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Abstract
Clay rocks are multiphase porous media having a complex structure and
behaviour characterised by heterogeneity, damage and viscosity, existing on a
wide range of scales. The mesoscopic scale of mineral inclusions embedded in
a clay matrix has an important role in the mechanisms of deformation under
mechanical loading by cracking and creeping. This study introduces a microme-
chanical approach to model the time-dependent mechanical behaviour of clay
rocks. A heterogeneous clay rock is represented at themesoscopic scale as a com-
posite material consisting of rigid elastic mineral inclusions (quartz, calcite and
pyrite) embedded in a clay matrix. To describe the damageable rock behaviour
and its failure modes at the small scale, interfaces between different mineral
phases and within the clay matrix are considered. Viscous effects are incorpo-
rated inside the clay aggregates, with intergranular microfractures propagating
in the claymatrix, in order to investigate their contribution to the creep behaviour
of clay rock at the macroscale. The mesostructure of the clay rock is represented
in digital 2D Representative Elementary Areas (REAs). The overall mesoscale
behaviour of the clay rock undermechanical solicitation is numerically obtained
from the REA by computational homogenisation within a two-scale finite ele-
ment squared framework. Then, the model is validated at mesoscale against
experimental data. The variability of the material response and the time evolu-
tion of the mineral interfacial damage state are investigated in relation to the
small-scale properties and failure, while considering mesostructure variability.
The results can give some valuable insights into creep behaviour of the clay rock
from a small-scale perspective.

KEYWORDS
clay rock, creep, microstructural variability, multiscale numerical model, viscosity

1 INTRODUCTION

In the context of the deep geological repository of high-level radioactive wastes, clays and clay rocks are being investigated
as the potential host rock due to their low permeability and (re)sealing capacity in several countries.1–3 For example, the
Callovo-Oxfordian (COx) claystone in France, the Opalinus clay in Switzerland, and the Boom clay in Belgium.4 These
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clay rocks and plastic clay have complex mineral compositions and multi-scale structures, from the microscopic scale of
clay platelets and aggregates, to the mesoscopic scale of mineral arrangement, then to the macroscopic scale of geologi-
cal heterogeneities. Hereafter, the COx claystone behaviour is studied, from micro- to meso-scale. A particular attention
should be paid on the definition of the mesoscale, which refers to the scale of the heterogeneous spatial arrangement of
the minerals in this paper.
At the macroscale, analyses of in situ measurements (e.g., gallery convergence, deformation, pore pressure) lead to

the distinction of two major phenomena5: (1) plastic deformations due to damage and (2) creep. Firstly, elastoplastic and
damage mechanisms seem to dominate the short-term behaviour of the COx claystone around large-scale underground
galleries. During gallery excavation, irreversible plastic deformations and fracture networks appear and evolve rapidly
around the galleries due to the quasi-brittle behaviour of the indurated clay rock. By contrast, during service life andmore
importantly during the post-closure period, deformations evolve relatively slowly. The time-dependent behaviour of the
clay rock, due to the creep of the clay matrix and propagation of induced fractures, appears to be more predominant at
this latter stage. Thereby, it significantly affects the design of the support system for their long-term stability. Indeed, the
confining capacity of a geological barrier for radioactive wastes can be affected by the creep deformations and subcritical
propagation of cracks in rocks.6–10 Therefore, it is necessary to investigate both the short- and the long-term behaviour of
the host rock around galleries to ensure safety and sustainability of the underground repository. On short term behaviour,
extensive laboratory investigations have shown that the mechanical behaviour of clay rocks can be characterised by cou-
pled plastic damage.11 Concerning long term behaviour, time-dependent creep deformation constitutes another important
feature of clay rocks.3,12–15 Classically, the time-dependent inelastic deformation of a material is described by phenomeno-
logical viscoplastic models (e.g., Bui et al.16; Sun et al.17). Although these models provide efficient mathematical tools
for the long-term analyses of structures, the physical mechanisms of creep deformation are not explicitly considered. In
consequence, these models cannot account for the effects of mineral composition and geometry of microstructures on the
mechanical response of argillaceous rocks. Therefore, it is necessary and useful to study the small-scale behaviour of clay
rock to better explain the time-dependent mechanisms observed from small to large scales, and also to provide a better
basis for further extension of macroscale constitutive models.
At the mesoscale, clay rocks are heterogeneous and composed of several types of mineral inclusions embedded in a

