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A B S T R A C T

Microstructure features including grain morphology and texture are key factors in determining the properties of
laser additively manufactured metallic components. Beyond the traditional trial-and-error approach, which is
costly and time-consuming, microstructure control increasingly relies on predictions from mechanistic models.
However, existing mechanistic models to predict microstructure and texture are computationally expensive.
Here, we present a cellular automata solidification model, which is up to two orders-of-magnitude faster than
traditional models. By analytically calculating growth length and utilizing a multi-level capture algorithm, a
large time step can be employed without compromising simulation accuracy. The model is validated through
simulations of 316L steel and three NiTi cases, showing good agreement with experimental results. Our
findings reveal that preferential orientations are selected by the vertical and the inclined temperature gradients
from multi-pass temperature profiles, leading to different microstructures and textures. Three-dimensional
additive manufacturing simulations demonstrate that orientation-dependent growth patterns govern grain
growth, leading to columnar, planar and spiral shaped grains. This approach offers a significant reduction
in computational cost while maintaining accuracy, contributing to the practical application of microstructure
control in additive manufacturing. The insights gained on grain and texture evolution pave the way for
customized microstructure design through additive manufacturing.
1. Introduction

For metallic materials, whether they are structural or functional,
grain morphology and texture play vital roles in shaping proper-
ties. These microstructure features are important as they allow for
the customization and optimization of various material characteris-
tics. By carefully manipulating the grain morphology and texture,
scientists and engineers can effectively enhance properties such as
strength [1], conductivity [2], magnetism [3], creep resistance [4], and
super-elasticity [5], among other attractive properties.

Laser powder bed fusion (LPBF), as the most adopted additive
manufacturing (AM) technique for metallic components [6–8], has
a unique capability for controlling microstructural features including
grain morphologies and textures [9,10]. Traditionally, building AM
components with desirable microstructure features has relied on trial-
and-error methods, which are both costly and time-consuming [11].
Recently, the integration of advanced monitoring techniques [6,12]
has enabled better control of thermal profiles, which are crucial for

∗ Corresponding author.
E-mail address: J.Zhu-2@tudelft.nl (J. Zhu).

microstructure development. However, in-situ monitoring and control
of microstructure evolution remains challenging. Due to the complex-
ity of process conditions and high costs of experimental approaches,
microstructure prediction and control increasingly relies on modeling
approaches.

Computational microstructure models are valuable in a wide range
of applications beyond real-time predictions. These models are useful
not only for fast predictions but also for tasks like design optimiza-
tion, process parameter tuning, and material selection, which can be
conducted prior to manufacturing. By reducing the need for costly
experimental trials, these models offer an efficient way to refine manu-
facturing processes. As a type of sharp-interface microstructure models,
cellular automata (CA) models have been successfully used to pre-
dict microstructure evolution not only in additive manufacturing [13–
17] but also in casting [18,19] and welding [20]. Nevertheless, the
high computational cost of three-dimensional CA simulations poses
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Additive Manufacturing 98 (2025) 104622 
challenges for fully integrating microstructure prediction into a broader
modeling framework.

Efforts to accelerate three-dimensional CA simulations have com-
monly involved parallelizing computations and distributing the work-
load across multiple processors, either in a distributed-memory or
hared-memory environment. In a distributed-memory setup, each pro-
essor manages its own private memory, containing data for a portion
f the simulation domain. Communication between processors is re-
uired to access data stored in another processor’s memory. In such
ases, an even distribution of computation tasks and corresponding
ata is crucial to balance the workload and optimize efficiency. For

computationally intensive simulations, such as crystal plasticity sim-
ulations [21], a static decomposition method, where the domain is
venly divided among processors, typically achieves a good balance
f workload and efficiency. However, CA simulations for AM present
 different challenge, as most computation tasks occur near the melt
ool. As the laser moves, so does the computationally intensive region,
aking the static decomposition method ineffective for load balancing,

s indicated by Lian et al. [22]. Carozzani et al. [18] addressed this
ssue by using a coarse mesh, where elements are dynamically activated
nd assigned to processors when they are close to the melt pool.
ith this dynamic decomposition method, the performance of load

alancing has been improved. Teferra and Rowenhorst [17] further
ptimized the CAFE model by first collecting the computation tasks

from the entire simulation domain and redistributing them evenly
across processors. However, this approach increases inter-processor
communication, adding overhead, and AM simulations may still take
2 to 3 days to complete [17]. In contrast to a distributed-memory
nvironment, a shared-memory environment allows all processors or
hreads to access the entire memory space, but care must be taken
o prevent race conditions, where multiple threads attempt to mod-
fy the same data simultaneously. Zinovieva et al. [23] successfully
mplemented a CA model in a shared-memory environment to simu-

late the grain structure and texture of 316L steel, which align with
xperimental results. Despite the advantage of share-memory imple-
entations in AM simulations, the limited memory size constrains the

size of the simulation domain. Recently, with the development of GPU
Graphics Processing Unit), GPU-offloading has been a powerful tech-
ique to accelerate computationally intensive simulations. Rolchigo
t al. [24–26] implemented a multi-GPU CA model, enabling the largest
A study reported in the literature. They also introduced a sparse
emperature–time data format [24,26], based on the time when a cell
olidifies and remelts, which reduced computational tasks and simu-
ation time. While these studies have made significant contributions
o accelerating CA simulations, due to the employed Euler forward
ntegration method, small time steps must be employed to achieve
onvergence in three-dimensional simulations [24]. As indicated by

Lian et al. [22], multi-capture events occur more frequently in simu-
lations with larger time steps, resulting in substantial deviations in the
simulated microstructures.

In this work, we present an improved CA model, in which the depen-
ence on time step size has been removed by analytically calculating
he growth length and employing a multi-level capture algorithm. The
doption of large time steps, combined with a pass-by-pass sparse
emperature algorithm, leads to an up to two orders-of-magnitude
peedup in microstructure and texture predictions without compromis-
ng simulation accuracy. The proposed CA model has been verified
n directional solidification simulations, demonstrating independence
n time step size. Subsequently, the current CA model is validated
ith a 316L AM case and three NiTi AM samples, manufactured under
ifferent conditions and having different textures. The current CA
odel provides fast and accurate predictions for the grain morphology

nd the texture of different AM samples. Furthermore, a discussion is
rovided on the mechanisms of texture formation and texture control
uring additive manufacturing.
2 
2. Methods

In this CA model, the simulation domain is divided into several
ayers, aligned with the AM setup. Each AM layer is further discretized
nto cubic cells referenced with a cell index. Each cell has variables
ncluding grain ID, phase status (solid, liquid and interface) and the
emperature at the cell center at the start and the end of the CA time
tep. Each interface cell also has additional variables related to growth.

2.1. Temperature calculation

To simulate AM solidification, volumetric temperature histories
re necessary inputs for the CA model, which are typically obtained
rom analytical thermal models [17] or numerical thermal simulations

with [26] and without [23] considering fluid dynamics. While analyt-
ical thermal models may be less accurate due to the use of constant

aterial properties and failure to explicitly incorporate convection and
radiation, they have the best computational efficiency and thus are
employed in our CA model.

In this work, two ellipsoidal heat sources with Gaussian distribu-
ions are employed to approximate the heat input in conduction-mode
r transition-mode melt pools. The analytical solution can be obtained

by superimposing single ellipsoidal heat source solutions. Schwalbach
t al. [27] proposed an analytical solution by approximating a moving

heat source with a set of discrete heat sources. With a single moving
llipsoidal heat source, the temperature 𝑇 at a point with coordinates
𝑥, 𝑦, 𝑧) at time 𝑡 is given by [27]

𝑇 = 𝑇0 + 𝑓 (𝑥, 𝑦, 𝑧, 𝑡, 𝜂 , 𝜎𝑥, 𝜎𝑦, 𝜎𝑧) (1)

with

𝑓 (𝑥, 𝑦, 𝑧, 𝑡, 𝜂 , 𝜎𝑥, 𝜎𝑦, 𝜎𝑧) =
𝑛
∑

𝑖=1

𝜂 𝑃 𝛥𝑡𝑇
𝜋1.5𝜌𝑐𝑝

√

2𝜆𝑥,𝑖𝜆𝑦,𝑖𝜆𝑧,𝑖
exp

[

−
(𝑥 − 𝑥𝑖)2

2𝜆𝑥,𝑖
−

(𝑦 − 𝑦𝑖)2

2𝜆𝑦,𝑖
−

(𝑧 − 𝑧𝑖)2

2𝜆𝑧,𝑖

]

