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Abstract. Although automated segmentation of 3D medical images
produce near-ideal results, they encounter limitations and occasional er-
rors, necessitating manual intervention for error correction. Recent stud-
ies introduce an active learning pipeline as an efficient solution for this,
requiring user corrections only on some of the most uncertain parts of
the automatically segmented image. It does so by combining different un-
certainty fields, which are various ways to quantify possible errors. We
investigate into its individual uncertainty fields and their combination
scheme in attempt to validate its methods. Additionally, we replace its
methods for estimating uncertainty with another common way to do so,
called the ensemble method, to test possible improvements at uncertainty
estimation. Results of this research validates the combination method of
the active learning pipeline, and shows weak advantages but strong dis-
advantages of the ensemble method when compared to the combined
method of the active learning pipeline.

1 Introduction

State-of-the-art in automatic medical image segmentation produce results that
resemble the quality of the ones drawn by human experts [1]. These advance-
ments in segmenting specific entities in 3D images have made it convenient for
clinicians to extract crucial anatomical structures efficiently, i.e. labeling a spe-
cific organ from a CT scan image of a person. However, such automatic segmen-
tations still exhibit certain limitations and occasionally introduce errors in the
segmentation process. Thus, manually checking and correcting these errors re-
mains necessary, a laborious and time-consuming task, impeding the widespread
adoption of fully automated segmentation methods in clinical practice.

To address this challenge, an interactive iterative pipeline was proposed in
[2]. This algorithm uses the idea of Active Learning (AL) [3] framework, querying
certain parts in the automatically segmented image with the most uncertainty
for users to manually correct only on such parts, maximizing the effect of a single
input instance. The pipeline in detail, works by first taking user-given labels for a
single plane slice of the 3D input image. The automatic segmentation algorithm
then labels voxels in the image according to the predicted classification, where it
is also generated an uncertainty field that represents the lack of confidence in the
classification of each voxel. Based on the uncertainty field, the pipeline selects a
slice with the most inaccuracy, where the user then provides correction inputs
using 2D segmentation tools. This process is repeated by feeding additional user-
generated inputs into the automatic segmentation algorithm again, until the user
is satisfied with the segmentation results. This would ensure that the quality of
the segmentation would eventually reach the clinical standards of the user while
requiring minimal amount of manual effort. We refer to this pipeline as the
baseline from now on, as this forms the basis of the research.

In this paper, we focus on the generation of the uncertainty field — the
estimation of incorrectness in the classification produced by automatic segmen-
tation algorithms. Specifically, since the uncertainty field generation in the base-
line works by combining different uncertainty terms, we attempt to investigate
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the roles of different terms in the baseline and their combination scheme, as [2]
does not show extensive evaluation for these. Additionally, we apply the concept
of one of the current methodologies for quantifying uncertainties to compare
their performance compared to the method in the baseline. Current methodolo-
gies can be categorized into four high-level modalities [4]. Firstly, Deterministic
Methods uses a single processing network such as evidential deep learning [5]
to estimate uncertainty, a simple and efficient way to do so. Secondly, Bayesian
Neural Networks on the other hand, varies the parameters of a deep learning
model [6] to estimate uncertainty by creating multiple outputs and quantify-
ing its distribution. Thirdly, Ensemble Methods uses multiple models to make
predictions, where the variance of individual predictions serve as a measure of
uncertainty [7]. Finally, Test-Time Data Augmentation augments the test data
to assess uncertainty from the outputs created from feeding the augmented test
data [8]. From the four modalities we choose the ensemble method, as it is not
too simple, do not require a neural network, and can be evaluated using data
with minimum pre-processing.

This leads to the following research questions: What role does different un-
certainties and the combination scheme play in the results of the baseline? What
other ways of uncertainty affect the performance of estimating errors? To answer
the questions, we first implement the baseline pipeline to explore its uncertainty
terms. Then we implement an application of the ensemble method to experiment
if such method can improve the estimation of errors.

We use the following structure for this paper to discuss the findings through-
out this research. Section 2 describes the methodology we use to generate uncer-
tainty fields, focusing on the qualities of an uncertainty field, how the baseline
creates them, and how we introduce a new way to create them. Section 3 then
describes the procedures and metrics we use to evaluate different uncertainties,
along with the results and its analysis. Finally, we conclude the paper by re-
flecting on issues that may render as problematic, and suggesting what could be
done to extend this research.

