐1,𝑤1 alternately be elements from {2, 3}, starting with 𝑐1,1 = 2.

• 𝑐1,𝑤1+1, … , 𝑐1,𝑛 alternately be 0 and 1 staring with 0.
Then we consider three cases, the case where 𝑤1 + 𝑤2 < 𝑛 and 𝑤2 + 𝑤3 < 𝑛, the case where

𝑤1 + 𝑤2 < 𝑛 and 𝑤2 + 𝑤3 > 𝑛 and the case where 𝑤1 + 𝑤2 > 𝑛. We consider these three cases
because it is not possible that we have 𝑤1 +𝑤2 = 𝑛 or 𝑤2 +𝑤3 = 𝑛. If this would be the case then we
would have that 𝑤1 + 𝑤2 + 𝑤1 + 𝑤2 = 2𝑛 and 𝑤1, 𝑤2 ∈ 𝒲 or 𝑤2 + 𝑤3 + 𝑤2 + 𝑤3 = 2𝑛 and 𝑤2, 𝑤3 ∈ 𝒲
and then from Theorem 3.2 we would know that 𝐵𝑟(𝑛, 𝑤, 𝑛) = 4.

• Suppose we have the case where 𝑤1 + 𝑤2 < 𝑛 and 𝑤2 + 𝑤3 < 𝑛 in this case let the second and
third row be as follows:

Let 𝑐2,1, … , 𝑐2,𝑤1 be alternately 0 ad 1. If 𝑤1 is even start with 0 and if 𝑤1 is odd start with 1.
Let 𝑐2,𝑤1+1, … , 𝑐2,𝑤1+𝑤2 be alternately 2 and 3. If 𝑤1 even start with 2 and if 𝑤1 odd start with 3.
And let 𝑐2,𝑤1+𝑤2+1, … , 𝑐2,𝑛 be alternately 0 and 1 again, starting with 1 if 𝑤2 even and starting with
0 if 𝑤2 is odd.

For the third row, let 𝑐3,1, … , 𝑐3,𝑤3−𝑛+𝑤1+𝑤3 be alternately 2 and 3 starting with 3.
Let 𝑐3,𝑤3−𝑛+𝑤1+𝑤3+1, … , 𝑐3,𝑤1+𝑤2 be alternately 0 and 1. If 𝑐2,𝑤3−𝑛+𝑤1+𝑤3+1 is 0 start with 1, other-
wise start with 0.
And let 𝑐3,𝑤1+𝑤2+1, … , 𝑐3,𝑛 be alternately 2 and 3 again. We start with 2 if 𝑤1 +𝑤2 is odd and with
3 if 𝑤1 +𝑤2 is even.

Figure 3.3: Schematic overview of how the DNA-𝑛 code consisting of 3 words looks like when 𝑤1 +𝑤2 < 𝑛 and 𝑤2 +𝑤3 < 𝑛.

• Now suppose that we have 𝑤1 + 𝑤2 < 𝑛 and 𝑤2 + 𝑤3 > 𝑛 in this case let the second and third
row be as follows:

Let 𝑐2,1, … , 𝑐2,𝑤1 be alternately 0 ad 1. If 𝑤1 is even start with 0 and if 𝑤1 is odd start with 1.
Let 𝑐2,𝑤1+1, … , 𝑐2,𝑤1+𝑤2 be alternately 2 and 3. If 𝑤1 even start with 2 and if 𝑤1 odd start with 3.
And let 𝑐2,𝑤1+𝑤2+1, … , 𝑐2,𝑛 be alternately 0 and 1 again, starting with 1 if 𝑤2 even and starting with
0 if 𝑤2 is odd.

For the third row, let 𝑐3,1, … , 𝑐3,𝑤1+𝑤2+𝑤3−𝑛 be alternately 2 and 3 starting with 3.
Let 𝑐3,𝑤1+𝑤2+𝑤3−𝑛+1, … , 𝑐3,𝑤1+𝑤2 be alternately 0 and 1. If 𝑐1,𝑤1+𝑤2+𝑤3−𝑛+1 is 0 start with 1, other-
wise start with 0.
And let 𝑐3,𝑤1+𝑤2+1, … , 𝑐3,𝑛 be alternately 2 and 3 again. We start with 2 if 𝑤1 +𝑤2 is odd and with
3 if 𝑤1 +𝑤2 is even.

Figure 3.4: Schematic overview of how the DNA-𝑛 code consisting of 3 words looks like when 𝑤1 +𝑤2 < 𝑛 and 𝑤2 +𝑤3 > 𝑛.



3.3. DNA-𝑛 codes with maximum size smaller then 4 11

• Suppose now we have 𝑤1 +𝑤2 > 𝑛, then we let the second and third row be as follows:

Let 𝑐2,1, … 𝑐2,𝑤1+𝑤2−𝑛 be alternately 2 and 3 starting with 3.
Let 𝑐2,𝑤1+𝑤2−𝑛+1, … , 𝑐2,𝑤1 be alternately 0 and 1, starting with 0.
And let 𝑐2,𝑤1+1, … , 𝑐2,𝑛 be alternately 2 and 3 again starting with 2 if 𝑤1 is even, and staring with 3
if 𝑤1 is odd.

For the third row let 𝑐3,1, … , 𝑐3,𝑤1+𝑤2−𝑛 be alternately 0 and 1 starting with 0.
Let 𝑐3,𝑤1+𝑤2−𝑛+1, … , 𝑐3,𝑤1+𝑤2+𝑤3−𝑛 be alternately 2 ad 3 starting with 2 if 𝑤1 + 𝑤2 − 𝑛 is odd and
starting with 3 if 𝑤1 +𝑤2 − 𝑛 is even.
And let 𝑐3,𝑤1+𝑤2+𝑤3−𝑛+1… , 𝑐3,𝑛 be alternately 0 and 1 again, starting with 0 if 𝑐1,𝑤1+𝑤2−𝑛+𝑤3+1 = 1
and 1 if 𝑐1,𝑤1+𝑤2−𝑛+𝑤3+1 = 0.

Figure 3.5: Schematic overview of how the DNA-𝑛 code consisting of 3 words looks like when 𝑤1 +𝑤2 > 𝑛.

These are valid codes in ℬ𝑟(𝑛,𝒲) where the distance between all the words is 𝑛 and thus we can
conclude that if 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛 then 𝐵𝑟(𝑛, 𝑤, 𝑛) ≥ 3.
Now from Theorem 3.2 we know that if we have a DNA code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) and 𝑑(𝒞) ≥ 𝑛 with |𝒞| = 4
then we have 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲. Thus we know that if there does not exist 𝑤𝑖 , 𝑤𝑗 , 𝑤𝑘 , 𝑤𝑙 ∈ 𝒲 such
that 𝑤𝑖 + 𝑤𝑗 + 𝑤𝑘 + 𝑤𝑙 = 2𝑛 but we have 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 such that 𝑛 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 2𝑛 then
𝐵𝑟(𝑛, 𝑤, 𝑛) ≤ 3. And thus 𝐵𝑟(𝑛, 𝑤, 𝑛) = 3.

Now suppose we have 𝐵𝑟(𝑛, 𝑤, 𝑛) = 3. Then let 𝑤1 be the weight of c1, 𝑤2 the GC-weight of c2 and
𝑤3 the GC-weight of c3. Then the total weight of these words is 𝑤1 +𝑤2 +𝑤3. Then because we have
𝑑 = 𝑛 we need that for all 𝑗 ∈ {1, … , 𝑛} we have 𝑐𝑖,𝑗 ≠ 𝑐𝑙,𝑗 for 𝑖, 𝑙 ∈ 1, 2, 3 and 𝑖 ≠ 𝑙. This means that
every column has one or two symbols from {2, 3}, and we have words of length 𝑛 and thus we need
𝑛 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 2𝑛. So together with Theorem 3.2 we conclude that if 𝐵𝑟(𝑛, 𝑤, 𝑛) = 3 then there
does not exist 𝑤𝑖 , 𝑤𝑗 , 𝑤𝑘 , 𝑤𝑙 ∈ 𝒲 such that 𝑤𝑖 + 𝑤𝑗 + 𝑤𝑘 + 𝑤𝑙 = 2𝑛 but we have 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 such
that 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛.

Hence we conclude 𝐵𝑟(𝑛, 𝑤, 𝑛) = 3 if and only if there does not exist 𝑤𝑖 , 𝑤𝑗 , 𝑤𝑘 , 𝑤𝑙 ∈ 𝒲 such that
𝑤𝑖 +𝑤𝑗 +𝑤𝑘 +𝑤𝑙 = 2𝑛 but we have 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 such that 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛.

Theorem 3.4. If we have 𝒲 such that there is no 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 2𝑛 then
𝐵𝑟(𝑛,𝒲, 𝑛) = 2.
Proof. We will first show that we can find a valid DNA-code satisfying the constraints and consisting of
two words. Consider the following code.

Let the first word of this code be the word starting with 𝑐1,1, … , 𝑐1,𝑤1 being alternately 2 and 3 starting
with 𝑐1,1 = 2. And let 𝑐1,𝑤1+1, … , 𝑐1,𝑛 from right to left be alternately 0 and 1, starting with 0 being the
rightmost bit.

For the secondword let 𝑐2,1, … , 𝑐2,𝑤2 be 2 and 3 alternately starting with 𝑐2,1 = 3. And let 𝑐2,𝑤2+1, … , 𝑐2, 𝑛
from right to left be alternately 0 and 1 starting with 1.
Then this is a valid code for the case where we there is no 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1+𝑤2+𝑤3 ≤ 2𝑛,
so we can conclude that 𝐵𝑟(𝑛,𝒲, 𝑛) ≥ 2.
Now suppose there does not exist 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1 + 𝑤2 + 𝑤3 ≤ 2𝑛 then we also can not
have 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 2𝑛. Thus from Theorem 3.2 and 3.3 we know



12 3. The maximum size of DNA-n codes

𝐵𝑟(𝑛, 𝑤, 𝑛) ≠ 4 and 𝐵𝑟(𝑛, 𝑤, 𝑛) ≠ 3 respectively. And thus together with Theorem 3.1 which says that
𝐵𝑟(𝑛, 𝑤, 𝑛) ≤ 4 for all 𝑛,𝒲, 𝑟 we can conclude that 𝐵𝑟(𝑛, 𝑤, 𝑛) ≤ 2. Hence we can conclude that if there
does not exist 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛 then 𝐵𝑟(𝑛,𝒲, 𝑛) = 2.

3.4. Overview
In conclusion, Theorem 3.2, 3.3 and 3.4 show:

∀𝑟, 𝑛 ≥ 1, 𝐵𝑟(𝑛,𝒲, 𝑛) = {
4 If there exists 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 2𝑛
2 If we have𝒲 such that there is no 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛
3 otherwise

(3.3)
To illustrate this we give an example.

Example 3.1. In this example we will determine the maximum size of DNA-𝑛 codes where the words
have length 6 for different sets of GC-weights. So we will determine 𝐵𝑟(6,𝒲, 6) for different sets𝒲.

• Suppose we have𝒲 = {3} then 3 + 3 + 3 + 3 = 12 = 2 ∗ 6 and so we have 𝐵𝑟(6,𝒲, 6) = 4. An
example of such a valid code is:

{020202, 131313, 202020, 313131}.

• Suppose we have𝒲 = {2, 4} then we have 2+4+2+4 = 12 = 2∗6 and thus again𝐵𝑟(6,𝒲, 6) = 4.
An example of such a code of maximum size would be:

{230101, 012323, 101032, 323210}.

