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Background: Enteric methane from cow burps, which results from microbial

fermentation of high-fiber feed in the rumen, is a significant contributor to

greenhouse gas emissions. A promising strategy to address this problem is

microbiome-based precision feed, which involves identifying key microorganisms

for methane production. While machine learning algorithms have shown success

in associating human gut microbiome with various human diseases, there have

been limited e�orts to employ these algorithms to establish microbial biomarkers

for methane emissions in ruminants.

Methods: In this study, we aim to identify potential methane biomarkers for

methane emission from ruminants by employing regression algorithms commonly

used in human microbiome studies, coupled with di�erent feature selection

methods. To achieve this, we analyzed the microbiome compositions and

identified possible confounding metadata variables in two large public datasets

of Holstein cows. Using both the microbiome features and identified metadata

variables, we trained di�erent regressors to predict methane emission. With the

optimized models, permutation tests were used to determine feature importance

to find informative microbial features.

Results: Among the regression algorithms tested, random forest regression

outperformed others and allowed the identification of several crucial microbial

taxa for methane emission as members of the native rumen microbiome,

including the genera Piromyces, Succinivibrionaceae UCG-002, and Acetobacter.

Additionally, our results revealed that certain herd locations and feed composition

markers, such as the lipid intake and neutral-detergent fiber intake, are also

predictive features for methane emissions.

Conclusion: We demonstrated that machine learning, particularly regression

algorithms, can e�ectively predict cow methane emissions and identify relevant

rumen microorganisms. Our findings o�er valuable insights for the development

of microbiome-based precision feed strategies aiming at reducing methane

emissions.

KEYWORDS

rumen microbiome, enteric methane, ruminants, machine learning, regression, feature

selection, precision animal feed

1 Introduction

Cattle production emits an excessive amount of greenhouse gas (GHG). Strikingly, cow

enteric methane emissions alone can account for 3.3% of total anthropogenic greenhouse gas

(GHG) emissions and therefore are significant contributors to global warming (Knapp et al.,

2014). The main GHG in cow enteric emissions is methane (CH4), which is produced by
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microbial fermentation of high-fiber feed in the rumen, the

digestive center in ruminants. The rumen microbiome is

a complex community comprising thousands of different

microorganisms, including bacteria, archaea, fungi, and protozoa.

These microorganisms play a crucial role in breaking down

indigestible polysaccharides into volatile fatty acids (e.g., acetate,

butyrate, and propionate), which serve as essential energy source

for their ruminant host animals. This microbial fermentation

process also generates by-products such as carbon dioxide (CO2),

hydrogen (H2), and methyl compounds (Jouany, 1991), which

can be utilized by methanogens, a group of anaerobic archaea

in the rumen microbiome, to produce methane. The dominant

methanogen genera in ruminants include Methanobrevibacter,

Methanosphaera, and Methanomassiliicoccus (Jeyanathan et al.,

2011).

To reduce methane emission in ruminants, microbiome-based

precision feed has been proposed as a promising strategy (Huws

et al., 2018; Goopy, 2019; Smith et al., 2022). Microbiome-based

precision feed involves optimizing animal feed to modulate

rumen microbiome compositions and functions to inhibit

methanogenesis. However, the development of microbiome-

based precision feed relies on our understanding of the rumen

microbiome. Specifically, the microorganisms that are involved

in methanogenesis need to be identified. To achieve this, aside

from archaea, which can be direct methane producers, different

studies have associated the abundance of bacteria, fungi, and

protozoa with methane emissions. These studies typically use

statistical tests (e.g., t-tests) and linear methods (e.g., partial

least squared regression and linear mixed model) to identify

microbes that are significantly different in abundance between

cows with distinct emission profiles, e.g., high vs. low emitters

(Wallace et al., 2015; Kamke et al., 2016; Difford et al., 2018;

Ramayo-Caldas et al., 2020). However, such methods may not

be adequate to capture the nonlinearity and complexity in the

microbiome data (Quinn et al., 2021). In addition, because of

the high dimensionality in microbiome data, the reported list of

associated taxa in previous studies can be unworkably long. For

example, using statistical analysis, a recent study reported 395

taxa that were significantly correlated with methane emissions

(Savin et al., 2022). Last but not least, some studies fail to account

for biological variables such as animal physiology and the living

environment when examining the relationship between the rumen

microbiome and methane emission. These variables, which are

interconnected with rumen microbiome and methane emission,

should be included in the model. A conceptual visualization of the

interconnected relationships of feed, rumen microbiota, animal

physiology, herd location and methane emission can be found

in Figure 1.