2 Methodology

2.1 Preliminaries

Notation For clarity, we define the notations used in the baseline, where Ω ⊂
R3 represent the three-dimensional domain of the image, y : Ω → {0, 1} the
classification label (0 for background and 1 for foreground), I : Ω → R the
image intensity function, p1 : Ω → R the foreground classification probability,
and U : Ω → R the uncertainty field.

Inputs and Outputs of Uncertainty Field Algorithm We also define the
inputs and outputs for an algorithm that creates an uncertainty field. Assuming
a voxel x ∈ Ω, the algorithm takes as input I(x) the input image intensities,
y(x) the partially erroneous segmentation labeling, and p1(x) the probability of
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Fig. 1: Visualization of the baseline pipeline. The uncertainty field generation
algorithm takes as input I(x) from the image, and y(x) and p1(x) from the
segmentation predicted by the classifier to produce the uncertainty field U(x).

x being classified as 1 in the generated segmentation, to generate the uncertainty
field U where the values between 0–1 indicate the lack of confidence the segmen-
tation has for each x. Refer to Fig. 1 to see how this process takes place in the
entire pipeline of the baseline.

Effective Uncertainty Field An effective uncertainty field corresponds well
to the actual difference between the generated segmentation and the ground
truth. Uncertainty should ideally be minimal for voxels where the segmentation
is correct, and maximal for those incorrect. Failing to do so may cause fault in
the next step of the pipeline, making it query a slice that is perceived to be
the most inaccurate, but in fact is one of the accurate slices when compared to
the ground truth. Since the goal is to minimize the number of user inputs, it is
necessary to maximize the correctness of the uncertainty field to also maximize
the effectiveness of a single user input.

2.2 Baseline Uncertainty Field

The baseline uncertainty field utilizes the expression below to generate uncer-
tainty for each voxel x in the image domain, which is a weighted sum of four
energy terms.

U(x, y) = λEUE(x, p1(x)) + λBUB(x, y) + λRUR(x, y) + λSUS(x, y), (1)

where UE represent the entropy energy based on classification probabilities, UB

the boundary energy based on image gradient around segmentation boundaries,
UR the regional energy based on intensity distribution for different labels, and
US the smoothness energy based on the neighboring voxels around x. Fig. 2
shows examples of each energy term for different organ segmentations.

Entropy Energy quantifies the degree of unpredictability of the classification
labeling by calculating the entropy of p1(x), which directly relates to the seg-
mentation.

UE(x, p1(x)) = −p1(x) log2 p1(x)− (1− p1(x)) log2(1− p1(x)) (2)
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(a) Ground Truth (b) Uncertainty Colormap (c) Segmentation

(d) Entropy E. (e) Boundary E. (f) Regional E. (g) Smoothness E.

Fig. 2: Visualization of the four energy terms. (a) shows in green an ideal segmen-
tation based on ground truth, where (c) shows in blue an erroneous segmentation.
(b) shows the colors mapped to different uncertainty values for the four baseline
energy terms (d–g) which predict the error of (c).

The expression above produces low entropy when p1(x) is either near 0 or 1,
meaning that the classification is highly predictable - the blue region in Fig. 2 (d).
This changes when the probability approaches 0.5 as the classification becomes
less predictable, producing high entropy and therefore uncertainty.

Boundary Energy checks if there are sharp edges in the input image around the
classification boundaries of the segmentation, as classification based on Random
Walker (used in baseline) tends to become inaccurate for images without sharp
edges [9].

UB(x, y) = δ(Ds(x, y))
1

1 + |∇I(x)|α
(3)

Here, the delta function δ(d) taking as input Ds(x, y) the distance between
x and the nearest classification boundary, approaches zero as the distance in-
creases; which is why in Fig. 2 (e) the values are in proximity of the classification
boundary. By multiplying this with the inverse of the image intensity gradient
magnitude, the boundary energy produces high uncertainty when the gradient
is weak (smooth surfaces) for voxels in proximity.