• Suppose𝒲 = {4} then we have 4 + 4 + 4 + 4 = 16 ≠ 2 ∗ 6 but 4 + 4 + 4 = 12 so 6 ≤ 12 ≤ 2 ∗ 6
and thus we have 𝐵𝑟(6,𝒲, 6) = 3. An example of a code of maximum size would be:

{232301, 320123, 013232}.

• Suppose 𝒲 = {1} we have that 1 + 1 + 1 = 3 ≤ 6 and thus we have that 𝐵𝑟(6,𝒲, 6) = 2. An
example of such a code with maximum size is:

{201010, 310101}



4
The maximum size of a DNA-code with

𝑑 = 𝑛 − 1
In this chapter, we will consider codes of length 𝑛 that have a minimum Hamming distance of 𝑑 = 𝑛−1
and run-length 𝑟 = 1. Furthermore, we will consider DNA-codes where the weights of the DNA-words
are around half the length of the code words. This means for even-length codes that 𝑛2 −1,

𝑛
2 ,
𝑛
2 +1 ∈ 𝒲

and for odd-length codes that 𝑛−12 ,
𝑛+1
2 ∈ 𝒲.

Throughout this chapter, we will again represent the DNA codes in matrix form.

For several proofs in this chapter, we use the idea of the proof of the Plotkin bound [11]. The
Plotkin bound is an upper bound for the maximum possible number of code words in binary codes of
given length 𝑛 and given minimum Hamming distance 𝑑. We let the expression 𝐴(𝑛, 𝑑) represent this
maximum number of possible code words. Since we use the proof of Plotkin’s theorem in this chapter
we will give the theorem and the proof.

Theorem 4.1. If 2𝑑 > 𝑛 then 𝐴(𝑛, 𝑑) ≤ 2𝑑
2𝑑−1 .

Proof. Let 𝐾 be any code consisting of 𝐴 words of length 𝑛 with minimum Hamming distance 𝑑. The
bound is proved by bounding the quantity

𝑁 = ∑
(x,y)∈𝐾2 ,x≠y

𝑑(x,y)

in two different ways.

On the one hand, there are 𝐴 choices of x and for each such choice there are 𝐴 − 1 choices for y.
The code has a minimum Hamming distance of 𝑑 and therefore we know 𝑑(x,y) ≥ 𝑑 for all x and y (
x ≠ y). Hence it follows that

𝑁 ≥ 𝐴(𝐴 − 1)𝑑.

On the other hand, consider the code 𝐾 in matrix form, such that we have an 𝐴 x 𝑛 matrix. Let 𝑚𝑖 be
the number of elements that are 0 in the ith column. Then there are (𝐴 − 𝑚𝑖) elements 1 in the first
column. Because we have 𝑑(x,y) = 𝑑(y,x), we have that every choice of a 0 and a 1 in the same
comlum contributes 2 tot the sum. Therefore we have:

𝑁 =
𝑛

∑
𝑖=1
2𝑚𝑖(𝐴 − 𝑚𝑖)

13



14 4. The maximum size of a DNA-code with 𝑑 = 𝑛 − 1

Now we consider two cases, the case where 𝐴 is even and the case where 𝐴 is odd:
Case 1): Consider 𝐴 = 2𝑚, so 𝐴 is even. In that case the sum ∑𝑛𝑖=1 2𝑚𝑖(𝐴 − 𝑚𝑖) is maximum if we
have 𝑚𝑖 =

𝐴
2 for all 𝑖, we then have

𝑁 ≤ 1
2𝑛𝐴

2.

Combining this inequality with 𝑁 ≥ 𝐴(𝐴 − 1)𝑑,

2(𝐴 − 1)𝑑 ≤ 𝐴𝑛

and
(2𝑑 − 𝑛)𝐴 ≤ 2𝑑.

And since we had 2𝑑 > 𝑛 we find:
𝐴 ≤ 2𝑑

2𝑑 − 𝑛 .

Case 2): Now consider 𝐴 = 2𝑚 − 1, so 𝐴 is odd. In this case the sum ∑𝑛𝑖=1 2𝑚𝑖(𝐴 −𝑚𝑖) is maximum if
we have 𝑚𝑖 =

𝐴−1
2 for all 𝑖, we then have

𝑁 ≤ 1
2𝑛(𝐴

2 − 1).

Continuing as in Case 1) we see that

2𝐴(𝐴 − 1)𝑑 ≤ 𝐴2𝑛 − 𝑛 < 𝐴2𝑛

and thus we find:
𝐴 < 2𝑑

2𝑑 − 𝑛 .

Definition 4.1. We define 𝐶𝑗,𝑘 = {c𝑖 ∶ 𝑐𝑖,𝑗 = 𝑘} where 𝑘 = 0, 1, 2, 3. This is the set of words that have
the same symbol 𝑘 at position 𝑗.
Example 4.1. We consider the following code 𝒞 in matrix form.

0 1 2 3
3 1 3 0
2 0 1 2
0 2 3 1

Table 4.1: A DNA-code with 𝑛 = 4.

Then 𝐶1,0 = {c1,c4}, 𝐶1,1 = ∅, 𝐶1,2 = {c3} and 𝐶1,3 = {c2}.
We first obtain an upper bound for the maximum size of DNA-words with 𝑑 = 𝑛 − 1
Theorem 4.2. 𝐵1(𝑛,𝒲, 𝑛 − 1) ≤ 12 for all 𝑛,𝒲.

Proof. Suppose we have a DNA-code 𝒞 with at least 13 DNA-words, satisfying the constraints. Then
𝐶1,0 is the set of words of the code 𝒞 that have 0 as their first symbol, 𝐶1,1 is the set of words of the
code 𝒞 that have 1 as their first symbol, etc. Because |𝒞| ≥ 13 we have

|𝐶1,𝑙| ≥ 4 for some 𝑙 ∈ {0, 1, 2, 3}.

Now suppose without loss of generality that we have four DNA-words starting with 0, so suppose

𝐶1,0 = {01… , 02… , 03… , 0𝑘 … }.

In case 𝑘 = 1, 2, 3 the constraint 𝑑 = 𝑛−1 is no longer satisfied. In case 𝑘 = 0 the constraint for the
run-length, 𝑟 = 1, is no longer satisfied. From this we can conclude that for each symbol 𝑘 ∈ {0, 1, 2, 3}
the DNA-code 𝒞 is not a valid code with 𝒞 ⊆ ℬ1(𝑛,𝒲) and 𝑑(𝒞) ≥ 𝑑. So we need 𝐵1(𝑛,𝒲, 𝑛−1) ≤ 12
.



15

Remark 1. Note that for each position, we can have a maximum of three valid DNA-words with the
same symbol at this position. If there is another DNA-word with this same symbol at the same position,
again the run-length constraint, 𝑟 = 1, is not satisfied anymore, or the distance between this word and
one of the other words is less then 𝑑 = 𝑛 − 1. Hence we have that for all 𝑗 ∈ {1, … , 𝑛}

|𝐶𝑗,𝑘| ≤ 3. (4.1)

From Theorem 4.2 we see that we found an upper bound for the maximum size of codes with
𝑑 = 𝑛−1. For each length 𝑛, we will now try to find lower bounds by creating valid DNA codes and we
will try if it is possible to lower the upper bound, in order to find the maximum size.

Theorem 4.3. 𝐵1(3,𝒲, 2) = 12 if {1, 2} ⊆ 𝒲.

Proof. To prove that 𝐵1(3,𝒲, 2) = 12 if {1, 2} ⊆ 𝒲 we are looking for upper and lower bounds for the
largest DNA-code 𝒞 such that 𝒞 ⊆ ℬ1(3,𝒲) where {1, 2} ⊆ 𝒲 and 𝑑(𝒞) ≥ 2.
Theorem 4.2 gave us an upper bound for the size of a DNA code with 𝑟 = 1 and 𝑑 = 𝑛 − 1. Therefore
we know 𝐵1(3,𝒲, 2) ≤ 12 for all𝒲.
Now consider the following valid code 𝒞:

𝒞 = {012, 023, 031, 103, 120, 132, 201, 213, 230, 302, 310, 321}.
This code is obtained from the code used in [3] to prove 𝐵1(4, [2], 3) = 12. We see that if we use this

code and remove the last symbol from all DNA-words in this code , we obtain words of length 3, weight
1 or 2 and with run-length still equal to 1. Because the code of length 4 had a minimum Hamming
distance of 3, when removing one bit of every word we get a minimum Hamming distance of at least 2.
And thus the DNA-code 𝒞 is a valid code with 𝒞 ⊆ ℬ1(3,𝒲) where {1, 2} ⊆ 𝒲 and 𝑑(𝒞) ≥ 2.

We see that the size of this code is 12. Sowe found a lower bound for largest DNA-code, 𝐵1(3,𝒲, 2) ≥
12 if {1, 2} ⊆ 𝒲.
Hence we can conclude 𝐵1(3,𝒲, 2) = 12 if {1, 2} ⊆ 𝒲.

Theorem 4.4. 𝐵1(4,𝒲, 3) = 12 if {2} ⊆ 𝒲.

Proof. To prove 𝐵1(4,𝒲, 3) = 12 if {2} ⊆ 𝒲 we will show that we can find an upper and lower bound
for 𝐵1(4,𝒲, 3) with 2 ∈ 𝒲 which are both equal to 12.
Theorem 4.2 gave us an upper bound for the size of a DNA-code with 𝑟 = 1 and 𝑑 = 𝑛 − 1. Therefore
we know that 𝐵1(4,𝒲, 3) ≤ 12for all𝒲.
In [3] it was proved that 𝐵1(4, {2}, 3) = 12, to prove this the following code was found to determine the
lower bound:

𝒞 = {0123, 0231, 0312, 1032, 1203, 1320, 2013, 2130, 2301, 3021, 3102, 3210}.

Note that 𝒞 is also a valid code for 𝐶 ⊆ ℬ1(4,𝒲) with 2 ∈ 𝒲 and 𝑑(𝒞) ≥ 3. And thus the size of
this DNA-code is also a lower bound for 𝐵1(4,𝒲, 3) with {2} ⊆ 𝒲, so 𝐵1(4,𝒲, 3) ≥ 12 if {2} ⊆ 𝒲.
Hence we can conclude

𝐵1(4,𝒲, 3) = 12 if {2} ⊆ 𝒲.

Theorem 4.5. 10 ≤ 𝐵1(5,𝒲, 4) ≤ 12 if {2, 3} ⊆ 𝒲.

Proof. From Theorem 4.2 we now that 𝐵1(5,𝒲, 4) ≤ 12 and thus we found an upper bound.
For the lower bound we consider the following code:

𝒞 = {01230, 02313, 03121, 10320, 12031, 13203, 21301, 23010, 31023, 32102}.

This is a valid code in ℬ1(5,𝒲) with {2, 3} ⊆ 𝒲 and with 𝑑(𝒞) ≥ 4. We note |𝒞| = 10. Therefore we
have

𝐵1(5,𝒲, 4) ≥ 10 for all𝒲 where 2, 3 ∈ 𝒲.

Hence we can conclude
10 ≤ 𝐵1(5,𝒲, 4) ≤ 12 if {2, 3} ⊆ 𝒲.



16 4. The maximum size of a DNA-code with 𝑑 = 𝑛 − 1

We will now present some definitions, that we use when finding upper bounds for codes with length
𝑛 > 5.

