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FedNaWi: Selecting the Befitting Clients for
Robust Federated Learning in IoT Applications

Ran Zhu*, Mingkun Yang*, Jie Yang, and Qing Wang
Delft University of Technology, The Netherlands

{r.zhu-1, m.yang-3, j.yang-3, qing.wang}@tudelft.nl

Abstract— Federated Learning (FL) is an important privacy-
preserving learning paradigm that is expected to play an essential
role in the future Intelligent Internet of Things (IoT). However,
model training in FL is vulnerable to noise and the statistical
heterogeneity of local data across IoT clients. In this paper, we
propose FedNaWi, a “Go Narrow, Then Wide” client selection
method that speeds up the FL training, achieves higher model
performance, while requiring no additional data or sensitive
information transfer from clients. Our method first selects
reliable clients (i.e., going narrow) which allows the global model
to quickly improve its performance and then includes less reliable
clients (i.e., going wide) to exploit more IoT data of clients to
further improve the global model. To profile client utility, we
introduce a unified Bayesian framework to model the client utility
at the FL server, assisted by a small amount of auxiliary data. We
conduct extensive evaluations with 5 state-of-the-art FL methods,
on 3 IoT tasks and under 7 different types of label and feature
noise. We build an FL testbed with 38 IoT nodes (20 nodes
run on Raspberry Pi 4B and 18 nodes run on Jetson Nano)
for the evaluation. Our results show that FedNaWi improves
the FL accuracy substantially and significantly reduces energy
consumption. In particular, FedNaWi improves the accuracy
from 35% to 75% in the non-IID Dirichlet setting, and reduces
the average energy consumption by 55%.

I. INTRODUCTION

Thanks to the Internet of Things (IoT) and the evolutions

of onboard sensory and computing capabilities, our world now

has tens of billions of IoT devices deployed for various tasks.

They usually upload the data to servers where advanced

techniques such as deep learning can be leveraged to perform

tasks. However, uploading raw/processed data to cloud/edge

servers raises privacy issues [1]. Federated learning (FL), a

distributed training paradigm, is thus proposed to preserve

privacy. A cloud/edge server coordinates the local training of

devices (i.e., clients) where clients only report weights of their

local models to the server in a federated fashion, and FL learns

global model gradually by aggregating clients’ weights in each

round. The required number of rounds varies with exact tasks,

data quantity, quality and distribution, targeted accuracy, etc.

In conventional FL methods such as FedAvg [1], the server

randomly selects a pre-defined number of clients in each round

and aggregates their updated local weights. The selection holds

the assumption that clients contribute equally to the training

of the global model, which is further described as the implicit

assumption that all clients are reliable in that data for local

training is of high quality. In real applications, however, such

*Both authors contributed equally to this work.
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Fig. 1: Illustration of the negative impact of noisy IoT clients.

an assumption usually does not hold: studies have reported that

existing datasets could easily contain more than 30% label
errors [2, 3]; the issue is further complicated by the non-IID

(identically and independently distributed) data distributions

across clients. These issues have a significant effect on the

model performance. To illustrate such an effect, without loss

of generality, we show the dynamics of FL performance

throughout the training process on the CIFAR10, in a noisy

and non-IID setting: each client holds 2 classes of data with

an overall 16.5% labels corrupted (cf. Section IV-A for more

details). As shown in Figure 1, we can observe the following:
• Observation 1: unreliable clients slow the learning of

the global model and reduce its accuracy. When there

are erroneous samples in clients’ local data, the maximal

achieved accuracy is reduced from about 48% (curve �)

to 44% (curve �). Such drops are usually considered

significant in image recognition. Besides, when there

are unreliable clients, the number of rounds required

to obtain a certain accuracy is significantly prolonged.

Taking a targeted accuracy of 44% for example, the

required number of rounds goes from less than 50 to at

least 200, leading to a factor of 4×.

• Observation 2: selecting only clients with inerrant
data accelerates the learning speed of the global model
but does not improve model performance. Considering

scenarios where label noise is present, we observe at

the early stage of training, FL shows better performance

when the server only aggregates weights from inerrant

clients (curve � “OnlyIC w/ noise”) compared with

that when updates from all clients are aggregated (curve

�). Selecting inerrant clients, therefore, allows to reach

relatively high accuracy within fewer rounds. The global

model performance however does not benefit from ex-

cluding unreliable clients in the long run: the learning

1
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curve starts to drop after 100 rounds, which is likely due

to model over-fitting on the limited data volume.

• Observation 3: unreliable clients still contribute to
learning a more accurate global model. Interestingly,

we observe although noisy clients slow the convergence

of the learning curve, they actually contribute to learning

a better global model in the long run. This can be seen in

the figure (comparing � with �): after 100 rounds, the

accuracy of FedAvg trained with all clients is higher than

that with only inerrant clients. We speculate the global

model benefits from the larger volume of training data.

The above observations further hint on how to properly

select clients for training the global model at the FL server.

Ideally, the learning curve in the context of noisy-data sce-

narios should first increase sharply to a certain accuracy by

an elaborate selection of reliable clients for aggregation (i.e.,

going narrow), and then take a gentle slope to reach a higher

accuracy by a broad selection of clients to include less reliable

ones for aggregation (i.e., going wide). In FedNaWi, we target

such a learning curve of the global model for robust FL.