Recently, an increasing number of human microbiome studies

have successfully utilized machine learning (ML) algorithms

to select relevant microbial features to predict human diseases

(Marcos-Zambrano et al., 2021). ML algorithms have several

important advantages over traditional statistical methods: (i)

ML-based feature selection methods can reduce the dimensionality

in microbiome data to prevent overfitting compared to traditional

statistical tests and linear models, (ii) ML models such as

support vector machines (SVM), k-nearest neighbors (KNN),

and random forest (RF) can handle nonlinear relationships

in the data, (iii) evaluating model performance is relatively

straightforward because ML models are predictive models, and (iv)

the prioritization of important microbial features is straightforward

with the optimized models. Despite these advantages,

no previous studies have systematically investigated ML

algorithms to facilitate our understanding of methane emissions

in cows.

In this paper, we aim to address this gap by benchmarking

commonly-used feature selection methods and regression

algorithms, which have proven useful in human microbiome

studies, to identify microbial biomarkers for methane emissions of

Holstein cows. To this end, we taxonomically analyzed two large

rumen microbiome datasets, corrected for existing batch effects

and identified biological host metadata variables that can influence

methane emission, including the herd location, lactation stage, and

the individual intake of different feed compounds. Subsequently,

we benchmarked four common feature selection methods and

six regressors to predict methane emission based on the rumen

microbiome compositions and the host biological metadata. The

hyperparameters of these regressors and the feature selection

methods were optimized through a bootstrap sampling strategy

and 10-fold cross-validation with 100 repetitions. Afterward, we

investigated the important features in the optimized model to

identify the important microbial features for methane emission.

Our study provides a systematical evaluation of different ML

regression algorithms for methane emission prediction in Holstein

cows. Our findings in the feature importance test will contribute to

the development of microbiome-based precision feed to reduce the

environmental impact of the livestock industry.

2 Materials and methods

2.1 Datasets

Two large rumen amplicon sequencing datasets from Difford

et al. (2018) and Wallace et al. (2019) with methane emission

(g/d) metadata were retrieved under ENA Project Accession

ERP110230 and PRJNA517480, respectively. In the rest of the

manuscript, these two datasets are referred to as the “Difford

dataset” and the “Wallace dataset,” respectively. The amplicon

sequencing samples with missing metadata were excluded in our

study, resulting in a total of 713 Holstein cows from the Difford

dataset and 816 cows from theWallace dataset. The Difford dataset

only measured archaea and bacteria for the rumen microbiome,

while the Wallace dataset profiled archaea, bacteria, fungi, and

protozoa. For technical metadata variables, the Difford dataset

documented the sequencing instrument and sequencing batch for

each microbiome sample. The Wallace dataset recorded the feed

intake methods and methane emission measurement methods.

As for biological metadata variables, we only considered those

potential confounding factors based on literature, which should

also have no missing data in the datasets, i.e., herd location and

lactation stage for cows. Additionally, the Wallace dataset recorded

the intake information of several feed compositions for each

animal, including dry matter (DM), organic matter (OM), crude

protein (CP), NDF (neutral-detergent fiber), lipid, acid insoluble

ash (AIA), and starch.
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FIGURE 1

The interconnected relationships of feed, rumen microbiome, animal physiology, herd location, and methane emission. In microbiome-based

precision feed, ruminants consume optimized feed that mediates the rumen microbiome compositions, which in turn modulate the enteric methane

emission. Besides mediating the rumen microbiome, the feed can also directly influence methane emissions. Animal physiology such as the lactation

stage of the animal and the living environment can also influence both the rumen microbiome and the methane emission of the ruminants.

2.2 Methods

An overall workflow from the taxonomic composition analysis,

batch correction, feature table generation, feature selection, and

regressor optimization and permutation feature importance can be

found in Figure 2. The details of each step are described below.