Definition 4.2. For 𝑖 ∈ {1, … , |𝒞|} we define 𝐺𝑖 = {𝐶𝑗,𝑘 ∶ c𝑖 ∈ 𝐶𝑗,𝑘 for 𝑗 ∈ {1, … , 𝑛} and 𝑘 ∈ {0, 1, 2, 3}}.
This is the set of sets 𝐶𝑗,𝑘 where the DNA-word c𝑖 belongs to.

Example 4.2. If we consider the code from Example 4.1 again we have

𝐺1 = {𝐶1,0, 𝐶2,1, 𝐶3,2, 𝐶4,3}.

Note that in this chapter we consider codes where 𝑑 = 𝑛 − 1 therefore we have

|𝐺𝑖 ∩ 𝐺𝑙| ≤ 1∀𝑖, 𝑙 ∈ {1, … , |𝒞|} and 𝑖 ≠ 𝑙. (4.2)

Because if for some 𝑖, 𝑙 we have |𝐺𝑖 ∩ 𝐺𝑙| ≥ 2 then c𝑖 and c𝑙 have on at least 2 positions the same
symbol but then 𝑑 = 𝑛 − 1 is not satisfied anymore.

Definition 4.3. We define the set 𝑃𝑗(𝑚) = {𝐶𝑗,𝑘 ∶ |𝐶𝑗,𝑘| = 𝑚 for 𝑘 ∈ {0, 1, 2, 3}}, as the set containing all
the sets 𝐶𝑗,𝑘 that have the cardinality 𝑚.

Example 4.3. Consider the DNA-code from Table 4.1 again. Then we have:

𝑃1(1) = {𝐶1,2, 𝐶1,3},

because 𝐶1,0 = {c1,c4}, 𝐶1,1 = ∅, 𝐶1,2 = {c3} and 𝐶1,3 = {c2}, so there are two sets, 𝐶1,2, 𝐶1,3, that have
cardinality 1 for 𝑗 = 1.

Theorem 4.6. 𝐵1(6,𝒲, 5) ≤ 9 for all𝒲.

Proof. To proof that 𝐵1(6,𝒲, 5) ≤ 9 for all𝒲 we will use the idea of the proof of Plotkin that we gave
in Theorem 4.1.

Suppose we have a code 𝒞 ⊆ ℬ1(6,𝒲) with 𝑑(𝒞) ≥ 5 and with |𝒞| = 10. Then because we have
|𝒞| = 10, we need that for all 𝑗 ∈ {1, … 6} we have ∑3𝑘=0 |𝐶𝑗,𝑘| = 10. Therefore we need that for all 𝑗 we
have

|𝑃𝑗(3)| = 3 and |𝑃𝑗(1)| = 1, or
|𝑃𝑗(3)| = 2 and |𝑃𝑗(2)| = 2.

We need this because for all 𝑗 we have at most four different sets 𝐶𝑗,𝑘 and for each such set we
have |𝐶𝑗,𝑘| ≤ 3.

Following the method of Plotkin [11] we will calculate the sum

𝑁 = ∑
𝑐𝑖∈𝒞

∑
𝑐𝑙∈𝒞

𝑑(𝑐𝑖 , 𝑐𝑙) (4.3)

in two ways.

• Since 𝑑(𝑐𝑖 , 𝑐𝑗) ≥ 𝑑 ∀𝑐𝑖 , 𝑐𝑙 ∈ 𝒞 with 𝑐𝑖 ≠ 𝑐𝑙 , we have

𝑁 ≥ |𝒞|(|𝒞| − 1)𝑑 = 10 ∗ (10 − 1) ∗ 5 = 450.

• Now if we consider the DNA-code 𝒞 in matrix form and we look at the columns of the matrix we
see that the total distance of column is depending on the 𝐶𝑗,𝑘. Because if 𝑐1, 𝑐2 ∈ 𝐶𝑗,𝑘 for some 𝑗
and some 𝑘 then the distance between these two DNA-words in the column 𝑗 is 0.
Therefore if for a column we have |𝑃𝑗(3)| = 3 and |𝑃𝑗(1)| = 1 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 1 ∗ 1 ∗ (10 − 1) + 3 ∗ 3 ∗ (10 − 3) = 72

to the total sum of distances.



17

And if for a column we have |𝑃𝑗(3)| = 2 and |𝑃𝑗(2)| = 2 then the column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 2 ∗ 2 ∗ (10 − 2) + 3 ∗ 2 ∗ (10 − 3) = 74

to the sum.
So each column can contribute maximal 74 and hence

𝑁 ≤ 74 ∗ 6 = 444.

So on the one hand we have 𝑁 ≥ 450 and on the other hand we have 𝑁 ≤ 444. This of course is not
possible and therefore 𝒞 is not a valid code. Thus we have

𝐵1(6,𝒲, 5) ≤ 9.

Theorem 4.7. 𝐵1(6,𝒲, 5) = 9 if {2, 3, 4} ⊆ 𝒲.

Proof. To prove 𝐵1(6,𝒲, 5) = 9 if {2, 3, 4} ⊆ 𝒲 we will show that we can find an upper bound and lower
bound with the same value, and so that that is the maximum value.

In Theorem 4.6 we found an upperbound and hence we know

𝐵1(6,𝒲, 5) ≤ 9 if {2, 3, 4} ⊆ 𝒲.

For the lower bound we consider the following code:

𝒞 = {031320, 023012, 132132, 121203, 201031, 210302, 302313, 320121, 313230}

this is a valid code in ℬ1(6,𝒲) with {2, 3, 4} ⊆ 𝒲 and with 𝑑(𝒞) ≥ 5. We have |𝒞| = 9. Therefore we
have

𝐵1(6,𝒲, 5) ≥ 9 if {2, 3, 4} ⊆ 𝒲
.
Hence we can conclude

𝐵1(6,𝒲, 5) = 9 if {2, 3, 4} ⊆ 𝒲.

Theorem 4.8. 𝐵1(7,𝒲, 6) ≤ 8 for all𝒲.

Proof. To prove that 𝐵1(7,𝒲, 6) ≤ 8 we will use the same idea as the proof from Theorem 4.6.
Suppose we have a code 𝒞 ⊆ 𝐵1(7,𝒲) with 𝑑(𝒞) ≥ 6 and with |𝒞| = 9. Then because we have

|𝒞| = 9 we need that for all 𝑗 ∈ {1, … , 7} we have ∑3𝑘=0 |𝐶𝑗,𝑘| = 9. Therefore we need that for all 𝑗 we
have

|𝑃𝑗(3)| = 3 and |𝑃𝑗(0)| = 1 or
|𝑃𝑗(3)| = 2, |𝑃𝑗(2)| = 1 and |𝑃𝑗(1)| = 1 or

|𝑃𝑗(3)| = 1 and |𝑃𝑗(2)| = 3.
Again we have this because for all 𝑗 we have at most four different sets 𝐶𝑗,𝑘 and for each such set we
have |𝐶𝑗,𝑘| ≤ 3.

Following the method of Plotkin [11] we will calculate the sum

𝑁 = ∑
𝑐𝑖∈𝒞

∑
𝑐𝑙∈𝒞

𝑑(𝑐𝑖 , 𝑐𝑙)

in two ways.



18 4. The maximum size of a DNA-code with 𝑑 = 𝑛 − 1

• Since 𝑑(𝑐𝑖 , 𝑐𝑗) ≥ 𝑑 ∀𝑐𝑖 , 𝑐𝑙 ∈ 𝒞 with 𝑐𝑖 ≠ 𝑐𝑙 , we have

𝑁 ≥ |𝒞|(|𝒞| − 1)𝑑 = 9 ∗ 8 ∗ 6 = 432.

• For the second way to calculate the sum 𝑁 we look at the DNA-code in matrix form again and we
look at how much each column can contribute to the total sum of distances.
If for a column we have |𝑃𝑗(3)| = 3 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 3 ∗ (9 − 3) = 54

to the sum.
If for a column we have |𝑃𝑗(3)| = 2, |𝑃𝑗(2)| = 1 and |𝑃𝑗(1)| = 1 this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 2 ∗ (9 − 3) + 2 ∗ 1 ∗ (9 − 2) + 1 ∗ 1 ∗ (9 − 1) = 58

to the sum.
And if for a column we have |𝑃𝑗(3)| = 1 and |𝑃𝑗(2)| = 3 this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 1 ∗ (9 − 3) + 2 ∗ 3 ∗ (9 − 2) = 60

to the sum.
So each column can contribute maximal 60 and hence

𝑁 ≤ 60 ∗ 7 = 420.

So on the one hand we have 𝑁 ≥ 432 and on the other hand we have 𝑁 ≤ 420. This of course is not
possible and therefore we 𝒞 is not a valid code. Thus we have

𝐵1(7,𝒲, 6) ≤ 8.

Theorem 4.9. 𝐵1(7,𝒲, 6) = 8 if {3, 4} ⊆ 𝒲.

Proof. To prove 𝐵1(7,𝒲, 6) = 8 if {3, 4} ⊆ 𝒲 we will show that we can find an upper bound and lower
bound with the same value, and so that that is the maximum value.

In Theorem 4.8 we found an upper bound and hence we know

𝐵1(7,𝒲, 6) ≤ 8 if {3, 4} ⊆ 𝒲.

For the lower bound we consider the following code:

𝒞 = {0210321, 0301230, 1312102, 1203013, 2030203, 2121312, 3132020, 3023131}.

This is a valid code in ℬ1(7,𝒲) with {3, 4} ⊆ 𝒲 and with 𝑑(𝒞) ≥ 6. We have |𝒞| = 8 and therefore

𝐵1(7,𝒲, 6) ≥ 8 if {3, 4} ⊆ 𝒲.

Hence we can conclude
𝐵1(7,𝒲, 6) = 8 if {3, 4} ⊆ 𝒲.



19

Theorem 4.10. 𝐵1(8,𝒲, 7) ≤ 5 for all𝒲.

Proof. To prove that 𝐵1(8,𝒲, 7) ≤ 5 we will again use the same idea as the proof from Theorem 4.6
Suppose we have a code 𝒞 ⊆ 𝐵1(8,𝒲) with 𝑑(𝒞) ≥ 7 and with |𝒞| = 6. Then because we have

|𝒞| = 6 we need that for all 𝑗 ∈ {1, … , 8} we have ∑3𝑘=0 |𝐶𝑗,𝑘| = 6. Therefore we need that for all 𝑗 we
have

|𝑃𝑗(3)| = 2 and |𝑃𝑗(0)| = 2 or

|𝑃𝑗(3)| = 1 and |𝑃𝑗(1)| = 3 or

|𝑃𝑗(3)| = 1, |𝑃𝑗(2)| = 1, |𝑃𝑗(1)| = 1 and |𝑃𝑗(0)| = 1 or

|𝑃𝑗(2)| = 3 and |𝑃𝑗(0)| = 1 or

|𝑃𝑗(2)| = 2 and |𝑃𝑗(1)| = 2.

Again we have this because for all 𝑗 we have at most four different sets 𝐶𝑗,𝑘 and for each such set
we have |𝐶𝑗,𝑘| ≤ 3.

Following the method of Plotkin [11] we will calculate the sum

𝑁 = ∑
𝑐𝑖∈𝒞

∑
𝑐𝑙∈𝒞

𝑑(𝑐𝑖 , 𝑐𝑙)

in two ways.

• Since 𝑑(𝑐𝑖 , 𝑐𝑗) ≥ 𝑑 ∀𝑐𝑖 , 𝑐𝑙 ∈ 𝒞 with 𝑐𝑖 ≠ 𝑐𝑙 , we have

𝑁 ≥ |𝒞|(|𝒞| − 1)𝑑 = 6 ∗ (6 − 1) ∗ 7 = 210.