To achieve this goal, a key challenge is how to adaptively

select suitable clients when training proceeds. An important

criterion of the selection should be the utility of clients which

can reflect the quality of their local data. It is, however,

nontrivial to infer such utility due to the lack of accessibility to

local data. Therefore, A key problem is how to infer client util-

ity without compromising privacy. To tackle this, we propose

to introduce high-quality, auxiliary data for utility estimation.

Such data shouldn’t be large due to extra cost incurred for data

collection. This poses another challenge in how to effectively

infer client utility with limited auxiliary data. To address this

issue, we explore two complementary strategies to exploit the

auxiliary data for client utility inference: 1) creating synthetic

clients based on auxiliary data to build a discriminator that

distinguishes reliable clients from unreliable ones based on

their weight parameters, and 2) evaluating the performance of

local models as an indicator of client utility. We propose a

unified Bayesian framework that seamlessly integrates these

two strategies and further introduces a variational inference

algorithm that allows the inference based on these strategies

to benefit from each other, thereby reaching an effect where

the whole is greater than the sum of its part.

By carefully selecting clients for FL, FedNaWi benefits

from both the inerrant clients in speeding up model training

and the noisy clients in improving overall model performance.

It can handle data noise of various types (e.g., random and

structural noise) in both the feature and label space while

remaining client transparent: no additional data or sensitive

information transfer from clients is needed. More specifically,

we make following key contributions (summarised in Table I):

• We introduce the robustness problem of FL under noisy

local data. We propose adaptive client selection as an ap-

proach to address it. We specifically propose a two-phase

client selection method that first selects reliable clients

and then includes less reliable ones for aggregation.

TABLE I: Comparison between FedNaWi and SOTA methods.

Method New-Client
Joining

Client
Transparency

Testbed
Validation

Multi-type
Noise

FedCorr [4] � � � Only Random noise

FLDebugger [5] � � � Only Random noise

FLAME [6] � � � Backdoor attack

Oort [7] � � � -

PyramidFL [8] � � � -

Our FedNaWi � � �
Random and Structural

noise in both label and

feature space (7 types)

• We propose a Bayesian framework to model client re-

liability and an efficient variational inference algorithm

to infer client reliability from observations constructed in

two complementary ways: the weight parameters of local

clients and their performance.

• We evaluate the client selection and utility inference

performance of FedNaWi with thorough testing and com-

pare it with 5 state-of-the-art FL methods on 3 datasets.

Especially, we build an FL testbed with 20 Raspberry Pi

4B and 18 NVIDIA Jetson NANO for the evaluations on

IoT-related HARBox datasets. Extensive evaluations on 7

different types of label/feature noise under practical non-

IID settings show that FedNaWi consistently and sub-

stantially improves the robustness of all FL methods and

reduces the communication cost. FedNaWi is especially

effective in non-IID settings: it can reach 1.5× accuracy

improvement in the Dirichlet setting (with data imbalance

level α = 0.5).

II. BACKGROUND AND RELATED WORK

A. Federated Learning

Under the typical FL protocol, a complete communication

process (a.k.a., round) between the involved clients and server

consists of the following four steps [9]: (a) At the beginning

of i-th round, clients with indices J i (a subset of all candidate

clients C) are activated, and the server sends the current global

model to all participating clients; (b) Each client conducts local

training in the same initial state, but on self-contained data; (c)

After local training, each client offloads the update for its local

model to the server; (d) By the aggregation of updates from

clients on the server side, FL iterates until it reaches a certain

goal, such as an expected inference accuracy or the maximum

round. To be more specific, the j-th (j ∈ J i) client runs an

optimizer like Stochastic Gradient Descent (SGD) to search for

optimal model weight parameters W∗
i,j by minimizing local

objective function L on local data Dj . Each local model is

initialized by weights of global model W̄∗
i−1 in the last round.

Server updates the global model in the way of aggregating

all clients’ updates {W∗
i,j}j∈J i , which can be treated as

optimizing the global objective function:

W̄∗
i = argmin

W

∑
j∈J i

pjLDj
(W) , (1)

where pj ≥ 0 and
∑

pj = 1. pj is the proportion of the local

samples in the samples of all clients [1], which specifies the

relative impact of each device by the size of local data [10].

2

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

403
Authorized licensed use limited to: TU Delft Library. Downloaded on October 24,2023 at 09:37:09 UTC from IEEE Xplore.  Restrictions apply. 



B. Client Selection

Client selection has recently drawn an increasing amount

of attention in FL in response to challenges arising from

heterogeneous data distribution and systems. Seminal work

[7, 8] proposes to guide the client selection in each round

based on data distribution and computational efficiency of lo-

cal clients, which yield superior time-to-accuracy performance

than random selection. Work can also be found on reducing the

negative impact on training efficacy caused by random client

selection criteria. [11] selects high-utility local samples for en-

abling all clients with various computing resources to complete

local training before the same deadline. [12] estimates time

consumption by the resource information reported from each

client and selects as many as possible clients completing the

current round within a deadline. FedMarl [13] builds a decision

environment to execute client selection by jointly optimizing

model accuracy, processing latency, and communication effi-

ciency via multi-agent reinforcement learning. The above work

focuses on client selection to cope only with heterogeneity

issues, assuming local data is completely high quality, which

is impractical in real-world scenarios.

Relevant studies on client selection with noisy data are

[5] and [4] as our experiments involve. [5] adopts a 2-norm

distance between local and global weights for client selection,

not necessarily approximating client utility. [4] utilizes average

Local Intrinsic Dimension (LID) transmitted by clients to

build Gaussian Mixture Model for recognizing reliable clients.