2.2.1 Taxonomic analysis of the rumen
microbiome

For both the Difford dataset and Wallace dataset, FastQC

v0.11.7 (Andrews et al., 2010) and Trimmomatic v0.39 (Bolger

et al., 2014) were used to assess the data quality and to trim

low-quality bases. Next, Kraken2 v2.1.2 was used to profile the

taxonomic compositions in all microbiome samples at genus-level

OTUs (Wood et al., 2019) using the SILVA release 138.1 (Quast

et al., 2012). The less frequent OTUs that showed up in<50% of the

animals in each dataset were filtered out. The raw counts of OTUs

were transformed into relative abundance.

To investigate the potential of combining the samples from

both datasets, we additionally created amerged dataset that consists

of shared genus-level OTUs by the two original datasets, referred to

as the “Merged dataset.” Likewise, less frequent OTUs that showed

up in<50% of the animals were filtered out and relative abundance

was calculated.

2.2.2 Identification and correction of batch
e�ects in rumen microbiome

To identify the possible bias introduced by technical factors, we

performed a dimension reduction using UMAP from the Python

library umap-learn v0.5.3 (McInnes et al., 2018) to visualize how

technical factors correlate with microbiome batch effects. As a

result, we used Combat from Python library pyComBat v0.4.4

(Johnson et al., 2007) to correct for the existing batch effects and

visualized the corrected outcomes.

Since some of the used regressors in our downstream analysis

assume a Gaussian distribution of the data, we normalized the

batch-corrected OTUs in all datasets using z-score normalization.

2.2.3 Transforming confounding biological
metadata variables

Existing studies have shown that herd location, lactation stage,

and feed intake composition can influence methane emission from

cows (Gibbs et al., 1989; Cottle et al., 2011; Lyons et al., 2018). To

confirm their possible confounding effects in our data, we tested

their correlation with methane emission. In particular, we used

the Kruskal–Wallis test to test if there is a significant difference in

methane emission between different groups of herd location and

lactation stage. For the numerical variables of feed composition

intake in the dataset Wallace, we performed a pairwise Spearman

correlation and a following two-tailed t-test. All p-values were

adjusted using Bonferroni correction to control the type I errors

for multiple testing. The categorical host variables that were tested

to be significant were one-hot encoded and the numerical variables

were normalized by z-score normalization for further analysis.

2.2.4 Feature table and target generation
To investigate the predictive power of microbiome and

biological metadata for methane emission (i) separately, and

(ii) jointly; we created three feature tables for each dataset: one

with only microbiome compositions, one with only metadata
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FIGURE 2

The general workflow. After amplicon sequencing of rumen microbiome samples from rumen content extracts, the workflow begins with taxonomic

composition analysis. After the taxonomic assignment and relative abundance transformation, batch correction is applied to remove technical

variations in the microbiome data. Later, the microbiome features were obtained after normalization of each batch corrected OTU. The confounding

biological metadata variables were identified by statistical tests. With microbiome and metadata features alone and in combination, we optimized six

regression models and the corresponding feature selection method to predict methane emission from individual cows through a stratified bootstrap

sampling strategy and 10-fold cross-validation with 100 repetitions. In the end, we calculated permutation feature importance to understand how

the optimized algorithms leverage di�erent features to predict methane emission and identify the important microbial features.

variables, and another that included both microbiome features

and metadata variables. The tables were named according to the

dataset and feature they contained, i.e., “Difford: microbiome,”

“Difford: metadata,” “Difford: microbiome+metadata,”

“Wallace: microbiome,” “Wallace: metadata,” “Wallace:

microbiome+metadata,” “Merged: microbiome,” “Merged:

metadata,” and “Merged: microbiome+metadata.”

2.2.5 Optimizing feature selection methods and
prediction models

To predict methane emission based on the feature tables

generated across all datasets, we built a machine learning pipeline

that included four common feature selection methods and six

regression models, using the Python library scikit-learn v1.3.0

(Pedregosa et al., 2011). The included feature selection methods

were f-statistics, lasso regression feature importance, mutual

information and random forest feature importance. The six

regression models include linear regression, linear support vector

regressor (linear SVR), elastic net regression, kernel support vector

regressor (kernel SVR), K-Nearest Neighbor regression (KNN

regression), and random forest regression (RF regression).