clay matrix.18–20 At this scale, the behaviour of rocks is characterised by the morphological (size and shape) and material
properties of the components and their interactions. The mesoscopic scale has an important role in the mechanisms of
deformation under mechanical loading by cracking21 and creeping.22 At the microscale, the clay matrix is composed of
clay aggregates (made of “clusters” of clay particles, or clay platelets, in turn made of a stack of atomic layers, etc. as going
downscale),23 interacting between them and with the mineral inclusions. The influence and accurate reproduction of
these micro- and meso-scale characteristics on the large-scale material behaviour, accounting for damage and viscosity,
remains a complex issue. This becomes an essential concern to investigate the short- and long- term underground stability
of galleries and tunnels during and after excavation process.
Considering the complex mesostructure of clay rocks, one possibility to evaluate their impacts on mesoscale and

macroscale overall mechanical responses is to use a multi-scale approach. Such approach allows to study a statistically
equivalent Representative Elementary Volume (REV for 3D case) or Representative Elementary Area (REA for 2D case)
to determine the behaviour of the equivalent homogeneous medium.24–33 In particular, computational homogenisation
methods,34–36 also known as multi-scale analyses, have emerged. They include, among others, finite element squared
(FE2)24,37–40 and FEM-DEM41 methods for continuous media at the large scale and heterogeneous/discrete material at
the small scale. This approach does not introduce any explicit expression for the macroscale constitutive equations, as
the homogenised response from the mesoscale computation serves as a numerical constitutive relation in the macroscale
continuum. To this date, modelling of the time-dependent behaviour of clay rocks accounting for small-scale character-
istics and scale transition from the mesoscale to the macroscale remain insufficiently investigated. Therefore, the main
objectives of the present work are to (1) develop a multiscale creep model of clay rock, to (2) discuss the contribution
of viscosity in clay aggregates and clay aggregate contacts to the overall creep behaviour of claystone from a small-scale
perspective, and to (3) provide some valuable insights into the microscopic mechanisms of creep-induced damage.
The article is organised as follows: Section 2 details the structure and viscous behaviour of clay rocks. A short intro-

duction on the mesostructure of the studied material, the COx claystone, is given with the modelling possibilities of its
viscosity. Section 3 gives themodelling approach frommeso- andmicro-scales aspect. Section 4 introduces the framework
of mesoscale model of the clay rock, for example, the periodic mesostructure and boundary conditions, the homogeni-
sation method. The microscale constitutive models of solid minerals, their contacts (i.e., mineral interfaces), and their
numerical implementations are also described. In Section 5, the ability of the proposed micro- and meso-scale models

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3617 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [19/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SUN et al. 3

F IGURE 1 Spatial distribution of mineral groups of the COx claystone: (A) 2D SEM image on a section perpendicular to the bedding
planes; (B) 3D micro-CT subvolume (EST26095).20

to describe the instantaneous and long-term mechanical behaviour of clay rocks is assessed by comparing numerical
results with experimental data obtained from triaxial and creep compression tests. The influences of viscosity inside clay
aggregates or at inter-aggregate contacts on the overall creep deformation and damage modes are investigated.

2 CLAY ROCK STRUCTURE AND BEHAVIOUR

A description of the micro- and meso-structures of heterogeneous clay rocks and some fundamental aspects of their
mechanical behaviour at different scales is given in this section. First, it is necessary to define the different scales which
are considered:

∙ Microscopic scale (µm): scale of the mineral inclusions, clay aggregates and fracture porosity.
∙ Mesoscopic scale (mm): scale of the heterogeneous spatial arrangement of the minerals, thus of the mineral inclusions,
of the connected clay matrix and of the interactions between the mineral components. This mesostructure is studied in
a single material point in this study.

∙ Macroscopic scale (cm): scale of pluricentimetric laboratory samples, at which thematerial is modelled as a continuum.