This method has several drawbacks: it requires clients to

send additional information while cannot handle connections

from new clients during the FL process. In contrast, our

proposed framework FedNaWi does not require any additional

information from clients and can flexibly take in new clients

to join in the selection and FL. Our work is further related

to recent work that aims to build reputation profiles of clients

based on their historical performance for future FL tasks, e.g.,

through blockchain systems [14, 15]. Our proposed framework

is complementary to this line of work by providing inferred

client utility as reputation input for blockchain systems.

In the context of existing clients with noise and extremely

imbalanced local data, our goal is to train an optimal global

model by selecting a proper subset of clients whose model

weights are used for updating the global model. Let sj ∈
{0, 1} denote the selection of j-th client involved in i-th round

(j ∈ J i), the objective for global model is reformulated as

W̄∗
i = argmin

W

∑
j∈J i

sjpjLDj
(W). (2)

Note that in this formulation the constraint of selected clients

pj should satisfy
∑

sjpj = 1. pj can be set as the proportion

of the local samples in the samples of all selected clients.

III. APPROACH AND SYSTEM

A. Overview

Figure 2 depicts the pipeline of FedNaWi. When the server

receives weight parameters {W∗
i,j}j∈J i from all activated

Fig. 2: FedNaWi pipeline: it first leverages a small, auxiliary

data on the server to infer client utility, using a Bayesian

framework that considers both weight parameters and perfor-

mance of local models; it can skip utility inference when the

inferred utility gets stabilized, thereby reducing computational

overhead; based on the inferred client utility, it then selects

suitable clients in an adaptive manner that goes through two

phases, starting by selecting only high-utility clients to quickly

improve global model performance and then selecting also

relatively low-utility clients to further improve global model.

clients in current round, FedNaWi first infers the utility of each

update using a discriminator fWd(·) with learnable parameter

Wd. To train this discriminator, an important and perhaps

indispensable means is the inclusion of high-quality auxiliary

data Da with correct labels and a representative of the data

distribution that the global model encounters in a real-world

deployment. Such an approach does not compromise client

privacy given that server-hosted auxiliary data and computa-

tion.A practical limitation of such an approach, however, is

that the auxiliary data comes at a cost – as it requires human

labor for labeling – and thus the data can only be of limited

size. We leave the solution to section III-B to introduce in

detail a cost-effective way to best leverage a limited amount

of auxiliary data for client utility inference. To reduce the

computational overhead, FedNaWi further employs a trigger

(specified in section III-D) that allows to stop estimating utility

and switch over to the client utility inferred in earlier rounds.

After that, FedNaWi adaptively selects the befitting local

updates for aggregation following the principle: it first selects

updates with high utilities to quickly improve the global model

to certain performance and then includes also clients with

relatively less utility to further improve performance.

B. Client Utility Estimation

The discriminator treats the weight parameters reported by

the j-th client as the input to infer the update utility θj . We

specifically consider the weights of the topmost layer of local

models, since those weights are most relevant for the given

task [16] and hence most discriminative for utility inference.

Thus, the discriminator can be formulated as

θj = fWd(xj). (3)

3
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Fig. 3: Utility inference on CIFAR10: 30% clients with noise
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utility and its actual noise level.

where xj denotes parameters of the topmost layer in reported

update W∗
i,j . Note that any machine learning model for the

discriminator can generate θj ∈ [0, 1] with a sigmoid function.

Training the discriminator is confronted with the lack of la-

bels. Our strategy is to fully leverage the well-labeled auxiliary

data Da in two ways: 1) we first utilize the auxiliary data Da

to simulate synthetic reliable clients with all clean data D+
a ,

as well as unreliable clients with manually corrupted data D−
a ;

2) we also take the auxiliary data Da as the validation data to

evaluate and record each client’s performance, which can serve

to better infer client utility. To this end, we propose to create

a round-reputation matrix R that keeps track of local model

performance in different rounds. In such a matrix, the entry

Ri,j in the i-th row and j-th column records the performance

of j-th client in round i. We devise the following way for

determining values in the matrix: Ri,j = 1 if the performance

of the local model from client j exceeds an empirical thresh-

old, and Ri,j = 0 otherwise. However, we can not directly

treat the entries in R as the labels since 1) R is a sparse

matrix due to a relatively small proportion of candidate clients

activated in each round. Although this makes R low storage

and operation overheads, the informativeness of a single row

of R is limited, and entries are susceptible to the training

randomness; 2) threshold setting should be dynamic across

rounds and require prior knowledge of the general utility of

clients. For instance, if threshold is the medium performance

of activated clients, the implicit assumption would be that there

are considerable numbers of high-utility clients whose local

data is clean and in a relatively balanced distribution.

A more sophisticated way is to consider client performance

consistency across rounds and only consider the clients whose

performance consistently exceeds a threshold in multiple

rounds as high-utility ones, which gains informativeness from

different rounds. To this end, we formalize the discriminator

output θj and the entry Ri,j into a Bayesian framework, and

then train the discriminator using variational inference.

It is reasonable to describe the selection decision sj of client

j by a Bernoulli distribution parameterized by client utility θj :

sj ∼ Ber(θj). (4)

We denote round informativeness as ri ∈ [0, 1] where ri =
1 means that the i-th round provides sufficient information

for inferring client utility and ri = 0 otherwise. To account

for the uncertainty in estimating ri to make our framework

more robust, we take a Bayesian view and model the prior

probability distribution as a Beta distribution:

ri ∼ Beta(αi, βi), (5)

where αi and βi are the parameters of the distribution.

