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A B S T R A C T

This paper investigates the implementation of a nonlocal regularisation of the material point method to
mitigate mesh-dependency issues for the simulation of large deformation problems in brittle soils. The adopted
constitutive description corresponds to a simple elastoplastic model with nonlinear strain softening. A number
of benchmark simulations, assuming static and dynamic conditions, were performed to show the importance
of regularisation, as well as to assess the performance and robustness of the implemented nonlocal approach.
The relevance of addressing stress oscillation issues, due to material points crossing element boundaries,
is also demonstrated. The obtained results provide relevant insights into brittle materials undergoing large
deformations within the MPM framework.
1. Introduction

In the field of geotechnical engineering, particularly in the study
of large deformation problems, the material point method (MPM) has
emerged as a reliable technique for generating accurate and objective
results. Established from the same principles as the finite element
method (FEM), MPM inherits many of the mathematical features of
FEM, and facilitates the computation of large deformations by adding
an additional step in the solution process. The standard MPM com-
putational steps are depicted in Fig. 1. While Fig. 1a and b show
the standard FEM solution steps (that is, nodal solution and mesh
deformation), Fig. 1c illustrates the fundamental MPM step, in which
the numerical mesh is reset to its original position while the material
points remain in their last location. Subsequently, an allocation pro-
cedure is implemented to establish the new location of each material
point relative to the undeformed mesh (indicated with bold dashed
lines). Extensive research has substantiated the versatility of MPM in
simulating a diverse array of problems, including, but not limited to,
soil–structure interaction (González Acosta et al., 2021a; Lian et al.,
2011; Phuong et al., 2016), the triggering and post-failure behaviour of
landslides (González Acosta et al., 2021b; Troncone et al., 2022; Yerro
et al., 2019), earthquake phenomena (Kohler et al., 2022), CPT pene-
tration (Martinelli and Galavi, 2021), and unsaturated behaviour (Yerro
et al., 2022). However, just as MPM possesses many of the FEM
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advantages, it also shares many of its limitations, such as volumetric
locking, which often occurs during the simulation of materials with
low compressibility, or the hourglass effect, which is linked to the
utilisation of low-order elements. Similarly, it is well-known that the
simulation of the softening response in brittle materials leads to non-
objective FEM results with a pathological dependence on the adopted
mesh (Sluys and de Borst, 1992; de Borst et al., 1993; Mánica et al.,
2018) and numerical convergence issues (Summersgill et al., 2017;
Mánica et al., 2022a; Cui et al., 2023). Deformation in simulations of
brittle materials localises in shear bands with a thickness of a single
element and, therefore, vanishing energy dissipation is attained as the
size of the elements is reduced (Bažant and Pijaudier-Cabot, 1988),
which is physically inadmissible. The source of these numerical diffi-
culties is the absence of an internal length scale in classical continuum
formulations representing the microstructure of the material, which in
reality controls the size of the localisation region (Desrues and Viggiani,
2004).

Solutions have been developed to address issues related to volu-
metric locking (Coombs et al., 2018; González Acosta et al., 2019) or
the hourglass effect (Zhang et al., 2017) within the MPM framework.
Regarding mesh dependency issues, different approaches have been
proposed and implemented in conventional FEM formulations, usually
known as regularisation techniques, such as enriched continua with
vailable online 29 May 2024
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Fig. 1. Solution steps in the MPM.
microstructure (Tejchman and Bauer, 2005; Khoei and Karimi, 2008),
gradient models (Anand et al., 2012; Frédéric et al., 2021), or nonlocal
models (Galavi and Schweiger, 2009; Summersgill et al., 2017; Mánica
et al., 2018; Cui et al., 2023). However, their implementation in MPM
formulations remains limited. Some authors have demonstrated that
nonlocal regularisation in MPM can have a significant impact on the
obtained results (Burghardt et al., 2012; Goodarzi and Rouainia, 2017).
Nevertheless, a comprehensive study on the use of nonlocal models in
MPM is still missing in the literature.

In this paper, an investigation is conducted regarding the imple-
mentation of a nonlocal regularisation into the MPM framework, for
the simulation of large deformation problems in quasi-brittle materials.
Initially, the mathematical framework of the adopted MPM formulation
is described. Subsequently, the considered strain-softening elastoplastic
model for the constitutive description of quasi-brittle geomaterials is
presented, as well as its nonlocal extension within the MPM formu-
lation. Finally, a series of simple boundary value problems (BVP) are
analysed to demonstrate the effect and importance of the implemented
nonlocal regularisation for the simulation of softening materials in the
MPM.

2. MPM formulation

2.1. Conventional MPM

The exploration of the advantages of using a nonlocal formulation
is performed by examining a range of static and dynamic problems.
Although both formulations have been broadly elaborated by numerous
authors, such as Beuth et al. (2011), Guilkey and Weiss (2003) and
Wang et al. (2016), they are delineated here for completeness. For the
dynamic MPM formulation, the implicit framework is used. Based on
the principle of virtual work (i.e. 𝛱 = Wint − Wext), the equation of
implicit equilibrium is

𝛱 = 1
2 ∫V

𝛜T𝐃𝛜dV − ∫V
𝐮T𝜌 #»𝐛 dV − ∫𝛤

𝐮T #»τ d𝛤 = 0 (1)

where 𝐃 is the stiffness matrix, 𝐛 is the vector of body forces, 𝐮 and
𝛜 are the actual displacement and strain fields describing the state of
the system, 𝜌 is the material density, τ is the vector of boundary loads,
and V and 𝛤 are the body volume and boundary, respectively. Then,
by following standard finite element discretisation procedures (Bathe,
1995), and by evaluating δ𝛱 = 0 (i.e. the first variation of the potential
energy is equal to zero for any admissible virtual displacement) with
respect to the displacements, the equation of equilibrium can be written
as