(2)

with

𝜆𝑞 ,𝑖 = 𝜎2𝑞 + 2𝛼(𝑡 − 𝜏𝑖), 𝑞 = 𝑥, 𝑦, 𝑧, (3)

where 𝑇0 is the initial temperature, 𝜂 the absorption efficiency of the
moving heat source, 𝑃 the power, 𝜌 the density, 𝑐𝑝 the specific heat,
𝛼 the thermal diffusivity and 𝑛 the number of the considered discrete
heat sources. 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are shape factors of the moving heat source
in the 𝑥, 𝑦 and 𝑧 directions, while 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 are the coordinates of the
center of the 𝑖th discrete heat source. The 𝑖th heat source is activated
at time 𝜏𝑖 and lasts for a short time period 𝛥𝑡𝑇 , which is selected to
ensure a smooth temperature profile. In case of two moving ellipsoidal
heat sources, the temperature profile is given by

𝑇 = 𝑇0 + 𝑓 (𝑥, 𝑦, 𝑧, 𝑡, 𝜂1, 𝜎𝑥,1, 𝜎𝑦,1, 𝜎𝑧,1) + 𝑓 (𝑥, 𝑦, 𝑧, 𝑡, 𝜂2, 𝜎𝑥,2, 𝜎𝑦,2, 𝜎𝑧,2). (4)

Following Schwalbach et al. [27], 𝜎𝑥,1 = 𝜎𝑦,1 and 𝜎𝑥,2 = 𝜎𝑦,2 are
assumed, as the laser energy distribution is circular in a plane normal to
the beam. The parameters for the two moving heat sources including
𝜂1, 𝜎𝑥,1, 𝜎𝑧,1, 𝜂2, 𝜎𝑥,2 and 𝜎𝑧,2 are determined by fitting an averaged
experimental melt pool shape. The details of the fitting procedure can
be found in Section 1 in Supplementary Material.

During additive manufacturing, bidirectional laser scanning was
employed in individual layers. In our CA model, a scan pattern is
generated based on the hatching distance ℎ𝑑 and the scanning direction.
At the boundary of the scan pattern, the discrete heat sources in one
scan pass may influence the temperature profile in the next scan pass,
leading to an enlarged melt pool. To eliminate boundary effects and
simulate texture evolution in the center of the manufactured compo-
nent, a padding distance is applied at the beginning and the end of
each pass, which is equivalent to skywriting during real laser powder
bed fusion.
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2.2. Nucleation

During additive manufacturing, heterogeneous nucleation may oc-
cur due to dendrite fracture or powder particle inclusions in the melt
pool, while homogeneous nucleation is less common. In prior CA
models [16,28], to account for nucleation in the melt pool, the distribu-
ion function of the nucleation density 𝑛𝑛 is modeled phenomenologi-
ally as a Gaussian distribution over the undercooling 𝛥𝑇 . With this
henomenological model, the columnar-to-equiaxed transition in the
enter of the melt pool has been successfully predicted [16]. However,

the Gaussian-type nucleation model requires three parameters to be
determined or fitted. Furthermore, equiaxed grains are barely observed
in the studied AM samples. Hence, to reduce the number of adjustable
parameters, a simpler nucleation method is employed here. Follow-
ing Teferra and Rowenhorst [17], a constant nucleation density 𝑛𝑛 is
employed and nucleation is assumed to occur in the interface cells.
The number of nucleation sites 𝑛𝑠𝑖𝑡𝑒𝑠 is then equal to 𝑛𝑛𝑉𝑣𝑜𝑙, where
𝑣𝑜𝑙 is the volume of the simulation domain. At the beginning of the
imulation, a number of cells is randomly selected as nucleation sites
ith randomly assigned orientations. The generation of nucleation sites

s controlled with a user-defined seed, which ensures that simulations
re reproducible. During solidification, if a nucleation cell is captured

by any interface neighbor, the nucleation cell transforms into a new
nterface cell with the corresponding nucleation orientation.

2.3. Growth algorithm

Following the decentered growth algorithm proposed by Gandin and
appaz [19], each interface cell is associated with a growth octahe-
ron with its diagonals parallel with the preferential growth direction,
amely the ⟨100⟩ crystallographic direction in a cubic crystal system.

The half diagonal of the growth octahedron is called growth length 𝑙
and is updated in each CA time step with

𝛥𝑙 = 𝑙2 − 𝑙1 = ∫

𝑡2

𝑡1
𝑣𝑔(𝛥𝑇 )d𝑡, (5)

where 𝑣𝑔 is the growth velocity, 𝑙1 and 𝑙2 the growth length at the start
and the end of the CA time step, 𝑡1 and 𝑡2 the time at the start and the
nd of the CA time step.

The growth velocity is determined with the KGT (Kurz–Giovanola–
rivedi) model [29], which describes directional growth at a high

growth rate. In the current CA model, an approximated solution [17,
30,31] of the KGT model is employed, which gives the growth velocity
𝑔 as a function of undercooling 𝛥𝑇 = 𝑇𝑙 − 𝑇 ,

𝑣𝑔(𝛥𝑇 ) =
𝐷𝑙𝛥𝑇 2.5

5.51𝜋2(−𝑚𝑙(1 − 𝑘)𝑐0)1.5𝛤
, (6)

where 𝐷𝑙 is the diffusion coefficient in the liquid, 𝑚𝑙 the slope of
the liquidus line, 𝑘 the partitioning coefficient, 𝛤 the Gibbs Thomson
coefficient, 𝑐0 the nominal concentration, 𝑇𝑙 the liquidus temperature
and 𝑇 the temperature of the considered interface cell. The parameters
of the studied alloy systems can be found in Section 2 in Supplementary
Material.

In traditional CA models [16,17,30], the growth length change 𝛥𝑙
n each time step is estimated with

𝛥𝑙 = 𝑣𝑔𝛥𝑡, (7)

where 𝛥𝑡 is the time step. This may lead to a discretization error,
especially in conditions with a high cooling rate. In the current CA
model, the growth length is updated in each time step by evaluating
the integral in Eq. (5) directly. Assuming the temperature and the
undercooling change linearly within the considered time step, the
derivative of the undercooling 𝛥𝑇 with respect to the time 𝑡 is constant
in the considered time step,
d(𝛥𝑇 ) 𝑇2 − 𝑇1

d𝑡

= −
𝛥𝑡

. (8)

3 
where 𝑇1 and 𝑇2 are the temperature at the start and the end of the
ime step. Thus, the integral can be written as

∫

𝑡2

𝑡1
𝑣𝑔(𝛥𝑇 )d𝑡 =

(

d(𝛥𝑇 )
d𝑡

)−1

∫

𝑇𝑙−𝑇2

𝑇𝑙−𝑇1
𝑣𝑔(𝛥𝑇 )d(𝛥𝑇 )

= − 𝛥𝑡
𝑇2 − 𝑇1

[

𝑉𝑔(𝑇𝑙 − 𝑇2) − 𝑉𝑔(𝑇𝑙 − 𝑇1)
]

,
(9)

where 𝑉𝑔 is the anti-derivative of the growth velocity function 𝑣𝑔(𝛥𝑇 ).
With increasing time, the growth octahedron of the considered

interface cell becomes larger and captures neighboring liquid cells in
the Moore neighborhood. For each neighboring liquid cell, the critical
growth length 𝑙𝑐 𝑟𝑖𝑡 for capture is calculated. If the growth length of
the consider interface cell reaches the critical growth length 𝑙𝑐 𝑟𝑖𝑡, the
corresponding liquid cell is then captured and transforms into a new
interface cell. The capture time 𝑡𝑐 𝑎𝑝 is calculated by solving

∫

𝑡𝑐 𝑎𝑝
𝑡1

𝑣𝑔(𝛥𝑇 )d𝑡 = 𝑙𝑐 𝑟𝑖𝑡 − 𝑙1. (10)

The critical growth length 𝑙𝑐 𝑟𝑖𝑡 for a growth envelope to capture a
neighboring liquid cell is calculated with

𝑙𝑐 𝑟𝑖𝑡 = |𝑥𝑟| + |𝑦𝑟| + |𝑧𝑟|, (11)

where (𝑥𝑟, 𝑦𝑟, 𝑧𝑟) represents the relative coordinates of the center of
the considered neighboring liquid cell in a local coordinate system. This
local coordinate system is defined at the center of the growth envelope,
with its axes aligned along the ⟨001⟩ crystallographic directions. The
elative coordinates (𝑥𝑟, 𝑦𝑟, 𝑧𝑟) are determined with
⎛

⎜

⎜

⎝

𝑥𝑟
𝑦𝑟
𝑧𝑟

⎞

⎟

⎟

⎠

= 𝐑−1
⎛

⎜

⎜

⎝

𝑥𝑛 − 𝑥𝑒
𝑦𝑛 − 𝑦𝑒
𝑧𝑛 − 𝑧𝑒

⎞

⎟

⎟

⎠

, (12)

where 𝐑 is the rotation matrix corresponding to the crystal orientation.
(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) denotes the global coordinates of the center of the consid-
ered liquid cell, while (𝑥𝑒, 𝑦𝑒, 𝑧𝑒) represent the global coordinates of
the center of the growth envelope.