We define the likelihood of observed client performance in

different rounds, i.e., round-reputation matrix, as the proba-

bility conditioned on the informativeness of round ri and the

client selection decision sj (determined by client utility θj):

p(Ri,j |ri, sj) = r
(sj=Ri,j)

i + (1− ri)
(sj �=Ri,j), (6)

where (·) is the indicator function. The informativeness of

the round is higher if there are more tags {Ri,j}j∈J i satisfying

the actual client utility. Parameters of the Bayesian framework

are learned by maximizing the likelihood function:

p(R) =

∫
p(R, r, s|X;Wd)dr, s, (7)

where r and s are the latent true informativeness of all rounds

and the selection decision for all clients, respectively; X =
{xj}j∈J i is the set of the topmost layers.

Maximizing the above function is computationally unfea-

sible due to the two latent variables in the integral [17]. We

solve this problem by Variational Expectation Maximization

(variational EM) that iterates between two steps: 1) the E-

step where we approximate the distribution of latent variables

p(r, s|R,X;Wd) with the variational distribution q(r, s); 2)

M-step where we update the estimate for the parameters of

the discriminator Wd by maximizing the evidence lower bound

(ELBO) [18] of Eq. (7) given the updated latent variables.

We take a mean-field approach [18] to update individual la-

tent variables in each iteration of the variational EM algorithm.

Updating rules for q(r, s) in E-step follow given theorems.1

Theorem 3.1 (Incremental Client Utility): q(sj) can be

updated based on the output of discriminator θj and the

parameters αi and βi of all rounds with indices i ∈ Ij

involving j-th client. We can derive the updated rule

q(sj = 1) ∝
{
θj

∏
i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 0)

θj
∏

i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 1)

(8)

q(sj =0) ∝{
(1− θj)

∏
i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 0)

(1− θj)
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 1)

(9)

where Ψ(·) is the Digamma function.

Theorem 3.2 (Incremental Round Informativeness): The

informativeness distribution of i-th round q(ri) can be updated

based on αi and βi from the last E-M iteration and true

distribution of client utility in current iteration θ
′
:

q(ri) ∝
{
Beta(αi +

∑
j∈J i(1− θ

′
), βi +

∑
j∈J i θ

′
) (Ri,j = 0)

Beta(αi +
∑

j∈J i θ
′
, βi +

∑
j∈J i(1− θ

′
)) (Ri,j = 1)

(10)

1We omit the detailed proofs due to the space limit. Proofs will be included
when space allows in the future.
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Algorithm 1: FedNaWi Robust Federated Learning

input : A set of clients with self-contained data: C;
Two sets of possible utility thresholds: Λs and Λl;
Server auxiliary dataset: Da; Client selection rate: γ.

output: W̄∗
i

1 for each round i = 1, 2, · · · , N do
2 J i ← randomly select max(|C| × γ, 1) clients from C
3 for j ∈ J i in parallel do

/* client-transparent training */
4 W∗

i,j ←ClientUpdate (Cj , W̄∗
i−1)

Server Executes FedNaWi:
5 initialize W̄∗

0 ,R0×|C|
/* client utility estimation */

6 Ri×|C| ←MatrixUpdate ({W∗
i,j}j∈J i ,Ri−1×|C|,Da)

7 Wd ←VariationalInference
({W∗

i,j}j∈J i ,Ri×|C|, W̄∗
i−1,Da)

8 {xj}j∈J i ← top-layer of {W∗
i,j}j∈J i

9 {θj}j∈J i ← fWd({xj}j∈J i)
/* adaptive client selection */

10 Λ ← search grid from {Λs,Λl}
11 for j ∈ J i do
12 {T t}t∈Λ ← grid search over Λ

13 T ← {T t}t∈Λ obtaining best accuracy on Da

14 for j ∈ J i do
15 sj ← (j ∈ T ) ? 1 : 0

/* work with any aggregation scheme */
16 W̄∗

i ←Aggregation ({W∗
i,j}j∈J i , {sj}j∈J i )

Figure 3 shows an example result of client utility inference.

We observe that our learning algorithm can effectively estimate

the utility of clients with different noise ratios.

C. Adaptive Client Selection

Given the inferred client utility θj , a straightforward ap-

proach for client selection would be to sample directly sj
from the Bernoulli distribution parameterized by θ (Eq. (4)).

Yet, as we motivated earlier from empirical observations,

it is important to account for the different roles of clients

with various utilities while the training for the global model

proceeds. Specifically, while clients with high utility should

be the focus in the initial rounds of training (i.e., Go Narrow),

overtime it helps to also include clients with less utility that

can contribute to the training in a positive way (i.e., Go Wide).

This can be done by selecting the clients based on client utility

θj and lowering the threshold for client selection in terms of

their utility when training proceeds.

Due to the data- and task-specific nature of the global

model, it’s likely that there is not a one-size-fits-all configura-

tion of the threshold. We, therefore, introduce the threshold for

the client selection by a hyperparameter configured as a range

of thresholds (e.g., from 0.1 to 0.5 with a step size of 0.1).