• For the second way to calculate the sum 𝑁 we look at the DNA-code in matrix form again and we
look at how much each column can contribute to the total sum of distances.

If for a column we have |𝑃𝑗(3)| = 2 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 2 ∗ (6 − 3) = 18

to the sum.

If for a column we have |𝑃𝑗(3)| = 1 and |𝑃𝑗(1)| = 3 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 1 ∗ (6 − 3) + 1 ∗ 3 ∗ (6 − 1) = 24

to the sum.

If for a column we have |𝑃𝑗(3)| = 1, |𝑃𝑗(2)| = 1 and |𝑃𝑗(1)| = 1 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 1 ∗ (6 − 3) + 2 ∗ 1 ∗ (6 − 2) + 1 ∗ 1 ∗ (6 − 1) = 22

to the sum.



20 4. The maximum size of a DNA-code with 𝑑 = 𝑛 − 1

If for a column we have ||𝑃𝑗(2)| = 3 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 2 ∗ 3 ∗ (6 − 2) = 24

to the sum.

And if for a column we have |𝑃𝑗(2)| = 2 and |𝑃𝑗(1)| = 2 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 2 ∗ 2 ∗ (6 − 2) + 1 ∗ 2 ∗ (6 − 1) = 26

to the sum.

So each column can contribute maximal 26 and hence

𝑁 ≤ 26 ∗ 8 = 208.

So on the one hand we have 𝑁 ≥ 210 and on the other hand we have 𝑁 ≤ 208. This of course is not
possible and therefore 𝒞 is not a valid code. Thus we have

𝐵1(8,𝒲, 7) ≤ 5.

Theorem 4.11. 𝐵1(8,𝒲, 7) = 5 if {3, 4, 5} ⊆ 𝒲.

Proof. To prove 𝐵1(8,𝒲, 7) = 5 if {3, 4, 5} ⊆ 𝒲 we will show that we can find an upper bound and lower
bound with the same value, and so that that is the maximum value.

In Theorem 4.10 we found an upper bound and hence we know

𝐵1(8,𝒲, 7) ≤ 5 if {3, 4, 5} ⊆ 𝒲.

For the lower bound we consider the following code:

𝒞 = {01010232, 02101023, 03232101, 10123130, 20302312}.
This is a valid code in ℬ1(8,𝒲) with {3, 4, 5} ⊆ 𝒲 and with 𝑑(𝒞) ≥ 7We have |𝒞| = 5 and therefore

𝐵1(8,𝒲, 7) ≥ 5 if {3, 4, 5} ⊆ 𝒲.

Hence we can conclude
𝐵1(8,𝒲, 7) = 5 if {3, 4, 5} ⊆ 𝒲.

Theorem 4.12. For all 𝑛,𝒲, 𝑟 we have 𝐵𝑟(𝑛,𝒲, 𝑛 − 1) ≤ 𝐵𝑟(𝑛 − 1, {0, … , 𝑛 − 1}, 𝑛 − 2).
Proof. Suppose we have a DNA-code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲)with 𝑑(𝒞) ≥ 𝑛−1 such that |𝒞| > 𝐵𝑟(𝑛−1, {0, … , 𝑛−
1}, 𝑛 − 2). If we remove the last symbol of every word in the code 𝒞 then we have a new DNA-code
𝒞1 which has length 𝑛 − 1, a run-length of 𝑟, all the words have weight 𝑤 ∈ {0,… , 𝑛 − 1} and the new
code has a minimum Hamming distance 𝑑 ≥ 𝑛 − 2. But then we have 𝒞1 ⊆ ℬ𝑟(𝑛, {0, … , 𝑛 − 1}) with
𝑑(𝒞1) ≥ 𝑛 − 2 and |𝒞1| = |𝒞| > 𝐵𝑟(𝑛, {0, … , 𝑛 − 1}, 𝑛 − 2). This is a contradiction with the fact that
𝐵𝑟(𝑛, {0, … , 𝑛−1}, 𝑛−2) is the size of the largest DNA-code ℬ𝑟(𝑛, {0, … , 𝑛−1}) with Hamming distance
greater or equal then 𝑛 − 2. And thus we need that

𝐵𝑟(𝑛,𝒲, 𝑛 − 1) ≤ 𝐵𝑟(𝑛 − 1, {0, … , 𝑛 − 1}, 𝑛 − 2).



21

Theorem 4.13. 𝐵1(9,𝒲, 8) = 5 if {4, 5} ⊆ 𝒲.

Proof. To prove 𝐵1(9,𝒲, 8) = 5 if {4, 5} ⊆ 𝒲 we will show that we can find an upper bound and a lower
bound with the same value, and so that that value is the maximum value.

In Theorem 4.10 we found that 𝐵1(8,𝒲, 7) ≤ 5 ∀ 𝒲. This means 𝐵1(8, {0, … , 8}, 7) ≤ 5, therefore
from Theorem 4.12 we know that we need 𝐵1(9,𝒲, 8) ≤ 5 .

For the lower bound we consider the following code:

𝒞 = {023120230, 031212302, 120313123, 213032021, 302101313}

this is a valid code in ℬ1(9,𝒲) with {4, 5} ⊆ 𝒲 and with 𝑑(𝒞) ≥ 8. We have |𝒞| = 5 and therefore we
have

𝐵1(9,𝒲, 8) ≥ 5 if {4, 5} ⊆ 𝒲.

Hence we can conclude
𝐵1(9,𝒲, 8) = 5 if {4, 5} ⊆ 𝒲.

Theorem 4.14. 𝐵1(10,𝒲, 9) = 5 if {4, 5, 6} ⊆ 𝒲.

Proof. To prove 𝐵1(10,𝒲, 9) = 5 if {4, 5, 6} ⊆ 𝒲 we will show that we can find an upper bound and a
lower bound with the same value, and so that that value is the maximum value.

In Theorem 4.10 we found that 𝐵1(8,𝒲, 7) ≤ 5∀𝒲, by Theorem 4.12 we found that 𝐵1(9,𝒲, 8) ≤ 5
and therefore by Theorem 4.12 it follows that we also have 𝐵1(10,𝒲, 9) ≤ 5.

For the lower bound we consider the following code:

𝒞 = {0231202303, 0312123021, 1203131230, 2130320212, 3021013132},

this is a valid code in ℬ1(10,𝒲) with {4, 5, 6} ⊆ 𝒲 and with 𝑑(𝒞 ≥ 9. We have |𝒞| = 5 and therefore
we have

𝐵1(10,𝒲, 9) ≥ 5 if {4, 5, 6} ⊆ 𝒲.

Hence we can conclude
𝐵1(10,𝒲, 9) = 5 if {4, 5, 6} ⊆ 𝒲.

Theorem 4.15. 𝐵1(11,𝒲, 10) ≤ 4 for all𝒲.

Proof. To prove that 𝐵1(11,𝒲, 10) ≤ 4 we will again use the same idea as the proof from Theorem 4.6
Suppose we have a code 𝒞 ⊆ 𝐵1(11,𝒲) with 𝑑(𝒞) ≥ 10) and with |𝒞| = 5. Then because we have

|𝒞| = 5 we need that for all 𝑗 ∈ {1, … , 11} we have ∑3𝑘=0 |𝐶𝑗,𝑘| = 5. Therefore we need that for all 𝑗 we
have

|𝑃𝑗(3)| = 1, |𝑃𝑗(2)| = 1 and |𝑃𝑗(0)| = 2 or
|𝑃𝑗(3)| = 1, |𝑃𝑗(1)| = 2 and |𝑃𝑗(0)| = 1 or
|𝑃𝑗(2)| = 2, |𝑃𝑗(1)| = 1 and |𝑃𝑗(0)| = 1 or

|𝑃𝑗(2)| = 1 and |𝑃𝑗(1)| = 3.
Again we have this because for all 𝑗 we have at most four different sets 𝐶𝑗,𝑘 and for each such set

we have |𝐶𝑗,𝑘| ≤ 3.
Following the method of Plotkin [11] we will calculate the sum

𝑁 = ∑
𝑐𝑖∈𝒞

∑
𝑐𝑙∈𝒞

𝑑(𝑐𝑖 , 𝑐𝑙)

in two ways.



22 4. The maximum size of a DNA-code with 𝑑 = 𝑛 − 1

• Since 𝑑(𝑐𝑖 , 𝑐𝑗) ≥ 𝑑 ∀𝑐𝑖 , 𝑐𝑙 ∈ 𝒞 with 𝑐𝑖 ≠ 𝑐𝑙 , we have

𝑁 ≥ |𝒞|(|𝒞| − 1)𝑑 = 5 ∗ (5 − 1) ∗ 10 = 200.

• For the second way to calculate the sum 𝑁 we look at the DNA-code in matrix form again and we
look at how much each column can contribute to the total sum of distances.

If for a column we have 𝑃𝑗(3)| = 1 and |𝑃𝑗(2)| = 1 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 1 ∗ (5 − 3) + 2 ∗ 1 ∗ (5 − 2) = 12

to the sum.

If for a column we have |𝑃𝑗(3)| = 1 and |𝑃𝑗(1)| = 2 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 3 ∗ 1 ∗ (5 − 3) + 1 ∗ 2 ∗ (5 − 1) = 14

to the sum.

If for a column we have |𝑃𝑗(2)| = 2 and |𝑃𝑗(1)| = 1 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 2 ∗ 2 ∗ (5 − 2) + 1 ∗ 1 ∗ (5 − 1) = 16

to the sum.

And if for a column we have |𝑃𝑗(2)| = 1 and |𝑃𝑗(1)| = 3 then this column contributes

3

∑
𝑚=0

𝑚 ∗ |𝑃𝑗(𝑚)| ∗ (|𝒞| − 𝑚) = 2 ∗ 1 ∗ (5 − 2) + 1 ∗ 3 ∗ (5 − 1) = 18

to the sum.

So each column can contribute maximal 18 and hence

𝑁 ≤ 18 ∗ 11 = 198.

So on the one hand we have 𝑁 ≥ 200 and on the other hand we have 𝑁 ≤ 198. This of course is not
possible and therefore 𝒞 is not a valid code. Thus we have

𝐵1(11,𝒲, 10) ≤ 4.

Theorem 4.16. For 𝑛 ≥ 11 we have 𝐵1(𝑛,𝒲, 𝑛 − 1) ≤ 4 for all𝒲.

Proof. In Theorem 4.15 we saw that 𝐵1(𝑛,𝒲, 𝑛 − 1) ≤ 4 for 𝑛 = 11. Now from Theorem 4.12 it follows
that for 𝑛 ≥ 11 we have 𝐵1(𝑛,𝒲, 𝑛 − 1) ≤ 𝐵1(𝑛 − 1,𝒲, 𝑛 − 2) ≤ 4.

Theorem 4.17. If 𝑛 ≥ 11 and𝒲 such that for even-length codes we have 𝑛
2 ∈ 𝒲 and for odd-length

codes we have 𝑛−1
2 ,

𝑛+1
2 ∈ 𝒲 then we have 𝐵1(𝑛,𝒲, 𝑛 − 1) = 4.



23

Proof. In Theorem 4.16 we found that for 𝑛 ≥ 11 we have 𝐵1(𝑛,𝒲, 𝑛 − 1) ≤ 4 ∀𝒲. From this we can
conclude that if 𝑛 ≥ 11 and𝒲 is such that for even-length codes we have 𝑛

2 − 1,
𝑛
2 ,
𝑛
2 + 1 ∈ 𝒲 and for

odd-length codes we have 𝑛−1
2 ,

𝑛+1
2 ∈ 𝒲 then 𝐵1(𝑛,𝒲, 𝑛 − 1) ≤ 4.