∫V
δ𝛜T𝐃𝛜dV = +∫V

δ𝐮T𝜌 #»𝐛 dV + ∫𝛤
δ𝐮T #»τ d𝛤 = 0 (2)

where δ𝛜 and δ𝐮 represent the virtual displacement and virtual strain,
respectively, and are used as test functions. Then, by employing shape
2

functions interpolation, such as δ𝐮 = 𝐍δ𝐮 and δ𝛜 = 𝐁δ𝐮, where 𝐍
and 𝐁 are the shape functions (SFs) and strain–displacement matrices,
respectively, and an incremental formulation (i.e. 𝝈 = 𝝈0 + 𝐃𝛜), the
following element equation is obtained:

[𝑛mp
∑

𝑖=1
𝐁T (𝐱𝑝

)

𝐃𝑝𝐁
(

𝐱𝑝
)

|𝐉|W𝑝

]

𝛥𝐮 =

𝑛mp
∑

𝑖=1
𝜌𝑝𝐍T (𝐱𝑝

)

𝐛|𝐉|W𝑝 +
𝑏mp
∑

𝑚𝑝=1
𝐍T (𝐱𝑝

)

τ𝛤 −
𝑛mp
∑

𝑖=1
𝐁T (𝐱𝑝

)

𝝈|𝐉|W𝑝

(3)

which can be expressed in matrix form as

𝐊𝛥𝐮|
|elem = 𝐅ext

|

|elem − 𝐅int |
|

|elem
(4)

where 𝐱𝑝 is the position of the material point 𝑝, 𝑛mp and 𝑏mp are the
number of material points and boundary material points 𝑚𝑝 in the
computational domain, |𝐉| is the Jacobian determinant, 𝐛 are the body
forces, W𝑝 is the material point weight, |elem indicates integration of all
elements, and 𝛥𝐮 is the vector of incremental displacements as a func-
tion of the initial and final displacement (i.e. 𝛥𝐮 = 𝐮new − 𝐮old, where
𝐮new and 𝐮old are the initial and final displacements, respectively). Note
that, at the start of each iteration, 𝐮old is equal to zero, thus 𝛥𝐮 = 𝐮new.
Then, to derive the dynamic time-dependent formulation, D’Alembert’s
principle and Newmark (1959) time-scheme methods are assumed.
Through D’Alembert’s principle, inertial forces are incorporated into
Eq. (2) as part of the body forces, that is 𝜌( #»𝐛 − #»𝐚 ) where 𝐚 is the
vector of accelerations. Newmark’s time-dependent formulation, on the
other hand, captures the progression of displacements, velocities, and
accelerations from time 𝑡 to 𝑡 + 𝛥𝑡 as

𝐯𝑡+𝛥𝑡 = 𝐯𝑡 + 0.5
[

𝐚𝑡 + 𝐚𝑡+𝛥𝑡
]

𝛥𝑡 (5)

𝐮𝑡+𝛥𝑡 = 𝐮𝑡 + 𝐯𝑡𝛥𝑡 + 0.25
[

𝐚𝑡 + 𝐚𝑡+𝛥𝑡
]

𝛥𝑡2 (6)

where 𝐮𝑡+𝛥𝑡, 𝐯𝑡+𝛥𝑡 and 𝐚𝑡+𝛥𝑡 denote the vectors of nodal displacements,
velocities, and accelerations at time 𝑡 + 𝛥𝑡 respectively. From Eqs. (5)
and (6), the velocity and acceleration at time 𝑡 + 𝛥𝑡 are

𝐯𝑡+𝛥𝑡 = 2𝐮𝑡

𝛥𝑡
− 𝐯𝑡 (7)

𝐚𝑡+𝛥𝑡 = 4𝐮𝑡

𝛥𝑡2
− 4𝐯𝑡

𝛥𝑡
− 𝐚𝑡 . (8)

Finally, by substituting Eq. (8) into Eq. (2) and employing both
D’Alembert’s principle and Newton–Raphson iteration procedure, the
equilibrium equation at the computational step 𝑘 is written as

𝐊
𝑘
𝛥𝐮 =(𝑘−1) (𝐅ext − 𝐅kin − 𝐅int)𝑡+𝛥𝑡 (9)

where

𝐊 =
(

𝐊𝑡 + 4𝐦𝑡)

(10)

𝛥𝑡2
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𝐅kin,𝑡+𝛥𝑡 = 𝐦𝑡
(

4(𝑘−1)𝐮𝑡

𝛥𝑡2
− 4𝐯𝑡

𝛥𝑡
− 𝐚𝑡

)

(11)

𝐦 =
𝑚𝑝
∑

𝑖=1
𝜌𝑝𝐍T (𝐱𝑝

)

𝐍
(

𝐱𝑝
)

|𝐉|W𝑝 (12)

2.2. Enhanced MPM

Whilst the standard MPM framework can analyse a range of large
deformation problems, it is well known that issues, such as stress
oscillation owing to element crossings and the use of linear-based
SFs, can substantially compromise the accuracy of the simulation. This
is particularly problematic when advanced constitutive descriptions
are employed, in which the inaccuracies in stresses might lead to
convergence problems and the failure of the simulation. To account
for stress oscillation problems, an enhanced version of the MPM is
considered, namely DM-GC MPM (González Acosta et al., 2020). DM-
GC MPM is a methodology in which a double mapping (DM) procedure
is combined with two stress recovery techniques: the generalised in-
terpolation material point (GIMP) method and the composite MPM
(González Acosta et al., 2017). In the DM procedure, the material
point stiffness contribution is mapped to the Gauss point locations
using shape functions (via the nodes) for the subsequent global stiffness
integration. This is achieved using standard finite element SFs as

