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A predictive control framework for optimal energy
extraction of wind farms

M. Vali1, J.W. van Wingerden2, S. Boersma2, V. Petrović1 and M. Kühn1

1 ForWind, University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany.
2 Delft Center of Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands.

E-mail: mehdi.vali@uni-oldenburg.de

Abstract. This paper proposes an adjoint-based model predictive control for optimal energy extraction
of wind farms. It employs the axial induction factor of wind turbines to influence their aerodynamic
interactions through the wake. The performance index is defined here as the total power production of
the wind farm over a finite prediction horizon. A medium-fidelity wind farm model is utilized to predict
the inflow propagation in advance. The adjoint method is employed to solve the formulated optimization
problem in a cost effective way and the first part of the optimal solution is implemented over the control
horizon. This procedure is repeated at the next controller sample time providing the feedback into the
optimization. The effectiveness and some key features of the proposed approach are studied for a two
turbine test case through simulations.

1. Introduction
Control of turbines in a wind farm is challenging because of the aerodynamic interactions via wakes. The
characteristics of a wake are reduced wind speed and increased turbulence. The former reduces the total
power production of the farm and the latter leads to a higher dynamic loading on the downstream turbines.
Thus, in order to lower the levelized cost of energy by wind farm control the two main objectives are
minimizing the wake-induced power losses and structural fatigue loads, e.g. by optimizing the individual
wind turbine control settings [1].

Several studies have utilized optimization techniques to find the optimal set-points for the total wind
farm performance [2-5]. Campagnolo et al. [6] have investigated the potential of different wind farm
control strategies through wind tunnel testing. Nonetheless, from a control design perspective, the
approaches followed so far have been open-loop ones while the inherent modeling uncertainties and
time-varying inflow conditions, e.g. wind direction changes and wake meandering, demand for a dynamic
closed-loop approach.

Soleimanzadeh et al. [7] have developed a linear state-space model and a distributed controller for
the wind farm which is only valid for really small deviations from the equilibrium. Goit et al. [8] have
proposed an optimal control of energy extraction, utilizing Large Eddy Simulation (LES) model and
optimal control theory [9] to increase the turbulent kinetic energy of inflow within a wind farm. The
proposed controller relies on a full high-fidelity LES model to compute the optimal control commands,
which is time consuming for real-time control. However, a control-oriented model should capture all
dominant inflow dynamics in a computationally inexpensive manner. This is the main motivation of
studying medium-fidelity models for wind farms [10-14].
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In this paper an adjoint-based model predictive control (AMPC) framework is developed for wind
farms using WindFarmSimulator (WFSim), a control-oriented dynamic medium-fidelity wind farm
model [13,14]. The wind farm control target here is to react against the low-frequency wake-induced
power losses and loads, i.e. in the order of one minute. To reach this goal, a constrained optimization
problem is formulated, which considers the aerodynamic interactions of the wind turbines through wakes.
The performance index is specified here to maximize the power production of a farm, which can be
extended to optimal load distribution as well. We exploit the discrete adjoint approach to obtain the
gradient of the specified performance index at a finite prediction horizon. The adjoint field reveals which
turbine at which time can contribute to maximization of the total power. Then, similar to [8], we employ
a nonlinear conjugate gradient method for solving the optimization problem due to its computational
effectiveness. Here, we solve the problem with respect to the axial induction factor of the wind turbines,
which can be extended to the yaw control as well. At the end, we evaluate and discuss the performance
of the AMPC for two different wind farm operating points with full and partial wake interactions.

The remainder of this paper is organized as follows. In section 2, we present briefly the fundamentals
of WFSim. Section 3 focuses on the structure of the proposed AMPC for wind farm control, including the
formulated constrained optimization problem, the adjoint-based gradient of the performance index and
the optimization method. The previously explained method is studied in section 4 for a relatively simple
two turbine case through simulations. Finally, the conclusions of this paper are collected in section 5.