After a liquid cell is transformed, a new growth octahedron is
ormed in the newly transformed interface cell inheriting the orienta-
ion of the parent growth octahedron. The center and the initial growth
ength of the new growth octahedron are determined by truncating the
arent growth octahedron with the algorithm described in [19]. Note

the calculation of the new growth octahedron is based on the parent
octahedron at the time 𝑡𝑐 𝑎𝑝, instead of the parent octahedron at the
nd of the time increment 𝑡2. After the liquid cell transforms into a new
nterface cell, the change in the growth length between the capture time
𝑐 𝑎𝑝 and the end of the time step 𝑡2 is calculated with

𝛥𝑙 = ∫

𝑡2

𝑡𝑐 𝑎𝑝
𝑣𝑔(𝛥𝑇 )d𝑡. (13)

If all the neighboring cells in the Moore neighborhood are interface
cells or solid cells, the considered interface cell then transforms into a
solid cell.

2.4. Time step

The time step 𝛥𝑡 is calculated based on the ratio between the cell
size 𝛥𝑥 and the scanning velocity 𝑣𝑠

𝛥𝑡 = 𝜉 𝛥𝑥
𝑣𝑠

. (14)

In traditional CA models, 𝜉 values including 0.024 [32], 0.04 [33],
0.1 [34], 0.2 [35] were employed to minimize the truncation error
introduced by Eq. (7) and avoid a multi-capture problem, which is a
problem when a liquid cell is captured by multiple interface neighbors
in the same time step. The values of 𝜉 reported in the literature
ncludes 0.024 [32], 0.04 [33], 0.1 [34], 0.2 [35]. In the work of

Lian et al. [22], when the value of 𝜉 was increased from 0.2 to 1.0,
different simulation results were obtained as the multi-capture events
occur more frequently. Rolchigo et al. [24] studied the sensitivity of
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grain aspect ratio to time step and indicated that 𝜉 ≤ 0.04 is necessary to
remove the time step dependence. In the current CA model, the growth
ength of each interface cell is calculated analytically, which reduces
he discretization error. Moreover, the capture of liquid cells occurs at
pecific time points. Therefore, the earliest event which transforms a
ell from liquid to interface wins the competition, which then avoids

the multi-capture problem. In theory, a large time step can be used
n the current CA model, which reduces the total computational cost.

However, another problem arises when employing a large time step 𝜉 ≈
1.0. In a CA time step, after the newly captured liquid cells transform
nto interface cells, they can further capture their liquid neighbors in
he same time step, even with 𝜉 < 1.0. Thus, a multi-level capture
lgorithm is proposed to solve this issue in the next section.

2.5. Multi-level capture algorithm

In a CA time step, existing interface cells may capture their liquid
neighbors in the Moore neighborhood at different time points. After
apture, newly transformed interface cells can continue to grow and
apture their liquid neighbors. For clarity, the interface cells which

exist at the start of the time step are defined as level 0, while the new
nterface cells captured by interface cells in level 𝑖 are defined as level
+ 1. Capture trees can be constructed by denoting the interface cells
nd the neighboring cells they captured with nodes and connecting the
arent nodes with their child nodes, as shown in Fig. 1.

In a large CA time step, a liquid cell near the solid–liquid interface
could possibly be captured by multiple interface cells at different levels.
Consequently, the considered liquid cell may be related to multiple
capture nodes at different levels in the capture tree. The status of
he considered liquid cell should be determined by the node with the
hortest capture time, which does not necessarily have the smallest
evel number. To find the node with the shortest capture time for the
onsidered liquid cell, it is necessary to calculate all possible capture

nodes related to the considered cell. The same is true for other liquid
cells near the solid–liquid interface.

To find the earliest capture node for each liquid cell near the solid–
iquid interface, a direct algorithm is computing all the possible nodes
ithin the capture trees. This can be done by performing capture checks

or each newly transformed interface cell in their Moore neighborhood
ntil no new interface cells are captured. However, this is compu-
ationally expensive. Assuming each interface cell captures 10 liquid
eighbors, the time complexity of this algorithm is 𝛩(𝑛010𝑁𝑙−1), where
0 is the number of interface cells in level 0 and 𝑁𝑙 the number of levels.
s the time step increases, the number of levels increases linearly and

he computational cost increases exponentially.
To reduce the computational cost, a multi-level capture algorithm is

proposed, which computes the capture trees level by level and pruning
s performed to reduce the computational tasks. Consider nodes at a
evel 𝑖. Pre-pruning is performed based on capture time and cell index
f nodes in level 𝑖. A schematic illustration of the pruning conditions
s shown in Fig. 1. If two or more nodes in level 𝑖 correspond to the

same liquid cell, only the node with the shortest capture time is allowed
to have child nodes. The capture time comparison is also performed
between the nodes at level 𝑖 and the nodes in previous levels. If the
considered node at level 𝑖 is later than any node in previous layers and
they are related to the same cell, then the considered node at level 𝑖 is
not allowed to have child nodes, which is considered as pre-pruning.
If the considered node at level 𝑖 is earlier than a node at a level 𝑗
(𝑗 < 𝑖) and they are related to the same liquid cell, then the node
at level 𝑗 is invalid. If the invalid node at level 𝑗 has descendants,
then its descendant nodes are also invalid and will be removed from
the capture trees. This operation is called post-pruning as pruning
is performed after the calculation of the descendant of the invalid
nodes. The level-by-level iterations continue until no new liquid cells
are captured. The complexity level for this algorithm is approximately
𝛩(26𝑛0𝑁𝑙) if we assume the number of nodes in each layer is similar.
The pseudocode of the multi-level capture algorithm can be found in
section 3 in Supplementary Material.
 c

4 
2.6. Pass-by-pass sparse temperature algorithm

In a CA simulation, temperature calculation is required for two
purposes: one is to melt the cells in the front of the moving melt pool
and the other is to determine undercooling for undercooled cells in
the tail of the melt pool. Both are near the melt pool. Consequently,
calculating temperature for all cells in the simulation domain is compu-
tationally expensive and unnecessary. Rolchigo et al. [24,25] proposed
 sparse temperature data format based on the final time when each
ell solidifies and reduced the computation cost. However, it may lead

to inaccurate calculations in regions where the material solidifies and
remelts several times, especially when the scanning direction rotates for
each layer. Rolchigo et al. [26] introduced the concept of ‘‘temporary
solid cells’’ to address the remelting issue in a multi-pass layer and
further reduced the computational tasks by restricting calculations to
undercooled interface cells. In this work, instead of collecting sparse
temperature data for all the passes of the current layer [26], the sparse
emperature data of each cell is updated at the beginning of each
aser pass. For each cell, the maximum temperature in the current pass
s computed. If the maximum temperature of a CA cell exceeds the
iquidus temperature 𝑇𝑙, the phase of this CA cell is set to liquid, thus
voiding melting checks in subsequent CA steps within that laser pass.
dditionally, the time at which each liquid cell becomes undercooled

s calculated and stored, allowing for explicit tracking of the set of
ndercooled cells in subsequent time steps. In these time steps, due to

the efficiency of the analytical thermal model, the temperature of each
undercooled cell is updated precisely with Eq. (2) and (4), rather than
relying on a cooling rate approximation as in previous works [24,26].
Nucleation and growth are performed in undercooled cells based on
updated temperature. At the end of each passes, all cells transform into
solid cells.