𝐃𝑖 =
𝑐𝑚𝑝
∑

𝑝=1
𝐍𝑖(x𝑝)𝐃𝑝W∗ (13)

here 𝐃𝑖 is the elastic matrix at the node 𝑖, 𝑐𝑚𝑝 is the current number
f material points 𝑝 in the element, and W∗ is the (dimensionless)

modified material point weight (W∗ = W𝑝
𝑜𝑚𝑝
𝑐𝑚𝑝 , where 𝑜𝑚𝑝 is the original

number of material points in the element). After the total stiffness
contribution of the material points is accumulated at the nodes, it is
then redistributed to the original Gauss positions as

𝐃𝑔 =
𝑛𝑛
∑

𝑖=1
𝐍𝑖(x𝑔)𝐃𝑖 (14)

where 𝐃𝑔 is the elastic matrix at the Gauss point 𝑔, 𝐍𝑖(xg) is the nodal
F evaluated at the Gauss points, and 𝑛𝑛 is the number of nodes of
he element. Note that the location of the Gauss points is the same as
n the original FEM for a 2 × 2 integration, which is (±𝜚,±𝜂) where
𝜚 = 𝜂 = 1

√

3
. Finally, by substituting Eq. (13) into Eq. (14), the stiffness

at the Gauss integration point is

𝐃𝑔 =
𝑛𝑛
∑

𝑖=1

(

𝐍𝑖(x𝑔)
𝑐𝑚𝑝
∑

𝑝=1
𝐍𝑖(x𝑝)𝐃𝑝W∗

)

(15)

which can be integrated into Eq. (3) by replacing 𝐃𝑝, thus guaranteeing
a smoother distribution of the stiffness within the group of elements
activated by the material points. Although the incorporation of Eq. (15)
into Eq. (3) improves significantly the stiffness distribution within the
activated elements, the consequences of using standard FE SFs (which
extend only over a single element) hinder the effectiveness of this
technique. To overcome this limitation, local GIMP SFs (Charlton et al.,
2017) can be incorporated into the equation. Local GIMP SFs are a
variation of the original GIMP SFs proposed by Bardenhagen and Kober
(2004) to reduce oscillations derived from material points crossing
element boundaries. These functions are constructed by performing a
convolution of standard FE SFs and a material point support domain,
leading to the following set of equations:

𝐒𝑖𝑝 =
1
V𝑝 ∫𝛺𝑝∩𝛺

𝜒𝑝(x𝑝)𝐍𝑖(x𝑝) dx (16)

𝐒𝑖𝑝 =
1 𝜒𝑝(x𝑝)∇𝐍𝑖(x𝑝) dx (17)
3

V𝑝 ∫𝛺𝑝∩𝛺
𝑓

here 𝛺 is the problem domain, 𝛺𝑝 is the material point support
omain, and 𝜒 is the function delimiting the area of influence of the
aterial point, presented originally as

𝑝(x𝑝) =

{

1 if x ∉ 𝛺𝑝

0 otherwise
(18)

The local version of the original GIMP SFs, on the other hand, is
reated by computing the convolution of the original 𝜒 function and

single-element SFs. This can be observed in Fig. 2a where two elements
(E1 and E2) share a central node and the linear SFs N𝑖. When the
onvolution of the 𝜒 function, of length 2lp, and the SFs are computed,
he standard GIMP SF (S𝑖𝑝) are obtained (Fig. 2b). In contrast, when the

convolution is computed with a single SF (Fig. 2c), the local GIMP SFs
(S𝑖𝑝∗ ) are obtained (Fig. 2d). Therefore, by following similar steps as in
the deduction of Eq. (15), the same equation can be derived but using
instead the local GIMP SF, thus resulting in

𝐃𝑔 =
𝑛𝑛
∑

𝑖=1

(

𝐍𝑖(x𝑔)
𝑐𝑚𝑝
∑

𝑝=1
𝐒𝑖𝑝∗ (x𝑝)𝐃𝑝W∗

)

. (19)

Stiffness integration via Eq. (19) has shown to be far superior in
contrast to the use of linear SFs or by introducing a mapping step
using linear SFs (e.g. as proposed in Eq. (15)). Evidence of the va-
lidity of this approach can be found in González Acosta et al. (2017)
and González Acosta (2020).

3. Nonlocal constitutive model for quasi-brittle materials

The nonlocal elastoplastic constitutive model described in Mánica
(2018) was considered here for its implementation in the described
MPM formulation. The model is intended for the simulation of argilla-
ceous hard soils/weak rocks. Therefore, it incorporates many of the
behavioural features of these materials, such as a nonlinear yield
criterion, a non-associated flow rule, stiffness and strength anisotropy,
rate-dependency, strain-softening, creep, and the ability to simulate
objectively localised deformations by means of a nonlocal regularisa-
tion. The model has been previously implemented in the finite element
code Plaxis (Bentley Systems, 2022), and its capacity to produce mesh-
independent results has been demonstrated previously (Mánica et al.,
2018, 2020, 2022a,b). However, for the sake of simplicity, most of
the features of the model were not employed here. Therefore, as
done in Mánica et al. (2020) and Romero et al. (2024), the adopted
constitutive description is reduced to a simple nonlocal elastoplastic
model with isotropic linear elasticity and nonlinear strain-softening.