2. Wind Farm model
This section presents briefly the fundamentals of the WFSim, a control-oriented dynamic medium-
fidelity wind farm model [13,14]. An important feature of the WFSim is the sparsity in the system
matrices, improving the computational efficiency. The wind flow is modeled using the 2D Navier Stokes
equations constrained by the continuity equation [16]:

ρ
∂u
∂ t

+ρ∇(uu) =−∂ p
∂x

+∇(µ∇u)+Sx +Tx, (1)

ρ
∂v
∂ t

+ρ∇(vu) =−∂ p
∂y

+∇(µ∇v) , (2)

ρ∇(u) = 0. (3)

where ρ is the air density, µ is the viscosity, p is the pressure field and u = [u,v] is the velocity vector
field. Sx represents the external source terms in the x direction, employed for incorporating the wind
turbine models. The term Tx represents the turbulence model, which is the mixing length model in
WFSim [14]. The set of equations (1)-(3) are spatially discretized, using the Hybrid differencing scheme,
over a staggered grid of (Nx×Ny) cells. Furthermore, the backward differencing scheme is employed to
discretize the flow model temporally for the unsteady solution [10,13].

A wind turbine is modeled using the actuator disc theory to exert a thrust force into the incoming flow
and extract a certain amount of power from the wind. The thrust force for the ith turbine in a wind farm
is expressed as follows [17]

FTi =
1
2

ρAdU2
∞CT (ai), CT (ai) = 4ai(1−ai). (4)

where U∞ is the effective wind speed at far distance upwind the rotor, Ad the swept area of the rotor
plane, and CT is the thrust coefficient of the turbine which is a function of the axial induction factor ai.
The latter is a measure of the decrease in the stream-wise flow velocity at the rotor plane.

Considering the induction effect of the rotor disc as Ud = (1−a)U∞ enables us to estimate the exerted
thrust force using the measurable wind velocity Ud at the rotor and the axial induction factor. Therefore,
the ith turbine model is incorporated inside the flow model (1) as follows

Sxi = FTi = 2ρAdU2
di︸ ︷︷ ︸

Bxi

βi, βi =
ai

1−ai
, (5)
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where the virtual control variable βi is defined to obtain a linear expression of the thrust force with
respect to the wind turbine control setting [13]. Furthermore, the induction factor ai is combined with a
first order lag to model the wind turbine dynamic inflow as follows

ȧi =
1
τ
(ai,c−ai), (6)

where ai,c is the ith wind turbine control command and τ represents the aerodynamic time constant, which
is approximated by τ =13.5 s [22].

Finally, the wind farm model over the specified staggered grid can be given in matrix form as
follows [13]Ax(ūk, v̄k) 0 B1

0 Ay(ūk, v̄k) B2
BT

1 BT
2 0


︸ ︷︷ ︸

A(Xk)

ūk+1
v̄k+1
p̄k+1

=

cx 0 0
0 cy 0
0 0 0


︸ ︷︷ ︸

Q

ūk
v̄k
p̄k

+

Bx(ūk)
0
0


︸ ︷︷ ︸

B(Xk)

βk +

bx(ūk, v̄k)
by(ūk, v̄k)

bc


︸ ︷︷ ︸

b(Xk)

. (7)

where ūk ∈ R(Nx−3)(Ny−2)×1, v̄k ∈ R(Nx−2)(Ny−3)×1 and p̄k ∈ R(Nx−2)(Ny−2)×1 are the vectors that stack
all the velocities and pressures in every point of the staggered grid at the time instant k. By defining
X = [ū, v̄, p̄]T , the matrix A(Xk) represents the spatial discretization terms of the x and y-momentum and
the continuity equations (1)-(3). The constant matrix Q is referred to the temporal discretization of the
flow depending on the chosen sampling time and the matrix B(Xk) represents the linear expession of the
thrust force with respect to the virtual control input βk. Finally the matrix b(Xk) represents the effect of
the zero-gradient boundary conditions. The reader is referred to [13,14] for more details on the 2D wind
farm model.