To find a lower bound, we will show that we can find a valid DNA-code consisting of 4 words. Consider
the following code 𝒞 = {c1,c2,c3,c4} in matrix form:

Figure 4.1: DNA-code 𝒞 consisting of 4 words of length 𝑛.

Note that 𝒞 ⊆ ℬ1(𝑛,𝒲) with distance 𝑑(𝒞) = 𝑛 and with 𝒲 as in the theorem. We thus found a
valid DNA-code of size 4 where 𝑑(𝒞) ≥ 𝑛 − 1 . So 𝐵1(𝑛,𝒲, 𝑛 − 1) ≥ 4 Hence we can conclude that
if 𝑛 ≥ 11 and𝒲 such that for even-length codes we have 𝑛

2 ∈ 𝒲 and for odd-length codes we have
𝑛−1
2 ,

𝑛+1
2 ∈ 𝒲 then we have

𝐵1(𝑛,𝒲, 𝑛 − 1) = 4.

The following table will give an overview of the results we found in this chapter.

𝑛 𝐵1(𝑛,𝒲, 𝑛 − 1)
3 12
4 12
5 10 ≤ 𝐵1(5,𝒲, 4) ≤ 12
6 9
7 8
8 5
9 5
10 5
≥ 11 4

Table 4.2: Overview of the sizes of the largest codes with words of length n where 𝑑 = 𝑛 − 1 and𝒲 is such that if 𝑛 is even
𝑛
2 − 1,

𝑛
2 ,

𝑛
2 + 1 ∈ 𝒲 and if 𝑛 is odd 𝑛−1

2 , 𝑛+12 ∈ 𝒲.





5
Algorithms to compute DNA-codes

In this thesis we are looking for the maximum sizes of DNA-codes. To find lower bounds for these
values, we design algorithms that create valid DNA-codes and give the sizes of these codes. We
present and analyze four algorithms from [1] and [3]. These algorithms have been modified to take into
account an arbitrary run-length 𝑟 and to take into account that the words must now satisfy one of the
weights from the set𝒲. In addition, there are five other algorithms given, these are created by making
small adjustments to the given algorithms in order to try to improve the lower bound. The python codes
of these algorithms can be found in the Appendix A.

We will first give two definitions used in this section.

Definition 5.1. Suppose we have two DNA-words x and y, then we say y is of higher lexicographical
order if it holds that 𝑥𝑗 < 𝑦𝑗 for 𝑗 = min{𝑖 ∈ {1, … , 𝑛} ∶ 𝑥𝑖 ≠ 𝑦𝑖}.

Definition 5.2. Suppose we have two DNA words x and y, then we say y is a (𝑑 − 1)-neighbour of x
if 𝑑(x,y) ≤ 𝑑 − 1.

5.1. Reference algorithms
5.1.1. Reference algorithm 1
In the first algorithm, an algorithm from [1], first a DNA-code ℬ𝑟(𝑛,𝒲) is generated lexicographical.
This code contains all the DNA words that have length 𝑛, every word has weight in𝒲 and has maximal
run-length 𝑟. Also an empty list is created, at the end of the algorithm this list is the DNA-code. In
every iteration the first word of the list with all the DNA-words is taken and is moved to the other list if
the distance between this word and the words already in the list is minimal 𝑑. If the minimum distance
breaks when moving, we delete the word from the list.

Algorithm 1: Reference algorithm 1
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Create an empty list DNAdistance.
if DNAcode is not empty then

Define the first DNA word from DNAcode as x
if x satisfies 𝑑(x, 𝑤𝑜𝑟𝑑) ≥ 𝑑 for all 𝑤𝑜𝑟𝑑 ∈ DNAdistance then

x is appended to DNAdistance
end
x is deleted from DNAcode

else
The DNA words in the list DNAdistance form the DNA-𝑑 code.

end

25



26 5. Algorithms to compute DNA-codes

5.1.2. Reference algorithm 2

For the second algorithm, again an algorithm from [1], again the set with all the DNA words that have
length 𝑛 and where each DNA word has weight in𝒲 and has maximal run-length 𝑟 is created. Then
the algorithm checks for every word in this set how many other words are within 𝑑 − 1 distance of this
word and creates two dictionaries with this information. In the first dictionary the key is the DNA-word
and the value is all the (𝑑−1)-neighbours. In the second dictionary the DNA words are the keys and its
number of (𝑑 − 1)-neighbours is the value. Also again an empty list is created. An iteration starts with
adding the key with minimum value, so the word with the least (𝑑 − 1) neighbours, to the list. If there
are multiple words with this same smallest value, then we choose the first one. Next we remove the
word we added and its (𝑑 − 1)-neighbours from the dictionary. In addition we also reduce the values
of the keys that are (𝑑 − 1)-neighbours of these words. The algorithm iterates until our dictionary is
empty, then the list where we added the keys with minimum value to is now a valid DNA-code.

Algorithm 2: Reference algorithm 2
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Create an empty list DNAdistance.
3. Create a dictionary, words_in_sphere, where the keys are the DNA-words and the value is
all its (𝑑 − 1)-neighbours.
4. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

x = first key with minimal value in distances ;
Add x to DNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The words in the list DNAdistance form the DNA-𝑑 code.

end

5.1.3. Reference algorithm 3

Our third reference algorithm, an algorithm from [3], is very similar to the second algorithm. In this
algorithm again at each iteration we find which word has the minimal (𝑑 − 1)-neighbours, only instead
of taking the first word with this minimal value, we now take the word in the middle of all the words
with this minimal value. So at each iteration we find the minimal value in the dictionary where the keys
are the DNA-words and the value is its number of (𝑑 − 1)-neighbours. Next we find all keys from the
dictionary, which value is this minimal value and we put these words in a list. Then we take the word
which is in the middle of this list, and this is the word we add to our list.



5.1. Reference algorithms 27

Algorithm 3: Reference algorithm 3
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Create an empty list DNAdistance.
3. Create a dictionary, words_in_sphere, where the keys are the DNA-words and the value is
all its (𝑑 − 1)-neighbours.
4. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

Create an empty list, minlst;
Let minimum be the minimal value in distances;
for key in distances do

if key has minimum as its value then
Append key to minlst

end
end
Take the DNA word which is the middle value of the minlst let this be x;
Add x to DNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The words in the list DNAdistance form the DNA-𝑑 code.

end

5.1.4. Reference algorithm 4

The fourth reference algorithm, again from [3], is very similar to Algorithm 3 from above. In this algorithm
at each iteration, again a list with all DNA-words that have the minimum number of (𝑑 − 1)-neighbours
is created. In Algorithm 3 we took the middle word of this list and added it to our code. In algorithm
4 we will calculate for each of these words, how much the total distance between this word and all its
(𝑑−1)-neighbours is. Then we will take the word for which this number is maximal, and this is the word
we will add to our code. To rephrase, from the list of words with minimal (𝑑 − 1)-neighbours, we will
take the word with maximal distance to its (𝑑 − 1)-neighbours and we will add this word to our code.



28 5. Algorithms to compute DNA-codes

Algorithm 4: Reference algorithm 4
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Create an empty list DNAdistance.
3. Create a dictionary, words_in_sphere, where the keys are the DNA-words and the value is
all its (𝑑 − 1)-neighbours.
4. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

Create an empty list, minlst;
Let minimum be the minimal value in distances;
for key in distances do

if key has minimum as its value then
Append key to minlst

end
end
for word in minlst do

Add all the distances from word to its (𝑑 − 1)neighbours
end
Get the word where this total disctance is maximal and let this word be x;
Add x to DNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The words in the list DNAdistance form the DNA-𝑑 code.

end

5.2. New algorithms
In Algorithm 1 and 2 we see that which DNA-word is added to our list to make a valid code, depends
a lot on how the list from which we can take words is sorted. In the case of Algorithms 1 and 2 this is
from a lexicographical sorted list. In case of Algorithm 1 we always take the first word and in Algorithm
2 we take the first word with the minimum number of (𝑑 − 1)-neighbours.
In Algorithms 3 and 4 we see that we no longer take the first word, but we make a different choice. We
make this choice of which word is going to be added to our code, in each iteration.

In this section we will try to improve the lower bounds by creating new algorithms. First we will
create an algorithm that sorts the list with all the DNA-words before the iterations start. In addition,
we present an algorithm that is very similar to Algorithms 3 and 4, but in which the word with minimal
(𝑑 − 1)-neighbours we choose, is chosen in again a different way.

5.2.1. Algorithms 5 and 6
In the algorithms we will present in this section we first sort the lexicographical list of all DNA words by
weight. Such that a list is created with lists containing all the words with the same weight. Then we
create an empty list, sorted_DNAcode , and from each list in the list with the words sorted by weight,
we take one by one a DNA word and add this to the list sorted_DNAcode. This gives us a list with all
the DNA words where the words alternately have a different weights.

Example 5.1. If for example we are trying to find a lower bound for 𝐵1(2, {1, 2}, 2). The lexicographic
ordered list of all the words satisfying 𝑟 = 1 and 𝑤 = 1 or 𝑤 = 2 would be:

{02, 03, 12, 13, 20, 21, 23, 30, 31, 32}



5.2. New algorithms 29

And the list ordered as described above would be:

{02, 23, 03, 32, 12, 13, 20, 21, 30, 31}

With this way of sorting, we modified Algorithms 1 and 2 and created Algorithms 5 and 6, respec-
tively.
Algorithm 5:
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Sort the words of DNAcode per weight.
3. Create a list, sorted_DNAcode where the words are added to, one of each weight in turn.
4. Create an empty list DNAdistance.
if sorted_DNAcode is not empty then

Define the first DNA word from sorted_DNAcode as x
if x satisfies 𝑑(x, 𝑤𝑜𝑟𝑑) ≥ 𝑑 for every 𝑤𝑜𝑟𝑑 ∈ DNAdistance then

x is appended to DNAdistance
end
x is deleted from DNAcode

else
The DNA words in the list DNAdistance form the DNA-𝑑 code.

end

Algorithm 6:
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Sort the words of DNAcode per weight.
3. Create a list, sorted_DNAcode where the words are added to, one of each weight in turn.
4. Create an empty list DNAdistance.
5. Create a dictionary, words_in_sphere, where the keys are the DNA-words from
sorted_DNAcode and the value is all its (𝑑 − 1)-neighbours.
6. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

x = first key with minimal value in distances ;
Add x to DNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The words in the list DNAdistance form the DNA-𝑑 code.

end

5.2.2. Algorithms 7 and 8
In Algorithm 5 and 6 we looked at the algorithms if we sorted the list, with all the DNA words we can
choose from, alternately by weight. Besides these algorithms we also created algorithms where the
words are sorted in another way. In this section we will present these algorithms.

In these algorithm we sorted the words, such that the words with the same weight come one after
the other. We sorted them in the way that you get a list where the words with the smallest weight come
first and the weight of the words from the list get bigger and bigger. But we also sorted the other way
around, where you first have the words of the greatest weight and then the words where the weight is
less.