Regional Energy predicts voxel classification using its image intensity by com-
paring to the normal distributions of the intensities of other voxels with the same
labels, using the expression below:

UR(x, y) = p(Y = y(x)|I(x)) = p(I(x)|Y = y(x))

p(I(x)|Y = 0) + p(I(x)|Y = 1)
(4)

Here, p(I(x)|Y = 0) and p(I(x)|Y = 1) are estimated by the normal distribution
probability densities of the intensities of voxels labeled as 0 and 1, respectively.
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Voxels with similar intensities with voxels already labeled with the same label
would produce high regional energy. This highlights voxels that are likely to be
labeled, contributing to finding unlabeled voxels that should be labeled. Note
that regional energy does not depend on distances, thus it may render uncer-
tainties for most voxels, like shown in Fig. 2 (f).

Smoothness Energy calculates its result based on the surface area of the seg-
mentation for voxels around x. Below is the expression used for the calculation,
where Nx represents the neighboring voxels around x.

US(x, y) =

∫∫∫
Nx

δ(Ds(x, y)) dV (5)

This idea is similar to boundary energy, however the calculation measures how
close the neighbouring voxels are to the classification boundaries. The more
neighbours are close to the boundaries, the higher the energy would be, like
depicted in Fig. 2 (g).

2.3 Ensemble Method Uncertainty Field

As stated in the introduction section, an ensemble method uncertainty estima-
tion uses multiple models to make segmentations, where the variance of indi-
vidual predictions (or the Ensemble) serve as a measure of uncertainty. This
accounts for the possibility that the initial prediction is an outlier, measuring
its uncertainty using other predictions. In our case, after generating the initial
segmentation we additionally create an ensemble of classification probabilities
p1(x) and classification labels y(x) according to the probabilities, by generating
predictions while changing the parameters of the classifier algorithm (further dis-
cussed in Section 3.1 - Implementation). Such parameters control the behavior
of the algorithms, especially for areas with the hardest decision, thus producing
different classification boundaries in the most uncertain areas. When the en-
semble is collected, we first check if most predictions in the ensemble make the
same classification, then measure the variance of the predicted probabilities, and
finally incorporate entropy energy from equation (2) calculated from the mean
of the predicted probabilities.

Let us define UEns the ensemble uncertainty field, where x ∈ Ω represents
a voxel in the 3D image domain, UE : Ω,R → R the baseline entropy energy,
NF : Ω → Z the voxel-wise number of foreground predictions, N ∈ Z the
number of all predictions (size of the ensemble), pv : Ω → R, the variance of the
ensemble classification probabilities, and pm : Ω → R the mean probability of
the ensemble.

UEns(x) = λ1UE(x,
Nf (x)

N
) + λ2pv(x) + λ3UE(x, pm(x)) (6)

Here the first term calculates the entropy of the percentage of foreground la-
bels, quantifying the non-unanimity of the predictions; we call this the labeling
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entropy. The second term measures the variance of the probabilities in the en-
semble, which also does the same but in a non-thresholded way. Finally the
third term computing the baseline entropy energy of the mean probability of
the ensemble to measure lack of confidence in the predictions. Fig. 3 illustrates
examples of each terms and the final result.

(a) Errors (b) Uncertainty Colormap (c) Combined

(d) H(Nf (x)/N) (e) pv(x) (f) H(pm(x))

Fig. 3: Visualization of the ensemble uncertainty (c). (a) shows in red the dif-
ference between the ground truth and the initial segmentation, where (b) shows
colors mapped to the values of the (intermediate) results of the ensemble uncer-
tainty (c–f). (d) shows the labeling entropy, (e) the probability variance, and (f)
the baseline entropy energy.

3 Experimental Setup and Results

3.1 Setup

We investigate the four baseline uncertainty energy terms from equations (2–
5), and add up the terms to produce a combined baseline uncertainty field. We
then compare the uncertainty field generated from the ensemble method to the
combined baseline uncertainty field.

Implementation We first define the implementation details of the segmen-
tation: we use the Random Walker (RW) method [9] to provide probabilistic
segmentation, where each voxel is labeled based on their classification probabil-
ities (i.e. classified as foreground when p1(x) ≥ 0.5). We set the only parameter
of the RW algorithm as β = 0.1, since it produces reasonable results compared
to other values.
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Baseline Uncertainty Implementation uses distance transform for calculating

Ds(x, y), the expression e−
x2

2α where α = 8 for approximating δ-functions in
equation (3) and (5), and α = 0.5 in equation (3). The purpose of α parameters
is to calibrate for the distance between voxels in the 3D image domain, and such
values worked good in our test cases. We use different combinations of equation
(1) listed in Table 1 to test different energy terms.