The yield function corresponds to the following hyperbolic approxi-
mation of the Mohr–Coulomb (MC) criterion (Gens et al., 1990), which
allows the tensile strength to be limited, that is usually overestimated
by the classical MC criterion:

𝑓 =

√

𝐽2
𝑓𝑑 (𝜃)

+
(

𝑐∗ + 𝑝𝑡 tan𝜙∗
)2 −

(

𝑐∗ + 𝑝 tan𝜙∗) (20)

here 𝑐∗ and 𝜙∗ are the asymptotic cohesion and friction angle, re-
pectively, 𝑝𝑡 is the isotropic tensile strength, 𝑓𝑑 (𝜃) is a given function
efining the shape of the criterion in the deviatoric plane, and 𝑝, 𝐽 , and
are stress invariants with their usual definitions:

= 1
3
tr(𝝈) (21)

𝐽2 =
1
2
tr
(

𝐬2
)

(22)

𝜃 = −1
3
sin−1

(

3
√

3 det 𝐬
2𝐽 3∕2

2

)

(23)

here 𝐬 is the deviatoric stress tensor, defined as 𝐬 = 𝝈−𝑝𝐈, and 𝐈 is the
dentity tensor. The shape of the yield function in the deviatoric plane
s defined as van Eekelen (1980):

𝑛 (24)
𝑑 (𝜃) = 𝛼 (1 + 𝛽 sin 3𝜃)
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Fig. 2. (a) Nodal FE SF and convolution with the material point support domain, (b) original GIMP SF (S𝑖𝑝), (c) nodal FE SF and convolution with the material point support
domain in a single element, and (d) local GIMP SF S𝑖𝑝∗ .
where 𝛽 = 0.85𝛼1∕2, 𝑛 = −0.229, and 𝛼 = 0.972 were employed.
Strain-softening is considered, driven by the evolution of the

strength parameters, and it is characterised by the following exponen-
tial decay functions:

tan𝜙∗ = tan𝜙∗
peak −

(

tan𝜙∗
peak − tan𝜙∗

res

)

[

1 − exp
(

−𝑏resϵ
p
eq
)]

(25)

𝑐∗ =
(

𝑐∗peak − 𝑐∗post
)

exp
(

−𝑏postϵ
p
eq
)

+ 𝑐∗post exp
(

−𝑏resϵ
p
eq
)

(26)

𝑝t =
(

𝑝t peak − 𝑝t post
)

exp
(

−𝑏postϵ
p
eq
)

+ 𝑝t post exp
(

−𝑏resϵ
p
eq
)

(27)

where the subscripts peak, post, and res refer to peak, post-rupture,
and residual conditions, respectively, 𝑏post and 𝑏res are parameters
controlling the rate of softening, and ϵpeq is a state variable defined here
as

ϵpeq =
(

𝛜p ∶ 𝛜p
)1∕2 (28)

where 𝛜p is the plastic strain tensor. A distinction is made in Eqs. (25)
to (27) between two stages of the softening process. The first one is
related to a rapid degradation and breakage of interparticle bonds,
i.e. a reduction of cohesion and tensile strength, up to post-rupture
conditions (Burland, 1990), whose rate is defined by 𝑏post . In the second
one, with a slower rate 𝑏res, the remaining cohesion and tensile strength
vanish and the friction angle decreases as a result of the polishing and
reorientation of particles in the formed failure surface (Gens, 2013).

Regarding the direction of plastic flow, a non-associated flow rule
is considered, which is obtained by scaling the volumetric component
of the yield function in the following way:
𝜕𝑔
𝜕𝝈

= 𝜔
𝜕𝑓
𝜕𝑝

𝜕𝑝
𝜕𝝈

+
𝜕𝑓
𝜕𝐽2

𝜕𝐽2
𝜕𝝈

+
𝜕𝑓
𝜕𝜃

𝜕𝜃
𝜕𝝈

(29)

where 𝑔 is the plastic potential function and 𝜔 is a parameter control-
ling the amount of plastic volumetric deformation.

3.1. Nonlocal extension

In general, a nonlocal model is one where the behaviour of a given
point in the material depends not only on its state, but it also depends
on the state of neighbouring points. If 𝐹 (𝐱) is some given local field
within a body of volume V, its nonlocal version 𝐹 (𝐱) can be written as

𝐹 (𝐱) = ∫V
𝑤 (𝐱, 𝝃)𝐹 (𝝃) 𝑑𝝃 (30)

where 𝑤 is a weighting factor controlling the relative importance
of neighbouring points as a function of its position (𝝃) relative to
the position of the point under consideration (𝐱). Usually, the radial
4

distance between them ‖𝐱 − 𝝃‖ is assumed, and 𝑤 is defined in the
following normalised form to prevent modifying a uniform field:

𝑤 (𝐱, 𝝃) =
𝑤0 (‖𝐱 − 𝝃‖)

∫V 𝑤0 (‖𝐱 − 𝜻‖)
𝑑𝜻 . (31)

Different nonlocal models are obtained depending on the variable,
or variables, that are assumed nonlocal. In the context of nonlocal
plasticity models, different alternatives have been studied. For instance,
stress or elastic strains (Eringen, 1981), total strains (Eringen, 1983),
or plastic strains (Bažant and Lin, 1988) have been considered as the
nonlocal fields. However, under certain conditions, these formulations
might exhibit unwanted effects such as stress looking, vanishing energy
dissipation, or localisation into a zone of vanishing volume (Bažant
and Jirásek, 2002). Improved results have been obtained by assuming
as nonlocal the scalar state variable controlling the softening pro-
cess (Galavi and Schweiger, 2010; Summersgill et al., 2017; Mánica
et al., 2018; Singh et al., 2021). Therefore, the nonlocal extension of
the described elastoplastic model (Section 3) is obtained replacing ϵpeq
by the following nonlocal counterpart:

ϵ̄peq (𝐱) = ∫𝑉
𝑤 (𝐱, 𝝃) ϵpeq (𝝃) 𝑑𝝃 . (32)

Furthermore, a Gaussian function has been historically employed to
characterise 𝑤0 (see e.g. Bažant and Pijaudier-Cabot, 1988). However,
as has been extensively demonstrated (Mánica et al., 2018; Summersgill
et al., 2017; Monforte et al., 2019; Singh et al., 2021; Gao et al., 2022),
an enhanced performance is obtained with the following function
proposed by Galavi and Schweiger (2010):

𝑤0 =
‖𝐱 − 𝝃‖

𝑙s
exp

[

−
(

‖𝐱 − 𝝃‖
𝑙s

)2
]

(33)

where 𝑙s is a parameter controlling the spread of the function with
respect to ‖𝐱−𝝃‖, which in turn introduces a length scale to the material
behaviour controlling the size of the localisation region. The particular
shape resulting from Eq. (33) (Fig. 3) prevents the concentration of
plastic deformations along the forming shear band, similarly to the
over-nonlocal approach (Vermeer and Brinkgreve, 1994).

The described nonlocal regularisation is implemented within the
MPM framework and, therefore, Eq. (31) and (32) are replaced by the
following discrete versions:

ϵ̄peq 𝑝 =
𝑛mpl
∑

𝑗=1
𝑤𝑝𝑗ϵ

p
eq 𝑗 (34)

𝑤𝑝𝑗 =
𝑤0

(

‖𝐱𝑝 − 𝐱𝑗‖
)

𝑛mpl
∑

𝑤0
(

‖𝐱𝑝 − 𝐱𝑘‖
)

(35)
𝑘=1
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Fig. 3. Weighting function in the nonlocal approach.

here 𝑛mpl is the number of material points considered in the com-
utation of the nonlocal state variable. Theoretically, 𝑛mpl should be

equal to the total number of material points in the simulation, since
the weights from Eq. (33) only vanish at an infinite radial distance.
However, the latter is generally computationally prohibitive and the
effect of neighbouring points at distances greater than 2𝑙s is negligible.
Therefore, as suggested by Galavi and Schweiger (2010), only material
points within an interaction radius of 2𝑙s are considered. However,
unlike conventional FEM formulations, the material points, where the
constitutive equations are integrated, do not have a definite position,
and they can move significantly and change elements during the sim-
ulation. Therefore, for each material point, neighbouring points within
the corresponding interaction radius must be continually identified for
the computation of the nonlocal state variable (Eq. (34)).

The task of searching for neighbouring points, which is closely
related to the nearest-neighbour search problem (Knuth, 1997), is
very computationally intensive if linear search is performed, i.e. by
computing the radial distance from the query point to every other point
in the simulation. However, advantage can be taken from two facts
inherent to the MPM: (1) that the background mesh is constructed as a
regular grid and (2) that tracking of the material points within a given
element is already performed. Therefore, searching for neighbouring
points can be limited to the square area shown in Fig. 4, which always
contains the interaction radius. For a given material point, within an
element E [𝑖, 𝑗], all elements possibly containing material points within
he interaction radius can be found in E [𝛼, 𝛽], where 𝛼 = 𝑖− 𝑛ele,… , 𝑖+
𝑛ele, 𝛽 = 𝑗 − 𝑛ele,… , 𝑗 + 𝑛ele, and 𝑛ele is the number of elements in each
direction of the search area (Fig. 4), computed as

𝑛ele = f loor
(

2𝑙s
𝑙ele

)

+ 1 (36)

where 𝑙ele is the length of elements in the background mesh and f loor()
is a function accounting for the integer part.

The search for neighbouring points and the computation of the
nonlocal state variable is performed at the beginning of each global
step, and the nonlocal variable is assumed to remain constant over the
step (Rolshoven, 2003). This results in an efficient and simple algorithm
rendering reasonable computation times.

4. Benchmark simulations

A number of two-dimensional (2D) plane strain simulations were
performed to assess the effectiveness of the nonlocal regularisation
implemented in the MPM, for both the static (Eq. (4)) and dynamic
(Eq. (9)) formulations, when softening behaviour is considered in the
5

Fig. 4. Search area for the identification of neighbouring points for the computation
of the nonlocal state variable.

constitutive description; they are presented in the following sections.
All simulations were performed using squared four-noded plane strain
elements, with four material points evenly distributed inside the el-
ements at the beginning of the analysis. It is important to mention
that although the conventional MPM formulation (Section 2.1) was
also tested, it was incapable of completing any analysis when softening
was considered in the constitutive description. Numerical convergence
issues are well-known in conventional FEM simulations when dealing
with softening materials (Summersgill et al., 2017; Mánica et al.,
2022a; Cui et al., 2023). Mathematically, this occurs because the
governing partial differential equation changes locally from elliptic
to hyperbolic, causing an ill-posed BVP (Read and Hegemier, 1984;
Benallal and Marigo, 2007; Lu et al., 2012). These issues are accen-
tuated in the standard MPM due to the well-known stress oscillations
resulting from the movement of material points from one element
to another (Tielen et al., 2017; González Acosta, 2020), preventing
convergence to a steady condition as soon as softening has occurred,
at the onset of plastic deformations. Therefore, in the following, re-
sults labelled as ‘‘regularised MPM’’ and ‘‘standard MPM’’ refer to the
enhanced MPM formulation (Section 2.2), with and without nonlocal
regularisation, respectively.