Example 5.2. In this example we consider again the case of Example 5.1, where we are interested
in finding a lower bound for 𝐵1(2, {1, 2}, 2). When we now sort the list of all the words satisfying the



30 5. Algorithms to compute DNA-codes

constraints in the way where the words with a lower weight come first we would get:

{02, 03, 12, 13, 20, 21, 30, 31, 23, 32}

And sorting in the way where the bigger weights come first, would give us:

{23, 32, 02, 03, 12, 13, 20, 21, 30, 31}

By sorting the words such that the words with lower weights come first and applying this to reference
Algorithm 2, we created Algorithm 7. By sorting the words such that the words with greater weights
come first, and applying this again to Algorithm 2, resulted in Algorithm 8.

Algorithm 7:
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑.
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲).
2. Sort the words of DNAcode per weight.
3. Create a list, sorted_DNAcode where the words are added per weight, where the weights
are getting bigger , beginning with the words with the lowest weight.
4. Create an empty list DNAdistance.
5. Create a dictionary, words_in_sphere, where the keys are the DNA-words from
sorted_DNAcode and the value is all its (𝑑 − 1)-neighbours.
6. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

x = first key with minimal value in distances ;
Add x to DNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The DNA words in the list DNAdistance form the DNA-𝑑 code.

end

Algorithm 8:
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲)
2. Sort the words of DNAcode per weight.
3. Create a list, sorted_DNAcode where the words are added per weight, where the weights
are getting smaller, beginning with the words with the highest weight.
4. Create an empty list DNAdistance.
5. Create a dictionary, words_in_sphere, where the keys are the DNA-words from
sorted_DNAcode and the value is all its (𝑑 − 1)-neighbours.
6. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

x = first key with minimal value in distances ;
Add x to DNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The DNA words in the list DNAdistance form the DNA-𝑑 code.

end



5.3. Evaluation of the algorithms 31

5.2.3. Algorithm 9
Finally, in this section we present an algorithm very similar to Algorithms 2, 3 and 4. Just as in those
algorithms, at each iteration we create a list with all the DNA words that have the minimal number of
(𝑑 − 1)- neighbours. In this algorithm, from this list we take the word that has minimal distance to the
words that are already in this code. This is the word we add to our code.
Algorithm 9: Algorithm 9
Data: Length 𝑛, GC-weight from𝒲, maximum run-length 𝑟 and minimum Hamming distance 𝑑
Result: A DNA-d code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑
1. Generate a list, DNAcode, with all the DNA words in lexicographical order from ℬ𝑟(𝑛,𝒲)
2. Create an empty list DNAdistance.
3. Create a dictionary, words_in_sphere, where the keys are the DNA-words and the value is
all its (𝑑 − 1)-neighbours.
4. Create another dictionary, distances, where the key are the DNA-words and the value is its
number of (𝑑 − 1)-neighbours.
if words_in_sphere is not empty then

Create an empty list, minlst;
Let minimum be the minimal value in distances;
for key in distances do

if key has minimum as its value then
Append key to minlst

end
end
for word in minlst do

Calculate the total distance between word and all the words in DNAdistance
end
Get the word where this total disctance is minimal and let this word be x;
Add x toDNAdistance;
Delete x from distances and words_in_sphere;
For all words with 𝑑(x, 𝑤𝑜𝑟𝑑) ≤ 𝑑 − 1 remove 𝑤𝑜𝑟𝑑 from distances and words_in_sphere;
Update both the dictionaries distances and words_in_sphere;

else
The words in the list DNAdistance form the DNA-𝑑 code

end

5.3. Evaluation of the algorithms
In this section we analyse the lower bounds we found for some cases with our different algorithms.

In the Tables 5.1, 5.2, 5.3 you see the results we found for the cases where 3 ≤ 𝑛 ≤ 9, 𝑟 = 1,where
the GC-weight is around half of the length of the code words and 𝑑 = 2, 𝑑 = 3 and 𝑑 = 4 respectively.
For the values of 𝑛, different lower bounds are obtained, the largest lower bound found with those
algorithms is in bold.

What is noticeable in this tables is that the lower bounds found by the different algorithms are often
quite far apart, especially when the values for 𝑑 and 𝑛 are further apart.

We also see that there is no algorithm that always find the largest lower bound. We see that for the
cases in Table 5.1 and 5.2 the Algorithm 4 from Section 5.1.4 most often finds the largest lower bound.
But in Table 5.3 we see that Algorithm 6 finds the largest lower bounds, except for the case where 𝑛 = 7

In Table 5.4 we see the results for the case where we have 𝑛 odd, 𝑟 = 1, 𝑑 = 2 and where 𝒲
consists of only one of the weights, from the set of weights𝒲 we considered in Table 5.1. In this case,
with only one of the weights, all the algorithms give the same lower bound. We notice that the lower
bounds we found for the different values of 𝑛 in Table 5.1 are not the same values of the cases in Table
5.4 for the same 𝑛 with only one of the weights, added together. The lower bounds of Table 5.1 are not
even that much larger then that of the ones with only one of the weights. This means that by consid-
ering codes where we accept words of different weights, we get a slightly larger code. But the largest
code for a DNA code that contains words of two GC-weights is not simply all the code words of the



32 5. Algorithms to compute DNA-codes

largest code of one of the weight together with all the code words of the largest code of the other weight.

In Table 5.5 we see the results for different values of 𝑛 we found with the algorithms, for the cases
where 𝑟 = 1, the GC-weight is around half of the length of the code words and 𝑑 = 𝑛 − 1. This is the
case we also considered in Chapter 4. We notice that the lower bounds for the cases where 𝑛 = 4,
𝑛 = 5, 𝑛 = 6 and 𝑛 = 7 we found in Chapter 4 are larger then the lower bounds the algorithms find for
these cases.

Besides looking at the results for cases where we have 𝑟 = 1, we also looked at the results of the
algorithms when we considered codes where 𝑟 > 1. The results we found are presented in Table 5.6,
5.8 and 5.7. As expected the values in Table 5.8 and 5.7 are the same. The algorithms for the same
cases bit with 𝑟 = 𝑛−1 or 𝑟 = 𝑛 find the same values. We also notice that this value is often the same
for the different algorithms.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9
𝐵1(3, {1, 2}, 2) 9 11 11 12 11 12 12 12 11
𝐵1(4, {1, 2, 3}, 2) 34 35 36 36 32 35 36 36 33
𝐵1(5, {2, 3}, 2) 76 89 86 85 79 86 88 88 85
𝐵1(6, {2, 3, 4}, 2) 274 303 316 320 242 300 320 318 292
𝐵1(7, {3, 4}, 2) 576 664 657 673 594 667 651 668 658
𝐵1(8, {3, 4, 5}, 2) 2178 2261 2273 2316 2084 2317 2255 2281 2311
𝐵1(9, {4, 5}, 2) 4576 5244 5224 5383 4775 5243 5141 5214 5283

Table 5.1: Lower bounds for 𝐵1(𝑛,𝒲, 2) computed with the nine algorithms and where𝒲 is the set with the weights around
half of the length of the code words. The values in bold are the largest lower bounds.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9
𝐵1(4, {1, 2, 3}, 3) 9 11 11 10 10 11 11 11 11
𝐵1(5, {2, 3}, 3) 22 26 26 26 22 26 25 25 27
𝐵1(6, {2, 3, 4}, 3) 54 63 64 64 55 62 63 62 60
𝐵1(7, {3, 4}, 3) 134 153 152 150 134 153 149 153 151
𝐵1(8, {3, 4, 5}, 3) 351 399 401 406 352 403 404 398 405
𝐵1(9, {4, 5}, 3) 862 976 971 982 878 965 977 975 972

Table 5.2: Lower bounds for 𝐵1(𝑛,𝒲, 3) computed with the nine algorithms and where𝒲 is the set with the weights around
half of the length of the code words. The values in bold are the largest lower bounds.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9
𝐵1(5, {2, 3}, 4) 8 9 9 9 7 9 9 9 9
𝐵1(6, {2, 3, 4}, 4) 18 21 20 21 17 21 21 21 21
𝐵1(7, {3, 4}, 4) 45 47 46 47 42 44 46 44 46
𝐵1(8, {3, 4, 5}, 4) 104 119 116 117 105 120 120 119 116
𝐵1(9, {4, 5}, 4) 242 271 271 274 248 275 272 272 274

Table 5.3: Lower bounds for 𝐵1(𝑛,𝒲, 4) computed with the nine algorithms and where𝒲 is the set with the weights around
half of the length of the code words. The values in bold are the largest lower bounds.



5.3. Evaluation of the algorithms 33

𝐵1(3, {1}, 2) 8
𝐵1(3, {2}, 2) 8
𝐵1(5, {2}, 2) 68
𝐵1(5, {3}, 2) 68
𝐵1(7, {3}, 2) 528
𝐵1(7, {4}, 2) 528
𝐵1(9, {4}, 2) 4336
𝐵1(9, {5}, 2) 4336

Table 5.4: Lower bounds for 𝐵1(𝑛,𝒲, 2) where𝒲 consists of only one weight.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9 Chap. 4
𝐵1(3, {1, 2}, 2) 9 11 11 12 11 12 12 12 11 12
𝐵1(4, {1, 2, 3}, 3) 9 11 11 10 10 11 11 11 11 12
𝐵1(5, {2, 3}, 4) 8 9 9 9 7 9 9 9 9 10
𝐵1(6, {2, 3, 4}, 5) 6 8 8 8 6 8 8 8 8 9
𝐵1(7, {3, 4}, 6) 5 6 6 7 6 6 6 6 6 8
𝐵1(8, {3, 4, 5}, 7) 5 5 5 5 4 5 5 5 5 5
𝐵1(9, {3, 4}, 8) 4 5 5 5 4 5 5 5 5 5

Table 5.5: Lower bounds for 𝐵1(𝑛,𝒲, 𝑛 − 1) where𝒲 is the set with the weights around half the length of the code words.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9
𝐵2(3, {1, 2}, 2) 12 12 12 12 12 12 12 12 12
𝐵2(4, {1, 2, 3}, 3) 54 58 54 58 51 57 58 55 54
𝐵2(5, {2, 3}, 4) 148 144 139 141 137 142 141 143 144
𝐵2(6, {2, 3, 4}, 5) 768 783 774 784 692 782 752 752 786
𝐵2(7, {3, 4}, 6) 1864 1661 1636 1670 1755 1623 1677 1667 1680

Table 5.6: Lower bounds for the cases where 𝑟 = 2. The values in bold are the largest lower bounds.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9
𝐵3(3, {1, 2}, 2) 12 12 12 12 12 12 12 12 12
𝐵4(4, {1, 2, 3}, 3) 64 64 64 64 57 64 64 64 64
𝐵5(5, {2, 3}, 4) 160 160 145 146 156 160 160 160 160
𝐵6(6, {2, 3, 4}, 5) 960 960 960 960 914 960 960 960 960
𝐵7(7, {3, 4}, 6) 2240 2240 2110 1915 2196 2190 2240 2240 2240
𝐵8(8, {3, 4, 5}, 7) 14336 14336 14336 14336 14100 14336 14336 14336 14336

Table 5.7: Lower bounds for the cases where 𝑟 = 𝑛. The values in bold are the largest lower bounds.

Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 Alg 7 Alg 8 Alg 9
𝐵2(3, {1, 2}, 2) 12 12 12 12 12 12 12 12 12
𝐵3(4, {1, 2, 3}, 3) 64 64 64 64 57 64 64 64 64
𝐵4(5, {2, 3}, 4) 160 160 145 146 156 160 160 160 160
𝐵5(6, {2, 3, 4}, 5) 960 960 960 960 914 960 960 960 960
𝐵6(7, {3, 4}, 6) 2240 2240 2110 1915 2196 2190 2240 2240 2240
𝐵7(8, {3, 4, 5}, 7) 14336 14336 14336 14336 14100 14336 14336 14336 14336

Table 5.8: Lower bounds for the cases where 𝑟 = 𝑛 − 1. The values in bold are the largest lower bounds.