With such an idea, FedNaWi adopts an adaptive algorithm that

uses grid search to find the optimal utility threshold within

a specified range. Given the inferred utility of clients, the

algorithm selects ones having the utility above the threshold

in Λ and accordingly aggregates their updates for the global

Fig. 4: Client selection results of each round using FedNaWi

with adaptive thresholds on CIFAR10 (30% clients with ran-

dom noise). Each cell represents a client and cells in the

same column represent all clients in one round. The color bar

denotes noise rate of clients. Below grey line of each column

represents selected clients for aggregation in the current round.

model. In this way, we obtain several combinations of the local

updates for aggregation. Then we evaluate the corresponding

global models on the auxiliary dataset Da and choose the

threshold by which the aggregated global model has the best

performance as the optimal one.

Following the idea of first going narrow and then wide in

client selection, the Λ has to be switchable between two client

selection strategies. This is motivated by practical considera-

tions including training efficiency and the long-term perfor-

mance of the global model. On the one hand, we observe that

when only clients with high utilities are selected, global model

training is highly efficient: we can therefore only involve a

small group of relatively high thresholds as Λs for the going

narrow phase. For instance, candidates in Λs are ranging from

0.3 to 0.5 with an interval of 0.1. On the other hand, when the

global model performance reaches a predefined expectation,

global model training makes conversion into obtaining a higher

accuracy in the long run – we can then encompass smaller

thresholds to enlarge the search grid to Λl with scope between

0.1 to 0.5. Figure 4 gives an example of clients selected in

each round using our algorithm. We observe a clear pattern

that only high-utility clients are selected in the beginning, and

over time, relatively low-utility clients are also included.

Algorithm 1 describes the overall FedNaWi process. In each

round, local models in activated clients are first updated as in

standard FL settings (rows 2-4). The algorithm then updates

on the server the round-reputation matrix and infers client

utility by calling the variational utility inference algorithm

(rows 5-9). Based on that, it then selects the clients by calling

the adaptive client selection algorithm (rows 10-15). It finally

obtains the global model by aggregating the weight parameters

from selected clients (row 16).

D. Early Stopping Strategy

The utility estimated by FedNaWi gets stabilized after the

client has been selected for several rounds when the learning

proceeds. This allows for improving the learning efficiency

by designing an early stopping mechanism that excludes

clients from participating in utility inference, thus reducing

computational overhead. We take the mean of recorded utility

as the frozen utility when clients are consistently marked as

high-utility or low-utility in the round-reputation matrix R for

consecutive several rounds. Figure 5 shows the effectiveness of
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ized) time overhead of FedNaWi on server (top) and pro-
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boxes denote new connections. Active Rate means the ratio of

clients in the current round whose utility is still undetermined.

the early stopping mechanism. We observe that over time, the

proportion of clients triggering the early stopping (i.e., frozen

rate) increases, and along with that, the overhead of FedNaWi

module (mainly on utility inference) decreases. These dynam-

ics have little impact on model accuracy (green curve v.s. red

curve in Figure 5). The early stopping mechanism also shows

flexibility when new clients join the FL progress. The extra

overhead introduced by FedNaWi only lasts for several rounds

until the inferred utility of new clients converges.

IV. PERFORMANCE EVALUATION

A. Experimental Settings

1) Datasets: We evaluate FedNaWi using three datasets:

CIFAR10 [19], Google Speech [20], HARBox [21]. CIFAR10

is an image dataset for object recognition (10 classes including

horse, ship, etc.). Google Speech is an audio dataset for

spotting command keywords in IoT applications; it contains

105,829 utterances of 1-second duration each, corresponding

to 35 command keywords (e.g., numbers from zero to nine,

up, down, stop, go, etc.). HARBox is a human activity

recognition database collected from on-board inertial sensors

(accelerometer and gyroscope) for distinguishing daily activi-

ties: walking, hopping, phone calls, waving, and typing. These

datasets cover three modalities (i.e., image, audio, and physical

measurements) concerning three typical tasks on edge devices

for IoT. Google Speech and HARBox are collected from real

participants thus are inherently suitable for FL scenarios. For

all the above datasets, the split of the test set and training set

in our experiments is based on the scheme given by the dataset

providers. We implement task-specific deep learning models

for each dataset: shallow CNNs [20, 21] for Google Speech

and HARBox, with different hyper-parameters to fit the input

dimension and MobileNet-v2 for CIFAR10.

2) Baselines: FedNaWi is generic in that it can be applied

to improve existing FL methods. We evaluate FedNaWi on the

following SOTA FL methods as baselines. 1) FedAvg [1] is the

original FL scheme. Clients conduct SGD on local data and

offload the model updates to the central server where the global

model gets updated by equally aggregating all local updates.

2) FedAvgM [22] adds momentum when updating the global

model to dampen oscillations caused by the sparse distribution

across local data. Using Nesterov accelerated gradient [23]

with momentum β, central aggregation considers accumulative

gradient history. 3) FedProx [24] modifies the local objective

by adding a proximal term measuring the similarity between

local weights and global weights, which will restrict the local

model to be closer to the global model when minimizing the

objective function. A hyper-parameter μ is used to control the

weight of the proximal term in the objective function.