2.7. Parallelism and memory management

In this work, the simulation is parallelized using OpenMP (multipro-
cessing) with C++ in a shared memory environment. The simulation
data is saved in a shared memory space which is accessible for all
the processors. Therefore, in each CA step, computational tasks like
temperature calculation for undercooled liquid cells and capture check
for interface cells can be equally assigned to all the processors without
a large overhead. Thus, it is easier to balance the loads among all
the processors compared to a distributed memory environment. For
tasks such as temperature calculation and growth length updates, no
race conditions are encountered. For operations that involve adding or
removing interface cells from the main container, serial operations are
employed. In the implementation of the multi-level capture algorithm,
the capture check for each level is parallelized using multi-threading,
with each thread assigned a thread-local container. This approach
effectively avoids race conditions.

In a CA simulation, saving the data of all the cells in the simulation
omain requires a large memory space. However, this is not necessary.

During additive manufacturing, melting and solidification only occur in
a few layers in the upper region. Therefore, the memory requirement
can be reduced by only saving data of cells in the upper layers in the
memory. In this work, the data of all cells are stored layer-by-layer
on the hard disk in a HDF5 [36] file, which has a good performance
n input/output performance. At the beginning of the simulation, a
umber of layers are loaded into the memory for simulation. During
he simulation, if a new layer needs to be added, the data of the bottom
ayer will be dumped from the memory to the hard disk and the data of
he new layer will be loaded. Consequently, the number of layers in the
emory is constant throughout the simulation. The number of layers

n the memory should be selected based on the depth of the melt pool
o avoid a complete penetration. The cost of data transfer between the
emory and the hard disk is insignificant compared to the computation
ost.
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Fig. 1. A schematic illustration of the pruning conditions in the multi-level capture algorithm. Capture trees are constructed by denoting the interface cells and the
neighboring cells they captured with nodes and connecting the parent nodes with their child nodes. To reduce the computational tasks, two kinds of pruning conditions are given
here. a Pre-pruning. If multiple nodes in the same level are related the same cell (cell 22), only the node with the smallest capture time (𝑡𝑐 𝑎𝑝 = 0.5 ms) is allowed to have child
nodes. b Post-pruning. If a node has a capture time (𝑡𝑐 𝑎𝑝 = 1.3 ms) smaller than a node (𝑡𝑐 𝑎𝑝 = 1.5 ms) in a older level and they have the same cell index (cell 23), then the node
in the older level is invalid and its child nodes are removed. c Schematic capture conditions at time 𝑡 = 0.8 ms and 𝑡 = 1.5 ms, corresponding to the conditions shown in a and b,
respectively.
1

2.8. Overall algorithm

The overall algorithm for the current CA solidification model is
given in Algorithm 1. First, the initial microstructure of the base plate
and powder layers is generated as a random microstructure with ran-
domly oriented grains and saved to the hard disk. A number of layers
are loaded into the memory. The scanning pattern is also calculated
based on the processing conditions. Then, the simulation proceeds pass
by pass. For each scanning pass, the maximum temperature of each
CA cell in the memory is calculated. If its maximum temperature is
larger than the liquidus temperature, it will be set to liquid. The time
𝑡𝑢𝑐 when each liquid cell becomes undercooled is also calculated to
track the undercooled region. Then, solidification is simulated with
a constant time step 𝛥𝑡. The data of interface cells and the indices
of undercooled cells are saved in two containers. In each time step,
new undercooled cells and new interface cells are added into the
container for undercooled cells and the container for interface cells,
respectively. The temperature of the undercooled cells are updated.
Then, the program updates the growth length and performs capture
checks for each interface cell with the decentered growth algorithm and
the multi-level capture algorithm. Newly transformed interface cells
will be added into the container for interface cells. The interface cells
which do not have liquid neighbors are transformed into solid cells and
are removed from the container for interface cells and the container for
undercooled cells.

2.9. Experiments

Commercial NiTi powder (TLS Technik GmbH, Bitterfeld, Germany)
was used to fabricate the three NiTi parts by laser powder bed fusion
5 
Algorithm 1: The overall algorithm for the CA solidification
model.
1 Initialize the microstructure with a random Voronoi tessellation;
2 Calculate the scanning pattern for all the layers;
3 𝑡 ← 0 ;
4 𝛥𝑡 ← 𝜉 𝛥𝑥

𝑣𝑠
;

5 foreach scanning pass do
6 Calculate the maximum temperature for each cell;
7 Set the cells with their maximum temperature above the

liquidus temperature 𝑇𝑙 to liquid;
8 Calculate the time 𝑡𝑢𝑐 when each liquid cell become

undercooled;
9 while 𝑡 < 𝑡𝑒𝑛𝑑 ,𝑝𝑎𝑠𝑠 do
10 Add new undercooled cells and new interface cells;
11 Calculate temperature for each undercooled cell;
12 Update growth length for each interface cell;
13 Perform capture check with the multi-level capture

algorithm;
14 Add new interface cells;
15 Remove interface cells which transform into solid from

the container for interface cells and the container for
undercooled cells;

16 𝑡 = 𝑡 + 𝛥𝑡;
7 Check if deposit a new layer in the simulation domain;
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(L-PBF) under argon protection. L-PBF was performed on an Aconity3D
Midi (Aconity3D GmbH, Germany) machine equipped with a laser
source featuring a maximum power of 1000 W and a beam with a
Gaussian power distribution. The L-PBF processing parameters are sum-
marized in the Supplementary Table 2. Crystallographic textures were
investigated using electron back-scatter diffraction (EBSD) technique.
The measurements were performed by the Helios G4 SEM microscope
equipped with EDAX EBSD detector under 25 k V accelerating voltage
and 25 nA beam current. MTEX [37] is employed to generate pole
igures based on EBSD measurements and simulated microstructures.

3. Results

3.1. Influence of the time step size

To verify the independency of the proposed model on the time
step size, different time steps (𝜉 = 0.04, 0.5, 1.0, 1.5, 2.0) have been
employed to simulate a directional solidification case. The simulation is
performed in a 400 × 400 × 400 μm3 domain with a cell size of 1.0 μm. The
initial microstructure is generated with a Voronoi tessellation, while no
ucleation is employed during the simulation. A temperature gradient
f 1.0 × 106 K ∕m is applied in the Z direction. As the simulation domain
ools at a rate of 5.0 × 105 K ∕s, directional solidification occurs. The fully
olidified microstructure in the two simulations with 𝜉 = 0.04 and 𝜉 =
2.0 are given in Fig. 2. The microstructures in the plane-YZ (Figs. 2b and
2c) and plane-XY (Figs. 2e and 2f) in the simulations with 𝜉 = 0.04 and
= 2.0 are similar to each other. Moreover, both the two simulations

xhibit a ⟨100⟩ fiber texture, as shown in Figs. 2h and 2i. However,
some minor differences (highlighted with circles) can be observed in
the center of Figs. 2b and 2c. These subtle differences are caused by
ounding errors and conditions that two interface cells may capture the

same liquid cell at exactly the same time, which is rare but possible to
occur. In Fig. 2d, the evolution of the volume fractions of three three
rbitrarily chosen grains are plotted against the Z coordinate for the
wo simulations with 𝜉 = 0.04 and 𝜉 = 2.0. Due to different local
rowth competition conditions, the volume fractions of grain-1 and
rain-3 increases continuously, while the volume fraction of grain-2
nitially increases and then decreases. The volume fraction curves from
he two simulations overlap, indicating that the value of 𝜉 has little

influence. In conclusion, the dependence of CA growth on time step size
has been successfully eliminated. The performance of simulations with
different 𝜉 values are presented in Fig. 2d. With increasing 𝜉, the time
step size increases and the number of time steps to finish the simulation
ecreases, leading to a decrease in the computational time. However,
ith increasing time step size, the number of captured interface cells

ncreases, which increases the computational cost for each time step. In
his case, the total computation time first decreases and then increases
ith increasing 𝜉. The minimum computation time is obtained with 𝜉
round 1.0 for the directional solidification case.