To find the best strategy to predict methane emission, the

samples in all tables were split into training and test sets (80:20)

by a bootstrap sampling strategy with 100 repetitions. The

ranges or values for different hyperparameters in each regression

algorithmwere listed in Supplementary Table 1. To find the optimal

hyperparameters for each regression model in each training

set, we used Bayesian optimization provided by Optuna (Akiba

et al., 2019) with a 10-fold cross-validation strategy. The feature

selection method optimization was nested into the cross-validation

procedure. The evaluation metric was r2 score. With the optimized

feature selection method and hyperparameters for each regression

model, we assess the model performance by the according test sets.

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1308363
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Peng et al. 10.3389/fmicb.2023.1308363

FIGURE 3

Relative abundance of ten most abundant genus-level OTUs. (A) In the Di�ord dataset. (B) In the Wallace dataset. (C) In the Merged dataset. The

x-axis shows the relative abundance and the y-axis displays the genus names. The genus-level OTUs were ranked by the median relative abundance

across all samples in each dataset.
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2.2.6 Permutation feature importance calculation
To understand how the optimized algorithms leverage both

microbiome and metadata features to predict methane emission

during the test, we performed feature permutation importance

tests for each feature with 100 repetitions. The resulting model

performance decrease was measured to assign an importance score

to each feature.

The microbiome features for which the permutation led to an

r2 decrease>0.01 were considered important microbial biomarkers

for methane production. We further visualized the relationship

between the transformed abundance of these important genera and

methane emission in the corresponding dataset. If the relationship

appears to be monotonic, to gain quantitative insight, a pairwise

Spearman correlation coefficient was calculated, followed by a

two-tail t-test.

3 Results

3.1 Taxonomic profiling of 1,529 rumen
microbiomes

To assess the metagenomic diversity across the two data

collections in our study, we taxonomically profiled the samples

with complete metadata in both Difford (n = 713) and Wallace (n

= 816) datasets on the genus level. A merged dataset was created

from the shared OTUs from the two original datasets. The low-

occurrence OTUs in each dataset were filtered out prior to further

analysis. In all datasets, these removed OTUs accounted for <0.5%

of reads on average across the samples. As a result, in the Difford

dataset, we acquired 429 genus-level OTUs (415 bacterial and 14

archaeal), while in theWallace dataset, we obtained 163 genus-level

OTUs (150 bacterial, 7 archaeal, 11 protozoan, and 5 fungal). The

Merged dataset comprised 182 genus-level OTUs (176 bacterial and

6 archaeal).

Figure 3 provides an overview of the ten most abundant OTUs

in each dataset, ranked by the median of their relative abundance

across all samples. As shown, notably, Methanobrevibacter

and Methanosphaera, two hydrogenotrophic methanogens, were

among the ten most abundant OTUs in all three datasets. In the

Merged dataset, Methanimicrococcus, another hydrogenotrophic

methanogen, was the tenth most abundant OTU.

3.2 Batch e�ects in the profiled rumen
microbiome data were addressed

After the normalization of individual OTUs gained in the

taxonomic profiling, we visualized potential batch effects in each

dataset using dimensionality reduction by UMAP. As shown

in Supplementary Figure 1A, we observed that the sequencing

batches and sequencing machines introduced obvious batch effects

in the Difford dataset. After removing the batch effects on

the level of the sequencing batch, we were able to remove

the variation between all the batches (Supplementary Figure 1B).

Similarly, we also identified batch effects in the Wallace dataset,

as demonstrated in Supplementary Figure 1C. To understand

what factors introduced the batch effects, we examined all the

TABLE 1 Kruskal–Wallis test for associating herd location and lactation

stage with methane emission (g/d) across all datasets.

Datasets Statistics Herd
location

Lactation
stage

Difford dataset

Chi2 30.86 10.59

df 5 2

p <0.001 0.012

Wallace dataset

Chi2 349.85 0.71

df 4 2

p <0.001 0.702

Merged dataset

Chi2 531.05 11.16

df 10 2

p <0.001 0.012

The p-values were adjusted with Bonferroni correction.

recorded metadata variables but unfortunately, none correlated

with the apparent pattern. Accordingly, we corrected the batch

effects for the two distinctly separable clusters, named “Unknown

cluster 1” and “Unknown cluster 2” and the batch effects were

alleviated (Supplementary Figure 1D). In the Merged dataset, as

anticipated, we observed similar batch effect patterns as in the

two original datasets, as plotted in Supplementary Figure 1E. After

batch correction, the dissimilarity among different batches from the

two datasets decreases noticeably (Supplementary Figure 1F).