We further compare FedNaWi with three other client se-

lection methods. 1) OnlyIC is a hypothetical client selection

method that only selects updates from the inerrant clients

(those without noisy data) for aggregation. This gives the

upper bound of model performance when the aim is to select

only reliable clients for aggregation. 2) FLDebugger [5]
is a client selection method using the 2-norm distance be-

tween local weight parameters and global weight parameters,

that is, ‖W∗
j,i − W̄∗

j ‖. 3) FedCorr [4] calculates average

Local Intrinsic Dimension (LID) of local prediction vectors

{fW∗
j,i(x)}x∈Di

for each client. The server applies a Gaussian

Mixture Model on received LID scores to partition candidate

clients C into two subsets: noisy clients and clean clients. Note

that the noisy client selection in [4] is a pre-processing step

that has to be completed before FL training starts.

3) Data Partition: Our experimental setup considers vari-

ous three types of non-IID partitions that are commonly found

in real-world scenarios. Suppose that a dataset has n training

samples in c classes, and there are m candidate clients involved

in the FL task. 1) Non-IID (H2C) means that all the clients

hold only two classes of samples. The size of local data is n/m
in each client, where each of the two classes occupies n/2m
samples. To achieve this, we first divide the training sample

of each class into 2m shards and then randomly assign two

shards belonging to different classes to each client. 2) Non-IID
(Dirichlet) uses Dirichlet distribution to synthesize non-IID

partition following previous work [22]. Local data follows the

Dirichlet allocation parameterized by a vector q ∈ R
n where

q � Dir(αq). A smaller concentration parameter α leads to

a more diverse distribution from the prior class distribution

q. 3) Non-IID (Non-Synthetic) follows the natural split of

the dataset by different users. We follow the suggestion of

the dataset authors to assign the motion data of the 100

participants in HARBox in original training sets to the clients.

4) Noise Injection: To better simulate the local noise, the

kinds of noise and noise level for the corrupted clients are

equally important to the noise injection. Although there are

several datasets inherently containing label noise [4, 25, 26],

it is challenging to realize the dynamic level of noise across

corrupted clients as the difficulty picking the corrupted sam-

ples from the whole dataset. To better manipulate the noise

injection, we designate the noisy clients with varied levels of

synthetic noise considering both label and feature noise.

To this end, we choose clients in the proportion of εc as

corrupted clients and then inject the noise to local samples
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TABLE II: Performance of FL methods trained with FedNaWi and with other client selection methods.

εc
FedAvg FedAvgM FedProx

w/o w/ FedNaWi w/ FedCorr w/ FLDebugger w/o w/ FedNaWi w/ FedCorr w/ FLDebugger w/o w/ FedNaWi w/ FedCorr w/ FLDebugger
0.1 0.470 0.473 ↑0.5% 0.464 ↓1.3% 0.369 ↓21.5% 0.458 0.462 ↑0.8% 0.457 ↓0.2% 0.363 ↓20.7% 0.459 0.464 ↑0.9% 0.458 ↓0.2% 0.375 ↓18.3%
0.2 0.437 0.478 ↑9.4% 0.444 ↑1.6% 0.391 ↓10.5% 0.427 0.452 ↑5.9% 0.437 ↑2.3% 0.402 ↓5.9% 0.434 0.452 ↑4.1% 0.440 ↑1.4% 0.392 ↓9.7%
0.3 0.441 0.460 ↑4.3% 0.435 ↓1.4% 0.414 ↓6.1% 0.399 0.438 ↑9.8% 0.430 ↑7.8% 0.405 ↑1.5% 0.433 0.439 ↑1.4% 0.435 ↑0.5% 0.417 ↓3.7%
0.4 0.434 0.449 ↑3.4% 0.431 ↓0.5% 0.417 ↓3.8% 0.409 0.453 ↑10.8% 0.433 ↑5.9% 0.407 ↓0.5% 0.432 0.440 ↑1.8% 0.428 ↑1.0% 0.415 ↓3.9%
0.5 0.404 0.424 ↑5.0% 0.416 ↑3.0% 0.396 ↓2.0% 0.398 0.428 ↑7.5% 0.411 ↑3.3% 0.399 ↑0.3% 0.405 0.428 ↑5.7% 0.413 ↑2.0% 0.403 ↓0.5%

Fig. 6: Our built testbed: 20 Raspberry Pi and 18 NVIDIA

Jetson Nano connect to an FL server via WiFi/Ethernet.

in the proportion of εf . To better emulate the real-world user

noise, we vary the flipping rate across corrupted clients by

randomly sampling εf ∈ [0.1, 1] for different clients. For label

noise, we consider random and structural label noise. Random

label noise is injected by flipping the labels of corrupted

samples to other classes following a uniform distribution. The

conversion can be formulated by the following symmetric

transition matrix T [27] that describes the probability of

flipping i-th class to j-th class: Ti,i = 1−εf , and Ti,j =
εf
c−1 .

For structural label noise, we consider asymmetric transition

matrices created in (three) different ways (i.e., Weighted, Tar-
geted, and Out of Vocabulary). Besides label noise, we further

consider feature noise (i.e., Gaussian Noise, Resolution, and
Corruption). The details are in Section IV-D.

5) Implementation Details: We implement all FL methods

in Python and neural networks with PyTorch. Besides, for

evaluation on the IoT-related HARBox dataset, we implement

an FL testbed containing 20 Raspberry Pi 4B and 18 Jetson

NANO as clients, and a laptop that has an NVIDIA 3080 GPU

as a server. Each device runs multiple clients and connects to

the server through WiFi/Ethernet, as shown in Figure 6.