3.2. Model validation with a 316L steel sample

The current model is validated by simulating the microstructure of
 316L component with a {110}⟨001⟩ Goss texture, which was reported
n the work of Andreau et al. [38]. The simulation is performed in

a 2000 × 2000 × 4500 μm3 domain with a cell size of 5 μm. The initial
icrostructure is generated with a Voronoi tessellation. In the simu-

lation, the scanning direction (SD) is parallel or anti-parallel with the
X+ direction, while the building direction (BD) is in the Z+ direction.
The simulation results are given in Fig. 3. The color is determined as
he inverse pole figure (IPF) color in the Z+ direction. For a better
llustration, two slices are made in the plane-XY and plane-YZ which are
erpendicular to the Z axis and the X axis, respectively. The simulated
icrostructure in the upper part (2500 μm ≤ 𝑧 ≤ 4500 μm) of plane-YZ

BD-TD) (Fig. 3b) agrees with the bulk microstructure (Fig. 3c) from
he experiments. The green grains, namely ⟨110⟩ ∥ Z grains, dominate
 b

6 
in the boundary of the melt pool as a result of the orientation selection
effect of the neighboring laser passes. In the center of the melt pool,
the temperature gradient is parallel with the Z axis, leading to the
ormation of red grains, namely ⟨100⟩ ∥ Z grains, which propagate
long the Z axis. The ⟨100⟩ ∥ Z grains in the experiment show some
aviness due to the oscillations in the melt pool. As the simulation does

not consider melt pool oscillations, such a waviness is not observed in
Fig. 3b. In the lower part (0 μm ≤ 𝑧 ≤ 2000 μm) of plane-YZ, a transition
from a random microstructure to a microstructure dominated by ⟨100⟩ ∥

grains is observed, as shown in Fig. 3d. The short transition region
indicates a high selection rate on dominant orientations. The selection
rate is influenced by many factors including melt pool shape, cell size
and heat accumulation. Here, the width and height of the simulated

elt pool deviate from the mean width and height of the experimental
elt pool by 5 μm, which is acceptable within the margin of error, as

hown in Fig. 3f. Note the high selection rate is related to the deviation
in the melt pool dimensions. A smaller selection rate is observed, when
the simulation is performed with a melt pool which matches the mean
dimensions of the experimental melt pool. The details can be found
in the Supplementary Material (Supplementary Section 4). The pole
igure shown in Fig. 3g is generated based on the microstructure in

Fig. 3e. The simulated pole figure matches the experimental pole figure
(Fig. 3h), which is close to the {110}⟨001⟩ Goss texture.

The current CA model has been benchmarked against models re-
ported in the literature [17,23] by simulating the microstructure of
a 316L sample using similar computational resources, as shown in
Table 1. Compared to a CA model [23] implemented with a shared

emory, our CA model is approximately 20 times faster (12 core hours
ersus 220 core hours). When compared to a CA model utilizing a

distributed memory [17], our model demonstrates an improvement in
speed by nearly two orders of magnitude (32 core hours versus 9360
core hours). Note the comparison here remains qualitative, as numer-
ous external factors may influence the computational performance of
CA models. This acceleration comes from two sources. First, a larger
time step (𝜉 = 1.0) is employed in the current CA model, which
is safely achieved by analytically calculating the growth length and
employing a multi-level capture algorithm. Secondly, a pass-by-pass
sparse temperature algorithm is implemented in the current model,
which reduces the computational tasks for melting and limits the tem-
perature calculation in the undercooled region. When the simulation is
erformed with a small time step (𝜉 = 0.04) and without the pass-by-
ass sparse temperature algorithm (referred as Base in Table 1), it takes

approximately 360 h using 64 cores of two AMD EPYC 7452 CPUs,
which is two orders of magnitude slower.

3.3. Model validation with NiTi samples

The current model is further validated by simulating the microstruc-
ure of additively manufactured NiTi samples (sample-A, sample-B and
ample-C, corresponding to low, medium and high laser powers, re-
pectively). The process parameters can be found in the Supplementary
able 2. To avoid cracking, the scanning direction is rotated by 67
egrees when depositing a new layer. Different process conditions lead
o different melt pool shapes and thus different microstructures. The
xperimental melt pool shapes in top layers of manufactured samples
re employed to calibrate our modified thermal model, which enables
 good fitting of melt pools in the conduction mode or the transi-
ion mode. To accounting for the accumulated heat from previously
eposited layers, an initial temperature of 523 K is employed in the
hermal model. Material parameters including density, thermal con-
uctivity and the specific heat are constant for all the simulations,
hich are given in Supplementary Table 1. In both the simulations
nd the experiments, a coordinate system is defined based on the
uilding direction and the sample geometry. The Z axis is parallel with
he build direction, while the X and Y axes are perpendicular to the

uilding direction. Note the X axis does not represent the scanning
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Fig. 2. Validation of time step independence with a directional solidification case. The temperature gradient is applied in the positive Z direction. The simulation domain
size is 400 × 400 × 400 μm3. IPF (inverse pole figure) color with respect to Z axis is employed. a 3D view. b, c Plane-YZ (𝑥 = 200 μm) in the simulations with 𝜉 = 0.04 and 𝜉 = 2.0. d
Evolution of volume factions of three grains with respect to the Z coordinate in the simulations with 𝜉 = 0.04 and 𝜉 = 2.0. 𝜉 value has little influence on the grain volume fraction
evolution. e, f Plane-XY (𝑧 = 400 μm) in the simulations with 𝜉 = 0.04 and 𝜉 = 2.0. g Optimal computation time is obtained with 𝜉 = 1.0. h, i Pole figure in the simulations with
𝜉 = 0.04 and 𝜉 = 2.0 (generated based on e and f, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 1
Comparison between the current CA model with CA models reported in literature [17,23] in case of simulating microstructure of a 316L steel sample.

Model Domain size (μm3) Cell size (μm) CPU type Frequency Cores Time (h) Core hours

Current 2000 × 2000 × 4500 5.0 AMD EPYC 7452 2.35 GHz 8 2.2 17.6
Current 2000 × 2000 × 4500 5.0 AMD EPYC 7452 2.35 GHz 16 1.5 24.0
Current 2000 × 2000 × 4500 5.0 AMD EPYC 7452 2.35 GHz 32 1.2 38.4
Current 2000 × 2000 × 4500 5.0 AMD EPYC 7452 2.35 GHz 64 1.0 64.0
Current 2000 × 2000 × 4500 5.0 Intel Xeon E5-6248R 3.00 GHz 8 1.5 12
Model [23] 2055 × 2055 × 4750 5.0 AMD Ryzen 7 1700X 3.40 GHz 8 27.5 [23] 220
Base 2000 × 2000 × 4500 5.0 Intel Xeon E5-6248R 3.00 GHz 64 360 12960
Current 750 × 750 × 562.5 1.875 AMD EPYC 7452 2.35 GHz 64 0.5 32
Model [17] 750 × 750 × 562.5 1.875 Intel Xeon Platinum 8168 2.70 GHz 144 65 [17] 9360
direction, as the scanning direction rotates by 67 degrees for each new
layer. Experimental bulk microstructures are measured with EBSD in
the plane-XY and the plane-YZ of the additively manufactured samples.
For comparison, slices are made from the simulated three-dimensional
microstructure in the plane-XY and plane-YZ. The cell size is deter-
mined as an appropriate value (1.0 μm) to balance the requirement
of selection rate and computational cost. A sufficiently large domain
7 
(800 × 800 × 3000 μm3) is employed to capture the microstructure evo-
lution from a random microstructure to a steady-state microstructure,
corresponding to the experimental bulk microstructure. The random
microstructures in the substrate and powder layers are generated with
a Voronoi tessellation with an initial grain size of 15 μm. In all the NiTi
simulations, a nucleation density of 2.0 × 1014 m−3 is employed, which is
determined by fitting the steady-state microstructure against the bulk
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Fig. 3. Results from the simulations and the experiments for the 316L sample. The simulation domain size is 2000 × 2000 × 4500 μm3. a 3D view. b, d Simulated microstructure
in the upper part (2500 μm ≤ 𝑧 ≤ 4500 μm) and the lower part (0 μm ≤ 𝑧 ≤ 2000 μm) of plane-YZ (𝑥 = 1000 μm). c Experimental microstructure in plane-YZ. In both the simulation and
the experiment, ⟨110⟩ ∥ Z (green) grains dominate the microstructure and stripe-like ⟨100⟩ ∥ Z (red) grains propagate along the building direction (Z). e Simulated microstructure in
the plane-XY (𝑧 = 4500 μm). a-e are colored with IPF (inverse pole figure) color with respect to the Z axis. f Melt pool dimensions in the experiments and simulations. g Simulated
pole figure (generated based on e). h Experimental pole figure. A {110}⟨001⟩ Goss texture is identified in both the simulation and the experiment. Figures 2c, 2f and 2 h are
adapted from Andreau et al. [38]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
microstructure (see Section 4.1). At the beginning of the simulations,
three or four layers are deposited to make sure the bottom of the
melt pool does not go beyond the simulation domain. In the end of
the simulations, to ensure that simulated microstructures in top layers
represent bulk microstructures, the laser scanning process is extended
beyond the simulated domains until no re-melting occurs within these
specified domains.