3.3 Metadata variables are significantly
associated with methane emission

To confirm that we should include the recorded biological

metadata factors that could have confounding effects into

regression, we investigated their relationships with methane

emission in our datasets.

Initially, we investigated the impact of herd location and

lactation stage in methane emission levels. Using a Kruskal–

Wallis test, we identified a significant association between the herd

location and methane emission (p < 0.001) in all three datasets:

Difford, Wallace, and Merged (Table 1). For the lactation stage,

such association was significant in the Difford andWallace dataset.

These findings indicate that these two variables indeed could have

confounding effects. Therefore, in further analysis, we one-hot

encoded the herd location as metadata features in all datasets and

the lactation stage in the Difford and Merged dataset.

Aside from the Kruskal–Wallis test, we also visualized the

methane emission distribution across the two categorical variables:

herd locations and lactation stages. Notably, as shown in

Supplementary Figure 2, animals from specific herd locations, such

as “Herd 5” in the Difford dataset and “Herd IT1” in the Wallace

dataset, stood out by having either higher or lower methane

emitters. Given the seemingly large impact of herd location on

methane emission, we stratified the later train-test split in the ML

pipeline to generate representative test sets.

To identify significant correlations between the intake of feed

components recorded exclusively in the Wallace dataset with
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animal methane emission, we calculated the pairwise Spearman

correlation coefficients and conducted the corresponding two-

tailed t-test. The resulting coefficients and adjusted p-values in

Table 2 indicate a positive correlation between the feed intake

(kg/d) of dry matter (DM), organic matter (OM), crude protein

(CP), and neutral-detergent fiber (NDF) with methane emission

(g/d). Conversely, the intake of lipid (kg/d) was negatively

associated with animal methane emission (g/d).

Based on these results, in further analysis of theWallace dataset,

we included the normalized intake values of these feed components

as metadata features in regression.

3.4 RF regression performed best in
unseen test data

To investigate the efficacy of rumen microbiome and metadata,

both alone and in combination, to predict methane emission,

we optimized the feature selection method and parameters of

all regressors using only microbiome features, metadata features,

or a combination of both. The feature table used for each

dataset under each condition and the corresponding methane

emission table for feature selection and regression can be found

in the Supplementary Tables 2, 3. The generated feature tables

and the corresponding methane emission table can be found in

the Supplementary Tables 2, 3. Model optimization was performed

through a bootstrap sampling strategy and 10-fold cross-validation

with 100 repetitions. After optimization, we tested the model

performance on the corresponding test sets. For each regression

model, the average achieved test performance and standard

deviation was plotted in Supplementary Figure 3.

Based on these results, we observed that when microbiome

features were used, whether alone or together with other biological

metadata variables, non-linear regressors such as KNN regression

and RF regression consistently outperformed linear regressors.

On the other hand, when relying solely on metadata variables,

the performance from linear models and non-linear models was

similar. In general, RF regression demonstrated superior average

performance in all datasets, except for the “Merged: microbiome”

dataset, where KNN regression showed a marginal advantage.

Specifically, when using both rumen microbiome and metadata

variables, RF regression achieved an average r2 of 0.26, 0.56, 0.42

for the Difford, Wallace, and Merged datasets, respectively in the

unseen test sets. As a result, we selected RF regression as the final

regression model for further analysis.

3.5 Merging the datasets improve the
predictive power from microbiome

From the test performance of RF regression (Figure 4), we

observed that in the Difford and Wallace datasets, the use of

metadata features led to slightly better performance compared to

using both metadata and microbiome features. In essence, when

these two datasets were analyzed in isolation, the addition of

microbiome features on top of metadata features did not improve

the methane emission prediction.

However, in the Merged dataset, when using microbial features

and metadata variables separately, RF regression achieved average

r2 scores of 0.26 and 0.39, respectively. When using these features

jointly, RF regression achieved 0.42, a higher average r2, in the

unseen test sets. This indicates that merging the datasets was

an essential step for RF regression to effectively learn from the

microbiome.