B. Effectiveness on H2C Data

We proceed to the non-IID (H2C) setting where each client

only holds two classes of samples. Figures 7 shows the evolv-

ing performance of STOA FL methods FedAvg, FedAvgM,

and FedProx trained with and without FedNaWi in different

communication rounds, respectively with client flip rate εc =
0.3 on CIFAR10 and Google Speech. First and foremost, we

observe that FedNaWi substantially improves the performance

of all three baselines FL methods on both datasets. Second,

we observe that compared with OnlyIC which selects only

inerrant clients, the performance of all the three FL methods

trained without FedNaWi is significantly lower on CIFAR10 in

the initial communication phase. Noise, therefore, has a strong

impact on FL. On the other hand, we also observe that the per-

formance of FL methods (trained without FedNaWi) continues
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Fig. 7: Performance of SOTA FL baselines trained with

and without FedNaWi in different communication rounds on

CIFAR10 (left) and Google Speech (right), with εc = 0.3.

to grow when the training proceeds, which can sometimes

(but not always) lead to higher performance than OnlyIC (e.g.,

FedAvg). These results indicate a tension between the positive

and negative effects unreliable clients with noisy data can

have in terms of their contribution to FL. The contribution

depends on the specific FL method, as we have observed on

CIFAR10, but also on the specific dataset: on Google Speech,

a less dataset where FL can reach much higher performance

than on CIFAR10, we observe no significant difference in

FL performance between selecting only inerrant clients and

selecting also unreliable ones. Importantly, when trained with

FedNaWi, we observe on both datasets that all FL methods

match or outperform OnlyIC performance in initial rounds and

later on, continuously improve global model to a performance

significantly higher than both OnlyIC and original versions

without FedNaWi. These results confirm that FedNaWi can get

the best of both worlds: it takes advantage of reliable clients, in

the beginning, to quickly improve global model performance

and further benefits from less reliable clients to continuously

improve the global model in the long run.
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In Table II, we compare three SOTA baselines trained with

FedNaWi and with other client selection methods. Besides,

we also quantify the accuracy improvement over the baseline

under each setting. Interestingly, we observe that FLDebugger

does not perform well when the client flip rate is small (i.e.,

εc = 0.1, 0.2). This is because there is no significant deviation

between local weight parameters and global weight parame-

ters. FedCorr yields performance improvements in most cases;

yet, FedNaWi still outperforms it consistently. Besides, unlike

FedCorr which requires a pre-processing step to select clients

before FL, FedNaWi is flexible to take in new clients during

the learning process. FedNaWi is therefore more favorable in

terms of both its effectiveness and flexibility.

C. Effectiveness on Dirichlet Data

We now evaluate FedNaWi on the non-IID (Dirichlet)

setting where the local data follows a Dirichlet distribution. We

first investigate the negative effect of the heterogeneous local

data distribution. Figure 8(a) shows the inference accuracy

under the scenarios that data in all clients are clean but the

distributions of local samples go from imbalanced (α = 0.5,

and 5) to nearly IID (α = 10). The benefit of FedNaWi

is obvious when we compare it with FedAvg – equivalent

to OnlyIC when no noise is present, which suffers from

severe accuracy decrease when α = 0.5 or 5 as compared

with α = 10. The fact that FedAvg still suffers from data

heterogeneity gives explicit evidence of the negative impact

given by the imbalanced distribution of data classes on clients.

In comparison, FedNaWi retains the performance however im-

balanced the data distribution is, which signifies the potential

of our FedNaWi in dealing with the issue.

To investigate the impact of noise, we fix the concentration

parameter α of Dirichlet distribution to 10 and vary the

client flip rate εc from 0.1 to 0.5. Figure 8(b) shows the

result. First, we observe a change in the relative performance

between FedAvg and OnlyIC when the number of noisy clients

increases: there is a narrow margin between FedAvg with

and without OnlyIC when εc is small (until 0.3); instead,

when εc further increases, OnlyIC starts to show a significant

advantage over FedAvg. The initial advantage of FedAvg can

be attributed to the robustness of FedAvg in dealing with data

noise when the data distribution is not extremely imbalanced.

The higher inference accuracy of original FedAvg compared

with OnlyIC (i.e., εc = 0.2 and εc =0.3) further shows the

benefit of involving less reliable clients with noise (note that in

our setting with εc, OnlyIC involves εc×100% fewer clients in

training global model compared to FedAvg). When the number

of noisy clients further increases, data noise starts to play an

important role in affecting FL performance. Most importantly,

we observe that FedNaWi consistently outperforms both Fe-

dAvg and OnlyIC however εc changes; especially compared

to FedAvg, we observe a much smaller performance decrease

of FedNaWi when εc increases. These results signify the

effectiveness of FedNaWi in getting the best of both worlds

(reliable and less reliable clients) in dealing with data noise.

(a) Varying α (εc = 0)
c

(b) Varying εc (α = 10)

Fig. 8: Performance on Dirichlet distribution: FedNaWi (i.e.,

FedAvg w/ FedNaWi) is resilient to imbalanced distribution

(Left) while also able to alleviate noise impact (Right).

TABLE III: FedNaWi performance under different noise types

(CIFAR10 w/ Dirichlet distribution, varying α (εc = 0.3)).