For NiTi sample-A, the thermal model is calibrated with the average
experimental melt pool shape from top layers. The simulated melt pool
is compared with an experimental melt pool in Fig. 4f, where a good
agreement is achieved. The steady-state microstructure in the upper
part (2200 ≤ 𝑧 ≤ 3000 μm) of the simulation domain is compared
with the experimental bulk microstructure, as shown in 4. In plane-
YZ, semi-elliptical shapes are observed in both the simulation and
the experiments, as shown in Figs. 4b and 4c, respectively. The semi-
elliptical shapes may consist of a large grain or several small grains
with different orientations. The grains in the semi-elliptical shapes
have orientations which are favorable to grow locally. Those grains
propagate along the build direction for a few layers until their orien-
tations are not favorable due to the rotation of the scanning direction
8 
between adjacent layers. In the plane-XY of the simulation (Fig. 4d),
the microstructure is characterized by rounded polygons consisting of
several grains, where the edges of the polygon are shaped with small
columnar grains. The polygons are shaped by scanning passes from
several layers. After scanning passes from one layer, columnar grains
are formed with their edges parallel or inclined to the temperature
gradient. The temperature gradient rotates as the scanning direction
rotates between adjacent layers, leading to formation of polygonal
shapes. The feature of large polygons can also be found in the plane-
XY of the experiment, as shown in Fig. 4e. Note the experimentally
measured plane-XY (Fig. 4e) may include several deposition layers
due to experimental limitations, which might be the reason why some
densely stacked columnar grains are observed in Fig. 4e. Besides, the
experimental melt pools may oscillate during manufacturing, leading to
differences in the locally favorable orientations. Pole figures shown in
Figs. 4g and 4h are generated based on the microstructures in Figs. 4d
and 4e for the simulation and the experiment, respectively. In the
simulated pole figure shown in Fig. 4g, multiple local maximum points
are observed, while the maximum points in the experimental pole
figure (Fig. 4h) are more randomly distributed. This mismatch might be
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Fig. 4. Results from the simulation and the experiments for NiTi sample-A. The simulation domain size is 800 × 800 × 3000 μm3. a 3D view. b Simulated microstructure in
the upper part (2200 μm ≤ 𝑧 ≤ 3000 μm) of plane-YZ (𝑥 = 400 μm). c Experimental microstructure in plane-YZ. In plane-YZ, semi-elliptical shapes consisting one large grain or
several small grains with different orientations are observed in both the simulation and the experiment. d Simulated microstructure in plane-XY (𝑧 = 3000 μm). e Experimental
microstructure in plane-XY. In plane-XY, polygons consisting of several small grains are observed in both the simulation and the experiment. a-e are colored with IPF (inverse pole
figure) color with respect to Z axis. f The modeled melt pool shape fits the experimental melt shape in the cross section. g,h Simulated and experimental pole figure (generated
based on d and e, respectively). A weak texture is observed in both f and g. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
caused by the experimental limitations and the oscillation of the melt
pool during manufacturing. The maximum intensity in the simulation
is around 1.9, indicating that sample-A has a very weak texture. This
value is also close to the maximum intensity (1.4) in the experiment
pole figure. In this case, the simulation is in acceptable agreement with
the experimental results.

Different from the conduction-mode melt pool in NiTi sample-
A, the melt pool in NiTi sample-B is in transition mode. The lower
part of the transition-mode melt pool, which will not be remelted by
subsequent laser passes, is well fitted with the thermal model, as shown
in Fig. 5f. The simulated microstructure, as well as the experimental
microstructure, is presented in Fig. 5 for comparison. Unlike sample-
A, the microstructure of sample-B is dominated by ⟨100⟩ ∥ Z (red)
grains, with one of their ⟨100⟩ crystallographic directions parallel with
the Z axis. This indicates that ⟨100⟩ ∥ Z orientations are globally
favorable. In the plane-YZ in the simulation, as shown in Fig. 5b, some
9 
stripe-like grains with globally unfavorable orientations1 like ⟨210⟩ ∥ Z
(yellow), ⟨211⟩ ∥ Z (purple) and ⟨110⟩ ∥ Z (green) propagate along
the build direction (Z axis) in the ⟨100⟩ ∥ Z grain matrix, extending
over a few layers. Similarly, stripe-like grains with globally unfavorable
orientations can be identified in the plane-YZ of the experiment, as
shown in Fig. 5c. Due to the oscillations of the melt pool, those grains
with globally unfavorable orientations in the experiment exhibit some
waviness. This is not observed in the simulation, as the simulation
employed a stable melt pool without oscillations. In the plane-XY in
the simulation (Fig. 5d), small grains with globally unfavorable orien-
tations1 like ⟨210⟩ ∥ Z (yellow), ⟨211⟩ ∥ Z (purple), ⟨110⟩ ∥ Z (green)
and ⟨111⟩ ∥ Z (blue) are randomly located in the ⟨100⟩ ∥ Z grain matrix,
which agrees with the experimental microstructure shown in Fig. 5e.
The shape of the small grains with globally unfavorable orientations
in the simulation is less smooth compared to the small grains in the

1 The Miller indices shown here are estimations of real orientations.
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Fig. 5. Results from the simulation and the experiments for NiTi sample-B. The simulation domain size is 800 × 800 × 3000 μm3. a 3D view. b Simulated microstructure in
the upper part (2200 μm ≤ 𝑧 ≤ 3000 μm) of plane-YZ (𝑥 = 560 μm). c Experimental microstructure in plane-YZ. In plane-YZ, ⟨100⟩ ∥ Z (red) grains dominate the microstructure and
stripe-like grains with globally unfavorable orientations like ⟨210⟩ ∥ Z (yellow), ⟨211⟩ ∥ Z (purple) and ⟨110⟩ ∥ Z (green) propagate along the building direction (Z axis). d Simulated
microstructure in plane-XY (𝑧 = 3000 μm). e Experimental microstructure in plane-XY. In plane-XY, small grains with globally unfavorable orientations like ⟨210⟩ ∥ Z (yellow),
⟨211⟩ ∥ Z (purple), ⟨110⟩ ∥ Z (green) and ⟨111⟩ ∥ Z (blue) are randomly located in the ⟨100⟩ ∥ Z grain matrix. a-e are colored with IPF (inverse pole figure) color with respect to Z
axis. f The modeled melt pool shape fits the experimental melt shape in the cross section. g, h Simulated and experimental pole figure (generated based on d and e, respectively).
A strong ⟨100⟩ texture is observed in both the simulation and the experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
experiment; this is because interface curvature and grain growth are
not considered in the growth algorithm of the CA simulation. In both
the simulation and the experiment, the microstructure is dominated
by ⟨100⟩ ∥ Z grains, which have one of their ⟨100⟩ crystallographic
directions parallel with the Z axis and the other two ⟨100⟩ crystallo-
graphic directions oriented randomly. This leads to a strong ⟨100⟩ fiber
texture in both the simulation and the experiment, as shown in 5g and
5h, which are generated based on the microstructure in 5d and 5e,
respectively. The maximum texture intensity (9.5) in the simulation is
close to that (8.4) in the experiment.

For NiTi sample-C (high laser power), the analytical thermal model
is well fitted with the experimental melt pool shape, as shown in
Fig. 6f. Similar to the microstructure of NiTi sample-B, ⟨100⟩ ∥ Z grains
dominate the microstructure in the simulation and the experiment. In
plane-YZ of the simulation, as shown in 6b, ⟨100⟩ ∥ Z (red) grains which
propagate along the building direction dominate the microstructure,
10 
which agrees with the experimental observations in 6c. Due to nu-
cleation, some extremely small grains (several cells) with unfavorable
orientations exist in the ⟨100⟩ ∥ Z grain matrix in the simulation.
However, due to the selection effect of the temperature gradient, the
size of those grains are very small and they have little influence on
the final texture. In the plane-XY of the simulation (Fig. 6d), the
microstructure is composed of red ⟨100⟩ ∥ Z and near-red columnar
grains. This agrees with the experimental result in Fig. 6e. The pole
figure of the simulation shown in Fig. 6g is generated based on the
microstructure in Fig. 6d, while the pole figure of the experiment
shown in Fig. 6h is generated based on an XRD (X-ray diffraction)
measurement. The reason for not considering microstructure in Fig. 6e
is that the resultant pole figure is not representative due to insufficient
number of grains in the EBSD dataset (see Section 5 in Supplementary
Material). The simulated pole figure agrees well with the pole figure
based on the XRD measurement.