3.6 Microbial biomarkers for methane
emission: Piromyces, Succinivibrionaceae
UCG-002, and Acetobacter

To understand how RF regression leverage both microbiome

and metadata features to predict methane emission, we examined

feature permutation importance, using the RF regression

model that achieved the highest test performance in “Difford:

microbiome+metadata,” “Wallace: microbiome+metadata,” and

“Merged:microbiome+metadata.” The permutation for each

feature was repeated 100 times to gain a comprehensive evaluation.

The top 10 important features in each dataset, which were ranked

based on the mean importance score, were plotted in Figure 5.

Regarding the Difford dataset, in the examined RF regression

model, 95 features were chosen by lasso-based feature selection,

the optimized feature selection method. However, as plotted in

Figure 5A, except for the “Herd 5,” the permutation of all the other

features led to a decrease in r2 of <0.01. In the Wallace dataset,

based on the mutual information score, the optimized selection

method, 10 features were used for regression. The permutation test

identified seven features that resulted in an r2 decrease greater than

0.01: Herd IT1, Herd IT 2, Piromyces, lipid intake, NDF intake, DM

intake, Succinivibrionaceae UCG-002 (Figure 5B). Similarly, for the

Merged dataset, the permutation test identified five important

features in the optimized model: Herd IT1, Acetobacter, Herd 5,

Herd UK1 and Succinivibrionaceae UCG-002 (Figure 5C).

To further understand why the identified microbial features

were considered important, we plotted the relationship between

their relative abundance with methane emission in their respective

datasets (Supplementary Figure 4). As presented, Piromyces

appears to have a positive association with methane emission.

The resulting Spearman correlation coefficient is 0.28 (p < 0.001).

The transformed abundance of Succinivibrionaceae UCG-002 and

Acetobacter seem to form non-monotonic non-linear relationships.

4 Discussion

Our analysis revealed several microbial biomarkers for

methane emission from Holstein cows, including Piromyces,

Succinivibrionaceae UCG-002, and Acetobacter.

Piromyces is estimated to be the most abundant genus of

anaerobic fungi in the rumen microbiome (Paul et al., 2018).

Experiments have shown that Piromyces can effectively degrade

glucose and a wide range of plant biomass, including cellulose,

crude C3, and C4 bio-energy crops (Solomon et al., 2016). The
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TABLE 2 Spearman’s correlation coe�cients between feed composition intake (kg/d) with methane emission (g/d) in the Wallace dataset.

Datasets Statistics DM OM CP NDF Lipid AIA Starch

Wallace dataset
Coefficient 0.25 0.25 0.31 0.3 −0.12 0.02 −0.04

p <0.001 <0.001 <0.001 <0.001 <0.001 0.635 0.496

The p-values were adjusted with Bonferroni correction.

FIGURE 4

The r2 random forest regression (RF regression) achieved across Di�ord, Wallace, and Merged datasets in test. Within each dataset, the random forest

regression was optimized with features under either of three conditions: “microbiome” only, “metadata” only, or “microbiome + metadata” jointly.

The error bars represent the standard deviations of the achieved test performance across 100 repetitions in the outer loop.

produced metabolic products, such as H2, CO2, and formate,

can be used by methanogens to produce methane (Sirohi et al.,

2010). Natural co-cultures of Piromyces and Methanobrevibacter,

a common genus of methanogenic archaea, have been found in

different ruminants, including Holstein cows (Jin et al., 2011; Leis

et al., 2014; Sun et al., 2014; Li et al., 2017). Therefore, it is not

surprising that Piromyces was an important feature in predicting

methane emissions based on our findings. We have shown further

that there is a low and positive association between the abundance

of Piromyces and methane emission in our data, in alignment with

the existing knowledge.

Succinivibrionaceae UCG-002 belongs to the bacterial family

Succinivibrionaceae, which is known for the ability to produce

succinate from substrates like hydrogen (Lee et al., 1999), which

is also needed for methanogens to produce methane. In previous

studies, an increased abundance of Succinivibrionaceae UCG-002

has been associated with low methane emission in ruminants (Wei

et al., 2022). Similar negative associations were also established

between the family Succinivibrionaceae and methane production

(Wallace et al., 2015). However, statistical tests that were used to

identify such correlation are not able to handle the complex non-

linear relationships as shown in our results. In contrast, our analysis

showed that the relationship between Succinivibrionaceae UCG-

002 and methane emission is rather complex, instead of a simple

negative association.