Table 1: Variations of equation (1) for combining energy terms
Description Expression

Entropy Energy UE

Boundary Energy UB

Regional Energy UR

Smoothness Energy US

All Energies (same as [2]) 0.80UE + 0.05UB + 0.15UR + 0.00US

Ensemble Uncertainty Implementation first generates a prediction using RW
from above, which we consider as the final segmentation. We then create 9 ad-
ditional predictions while taking a random nonzero value for β from a normal
distribution with µ = 0.1 and α = 0.05, forming an ensemble of size N = 10
combined with the initial prediction. We use λ1 = 0.5 and λ2 = λ3 = 0.25, em-
phasizing labeling entropy as classification labels have direct relation to errors.

Evaluation We evaluate the uncertainty fields by measuring their correspon-
dence with the actual error. We do so qualitatively by performing manual eval-
uation where we compare segmentation errors and uncertainty fields using 3D
visualization tools. Additionally, the following paragraphs describe some quan-
titative evaluation metrics we use for this paper.

Receiver Operating Characteristic (ROC) Curves illustrate the ability of a thresh-
olded classifier to make correct decisions, which in this case is the capability of
the uncertainty field to mark areas with actual errors as uncertain. To do such
analysis for the uncertainty fields we create, we apply thresholding using the
mean value of the uncertainty field, as it appear to be a logical split of the con-
tinuous uncertainty into binary uncertainty when manually comparing the two
for fields with different uncertainty distributions. We then compare the binary
uncertainty field with the error image (difference between the ground truth and
the segmentation) in order to compare correct and incorrect predictions.

Mutual Information I(X;Y ) measures the correlation between two events X
and Y , in a set of data involving the two. Below describes the expression to
calculate I(X;Y ), where P (x) represent the probability of x ∈ X occurring, and
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P (x, y) the joint probability of x and y occurring simultaneously.

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log2(
P (x, y)

P (x)P (y)
) (7)

As a thresholded analysis loses substantial amount of information that comes
from the differences in uncertainty values, we compute the correlation between
a raw uncertainty field of continuous values and a voxel-wise error image [10].
We use 20 bins to make the calculation possible while maintaining much of the
continuous property of the raw uncertainty field.

Data We take 12 CT images of patients’ head and neck from [11], from which
we focus on two organs: the mandible and the parotid gland. For each image,
we create two trimmed images that bounds closely to the organs by introducing
some margin to the ground truth segmentation of the organs. For each trimmed
images, we randomly select a 2D slice to label the slice according to the ground
truth, and create 10 predictions as described above in the Implementation sec-
tion. Here the first predictions serve as final segmentations such that the result
of the segmentations are the same as without using the ensemble, as we focus
on improving the estimation of uncertainty than the segmentation itself.

We now divide the data into four categories, based on the organ and the
Dice Similarity Coefficient (DSC) [12] of the final segmentation: Mandible -
High DSC, Mandible - Low DSC, Parotid - High DSC, and Parotid - Low DSC.
This would provide context when evaluating uncertainty fields, enabling us to
reflect on the circumstances of interesting results. The randomly created segmen-
tations appeared to cluster around DSC of 0.6 and 0.2 for both organs, which
are approximately the mean DSC of the high and low DSC categories above.

3.2 Baseline Uncertainty Results

We compare the four baseline energy terms and the combined uncertainty using
different combinations of the terms, according to Table 1. We do this for the
four categories of the data from the above section; Fig. 4 shows some snapshots
of the resulting uncertainty fields.

Qualitative Analysis From Fig. 4 we see a general weakness in entropy, bound-
ary and smoothness energies in the second row, where they fail to detect errors
caused by the area of the foreground prediction being too small - having low DSC
due to underprediction. Still, we notice two of the energy terms with unique ca-
pabilities: entropy energy seems to be the most accurate match to the errors
when compared to the other standalone energies, while regional energy shows
strength in highlighting areas that are physically far away from the segmenta-
tion, contrary to the general weakness described above. However, we see that it
highlights too much of the background as the intensity difference between the
foreground and the background decreases. Overall, such findings explains the
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Fig. 4: Example snapshots of uncertainty fields with different baseline energy
combination, where the leftmost column shows the original image along with
the segmentation errors marked in orange. The intensity of the grayscale images
on the other columns represent the uncertainty magnitude.

high weight of entropy energy and moderate weight in regional energy for equa-
tion (1) from the implementation details of [2], as it uses regional energy to add
extra information to the seemingly best energy: the entropy energy. The right-
most column where it sums up all energies similarity to such strategy seems to
show the best performance, which is to be verified through quantitative analysis
below.