Method Noise

α = 0.5(distribution below) α = 10

w/o w/ FedNaWi w/o w/ FedNaWi
Aligned Fixed Aligned Fixed

FedAvg

W/o Noise 0.32 - 0.80 ↑150% 0.81 - 0.83 ↑2.5%
Random 0.35 0.76 ↑117% 0.76 ↑117% 0.77 0.82 ↑6.5% 0.82 ↑6.5%
Targeted 0.34 0.75 ↑121% 0.75 ↑121% 0.78 0.81 ↑3.8% 0.81 ↑3.8%
Weighted 0.36 0.75 ↑108% 0.75 ↑108% 0.78 0.82 ↑5.1% 0.82 ↑5.1%

Out-of-Voc 0.42 0.73 ↑74% 0.75 ↑79% 0.79 0.82 ↑3.8% 0.82 ↑3.8%
Gaussian 0.39 0.75 ↑92% - 0.76 0.82 ↑7.9% -

Resolution 0.37 0.77 ↑108% - 0.78 0.82 ↑5.1% -

Corruption 0.36 0.78 ↑117% - 0.79 0.83 ↑5.1% -

FedProx

W/o Noise 0.35 - 0.79 ↑126% 0.81 - 0.84 ↑3.7%
Random 0.38 0.75 ↑97% 0.75 ↑97% 0.77 0.82 ↑6.5% 0.82 ↑6.5%
Targeted 0.33 0.75 ↑127% 0.75 ↑127% 0.77 0.81 ↑5.2% 0.81 ↑5.2%
Weighted 0.36 0.75 ↑108% 0.74 ↑105% 0.78 0.82 ↑5.1% 0.82 ↑5.1%

Out-of-Voc 0.36 0.77 ↑114% 0.77 ↑114% 0.79 0.82 ↑3.8% 0.82 ↑3.8%
Gaussian 0.35 0.76 ↑117% - 0.77 0.82 ↑6.5% -

Resolution 0.40 0.77 ↑93% - 0.80 0.82 ↑2.5% -

Corruption 0.36 0.78 ↑117% - 0.80 0.83 ↑3.8% -

D. Effectiveness on Diverse Noise Types

Here we evaluate FedNaWi against structural label noise and

feature noise. We created three types of structural noise [28],

by 1) assigning labels of corrupted samples to the most often

confused class, referred to as Targeted noise; 2) Weighted noise

assigning labels of corrupted samples to other classes with

weights determined by the confusion matrix of the learned

centralized model; and 3) replacing some training samples

with out-of-distribution images from the first 10 classes of

CIFAR100 [19], referred to as Out of Vocabulary noise [29].

Besides these structural label noise, we also consider feature

noise [30] including 1) Gaussian random noise (with mean 0.2

and variance 1.0), 2) Corruption noise, where 50% of an image

is set to black, and 3) Resolution distortion, where images are

resized to 4×4 and then dilated back to 32×32.

Table III shows the performance of FedAvg and FedProx

trained with and without FedNaWi in the presence of different

noise types. We specifically consider two scenarios where

the noise type of local data is known and unknown; in the

former case, we create unreliable auxiliary data D−
a with the

same noise type as in local data, whereas in the latter case

D−
a is kept with random label noise, referred to as Aligned

and Fixed, respectively. Comparing the original performance

of FedAvg and FedProx, FedNaWi can substantially improve

their performance across all types of noises; furthermore, the

FL performance can reach a similar level under all noise

scenarios, and even when the noise type of data in clients
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Fig. 9: FedNaWi in resource-constrained scenarios: perfor-

mance (Left) and energy consumption (Right).

is unknown. These results provide strong evidence about the

robustness of FedNaWi to data noise. For both FedAvg and

FedProx in the small α condition, noisy updates may improve

the global model accuracy. It shows that additional noise has a

counter effect on FL performance, which is a very interesting

observation for exploration in future work.

E. Resource-Constrained Scenarios

Finally, we evaluate FedNaWi in the resource-constrained

scenario across different types of noise and a larger number of

testbed clients using the HARBox dataset. HARBox contains

data collected from 120 different users, and we take 100 users

as the training data and augment the number of clients from

100 to 200 by assigning the data of each user to two clients.

Considering data across users in HARBox is low Non-IID

(relatively balanced data distribution) [8], such augmentation

would enable the testbed to be more challenging and better

approximate real-world scenarios. Given the stability issue

of client-server communication and that device resources are

often constrained in practical applications, we report the best

inference accuracy of global models training within limited

rounds (i.e., 200 rounds), and the energy consumption (mea-

sured by the power meter) when the global models achieve

the same performance (i.e., the best accuracy of FedAvg) in

Figure 9. We observe that FedNaWi increases FL performance

by 3.3%, 2.9%, and 3.5% in the same rounds for three

different noise types, respectively, showing the consistent time-

to-accuracy advantage of FedNaWi. Besides, FedNaWi is more

energy-efficient even with the extra overhead at the server: it

reduces the energy consumption by up to 34%. With an early

stopping mechanism, energy consumption is further reduced

by 70%. This is mainly due to the fewer training rounds

required when FL is trained with FedNaWi: it requires only

36.2%, 19.4%, and 61.9% rounds to reach FedAvg’s best

performance for the three noise types, respectively.

V. CONCLUSION

In this paper, we observed that unreliable clients in FL

can slow the learning of the global model and reduce its

accuracy, but they can still contribute to learning a more

accurate global model in the long run. Inspired by these

empirical observations, we designed an adaptive “Go Narrow,

Then Wide” client selection method that first selects reliable

clients to allow the global model to improve its performance

quickly and then includes less reliable clients to exploit noisy

data for further improvement of the global model. Extensive

evaluations indicate FedNaWi could help FL systems become

more robust in practical deployments
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