X. Liang et al. Additive Manufacturing 98 (2025) 104622 
Fig. 6. Results from the simulation and the experiments for NiTi sample-C. The simulation domain size is 800 × 800 × 3000 μm3. a 3D view. b Simulated microstructure in the
upper part (2200 μm ≤ 𝑧 ≤ 3000 μm) of plane-YZ (𝑥 = 400 μm). c Experimental microstructure in plane-YZ. In plane-YZ, ⟨100⟩ ∥ Z grains dominate the microstructure, which propagate
along the building direction (Z axis). d Simulated microstructure in plane-XY (𝑧 = 3000 μm). e Experimental microstructure in plane-XY. In plane-XY, the microstructure is mainly
⟨100⟩ ∥ Z grains with unstructured shapes. a-e are colored with IPF (inverse pole figure) color with respect to the Z axis. f The modeled melt pool shape fits the experimental melt
shape in the cross section. g, h Simulated and experimental pole figure (generated based on d and e, respectively). Both the simulated and the experimental pole figures show a
strong ⟨100⟩ texture. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4. Discussion

4.1. Simulation of steady-state bulk microstructure

The intention of the current work is to validate the developed CA
model by comparing simulated bulk microstructures with experimental
ones under different processing conditions. In AM, when enough layers
have been deposited, the deposited microstructure reaches a steady
state condition. The steady-state microstructure is obtained as a balance
between an orientation selection effect and nucleation. With increasing
height, grains with unfavorable orientations gradually disappear due
to orientation selection of temperature gradients, while nucleation
introduces new grains with different orientations. The balance be-
tween orientation selection and nucleation will be illustrated with NiTi
sample-B.

The simulation of NiTi sample-B was performed with a domain of
800 × 800 × 3000 μm3 and a cell size of 1.0 μm. The microstructure in
plane-XY at different heights are given in Fig. 7. The simulation starts
from a random microstructure, as show in Fig. 7a. With increasing
height, temperature gradients from different laser passes select grains
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with favorable orientations (⟨100⟩ ∥ Z grains, namely, red grains), and
the fraction of non-red grains decreases, until a steady-state microstruc-
ture is reached at a height around 1800 μm. As shown in Figs. 7d, 7e and
7f, the microstructures at 1800 μm, 2400 μm and 3000 μm are similar,
where small non-red grains are located randomly in the matrix of
⟨100⟩ ∥ Z (red) grains. The fraction of red grains as a function of height
(Z) is given in Fig. 7g. Here, red grains are defined as grains with 𝜃 <
20◦, where 𝜃 is the minimum angle between the ⟨100⟩ crystallographic
directions and Z+ direction. With increasing height, the fraction of
red grains increases until a plateau is reached at a height of around
1800 μm. The fluctuation observed in Fig. 7g is caused by nucleation.
The existence of a plateau confirms the steady-state condition.

The steady-state microstructure is achieved as a balance between
orientation selection and nucleation. The fraction of ⟨100⟩ ∥ Z (red)
grains in the steady-state microstructure is influenced by the nucleation
density 𝑛𝑛. To illustrate this effect, simulations of NiTi sample-B have
been performed with three different nucleation densities 𝑛𝑛: 2 × 1013 m−3

(NS1), 2 × 1014 m−3 (NS2) and 2 × 1015 m−3 (NS3). The simulated steady-
state microstructures are presented in Fig. 8. In NiTi sample-B, ⟨100⟩ ∥ Z
(red) orientations are globally favorable, while other orientations (non-
red) are only locally favorable in certain regions, referred to as LF
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Fig. 7. A steady-state microstructure is obtained after depositing enough layers in NiTi sample-B. a, b, c, d, e, f Microstructure in plane-XY at different heights (0 μm,
600 μm, 1200 μm, 1800 μm, 2400 μm and 3000 μm). g The fraction of red grains increases with increasing height. Red grains are defined as grains with 𝜃 < 20◦, where 𝜃 is the
minimum angle between the ⟨100⟩ crystallographic directions and Z+ direction. h Experimental microstructure in plane-XY. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
(locally favorable) regions. LF regions scatter in the simulation domain
and are disconnected. Whether LF regions are occupied by ⟨100⟩ ∥ Z
(red) grains or grains with LF orientations depends on the nucleation
density. At a lower nucleation density (𝑛𝑛 = 2 × 1013 m−3), LF regions are
more likely to be filled by ⟨100⟩ ∥ Z grains, as shown in Figs. 8a and 8d.
In contrast, at a higher nucleation density (𝑛𝑛 = 2 × 1015 m−3), LF regions
are predominantly occupied by LF-oriented grains, as seen in Figs. 8c
and 8f. Consequently, the fraction of ⟨100⟩ ∥ Z (red) grains decreases
with increasing nucleation density. Fig. 8g shows the fraction of ⟨100⟩ ∥
Z (red) grains as a function of height (Z) for simulations NS1, NS2, and
NS3. The plateaus confirm that steady states are achieved in each case.
As the nucleation density 𝑛𝑛 increases from 2.0 × 1013 m3 to 2.0 × 1015 m3,
the fraction of ⟨100⟩ ∥ Z (red) grains in the steady state decreases from
0.9 to 0.6. The maximum intensity of the ⟨100⟩ fiber texture decreases,
as shown in Figs. 8h and 8i. In the experimental microstructure, the
fraction of ⟨100⟩ ∥ Z (red) grains is around 0.86 and the maximum
texture intensity is around 8.4, which closely match the steady-state
microstructure of the simulation with 𝑛𝑛 = 2 × 1014 m−3. Therefore, this
nucleation density value (𝑛𝑛 = 2 × 1014 m−3) is used for all the NiTi
simulations presented in this work. Notably, this nucleation density is
close to that used in Teferra and Rowenhorst’s work (3 × 1014 m−3) [17].
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4.2. Formation of grain morphology and texture

For a crystal with a cubic crystal symmetry, the preferential growth
direction is always the ⟨100⟩ direction [39]. For solidification, the
preferential orientation which dominates the growth has one of its
⟨100⟩ crystallographic directions parallel with the temperature gradi-
ent. In other words, the temperature gradient selects the preferential
orientation, resulting in different microstructures. In this part, we will
examine the selection effect of the temperature gradient, analyzing how
it influences the formation of the 110⟨001⟩ texture in the 316L steel
sample, as well as the textures observed in the NiTi samples.

For multi-layer AM, the temperature gradient profile is complex,
especially when the scanning direction is rotated between adjacent
layers. To simplify the problem, we divided the temperature gradients
in a single melt pool into two types: vertical temperature gradient
(VTG) and inclined temperature gradient (ITG), as shown in Fig. 9a,
which is the boundary of a melt pool in a cross section perpendicular
to the scanning direction. This classification is only applied to the lower
part of the melt pool, as the upper part of the melt pool will be remelted
by laser passes in subsequent layers.
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Fig. 8. Influence of the nucleation density on steady-state microstructure. Simulations of NiTi sample-B are performed for with different nucleation density 𝑛𝑛: 2 × 1013 m−3