Acetobacter, an acetogen genus identified in the Merged dataset

is characterized by its ability to produce acetate by oxidizing sugars

(Balch et al., 1977). According to Lyons et al. (2018), a small

amount of oxygen can be infused into the rumen fluid during

feeding, drinking, or rumination. Such oxygen can be utilized

by Acetobacter, which might lead to an anaerobic environment

that promotes the growth of anaerobic archaea, such as most

of methanogens. Previously, using statistical tests, Cunha et al.

(2019) reported a positive association between the abundance

of Acetobacter and methane production by heifers. However,

similarly, though Acetobacter was also considered an important

feature for methane prediction in our study, the direction of

association was more complex according to our findings.

Our results indicated that certain herd locations were highly

predictive features for methane emission. Animals from a few

locations had notably high or low methane production conditions,

which may be due to the fact that herd location encompasses many

other variables, such as unmeasured dietary compositions, living

environment, climate, husbandry regime, and genetic background

of the host animals. Similar findings have been established in

humans and other animals (Gomez et al., 2015; Van Treuren et al.,

2015; Mobeen et al., 2018; Goertz et al., 2019). Unfortunately, with

the available data in our study, it is impossible to determine the

fundamental differences between herds.

When available, feed composition intake such as lipid intake,

neutral-detergent fiber intake, and dry matter intake were also

important for predicting methane emission. Dry matter intake

(DMI) is the feed intake when the water content is excluded.

The positive relationship between DMI and methane emission has

been well-established for a century (Lakamp et al., 2022). This

relationship can be succinctly explained: as ruminants consume

higher quantities of dry matter, there are more substrates available

for microbial fermentation, consequently leading to increased

methane production. The mitigation effect of lipids for methane

production is also known. Lipid supplementation has been
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FIGURE 5

The top-10 important features during the test based on the decrease in r2 score in permutation tests. (A) In the Di�ord dataset. (B) In the Wallace

dataset. (C) In the Merged dataset. The error bars represent the standard deviations of the decrease in r2 scores across 100 repetitions of permutation

tests of each feature. The microbiome features are indicated by the color yellow, while metadata features are represented by blue.
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reviewed as a potential strategy to reduce methane emissions from

ruminants (Beauchemin et al., 2008; Hook et al., 2010; Knapp

et al., 2014). As for neutral-detergent fiber (NDF), Hatew et al.

(2016) previously reported a reduced CH4 emission with increased

maturity of whole-plantmaize, which has a decreasedNDF content.

Our results confirmed that these feed compositions are important

for cow methane emission.

In the regression task, random forest regression (RF regression)

exhibited superior performance during testing compared to other

regression algorithms, especially linear regressors. The decreasing

performance in the Difford and Wallace datasets from adding

microbiome on top of biological metadata features suggests that

adding microbial features does not always improve the prediction

outcomes. This could be attributed to the increased dimension

of search space and the complexity of the problem, which might

overweight the added value from microbial features. However, RF

regression was able to overcome this problem and learn from the

microbial features, demonstrated by our results in the Merged

dataset. These findings underscore the complex nature of the

methane emission prediction problem.

Future research should decompose the compound variable

“herd location” and pinpoint the actual differences between

different herds from different farms or geographical locations.

Moreover, evaluating the emission mitigation potential Piromyces,

Succinivibrionaceae UCG-002 andAcetobacter throughmodulation

with dietary intervention is promising.

In conclusion, in this paper we identified three methane

microbial biomarkers in the rumen microbiome: Piromyces,

Succinivibrionaceae UCG-002, and Acetobacter. We also showed

that herd location is a dominant feature for predicting methane

emissions. Feed composition intake, such as DM intake, lipid

intake and NDF intake were predictive as well. The superior

performance of RF regression and later visualization indicated

that the relationship between microbial OTU abundance and

methane production could be non-linear. Overall, we showed

that supervised machine learning can identify potential microbial

markers for cow methane emission, similar to its use in human

microbiome studies. Our findings of important microbial features

can facilitate the design of microbiome-based precision feed to

reducemethane emissions from ruminants and alleviate the climate

crisis.
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