Quantitative Analysis Table 2 shows the average results for each data cate-
gory and uncertainty combination. True positive rates (TPR) represent the ratio
between voxels estimated correctly as erroneous from the uncertainty field and
all voxels proven to be erroneous through comparison with the ground truth,
while false positive rates (FPR) represent the ratio between voxels incorrectly
estimated as erroneous and all voxels proven to be correct. Mutual information
(MI) represent the correlation between uncertainty field strengths and actual er-
ror. Along with the ROC curves in Fig. 5, we verify all observations made from
the qualitative analysis process, especially that the combination of all energies
shows good results throughout all data categories, on both the thresholded and
non-thresholded evaluation.
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Table 2: Evaluation of different baseline uncertainty combination
Data M. High DSC M. Low DSC P. High Dsc P. Low DSC
Metric TPR↑ FPR↓ MI↑ TPR↑ FPR↓ MI↑ TPR↑ FPR↓ MI↑ TPR↑ FPR↓ MI↑

Mean

Entropy 0.80 0.12 0.04 0.58 0.06 0.05 0.96 0.22 0.11 0.94 0.16 0.12
Boundary 0.15 0.05 0.01 0.12 0.03 0.01 0.62 0.07 0.09 0.47 0.04 0.07
Regional 0.97 0.15 0.06 0.96 0.14 0.09 0.92 0.46 0.05 0.93 0.44 0.05
Smooth 0.57 0.08 0.03 0.22 0.03 0.01 0.71 0.09 0.09 0.51 0.07 0.07

All 0.92 0.17 0.06 0.96 0.15 0.09 0.99 0.25 0.13 0.98 0.20 0.14

Std. Deviation

Entropy 0.09 0.03 0.01 0.07 0.03 0.02 0.03 0.03 0.04 0.05 0.03 0.03
Boundary 0.05 0.00 0.01 0.03 0.00 0.00 0.05 0.03 0.01 0.09 0.02 0.01
Regional 0.02 0.03 0.01 0.05 0.04 0.01 0.01 0.02 0.02 0.02 0.04 0.03
Smooth 0.18 0.02 0.02 0.02 0.01 0.00 0.06 0.04 0.01 0.10 0.03 0.01

All 0.03 0.02 0.01 0.04 0.04 0.02 0.01 0.02 0.04 0.02 0.03 0.04

(a) M. High DSC (b) M. Low DSC

(c) P. High DSC (d) P. Low DSC

Fig. 5: ROC curves comparing true positive rates and false positive rates of
different baseline uncertainty combinations, for each data categories. Each point
represents a data instance.
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3.3 Ensemble Uncertainty Results

Now we compare the uncertainty field created from the ensemble method with
the combined baseline uncertainty field from above (last row from Table 1), using
the same data categories. Fig. 6 shows snapshots of the resulting uncertainty
fields.

Fig. 6: Example snapshots of uncertainty fields created by the ensemble method
and the combined baseline method, where the leftmost column shows the original
image alone with the segmentation errors marked in orange. The intensity of the
grayscale images on the other columns represent the uncertainty magnitude.

Qualitative Analysis From Fig. 6 we see that the ensemble uncertainty field
emphasizes parts of the classification boundaries, as they are the regions where
ensemble predictions differ the most. Consequently, we see that it matches the
shape of the error images for segmentations with high DSC much better than
the ones with low DSC, while the combined baseline method exhibit decent
performance in all DSC levels.