3. Optimal control of energy extraction
In this section, an adjoint-based model predictive control (AMPC) framework is proposed for wind
farms. MPC is an optimal control technique employing real-time optimization. The control inputs and
plant responses are predicted in advance and optimized for finite time intervals, the so called prediction
horizon, with respect to a performance index. Then, the first part of the optimal solution, depending on
the controller sample time, is applied to the system. This procedure is repeated in the next controller
sample time which provides the feedback into the optimization.

Figure 1 demonstrates schematically the proposed framework for the adjoint-based model predictive
control (AMPC). It contains three main steps: prediction, solving an optimization problem over a finite
time prediction horizon Np and implementing the optimal control solutions over the receding time
horizon Nu ≤ Np. Optimality is in this paper defined as the maximum power that can be extracted by a
given wind farm over a specified time horizon using the axial induction factor ai, for i = 1,2, . . . ,Nt with
Nt the number of turbines. Similar to [8], we exploit the adjoint approach as an effective tool to speed up
the computation of the gradient of the performance index. In the proposed framework, the optimization
problem can be extended to other performance indices, e.g. wind farm power demand tracking or optimal
load distribution on the wind turbines. Furthermore, the optimization variables can be considered as the
practical wind turbine control settings, e.g. pitch, rotor speed and yaw control.

The predictive control approximates in advance the inflow propagation within a farm over the finite
prediction horizon Np (see blue arrow in Fig. 1). It utilizes WFSim to predict the two dimensional
velocity vector field of the flow [13,14]. The flow estimations can be improved using the ensemble
Kalman filter [15].

Then, the adjoint field corresponding to the predicted flow (see red arrow in Fig. 1) is computed.
The adjoint field which propagates backward depends strongly on the predicted flow and the definition
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Figure 1: Schematic illustration of the adjoint-based model predictive control (AMPC) of wind farms

of the performance index [8]. It is utilized as a cost-effective tool to compute the gradient of the cost
function with respect to the wind turbine control settings. Then, the formulated optimization problem is
solved, employing a nonlinear conjugate-gradient method combined with a line search method. Finally,
the optimal solution, i.e. the axial induction factor, is implemented at the receding time horizon Nu
(see black arrow in Fig. 1). The whole procedure is repeated for the next receding horizon Nu, which
incorporates feedback inside the optimization. The reader is referred to [18] for more details on the
nonlinear model predictive control. In the following sections, the details of the proposed AMPC for
optimal energy extraction of wind farms are explained.

3.1. Energy extraction of a single wind turbine
According to the actuator disc theory [17], the power production of a single turbine is defined as

P =
1
2

ρAdU3
∞CP(a), CP(a) = 4a(1−a)2. (8)

where CP is the power coefficient of the wind turbine with dependency on the axial induction factor. The
effective wind speed U∞ at infinite distance upwind the rotor is estimated using the measurable wind
velocity Ud at grid cells in which the rotor disc is located as follows [17]

Û∞ =
C f (a)Ud

1−a
, (9)

where the correction factor C f (a) is defined empirically to make the approximation more precise
(Û∞−U∞ ≈ 0). The power production of a single turbine simulated in WFSim is validated with the
actuator disc theory. Figure 2 shows the power coefficient of a single turbine compared with (8). The
necessity of the correction factor C f (a) in modeling a wind turbine as an actuator disc is illustrated
as well. Note that the power coefficient of the implemented wind turbine in WFSim is obtained by
substituting (9) into (8) yielding

CP(a) =
P

1
2 ρAdU3

∞

=
4a

1−a
(
C f (a)Ud

U∞

)3. (10)

where Ud is the rotor averaged inflow velocity computed by WFSim.
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Figure 2: Energy extraction of a single turbine simulated in WFSim (10), compared with the actuator disc
theory (8)

3.2. Optimization problem formulation
This section focuses on the optimization problem which is solved in our predictive control framework
for optimal energy extraction of wind farms. The optimization variables are the wind turbine control
parameters at time instant k as βk = [β1,k,β2,k, . . . ,βNt ,k]

T ∈ RNt×1. Note that we formulate the problem
with respect to the virtual variable βi =

ai
1−ai

such that we have a linear expression of the thrust force with
respect to the control input. The state variable at time instant k is Xk = [ūk, v̄k, p̄k]