4.1. Biaxial test

The first benchmark corresponds to the simulation of the simple
biaxial test shown in Fig. 5. This analysis assumes static conditions
(Eq. (4)) and, therefore, inertial forces are neglected. Due to symmetry,
only a quarter of the sample was represented in the analysis, with
a height ℎ = 0.05 m and a width 𝑤 = 0.03 m. Regarding boundary
conditions, at the left and bottom boundaries displacements were fixed
only in the normal direction, representing the symmetry axes. At the
right and top boundaries, a constant confinement pressure 𝜎3 = 100 kPa
was applied. This value was also considered as the initial isotropic stress
state assigned to all material points. Loading was applied by means
of a prescribed downward vertical displacement at the top boundary,
applied in fixed increments of 𝛥𝛿𝑦 = 1.0 × 10−5 m up to a total dis-
placement 𝛿𝑦 = 0.00226 m. Horizontal displacements were fixed at the
top boundary in order to induce a non-homogeneous stress/strain field

and, therefore, favour the onset of localisation. Table 1 summarises the
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Table 1
Parameters used in the benchmark simulations performed.

Parameter Symbol Units Biaxial test Column collapse Foundation

Young’s modulus 𝐸 kPa 20,000 10,000 50,000
Poisson’s ratio 𝜈 – 0.2 0.35 0.45
Initial asymptotic friction angle 𝜙∗

ini
◦ 20 20 20

Peak asymptotic friction angle 𝜙∗
peak

◦ 20 20 20

Residual friction angle 𝜙∗
res

◦ 15 15 15
Initial asymptotic cohesion 𝑐∗ini kPa 200 100 100
Post-rupture asymptotic cohesion 𝑐∗post kPa 0 0 0
Initial tensile strength 𝑝𝑡 ini kPa 0 0 0
Post-rupture tensile strength 𝑝𝑡post kPa 0 0 0
Post-rupture softening rate 𝑏post – 10 5 5
Residual softening rate 𝑏res – 2 2 2
Non-associativity constant 𝜔 – 1 1 1
Density 𝜌 g/cm3 – 1.6 –
Length scale parameter 𝑙s m 0.01a 0.4a 0.8a

a Only applies for the regularised MPM.
Fig. 5. Geometry and boundary conditions of the simulated biaxial test.

Fig. 6. Load vs. displacement curves from the biaxial test simulation obtained with
the standard (dashed lines) and regularised MPM (solid lines) and for different element
sizes 𝑙ele.

adopted parameters, which are similar to those employed in Mánica
et al. (2018).

Analyses of the biaxial test were performed with the standard
and regularised MPM and for different element sizes of the back-
ground mesh. Specifically, element sizes 𝑙ele of 0.0033, 0.002, 0.0014,
and 0.001 m were considered. Since a non-homogeneous stress/strain
field is generated, results are assessed in terms of global measures.
Fig. 6 shows the obtained deviator load vs. prescribed vertical dis-
placement curves. The results from the standard MPM show typical
mesh-dependent behaviour, with an increasingly brittle response as
6

Fig. 7. Contours of deviatoric strains and position of material points from the biaxial
test simulation obtained with the standard MPM using element sizes 𝑙ele of (a) 0.0033,
(b) 0.002, (c) 0.0014, and (d) 0.001 m.

the size of elements is reduced. For the regularised MPM simulations,
a length scale parameter 𝑙s = 0.01 m was employed. Therefore, for
all meshes, the recommendation of 𝑙s ≥ 𝑙ele is fulfilled (Galavi and
Schweiger, 2010) so that a sufficient number of material points are con-
sidered in the nonlocal averaging. Unlike the standard MPM, practically
a single curve is obtained regardless of the size of elements employed.
Only the curve with 𝑙ele = 0.0033 m lies slightly above the rest. In this
regard, it is important to mention that the recommendation from Galavi
and Schweiger (2010) about the minimum element size for a given
𝑙s was derived for 15-noded triangular elements with fourth-order
interpolation and 12 integration points. In the case of the four-noded
linear elements used here, with four material points per element, the
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Fig. 8. Contours of deviatoric strains and position of material points from the biaxial
test simulation obtained with the regularised MPM using element sizes 𝑙ele of (a) 0.0033,
(b) 0.002, (c) 0.0014, and (d) 0.001 m and a length scale parameter 𝑙s = 0.01 m.

Fig. 9. Load vs. displacement curves from the biaxial test simulation obtained with
the regularised MPM for different values of the length scale parameter 𝑙s.

required minimum element size for the proper performance of the
nonlocal regularisation appears to be smaller, in the order of 0.2𝑙s.

Figs. 7 and 8 show the results in terms of contours of deviatoric
strains ϵ𝑞 for the standard and regularised MPM, respectively, where

ϵ𝑞 =
√

2
9

[

(ϵ𝑥𝑥 − ϵ𝑦𝑦)2 + ϵ2𝑦𝑦 + ϵ2𝑥𝑥
]

+ 1
3 𝛾

2
𝑥𝑦 . (37)

The position of the material points is also depicted in the figures. In the
case of the standard MPM (Fig. 7), mesh-dependent behaviour can also
be identified, with the width of the formed shear band decreasing and
the magnitude of deviatoric strains increasing as the size of elements
7

Fig. 10. Geometry and boundary conditions of the vertical cut simulation.

is reduced. On the other hand, contours from the regularised MPM
(Fig. 8) show quite similar magnitudes of deviatoric strains and a
similar thickness of the formed shear band, which is approximately
equal to 𝑙s, as previously reported for regularised FEM formulations
using the same weighting function as Eq. (33) (Galavi and Schweiger,
2010; Mánica et al., 2018).