(NS1), 2 × 1014 m−3 (NS2) and 2 × 1015 m−3 (NS3). The domain size is 800 × 800 × 3000 μm3. a, b, c Microstructure in the upper part of plane-YZ (2200 μm ≤ 𝑧 ≤ 3000 μm at 𝑥 = 400 μm)
in simulations NS1, NS2 and NS3. d, e, f Steady-state microstructure (taken from plane-XY at 𝑧 = 3000 μm) in simulations NS1, NS2 and NS3. IPF (inverse pole figure) colors with
respect to the Z axis are employed in figures a–f. g The fraction of ⟨100⟩ ∥ Z (red) grains with respect to height (Z) in the simulations NS1, NS2 and NS3. With increasing nucleation
density, the fraction of ⟨100⟩ ∥ Z (red) grains in the steady-state microstructure decreases. h, i Pole figures for simulations NS2 and NS3, generated based on the microstructures
in e and f, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The 316L steel sample is employed as an example to explain the
formation of the {110}⟨001⟩ texture. The melt pool boundaries of laser
passes from different layers are superimposed on the microstructure in
a selected region in plane-YZ in the simulation, as shown in Fig. 9c.
Here, the in-plane component of the temperature gradient can be
assessed in the direction perpendicular to the melt pool trace line. In
the center of the melt pool, VTG is parallel with the Z axis, which
preferentially selects ⟨100⟩ ∥ Z (red) grains, that propagate along the
building direction as thin stripes. In the junction region between two
neighboring laser passes, ITGs are inclined at an angle of approxi-
mately 45 degrees with the 𝑍-axis. Furthermore, ITGs from neighboring
laser passes are nearly perpendicular to each other. This configuration
uniquely determines a favorable {110}⟨001⟩ orientation, with two of
its ⟨100⟩ crystallographic directions parallel with the ITGs. This leads
to a {110}⟨001⟩ Goss texture. In real AM conditions, the temperature
gradients are not perfectly aligned within the plane perpendicular to
the scanning direction. The out-of-plane components of the temperature
gradient introduce small deviations in the resulting 110⟨001⟩ Goss
texture, as shown in Figs. 3g and 3h.
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For NiTi samples, the scanning direction is rotated by 67 degrees
when adding a new layer. In this case, the scanning direction of
each layer is not necessarily perpendicular to the plane-YZ, leading to
different melt pool boundaries in the YZ plane, as shown in Figs. 9c,
9e and 9f. Meanwhile, the melt pool boundaries in the plane-YZ are
also dependent on the dimensions of the melt pool. As shown in 9c, in
the cross section perpendicular to the scanning direction, the melt pool
of sample-A has the smallest width, while the melt pool in sample-C
has the largest width. As a result, the melt pool boundaries change
drastically with the rotating scanning direction in different layers in
sample-A, while the melt pool boundaries in sample-C are much flatter,
as shown in Fig. 9c and Fig. 9f. The frequently changed melt pool
boundaries in sample-A indicate that the direction of the temperature
gradient in sample-A is highly inhomogeneous. The direction of ITGs
rotates together with the scanning direction, while the change in VTGs
is not significant as they are nearly parallel with the build direction (Z
axis).

The complex temperature gradient profile in NiTi sample-A enables
the growth of grains with various orientations resulting in different
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Fig. 9. Selection of preferential orientations with temperature gradients. a The temperature gradients in the lower part of a melt pool are divided into two types: vertical
temperature gradient (VTG) and inclined temperature gradient (ITG). b Comparison of the melt dimensions in the three NiTi samples. c, d, e and f The melt pool boundaries
superimposed on microstructure in selected regions in plane-YZ for the 316L sample, NiTi sample-A, NiTi sample-B and NiTi sample-C, respectively. Local temperature gradients
are perpendicular to the melt pool boundaries, which select preferential orientations.
Fig. 10. Orientation-dependent grain morphologies in NiTi samples. Grain morphologies in NiTi sample-A: a columnar grains, b planar branches and c spiral-like grains. d
Relation between grain morphology and orientation in NiTi sample-A. e Grain morphologies in NiTi sample-B. f Grain morphologies in NiTi sample-C.
grain morphologies, as shown in Figs. 10a, 10b and 10c. The grain
morphology is orientation dependent, as shown in Fig. 10d. Grains
with ⟨100⟩ ∥ Z orientations typically exhibit a columnar or trunk-like
morphology (Fig. 10a); grains with ⟨110⟩ ∥ Z orientations tend to have
planar branches (Fig. 10b); grains with ⟨111⟩ ∥ Z orientations display
14 
a spiral-like structure (Fig. 10c). For grains with other orientations, a
mixture of the spiral-like structure and planar branches is commonly
observed. Similar branch-like grain morphologies have been observed
experimentally [40]. The dependence of the grain morphology on the
orientation can be explained by grow patterns, which are constructed
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with the effective ⟨100⟩ crystallographic directions, namely, the ⟨100⟩
crystallographic directions that are not perpendicular to the Z axis. In
NiTi sample-A, a VTG or a ITG may be aligned with a specific ⟨100⟩
crystallographic direction. However, a temperature gradient perpen-
dicular to the Z axis cannot be found in the multi-pass temperature
gradient profile. Therefore, orientations with ⟨100⟩ ∥ Z, ⟨110⟩ ∥ Z
and ⟨111⟩ ∥ Z have one, two and three effective ⟨100⟩ crystallographic
directions, leading to different growth patterns, as shown in Figs. 10a,
10b and 10c. Note the growth patterns depicted in Fig. 10 represent
asic units of growth patterns, from which more complex growth
atterns can be generated. Grains with ⟨100⟩ ∥ Z exhibit a linear growth
attern (Fig. 10a); grains with ⟨110⟩ ∥ Z display a zigzag growth pattern

(Fig. 10b); grains with ⟨110⟩ ∥ Z have a spiral-like growth pattern
(Fig. 10c). For grains with other orientations, a mixture of the zigzag
rowth pattern and the spiral growth pattern is expected. Grains grow

larger when their growth pattern aligns with the local temperature
gradients. The linear growth pattern of grains with ⟨100⟩ ∥ Z can
be satisfied with VTG. However, due to the frequently changed melt
pool boundaries, the VTG-dominated region is either thin or short,
leading to a thin columnar morphology (Fig. 10a) or a short trunk-
like morphology. The zigzag growth pattern can be facilitated by ITGs
of various melt pools, leading to the formation of planar branches.
Similarly, the spiral growth pattern can be supported by ITGs, resulting
in the formation of spiral-like grains. Note that the majority of grains
in NiTi sample-A, excluding those aligned with ⟨100⟩ ∥ Z or ⟨110⟩ ∥ Z,
or orientations lying in between, exhibit spiral-like features. The spiral
feature becomes stronger as the orientation approaches ⟨111⟩ ∥ Z. This
leads to the formation of polygon shapes in plane-XY, as shown in
Fig. 4d. In summary, the texture in NiTi sample-A is weak due to the
complex temperature gradient profile, which facilitates the growth of
grains with various orientations.

The melt pool in NiTi sample-B is wider than the melt pool in
NiTi sample-A, while the hatch distance in NiTi sample-B is the same
s the hatch distance in NiTi sample-A. Consequently, the melt pool
oundaries in NiTi sample-B are flatter, with VTGs predominating
cross the majority of the simulation domain. This favors the growth
f ⟨110⟩ ∥ Z grains in a columnar shape, as shown in Fig. 10e, leading

to the formation of a ⟨100⟩ fiber texture. The finding that flatter melt
pool boundaries promotes the formation of ⟨100⟩ texture is consistent
with the predictions by Rolchigo et al. [26] based on a texture selection
angle. In NiTi sample-B, grains with globally unfavorable orientations
can only find their growth pattern satisfied within a limited domain,
often resulting in strip-like shapes, as shown in Fig. 10e. In NiTi sample-
C, the melt pool is even wider than the melt pool in NiTi sample-B.
In this case, the vast majority of the simulation domain is dominated
by VTGs. This leads to a stronger ⟨100⟩ fiber texture in NiTi sample-
C compared to NiTi sample-B. Most grains in NiTi sample-C are in
olumnar shapes.

5. Conclusion

In this work, an improved three-dimensional (3D) cellular automata
CA) model has been developed. By analytically calculating the growth
ength and employing a multi-level capture algorithm, the time-step

dependence of CA simulations has been effectively eliminated. The
employment of large times steps, combined with a pass-by-pass sparse
temperature algorithm, has led to a significant acceleration in the
simulation of crystallographic textures and grain morphologies in ad-
ditively manufactured metallic materials. With experimental valida-
tions, our optimized 3D CA model demonstrates its robustness as a
tool for microstructure prediction. This model represents a signifi-
cant advancement in efficient microstructure prediction for additive
manufacturing.

Through the analysis of both simulated and experimental results,
his research uncovers the governing mechanisms behind the evolu-
ion of textures and grain morphologies. The resultant microstructure
15 
and texture are controlled by temperature gradients originating from
elt pools across different layers. In a domain dominated by verti-

al temperature gradients, ⟨100⟩ ∥ Z grains are favorable to grow,
eading to a ⟨100⟩ fiber texture. In a domain dominated by inclined
emperature gradients, the microstructure and the texture are depen-
ent on the interactions between temperature gradients of the melt
ools. Orientation-dependent growth patterns can be satisfied locally
NiTi sample-A) or globally (316L steel sample), leading to different
icrostructures and textures. It is thus a potential method to achieve
esired microstructures and textures by tuning temperature gradients
hrough a control of the melt pool shape and scanning strategy.
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