T as defined in (7).
The optimal control problem is formulated as finding the maximum power production of the wind

farm over a finite time horizon Np. Hence, we first define the following performance index, referring to
the total power production, at each time instant k as follows

Jk(Xk,βk) =−
Nt

∑
i=1

Pi,k (11)

Now, we can formulate the following constrained optimization problem over the prediction time
horizon Np

min
β̃

J (X̃ , β̃ ) =
Np

∑
k=1

Jk(Xk,βk), (12)

s.t. C̃(X̃ , β̃ ) = 0, (13)
0≤ βi,k ≤ 1. (14)

The equality constraint (13) represents the spatial and temporal discretized inflow model, evolving over
the prediction horizon time Np with the following expanded form

C̃ =


C1(X0,X1,β0)
C2(X1,X2,β1)

...
CNp(XNp−1,XNp ,βNp−1)

 , X̃ =


X1
X2
...

XNp

 , β̃ =


β1
β2
...

βNp

 ,

where according to (7)

Ck(Xk−1,Xk,βk−1) = A(Xk−1)Xk−QXk−1−B(Xk−1)βk−1−b(Xk−1) = 0. (15)

Furthermore, the inequality constraint (14) refers to the constraints on the wind turbine control input.
To improve the performance, a gradient-based optimization method is performed to solve the

formulated problem (12)-(14) with the search directions, defined by the gradient of the performance
index at the current state of each prediction window. This is the main focus of the following sections.
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3.3. Adjoint-based gradient of the cost function
Adjoint methods give an efficient way to obtain the gradient of a performance index, when having
many decision variables. We utilize the discrete adjoint approach to obtain accurate derivatives of the
performance index, because it avoids the error-prone and tedious derivation and discretization of the
continuous one [19].

First, we define the Lagrangian to turn the constrained optimization problem (12)-(13) into the
unconstrained one as follows

L (X̃ , β̃ ,Λ) ≡J (X̃ , β̃ )+Λ
T C̃(X̃ , β̃ ), (16)

where in this context Λ is the vector of Lagrange multipliers over the finite time horizon in which we
optimize and equation C̃(X̃ , β̃ ) = 0 represents the constraint on the dynamic optimization problem, i.e.
the wind farm model. Since this constraint holds everywhere for k = 1,2, · · · ,Np, we may choose Λ

freely yielding
L (X̃ , β̃ ,Λ) = J (X̃ , β̃ ). (17)

Hence, the gradient of the cost function can be obtained as follows

∇
β̃
J = (JX̃ +Λ

T C̃X̃)X̃β̃
+J

β̃
+Λ

T C̃
β̃
, (18)

where (.)X̃ and (.)
β̃

represent the partial derivatives with respect to the X̃ and β̃ , respectively.
Recalling wind farm model (7), it is assumed that for all allowable control setting βk, our discretized

model has a unique solution Xk+1. Now one may define the adjoint field Λ over the specified time horizon
Np as a solution of the adjoint equation [19]

C̃T
X̃(X̃ , β̃ )Λ =−J T

X̃ (X̃ , β̃ ) (19)

where

C̃X̃ =


(C1)X1 0 · · · 0 0
(C2)X1 (C2)X2 · · · 0 0

...
. . . . . .

...
...

0 0
. . . (CNp−1)XNp−1 0

0 0 · · · (CNp)XNp−1 (CNp)XNp

 , (20)

with the linearized components of the wind farm model (15) as

(Ck)Xk = A(Xk−1),

(Ck)Xk−1 = (A(Xk−1)Xk)Xk−1−Q− (B(Xk−1)βk−1)Xk−1− (b(Xk−1))Xk−1 .
(21)

The reader is referred to [14] for more details on the linearized model. Expanding adjoint equation (19)
yields the propagation of the adjoint field backward over the time horizon Np, i.e. Λ = [λ1,λ2, · · · ,λNp ]

T ,
as follows

(Ck−1)
T
Xk−1

λk−1 =−J T
Xk−1

(X̃ , β̃ )− (Ck)
T
Xk−1

λk. (22)

with initializing λNp+1 = 0. The structure of the adjoint equation (19) indicates that the adjoint field is
obtained based on the definition of the performance index J and the wind farm model. It propagates
backward and indicates the temporal and spatial influences of the wind turbines, through their control
settings, on the wind farm power production. Therefore, it is a useful tool to obtain a search direction,
yielding the improvement in the performance.