The parameter 𝑙s controls the size of the localisation region, in-
troducing a length scale to the material behaviour. If 𝑙s is reduced,
a smaller thickness of the shear band is obtained, in turn resulting
in a more brittle response of the BVP, as shown in Fig. 9. Ideally,
𝑙s should be selected to obtain a width of the localisation process
similar to that occurring in the real material, which depends on its mi-
crostructure (Desrues and Viggiani, 2004). However, in most cases, this
shear zone can be very small, resulting in an excessively refined mesh,
exceeding conventional computational capacities, when solving practi-
cal BVPs. To overcome this issue, the softening scaling technique can
be applied (Pietruszczak and Mroz, 1981; Brinkgreve, 1994; Marcher,
2003; Galavi and Schweiger, 2010; Mánica et al., 2018). It assumes
that the effect of the real shear zone can be merged into a numerical
shear band of a larger size, in accordance with our computational
resources. Since the global post-localisation behaviour will depend on
both the length scale parameter and the constitutive softening rate,
they must be chosen jointly to represent a given material. However,
as demonstrated by Romero et al. (2024), the latter is not a trivial
task, and the derivation of parameters for a regularised simulation from
conventional laboratory test results is still an open problem.

4.2. Vertical cut

The second benchmark seeks to assess the performance of the
implemented nonlocal regularisation in a dynamic large deformation
problem. Therefore, the formulation described by Eq. (9) is employed
here. The analysis corresponds to a vertical cut where gravity is grad-
ually increased until failure is induced. The square domain, shown in
Fig. 10, is adopted, with dimensions ℎ = 𝑤 = 3 m. At the left boundary,
null normal displacements were prescribed, while at the bottom bound-
ary both vertical and horizontal displacement components were fixed.
The employed parameters are shown in Table 1; they are similar to
those used in the biaxial test, although some modifications were made
to obtain a well-defined failure mechanism for this BVP. A null initial
stress state was considered throughout the domain, and loading was
applied by increasing gravity in the 𝑦 direction in increments of 𝛥𝑔
= 0.1 g every 0.001 s, reaching a maximum value of 𝑔max = 60 g at 𝑡
= 0.6 s. From this point onward, gravity was maintained constant and
the simulation was continued up to 𝑡 = 0.75 s to allow the evolution
of the formed failure mechanism. For an in-depth analysis, two points,
labelled A and B, are identified in the domain (Fig. 10). Point A, located
at the top-right corner, is used to monitor displacements over time.
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Fig. 11. Contours of normalised deviatoric strains and position of material points from the vertical cut simulation obtained with the standard MPM, for times 𝑡 of 0.6 and 0.7 s,
using element sizes 𝑙ele of (a,e) 0.1, (b,f) 0.083, (c,g) 0.071, and (d,h) 0.062 m.
Fig. 12. Evolution of displacement at point A from the vertical cut simulation obtained
with the standard (dashed lines) and regularised (solid lines) MPM and for different
element sizes 𝑙ele.

Point B, located at a distance from the bottom-right corner of ℎB = 0.34
and 𝑤B = 0.22 m, is used to track the evolution of deviatoric stresses
close to the region where the failure mechanism initiates.

Fig. 11 shows the progression of failure, in terms of contours
of deviatoric strains (normalised with respect to the corresponding
maximum value) and the position of the material points, for 𝑡 = 0.6 s
(Fig. 11a to d) and 𝑡 = 0.7 s (Fig. 11e to h) and for different element
sizes of the background mesh. Again, the mesh-dependent behaviour is
evident. Although the change in the width of the formed shear bands
is less noticeable than in the biaxial test (Fig. 7), the magnitude of
deviatoric strains increases as the size of the elements is reduced. The
material points experience higher accelerations for the finer meshes,
resulting in significantly larger displacements. The latter can be further
identified in Fig. 12, where the evolution of the vertical displacement
at point A for the standard MPM is shown. The activation of the failure
8

mechanism, when displacements grow rapidly, takes place earlier as
the element size is reduced, i.e. it is triggered by a lower 𝑔 value.
Displacements at the end of the simulation also increase significantly as
the mesh is refined. Furthermore, for the two finer meshes, with 𝑙ele of
0.071 m and 0.062 m, numerical convergence issues were encountered
and the simulations were not completed. This is a typical outcome when
simulating softening materials in non-regularised continuum-based nu-
merical analyses (Mánica et al., 2022a). The fact that accelerations,
and in turn final displacements, depend on the adopted mesh is par-
ticularly relevant in the context of the MPM. These kinds of numerical
techniques are generally adopted to address deformations beyond the
capabilities of standard FEM formulations, for instance, to study not
only the trigger of a failure but the consequences that the failure will
have in the surrounding area. Therefore, run-out distances should not
depend on the resolution of the background mesh adopted.

Fig. 13 shows contours of deviatoric strains and the position of
materials points obtained with the regularised MPM. Here, a length
scale parameter 𝑙s = 0.4 m was adopted. Although some differences
can still be identified for different meshes, they are much smaller than
for the standard MPM. This is also evident in Fig. 12, which also
shows the evolution of displacement at point A for the regularised
simulations. Larger differences are obtained for the analysis with 𝑙ele
= 0.1 m. However, it is important to notice that this element size
is somewhat larger than the maximum identified in the biaxial test
simulations for the proper performance of the nonlocal regularisation,
of 0.2𝑙s.