6
Conclusions and recommendations

In this chapter we will discuss the conclusions that can be deducted from the research done in this
thesis. In addition also some recommendations for future research is discussed.

6.1. Conclusions
We defined 𝐵𝑟(𝑛,𝒲, 𝑑) in Chapter 2 as the size of the largest DNA-𝑑 code 𝒞 ⊆ ℬ𝑟(𝑛,𝒲) with 𝑑(𝒞) ≥ 𝑑.
This code takes the parameters, length 𝑛 of the code words, 𝑟 the maximal run-length of the words,𝒲
as the set of GC-weights of the DNA code-words and 𝑑 the minimum Hamming distance of the code.
The aim of this thesis was to determine upper and lower bound of DNA codes with relaxed weight
constraints. This relaxed weight constraint means that instead of all having the same GC-weight, code-
words in a code can have a GC-weight from a set with multiple GC-weights.
Recall that from Chapter 3 we know that:

∀𝑟, 𝑛 ≥ 1, 𝐵𝑟(𝑛,𝒲, 𝑛) = {
4 If there exists 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝒲 such that 𝑤1 +𝑤2 +𝑤3 +𝑤4 = 2𝑛
2 If we have𝒲 such that there is no 𝑤1, 𝑤2, 𝑤3 ∈ 𝒲 with 𝑛 ≤ 𝑤1 +𝑤2 +𝑤3 ≤ 2𝑛
3 otherwise

(6.1)

In Chapter 4 we proved upper and lower bounds for DNA codes where we have a minimum Ham-
ming distance of 𝑑 = 𝑛 − 1 and where the GC-weights of the words are around half the length 𝑛 of the
words. From this upper and lower bound we can make conclusions about the maximum size of these
codes, these can be found in this table:

𝑛 𝐵1(𝑛,𝒲, 𝑛 − 1)
3 12
4 12
5 10 ≤ 𝐵1(5,𝒲, 4) ≤ 12
6 9
7 8
8 5
9 5
10 5
≥ 11 4

Table 6.1: Overview of the sizes of the largest codes with words of length n where 𝑑 = 𝑛 − 1 and𝒲 is such that if 𝑛 is even
𝑛
2 − 1,

𝑛
2 ,

𝑛
2 + 1 ∈ 𝒲 and if 𝑛 is odd 𝑛−1

2 , 𝑛+12 ∈ 𝒲.

35



36 6. Conclusions and recommendations

In addition to the lower bounds found in Chapters 3 and 4, we present and analyse algorithms in
Chapter 5 that give valid DNA-𝑑 codes. The size of these codes are again lower bounds. From Tables
5.1, 5.2 and 5.3 we can conclude that we did not find an algorithm that always generates the largest
possible code. From Tables 5.1 and 5.4 we can conclude that the largest code for a DNA code that
contains words of two GC-weights is not simply all the code words of the largest code of one of the
weight together with all the code words of the largest code of the other weight.

Table 6.2 gives the highest lower bounds for 𝐵1(𝑛,𝒲, 𝑑), with 𝒲 such that for even-length codes
𝑛
2 −1,

𝑛
2 ,
𝑛
2 +1 ∈ 𝒲 and for odd-length codes 𝑛−1

2 ,
𝑛+1
2 ∈ 𝒲, found with the nine algorithms presented in

Sections 5.1 and 5.2. We underline the values for which we proved in Chapter 4 that this is the largest
possible size.

𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 𝑛 − 1
𝐵1(3, {1, 2}, 𝑑) 12 - - 12
𝐵1(4, {1, 2, 3}, 𝑑) 36 11 - 11
𝐵1(5, {2, 3}, 𝑑) 89 27 9 9
𝐵1(6, {2, 3, 4}, 𝑑) 320 64 21 8
𝐵1(7, {3, 4}, 𝑑) 673 153 47 7
𝐵1(8, {3, 4, 5}, 𝑑) 2317 406 120 5
𝐵1(9, {4, 5}, 𝑑) 5383 982 275 5

Table 6.2: Highest lower bounds found with the presented algorithms

6.2. Recommendations
For future research there are multiple ideas.

In Chapter 4 we found for all 𝑛 ≥ 3 except for 𝑛 = 5 the size of the largest possible code where
𝑑 = 𝑛 − 1 and where the weights of the DNA words are around half the length of the code words. It
would be interesting to research the case where 𝑛 = 5 more. It could be looked into if there is a way to
improve the upper bound for this case, or if a valid DNA code can be found consisting of more than ten
DNA words. As a result, the largest possible size could be found, or the range can be narrowed down.

Furthermore in this research we focused on DNA codes satisfying the no run-length constraint, the
case where we have maximal run-length of 𝑟 = 1. In future research it would be interesting to look at
codes where we have relaxed weight constraints and where also the run-length constrained would be
relaxed. In Section 5.3 we saw that the algorithms often find the same value for the different cases.
This could indicate that this code size is the largest possible size. It would be interesting to research
this further and to see if upper bounds can be found as well.

Also further improvements in the algorithms would be suggested. For the case with 𝑑 = 𝑛 − 1,
analytical we found DNA codes of larger size than the algorithms did. This suggests that algorithms
can be found that improve the existing lower bounds. For example, in Sections 5.2.1 and 5.2.2 two
ways of sorting the lexicographical created list are considered, but other ways to sort this list could be
considered. In addition, to allow computation of DNA codes with larger values of 𝑛 the algorithms used
could be optimised.



Bibliography
[1] C.J. van Leeuwen. Constrained Codes for DNA-Based Storage Systems. Bachelor Thesis, Delft

University of Technology. May 2020.
[2] H. Vermeer. Constrained Single-Error-Detecting codes for DNA-based Storage Systems. Bach-

elor Thesis, Delft University of Technology. Feb. 2021.
[3] F.J. Laseur. Constrained Error-Correcting Codes for DNA-Based Storage Systems. Bachelor

Thesis, Delft University of Technology. Dec. 2021.
[4] J. Bornholt et al. “A DNA-Based Archival Storage System”. In: ACM SIGOPS Operating Systems

Review 50.2 (2016), pp. 637–649.
[5] S. M. H. T. Yazdi et al. “DNA-Based Storage: Trends and Methods”. In: IEEE Transactions on

Molecular, Biological and Multi-Scale Communications 1.3 (2015), pp. 230–248.
[6] D. Limbachiya, M. K. Gupta, and V. Aggarwal. “Family of constrained codes for archival DNA

data storage”. In: IEEE Communications Letters 22.10 (2018), pp. 1972–1975.
[7] D. Limbachiya, B. Rao, and M.K. Gupta. The Art of DNA Strings: Sixteen Years of DNA Coding

Theory. July 1, 2016. URL: https://arxiv.org/abs/1607.00266.
[8] J. H. Weber, J. A. M. de Groot, and C. J. van Leeuwen. “On Single-Error-Detecting Codes for

DNA-Based Data Storage”. In: IEEE Communications Letters 25.1 (2021), pp. 41–44.
[9] D.C. Hankerson and G. Hoffman. Coding Theory and Cryptography. 2nd ed. Abingdon, Verenigd

Koninkrijk: Taylor Francis, 2000.
[10] O. D. King. “Bounds for DNA Codes with Constant GC-Content”. In: The Electronic Journal of

Combinatorics 10.1 (2003).
[11] M. Plotkin. “Binary codes with specified minimum distance”. In: IEEE Transactions on Information

Theory 6.4 (1960), pp. 445–450.

37

https://arxiv.org/abs/1607.00266




A
Python code

Reference algorithm 1
import itertools

def has_runlength(word):
# checking the runlenght of a word
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

## Create a list with all the DNA-words
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

# define the first word from the DNA list and add it to
# the list ”DNAcode” unless it breaks the minimal distance.
def step1(distancecode, DNAcode, d):

word = DNAcode[0]

39



40 A. Python code

if all(get_distance(word, codeword) >= d for codeword in distancecode):
distancecode.append(word)

DNAcode.remove(word)
return distancecode, DNAcode

# keep calling step1 untill the list ”DNAcode” is empty.
def step2(distancecode, DNAcode, d):

while DNAcode:
step1(distancecode, DNAcode, d)

return distancecode

# This function combines the functions above to create a DNA-d code.
def alg(n, lst_weight, r, d):

DNAcode = DNA(n, lst_weight, r)
DNAdistance = []
step1a, step1b = step1(DNAdistance, DNAcode, d)
step2_1 = step2(step1a, step1b, d)
return step2_1

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = alg(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))

weight_dict = {}
weight_dict[’total’] = len(lijst)

for w in lst_weight:
weight_dict[w] = gewichten.count(w)

return weight_dict

Reference algorithm 2
import itertools

def has_runlength(word):
# checking if a word has a runlength
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)



41

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours (so the words to close)
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_minimum(distances):
minimum = min(distances, key = distances.get)
return minimum

# Creating our list with all the DNA-words
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance to the code
def code_list(distances, words_in_sphere, code):

minimum = get_minimum(distances)
code.append(minimum)
del distances[minimum]
for value in words_in_sphere[minimum]:

del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code

# Keep calling code_list untill the ”words_in_spher” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r, d):

DNAcode = DNA(n, lst_weight,r)



42 A. Python code

steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)
for w in lst_weight:

weight_dict[w] = gewichten.count(w)
return weight_dict

Reference algorithm 3
import itertools

def has_runlength(word):
# checking if a word has a runlength
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours (so the words to close)
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_minimum(distances):
minimum = min(distances, key = distances.get)
return minimum

# Creating our list with all the DNA-words
def DNA(n, lst_weight, r):



43

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance which is in the middle of the list
# with all the words with minimal distance to the code
def code_list(distances, words_in_sphere, code):

minlst = []
minimum = get_minimum(distances)
for elt in distances:

if distances[elt] == distances[minimum]:
minlst.append(elt)

minimum = minlst[int(len(minlst)/2)]
code.append(minimum)
del distances[minimum]
for value in words_in_sphere[minimum]:

del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code

# Keep calling code_list untill the ”words_in_spher” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r, d):

DNAcode = DNA(n, lst_weight,r)
steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give



44 A. Python code

## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)
for w in lst_weight:

weight_dict[w] = gewichten.count(w)
return weight_dict

Refernce algorithm 4
import itertools

def has_runlength(word):
# returning the runlenght of a word
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_maximum(distances):
#returning the key with the max value of the dictionary distances
maximum = max(distances, key=distances.get)
return maximum

def get_minimum(distances):
#returning the key with the max value of the dictionary distances
minimum = min(distances, key = distances.get)
return minimum

# Creating our list with all the DNA-words
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:



45

if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:
DNAcode.append(codeword)

return DNAcode

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance which has maximal distance with its (d-
1)-neighbours
# with all the words with minimal distance to the code
def code_list(distances, words_in_sphere, code):

minlst = []
minimum = get_minimum(distances)
for elt in distances:

if distances[elt] == distances[minimum]:
minlst.append(elt)

Nbs=[]
for w in minlst:

dlst =[]
for w2 in words_in_sphere[w]:

dlst.append(distances[w2])
Nbs.append(dlst)

num = max(sum(x)for x in Nbs)
for lst in Nbs:

if sum(lst) == num:
index =Nbs.index(lst)

minimum = minlst[index]
code.append(minimum)
del distances[minimum]
for value in words_in_sphere[minimum]:

del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code

# Keep calling code_list untill the ”words_in_spher” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r, d):

DNAcode = DNA(n, lst_weight,r)