By substituting the adjoint field Λ into (18), there is no need for tedious calculation of the derivatives
of the flow solution with respect to the control variables (X̃

β̃
) over the prediction horizon. Finally, the
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gradient of the cost function (12), ∇
β̃
J = [∇β1J ,∇β2J , ...,∇βN pJ ] ∈ R1×Nt Np , can be expressed in

compact form as follows
∇

β̃
J = J

β̃
(X̃ , β̃ )+Λ

T C̃
β̃
(X̃ , β̃ ), (23)

Exploiting the sparse structure of the matrix C̃
β̃

, similar to (19), yields the time-dependency of the
gradient ∇βk−1J ∈R1×Nt at the horizon in which we maximize the power extraction of the wind farm as

∇βk−1J = Jβk−1(X̃ , β̃ )−λ
T
k B(Xk−1). (24)

3.4. Optimization method
This section briefly introduces the employed nonlinear conjugate gradient optimization method for
solving the formulated problem (12)-(14). Conjugate gradient methods are efficient approaches when
the number of optimization variables is large due to the employment of a few vector operations.

Given an estimated control variables β̃ (n) ∈RNt Np×1 at the nth optimization iteration, a search direction
δ β̃ (n) is obtained using the conjugate gradient method as follows

δ β̃
(n) =−∇

β̃
J (n)+η

(n)
δ β̃

(n−1). (25)

where ∇
β̃
J is the adjoint-based gradient of the cost function over the finite time horizon Np determined

by (24). The parameter η is a characteristic for the optimization method which guarantees the proper
calculation of search direction. Similar to [8], we utilize the Polak-Ribière method [20] at each iteration.
The obtained search direction δ β̃ (n) is used to estimate a new set of optimal control variables for the
next iteration. Moreover, a backtracking line search based on the Armijo rule [21] is employed to search
iteratively the best feasible improvement in the total power production along with the search direction,
considering the practical constraint on the wind turbines control input.

4. Simulation studies
The performance of the adjoint-based predictive wind farm controller is analyzed here through simulation
studies with WFSim. A simple example of two turbines in a row is considered. The wind turbines with
rotor diameter D =126 m are spaced 5D in the stream-wise direction. We have a field of 2000×1000 m2

with a staggered grid of 100×50 cells (Nx×Ny). Figure 3 depicts our example operating at ambient wind
speed U∞ = 10 m/s for two different wind farm operating conditions, i.e. the full wake (left) and the
partial wake (right) interactions. Here, the flow is simulated for laminar flow conditions, where viscous
forces are dominant. The performance of the AMPC is analyzed here for atmospheric conditions without
changing the incoming flow, compared with the greedy control setting (ai =

1
3 ).

x [m]

y
 [
m

]

 

 

500 1000 1500 2000

200

400

600

800

1000

3

4

5

6

7

8

9

10

11

x [m]

y
 [
m

]

 

 