To further stress the importance of regularisation, Fig. 14 shows
curves of deviatoric stress 𝑞 vs. displacement magnitude at point B,
obtained with both the standard and regularised MPM, where 𝑞 is
defined as

𝑞 = 1
√

2

√

(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2 . (38)

The standard MPM resulted in a more brittle response and with very
different paths followed between the different analyses. Furthermore,
a point was reached where displacements no longer accumulate and
the deviatoric stress increases again. This is attributed to the formed
shear band slightly shifting its position, causing point B to be located
outside, to the left of the shear band and, thus, remaining relatively



Computers and Geotechnics 172 (2024) 106424J.L. González Acosta et al.
Fig. 13. Contours of normalised deviatoric strains and position of material points from the vertical cut simulation obtained with the regularised MPM, for times 𝑡 of 0.6 and 0.7 s,
using element sizes 𝑙ele of (a,e) 0.1, (b,f) 0.083, (c,g) 0.071, and (d,h) 0.062 m.
Fig. 14. Evolution of deviatoric stress at point B from the vertical cut simulation
obtained with the standard (dashed lines) and regularised (solid line) MPM and for
different element sizes 𝑙ele.

stationary during failure. In contrast, the regularised MPM resulted in
similar curves regardless of the element size, showing a more or less
monotonic reduction of 𝑞 throughout the simulation.

4.3. Bearing capacity

The last benchmark, shown schematically in Fig. 15, corresponds
to a stiff foundation that is pushed into the ground at a rate of 𝛥𝛿 =
2.5 × 10−3 m per loading step. The interaction between the foundation
and the ground is considered infinitely rough, hence no slippage occurs,
ensuring that the foundation’s movement into the soil is perfectly
constrained against lateral displacement. Here, the static formulation
is employed and, therefore, inertial forces are neglected. The adopted
domain has a width and height of 𝑤 = 14 and ℎ = 8 m, respectively. At
the bottom and lateral boundaries the displacements were fixed in the
normal direction, while a null stress condition was considered at the
9

Fig. 15. Geometry and boundary conditions of the shallow foundation simulation.

ground surface. The foundation has dimensions of 𝑤𝐹 = 1.5 and ℎ𝐹 =
3 m. The adopted properties are listed in Table 1. Again, modifications
with respect to the other benchmarks were made to obtain a marked
failure mechanism for this BVP. For the regularised simulations, a
length scale 𝑙s = 0.8 m was employed.

Fig. 16 shows results in terms of normalised contours of deviatoric
strains and the position of the material points, obtained with both
the standard and regularised MPM and for different element sizes,
after a foundation penetration of 0.3 m. All simulations exhibit similar
results, with the formation of the classical Prandtl’s failure mechanism.
However, two notable differences can be identified for the standard
MPM: (1) significantly larger deviatoric strains were developed and
(2) an additional (vertical) shear path emerged below the bottom right
corner of the foundation, with larger deviatoric strains as the element
size is reduced. In the regularised simulations, this vertical shear band
does not develop.

Differences between the standard and regularised simulations can
also be identified in Fig. 17, which shows curves of the total deviatoric
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Fig. 16. Contours of normalised deviatoric strains and position of material points from the shallow foundation simulation obtained with the standard (top row) and regularised
(bottom row) MPM using element sizes 𝑙ele of (a, d) 0.25, (b, e) 0.13, and (c,f) 0.1 m.
o
t
M
V
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Fig. 17. Load vs. displacement curves from the shallow foundation simulation obtained
with the standard (dashed lines) and regularised (solid lines) MPM and for different
element sizes 𝑙ele.

load vs. the prescribed vertical displacement of the foundation. All
simulations reached a similar peak load. However, results from the
standard MPM showed a more brittle response with a softening rate that
increases as the element size is reduced. On the other hand, regularised
simulations showed quite similar results, more or less independent of
the adopted mesh. This is again significant for analyses of the whole
failure process undertaken by MPM.

5. Conclusions

In this paper, a nonlocal regularisation was implemented into the
MPM framework for the simulation of large deformation problems in
brittle geomaterials. Unlike other nonlocal implementations in conven-
tional FEM formulations, identification of neighbouring points, for the
10

&

computation of the nonlocal state variable, is performed at each global
increment to account for the significant movement of material points.
This identification was efficiently performed by taking advantage of
the structured background mesh and a pre-established neighbourhood
patch computed for each element. A number of benchmark simulations
were carried out to demonstrate the importance of regularisation in
MPM. However, an enhanced MPM formulation, namely the DM-GC
MPM, was necessary since the well-known stress oscillation problem
hindered a satisfactory analysis of the BVPs when dealing with soft-
ening materials. In general, the same numerical pathologies found in
conventional FEM formulations were observed here. A more brittle
response and larger strains and displacements are obtained for the
non-regularised MPM as the size of elements is reduced. Furthermore,
dynamic simulations showed that the run-out distance also depends
on the adopted mesh, which is particularly relevant when using the
MPM to study the consequences of a given collapse. On the other hand,
regularised simulations showed consistent behaviour, with a global
response and a configuration of localised deformations that are ap-
proximately independent of the employed mesh. However, in the case
of the four-noded plane strain elements adopted here, the maximum
element size with respect to the selected length scale parameter, for
the proper performance of the nonlocal averaging, seems to be smaller
than previous recommendations, in the order of 0.2𝑙s.
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