Quantitative Analysis Similarly to Table 2, Table 3 shows the average re-
sults for each data category and uncertainty field types. Comparing TPR and
FPR in Fig. 7 (a thresholded evaluation), we see that the ensemble uncertainty
has slightly lower TPR than the baseline uncertainty concerning the segmen-
tation of the mandible (which has bigger image size and more apparent edges
than the parotid gland), where the difference stands out even more in low DSC
segmentations. The non-thresholded mutual information evaluation also shows
similar patterns. Overall, we verify our prediction from the qualitative analysis
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Table 3: Evaluation of ensemble uncertainty vs. baseline
Data M. High DSC M. Low DSC P. High Dsc P. Low DSC
Metric TPR↑ FPR↓ MI↑ TPR↑ FPR↓ MI↑ TPR↑ FPR↓ MI↑ TPR↑ FPR↓ MI↑

Mean

Baseline 0.92 0.17 0.06 0.96 0.15 0.09 0.99 0.25 0.13 0.98 0.20 0.14
Ensemble 0.75 0.07 0.05 0.46 0.03 0.05 0.94 0.18 0.11 0.88 0.12 0.12

Std. Deviation

Baseline 0.03 0.02 0.01 0.04 0.04 0.02 0.01 0.02 0.04 0.02 0.03 0.04
Ensemble 0.10 0.01 0.02 0.04 0.01 0.01 0.05 0.02 0.04 0.06 0.03 0.04

(a) M. High DSC (b) M. Low DSC

(c) P. High DSC (d) P. Low DSC

Fig. 7: ROC curves comparing true positive rates and false positive rates of
different methods to obtain uncertainty fields, for each data categories. Each
point represents a data instance.
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that the ensemble method performs better in higher DSC, but not better than
the baseline uncertainty in our experiments. However, in all cases the FPR of
the ensemble uncertainty is less than those of the baseline, meaning less of the
correctly labeled voxels are being marked uncertain.

4 Discussion

Data The data we use for the evaluation of uncertainty fields only consists of
CT scans of small organs in the jaw of the patients. Since the algorithm that
generates the fields are set to produce decent results in such organs when im-
plementing, uncertainty estimation for other organs in different images may not
be effective. Considering the generation of segmentations, they tend to under-
predict due to the characteristics of the RW algorithm, thus most errors occur
from predictions being too small rather too big when compared to the ground
truth. Additionally, when generating segmentations we provide (simulated) in-
puts only in planes along the same axis, which may reduce randomness in the
creation of predictions and limit observations from different point of views. Fi-
nally we lack evaluations using near-perfect segmentations (> 0.9 DSC), missing
information that may be significant.

Results We see in the qualitative visual analysis of the baseline uncertainty
terms that boundary and smoothness terms seems to not add much informa-
tion when estimating areas of errors. Entropy energy matches the shape of the
erroneous areas the best as a standalone uncertainty, and we verify in the quan-
titative analysis that adding extra information from the regional energy to en-
tropy energy does increase the performance, likely by enhancing the ability to
highlight unlabeled areas in the segmentation that are likely to be classified as
foreground. Therefore we also verify the scheme of the combination of different
uncertainty terms from [2]. The ensemble method however, while it shows less
of the false estimation for correct segmentations, it shows worse performance
than the baseline in images that are bigger in size and has a lower DSC. From
the pattern it shows, we expect a possibility for its superior performance in high
DSC segmentations.

Reproducibility The methods introduced in this paper to generate uncertainty
fields are well described and straightforward, thus making the replication of the
algorithm itself an easy task. However, the algorithm assumes the RW algorithm
as a prerequisite. When using another classifier for predicting segmentations, cre-
ation of the voxel-wise classification probability image is necessary. Specifically
for the ensemble uncertainty estimation, the classifier require to be manipulated
to create an ensemble of predictions.
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5 Conclusions

In this paper we investigate into an already existing uncertainty estimation meth-
ods from an interactive pipeline to segment 3D medical images that uses an AL
framework. We explore its different uncertainty models through isolated eval-
uations, and justify the combination scheme of the models they use in the AL
pipeline. Additionally, we test a new method - the ensemble method - to assess its
efficacy at estimating errors when replaced with the original method. Although
in this paper the new method failed to prove superiority to the original method,
future works may prove its advantages in different circumstances or simply find
a better method.

5.1 Future Work

As discussed above, future works to be continued from this paper includes us-
ing a wider variety of images and ways to generate segmentations. Particularly,
using a different classifier than the RW algorithm may benefit the utility of the
ensemble method or other baseline uncertainties, as the new segmentations may
exhibit less under-prediction and introduce new dimensions of errors that require
detection.
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