500 1000 1500 2000

200

400

600

800

1000

3

4

5

6

7

8

9

10

11

Figure 3: Two-turbine example with U∞ =10 m/s, simulated in WFSim. (left) The incoming flow aligned to the
rotor discs, resulting full wake interactions. (right) The wind direction is misaligned 10◦ with the rotor discs,
resulting partial wake interactions.
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4.1. Grid search for optimal solution
In order to find the optimal control settings of two turbines in a row as a reference, a grid search procedure
is employed for the steady state solution of the WFSim, with U∞ =10 m/s for the full wake interactions
(see left image of Fig. 3). A two-dimensional grid is constructed with respect to the axial induction
factor of each turbine, which becomes dense around the pre-guessed optimal solutions. Note that the
incoming flow is simulated aligned to the rotor discs for all cases. Figure 4 illustrates the contour plot
of the resulting total power, which is normalized with respect to the maximum amount of the achieved
power, for all possible combinations of the control settings. For our simulated example, grid search
approach finds the local optimal solution aopt = [0.225,0.305]. Therefore, assuming the atmospheric
conditions remain stable, the power production might increase 3.87%, compared with the greedy wind
turbine control setting (ai = 0.33). The small reduction in the induction factor of the downwind turbine
might be attributed to its minor aerodynamic influence on the upwind one due to the turbines spacing
and flow specifications of our simulation example.
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Figure 4: The contour plot of the total power with U∞ =10 m/s. The achieved optimal solution is aopt =
[0.225,0.305]. The power outputs are normalized with respect to the maximum amount of the achieved power.

4.2. Performance of adjoint-based model predictive control (AMPC)
In this section we evaluate the performance of the proposed control framework under atmospheric
conditions without changing the incoming flow. The wind farm starts operating with the greedy control
setting ai =0.33, at the ambient wind speed 10 m/s. After inflow propagation and wake interactions,
the AMPC is activated at time instant 1000 s. Here, we investigate two simulation scenarios: the first
full wake interactions, while the inflow is aligned to the rotor discs (see left image of Fig. 3) and the
second partial wake interactions, when inflow is misaligned 10◦ to the rotors (see left image of Fig. 3).
Furthermore, we show the performance with the optimal control settings obtained through the offline
grid search for the case study 1, i.e. full wake interactions. The aim is to illustrate the necessity of the
dynamic closed-loop control for different wind farm operating points.

4.2.1. Case study 1: Full wake interactions Here, the rotor discs are aligned with the wind direction to
evaluate the performance of the AMPC whilst both wind turbines are interacting fully through wakes (see
left image of Fig. 3). Figure 5 shows the optimal control of the energy extraction for our example,
compared with the greedy control. Moreover, the total power production of the wind turbines operating
with the grid search optimal solution aopt = [0.225,0.305] is also shown as a reference.

The AMPC maximizes the total power of the wind farm dynamically to the same level of the grid
search solution. Note that the optimal solution of the grid search is valid only for the stationary
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Figure 5: Total power production with fully wake interactions, normalized with respect to the case with the greedy
control setting. (prediction horizon Np =600 s, control horizon Nu =100 s).
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Figure 6: (left) The induction factor and (right) the power production of the individual wind turbines for different
simulation cases, with ambient wind U∞ =10 m/s. The power production is normalized with respect to the total
power of the greedy control.

atmospheric conditions. After complete convergence, simulation results show that the AMPC can
increase the total power by 3.87% for our simulated example, compared with the greedy control.

Figure 6 illustrates the time-varying behaviour of the axial induction factor (left) and the
corresponding power production (right) of each turbine. It can be seen that the AMPC reduces the energy
extraction of the upwind turbine to increase the kinetic energy of the inflow reaching the downstream
turbine. The downwind turbine performs almost at the greedy control setting to capture the most possible
energy from the incoming wind. The induced optimal induction factors almost converge to the grid search
solution, computed offline for this specific atmospheric condition. The existing discrepancy might be
related to the small errors in the computation of the gradient or the relatively large tolerances, determined
to keep the optimization computationally inexpensive.

4.2.2. Case study 2: Partial wake interactions A rotor disc must precisely face the wind to deliver
its maximum power output. However, wind turbines might be misaligned in reality due to the wind
direction sensor inaccuracies or delay in the wind direction tracking. Yaw misalignment results in both
wind turbine power losses and additional dynamic loads. In the wind farm level, yaw misalignment
of the upwind turbine can redirect its wake downstream and consequentely affect the performance of
the downwind turbine. We investigate here the performance of the AMPC while the inflow direction is
misaligned 10◦ with respect to the rotor discs (see right image of Fig. 3). The main goal here is to assess
the performance of the proposed approach in a different operating condition.
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Figure 7 shows the total power production for our example with 10◦ yaw misalignment, operating
with different control strategies. The power outputs are normalized with respect to the total power of the
greedy control setting with full wake interactions (see Fig. 5). Note that the total power production is
increased here due to the upwind turbine misalignment, which tends to redirect its own wake away from
the downwind turbine. In other words, the turbines interactions through wakes are reduced and more
kinetic energy reaches the downstream turbine, compared with the case study 1.