46 A. Python code

steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)
for w in lst_weight:

weight_dict[w] = gewichten.count(w)

return weight_dict

Algorithm 5
import itertools

def has_runlength(word):
# checking if a word has a runlength
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_minimum(distances):
minimum = min(distances, key = distances.get)
return minimum

#Creating list with all the words that have length n,
#runlenght <=r and with a weight in lst_weight
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))



47

DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

#Creating a list with per weight from lst_weight the words with this weight
def sorting_DNA(n, lst_weight, r):

DNAcode = DNA(n, lst_weight,r)
sorted_DNAcode = [[] for i in range(len(lst_weight))]
for codeword in DNAcode:

for i in range(len(lst_weight)):
if get_weight(codeword) == lst_weight[i]:

sorted_DNAcode[i].append(codeword)
return sorted_DNAcode

# Creating list where we in turns add words from a different weight
def sorting_list(n, lst_weight,r):

code_sort = sorting_DNA(n, lst_weight,r)
code= []
lengte = 0
for i in range(len(lst_weight)):

if len(code_sort[i]) > lengte:
lengte = len(code_sort[i])

for j in range(lengte):
for i in range(len(lst_weight)):

if len(code_sort[i]) > 0:
code.append(code_sort[i][0])
del code_sort[i][0]

return code

# define the first word from the DNA list and add it to
# the list ”DNAcode” unless it breaks the minimal distance.
def step1(distancecode, DNAcode, d):

word = DNAcode[0]
if all(get_distance(word, codeword) >= d for codeword in distancecode):

distancecode.append(word)
DNAcode.remove(word)
return distancecode, DNAcode

# keep calling alg3_step1 untill the list ”DNAcode” is empty.
def step2(distancecode, DNAcode, d):

while DNAcode:
step1(distancecode, DNAcode, d)

return distancecode

# This function combines the functions above to create a DNA-d code.
def alg3(n, lst_weight,r, d):

DNAcode = sorting_list(n, lst_weight,r)
DNAdistance = []
step1a, step1b = step1(DNAdistance, DNAcode, d)
step2_1 = step2(step1a, step1b, d)
return step2_1

## This function will give the size of the DNA-d code we created
## and for each weight it will give



48 A. Python code

## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = alg3(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)
for w in lst_weight:

weight_dict[w] = gewichten.count(w)
return weight_dict

Algorithm 6
import itertools

def has_runlength(word):
# checking if a word has a runlength
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours (so the words to close)
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_maximum(distances):
#maximum is the key with the max value of the dictionary distances

maximum = max(distances, key=distances.get)
return maximum

def get_minimum(distances):
minimum = min(distances, key = distances.get)
return minimum

#Creating list with all the words that have length n,
#runlenght <=r and with a weight in lst_weight
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:



49

if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:
DNAcode.append(codeword)

return DNAcode

#Creating a list with per weight from lst_weight the words with this weight
def sorting_DNA(n, lst_weight, r):

DNAcode = DNA(n, lst_weight,r)
sorted_DNAcode = [[] for i in range(len(lst_weight))]
for codeword in DNAcode:

for i in range(len(lst_weight)):
if get_weight(codeword) == lst_weight[i]:

sorted_DNAcode[i].append(codeword)
return sorted_DNAcode

# Creating list where we in turns add words from a different weight
def sorting_list(n, lst_weight,r):

code_sort = sorting_DNA(n, lst_weight,r)
# code_sort.reverse()
code= []
lengte = 0
for i in range(len(lst_weight)):

if len(code_sort[i]) > lengte:
lengte = len(code_sort[i])

for j in range(lengte):
for i in range(len(lst_weight)):

if len(code_sort[i]) > 0:
code.append(code_sort[i][0])
del code_sort[i][0]

return code

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance to the code
def code_list(distances, words_in_sphere, code):

minimum = get_minimum(distances)
code.append(minimum)
del distances[minimum]
for value in words_in_sphere[minimum]:

del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code



50 A. Python code

# Keep calling code_list untill the ”words_in_spher” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r, d):

DNAcode = sorting_list(n, lst_weight,r)
steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)

for w in lst_weight:
weight_dict[w] = gewichten.count(w)

return weight_dict

Algorithm 7
import itertools

def has_runlength(word):
# checking if a word has a runlength
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])



51

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours (so the words to close)
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_maximum(distances):
maximum = max(distances, key=distances.get)
return maximum

def get_minimum(distances):
minimum = min(distances, key = distances.get)
return minimum

#Creating list with all the words that have length n,
# runlenght <=r and with a weight in lst_weight
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

#Creating a list with per weight from lst_weight the words with this weight
def sorting_DNA(n, lst_weight, r):

DNAcode = DNA(n, lst_weight,r)
sorted_DNAcode = [[] for i in range(len(lst_weight))]
for codeword in DNAcode:

for i in range(len(lst_weight)):
if get_weight(codeword) == lst_weight[i]:

sorted_DNAcode[i].append(codeword)
return sorted_DNAcode

# Creating a list where we the words with same weight come after each other
def sorting_list(n, lst_weight,r):

code_sort = sorting_DNA(n,lst_weight,r)
code = []
for i in range(len(lst_weight)):

for j in range(len(code_sort[i])):
code.append(code_sort[i][j])

return code

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance to the code
def code_list(distances, words_in_sphere, code):

minimum = get_minimum(distances)
code.append(minimum)
del distances[minimum]



52 A. Python code

for value in words_in_sphere[minimum]:
del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code

# Keep calling code_list untill the ”words_in_spher” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r, d):

DNAcode = sorting_list(n, lst_weight,r)
steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)

for w in lst_weight:
weight_dict[w] = gewichten.count(w)

return weight_dict

Algorithm 8
import itertools

def has_runlength(word):
# checking if a word has a runlength
runlength = 1
for i in range(len(word)-1):

run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run



53

return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours (so the words to close)
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_maximum(distances):
maximum = max(distances, key=distances.get)
return maximum

def get_minimum(distances):
minimum = min(distances, key = distances.get)
return minimum

#Creating list with all the words that have length n,
#runlenght <=r and with a weight in lst_weight
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

#Creating a list with per weight from lst_weight the words with this weight
def sorting_DNA(n, lst_weight, r):

DNAcode = DNA(n, lst_weight,r)
sorted_DNAcode = [[] for i in range(len(lst_weight))]
for codeword in DNAcode:

for i in range(len(lst_weight)):
if get_weight(codeword) == lst_weight[i]:

sorted_DNAcode[i].append(codeword)
return sorted_DNAcode

# Creating a list where we the words with same weight come after each other
def sorting_list(n, lst_weight,r):

code_sort = sorting_DNA(n,lst_weight,r)
code = []
for i in range(len(lst_weight)):

for j in range(len(code_sort[-(i+1)])):
code.append(code_sort[-(i+1)][j])

return code

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere



54 A. Python code

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance to the code
def code_list(distances, words_in_sphere, code):

minimum = get_minimum(distances)
code.append(minimum)
del distances[minimum]
for value in words_in_sphere[minimum]:

del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code

# Keep calling code_list untill the ”words_in_spher” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r,d):

DNAcode = sorting_list(n, lst_weight,r)
steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r,d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)
for w in lst_weight:

weight_dict[w] = gewichten.count(w)
return weight_dict

Algorithm 9
import itertools

def has_runlength(word):
# returning the runlenght of a word
runlength = 1



55

for i in range(len(word)-1):
run = 1
while word[i] == word[i+1]:

run += 1
i +=1
if i == (len(word)-1):

break
if run > runlength:

runlength = run
return runlength

def get_weight(word):
# gets the GC-weight of a word
return word.count(2) + word.count(3)

def get_distance(word1, word2):
# determine the distance between two words
return len([i for i in range(len(word1)) if word1[i] - word2[i] != 0])

def get_word_in_sphere(code, codeword, d):
#gets all the (d-1)-neighbours
return [w for w in code if 0<get_distance(codeword, w)<d]

def get_maximum(distances):
#returning the key with the max value of the dictionary distances
maximum = max(distances, key=distances.get)
return maximum

def get_minimum(distances):
#returning the key with the max value of the dictionary distances
minimum = min(distances, key = distances.get)
return minimum

# Creating our list with all the DNA-words
def DNA(n, lst_weight, r):

Qcode = list(itertools.product(range(4), repeat=n))
DNAcode = []
for codeword in Qcode:
if has_runlength(codeword) <= r and get_weight(codeword) in lst_weight:

DNAcode.append(codeword)
return DNAcode

# Creating dictionary with all the words and its (d-1)-neighbours
def words_list(code, d):

words_in_sphere = {codeword: get_word_in_sphere(code, codeword, d) for codeword in code}
return words_in_sphere

# Creating a dictionary with all the words and its number of (d-1)-neighbours
def words_dist(words_in_sphere):

distances = {key: len(value) for key, value in words_in_sphere.items()}
return distances

# Adding the word with minimal distance which has minimal distance
# to all the words which are already in the code
def code_list(distances, words_in_sphere, code):

minlst = []



56 A. Python code

minimum = get_minimum(distances)
for elt in distances:

if distances[elt] == distances[minimum]:
minlst.append(elt)

distances_from_code = []
for i in range(len(minlst)):

dist = 0
for element in code:

dist += get_distance(minlst[i], element)
distances_from_code.append(dist)

mn = min(distances_from_code)
index = distances_from_code.index(mn)
minimum = minlst[index]
code.append(minimum)
del distances[minimum]
for value in words_in_sphere[minimum]:

del distances[value]
for val in words_in_sphere[value]:

if val in distances:
words_in_sphere[val].remove(value)
distances[val] -= 1

del words_in_sphere[value]
del words_in_sphere[minimum]
return code

# Keep calling code_list untill the ”words_in_sphere” is empty
def calling(distances, words_in_sphere, code):

while words_in_sphere:
code_list(distances, words_in_sphere, code)

return code

# This function combines the functions above to create a DNA-d code.
def algo(n, lst_weight,r, d):

DNAcode = DNA(n, lst_weight,r)
steplist = words_list(DNAcode, d)
stepdist = words_dist(steplist)
DNAdistance = []
step3 = code_list(stepdist, steplist, DNAdistance)
step4 = calling(stepdist, steplist, step3)
return step4

## This function will give the size of the DNA-d code we created
## and for each weight it will give
## the number of words with this weight in the code
def weights(n, lst_weight,r, d):

lijst = algo(n, lst_weight,r, d)
gewichten = []
for word in lijst:

gewichten.append(get_weight(word))
weight_dict = {}
weight_dict[’total’] = len(lijst)
for w in lst_weight:

weight_dict[w] = gewichten.count(w)
return weight_dict


	Introduction
	Motivation
	Thesis statement
	Organisation of the Thesis:

	Prerequisites
	What is DNA and how do we store data in DNA?
	Basic DNA sets

	The maximum size of DNA-n codes
	An upper bound for DNA-n codes
	The case where the maximum size of a DNA-n code is 4
	DNA-n codes with maximum size smaller then 4
	Overview

	The maximum size of a DNA-code with d=n-1
	Algorithms to compute DNA-codes
	Reference algorithms
	Reference algorithm 1
	Reference algorithm 2
	Reference algorithm 3
	Reference algorithm 4

	New algorithms
	Algorithms 5 and 6
	Algorithms 7 and 8
	Algorithm 9

	Evaluation of the algorithms

	Conclusions and recommendations
	Conclusions
	Recommendations

	Python code