As expected, the obtained optimal control setting aopt = [0.225,0.305] would not be advantageous
anymore for this new wind farm operating condition (green dashed plot). Compared with the greedy
control setting, the power gain of the downstream turbine is almost the same as the power loss of the
upwind turbine. This control setting might be interesting in optimal load distribution, which is out of
the focus of this paper. Nonetheless, it can be seen that the AMPC is capable of maximizing the energy
extraction of the wind farm dynamically in this new operating wake condition.
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Figure 7: Total power production with 10◦ yaw misalignment, normalized with respect to the greedy control
setting with fully wake interactions. (prediction horizon Np =600 s, control horizon Nu =100 s.
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Figure 8: (left) The induction factor, (right) the power production of the individual wind turbines for different
simulation cases, with ambient wind U∞ =10 m/s and yaw misalgnment 10◦. The power production is normalized
with respect to the total power of the greedy control with fully wake interactions.

Finally, Figure 8 illustrates the time-varying behaviour of the axial induction factor (left) and the
corresponding power production (right) of each turbine, for all three control concepts. The noticeable
power increases of the downwind turbine (green curves) are referred to the partail wake interactions
due to the yaw misalignment. Note that the grid search control settings are obtained for fully wake
interactions case study (left image of Fig. 3). Thus, the time-varying atmospheric conditions demand
a dynamic closed loop wind farm control. It can be seen that the AMPC regulates the optimal power
extraction of the turbines by taking the induced aerodynamic interations of wind turbines into account.
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5. Conclusions and future work
A predictive control framework is proposed for optimal energy extraction of wind farms. The
optimization problem is constrained to a two dimensional wind farm model. The adjoint method
is employed to find the proper search direction with respect to the specified performance index, i.e.
the total power of a wind farm at a finite time interval. The optimal solutions are searched at each
control horizon, which provides the feedback into the optimization problem. Hence, contrary to the
open-loop approaches, the proposed control framework would be able to improve the performance
against the time-varying atmospheric or operating conditions. The effectiveness of the AMPC is studied
through simulations for two different wind farm operating conditions, compared with the greedy control.
Simulation results show that the proposed approach is able to find dynamically the optimal wind turbine
control settings. In the future, we evaluate the performance of the AMPC to decrease the wake-induced
power-loss and load under time-varying environmental conditions, e.g. wind direction changes and wake
meandering. The aeroelastic model of the wind turbine will be included and the control variables will be
extended to the practical wind turbine control settings, e.g. pitch, rotor speed and yaw. Furthermore, the
computational effort and applicability of the controller will be studied more from practical perspectives.
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[13] Boersma S, Vali M, Kühn M and van Wingerden JW 2016 Quasi linear parameter varying modeling for wind farm control

using the 2D Navier-Stokes equations Proc. Conf. on American Control Conference p 4409.
[14] Boersma S, Gebraad PMO, Vali M, Doekemeijer BM and van Wingerden JW 2016 A control-oriented dynamic wind farm

flow model: ”WFSim” Journal of Physics: Conference Series (in press).
[15] Doekemeijer BM, van Wingerden JW, Boersma S and Pao LY 2016 Enhanced kalman filtering for a 2D CFD NS wind

farm flow model Journal of Physics: Conference Series (in press).
[16] Versteeg HK and Malalasekera W 2007 An introduction to computational fluid dynamics: The finite volume method.

Pearson, Prentice Hall.
[17] Bianchi FD, Battista HD and Mantz RJ 2007 Wind turbine control systems; Principals, Modeling and Gain Scheduling

Design. Springer-Verlag London.
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