2.1 Micro- and meso-structures of the Callovo-Oxfordian claystone

As aforementioned, we focus hereafter on the COx claystone. This clay rock is the host rock envisaged for deep geological
nuclear waste repository in France, and studied by Andra in its Underground Research Laboratory (URL) located in Bure
(Meuse/Haute-Marne area) at approximately 490 m depth.1 This argillaceous rock is mainly composed of four mineral
components, as visible in Figure 1: tectosilicates (−SixOy, mainly quartz, 10%−40%), carbonates (−CO3, mainly calcite,
15%−80%), heavy minerals (FeS2, pyrite, in a low proportion of 0%−3%) and clay minerals (mainly illite and interstratified
illite/smectite, 20%−60%).12,20 From the work of Cosenza et al.,18,19 the average contents of these four minerals in the COx
clay-rich lithostratigraphic unit are 18%, 30%, 2% and 50% based on detailed experimental investigations.
As amultiphase composite material with strong heterogeneity, this claystone has a complex (micro)structure withmul-

tiple characteristic lengths.20 2D and 3D spatial distributions of themineral groups of the COx claystone obtained from the
analyses of x-ray computed micro-tomography (micro-CT) and scanning electron microscopy (Backscattered Electrons,
SEMBSE) images are shown in Figure 1. These analyses lead to the determination of mineral groups, spatial distributions,
mineral area fractions and mineral morphology (size, shape and orientation of mineral inclusions). Therefore, the COx
claystone will be considered as a solid four-phase composite material in which three different types of mineral inclusions
(quartz, calcite and pyrite) are embedded in a clay matrix.

2.2 Mechanical behaviour of the Callovo-Oxfordian claystone

2.2.1 Macroscale behaviour

The mechanical behaviour of the COx claystone, observed from experimental observations and laboratory tests, is briefly
described in the following.
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4 SUN et al.

F IGURE 2 Laboratory results on COx claystone with a relative humidity of 90% conducted by Armand et al.12: (A) triaxial compression
tests and (B) triaxial creep tests under different confining pressures.

Considering the short-term behaviour, in typical loading-unloading(-reloading) cycles of deviatoric stress on samples,42
large residual strains in both axial and lateral directions are observed after unloading the deviatoric stress. Furthermore,
triaxial compression tests (as shown in Figure 2A) performed for different confining pressures5 have shown that, like
other claystones, the mechanical behaviour of COx claystone has a strong dependence on the surrounding pressure. As
the mean (compressive) stress level increases, the shear strength of the argillaceous rock increases and a transition from
brittle to ductile behaviour is observed. In its in situ environment and under in situ stress range, the COx claystone exhibits
a quasi-brittle behaviour. The observed peak stresses inmaterial stress-strain response curves correspond to themaximum
compressive and shear strength of the rock reached under uniaxial and triaxial compression tests. At the macroscale, the
peak stress corresponds to the initiation of a fracture in the rock specimen leading to its failure. Then, strain softening is
observed after the peak stress where micro- and macro-cracks are generally observed in the sample after failure.21
Considering the long-term behaviour, creep tests (as shown in Figure 2B) under different constant confining pressures

and deviatoric stresses12,43 indicate a time-dependent behaviour of the COx claystone, with significant creep (viscous)
deformation under constant mechanical loading. The level of the deviatoric loading to which the rock is subjected to has
an important effect on the amplitude and time-evolution of the specimen axial strain.3 For instance, under uniaxial creep
compression tests, the creep rate varies linearly and very slowly with stress at low stresses (below 13−15 MPa). Above a
certain threshold, the creep rate increases at a higher rate with stress and deviates from a linear form.44 No creep failure
(tertiary creep) took place during any of their tests performed. Up to now, only a few results have been obtained on tertiary
creep for COx claystones.22,42 The acceleration of the creep rate appears to be related to the onset and development of
microcracks (i.e., mechanical damage).22

2.2.2 Meso- and micro-scale behaviours

The macroscale behaviour of rocks significantly depends on their mesoscale granular structure, which in turn depends
on the microscale properties of each mineral component. At the meso- and micro-scales, the deformation in clay rocks is
dominated by damage, decohesion and crackingmechanisms.With a combination of scanning electronmicroscopy (SEM)
and broad ion beam (BIB), microstructural observations on COx claystone at microscale show that the deformationmech-
anisms are dominantly cataclastic and that crystal plastic mechanisms are minor.21 Potential decohesion mechanisms
around mineral inclusions and cracking within the clay matrix develop in the clay rock.21,45 The microcracking includes
inter-granular microfractures propagating in the clay matrix (i.e., inter-clay aggregates) and between mineral inclusions
and clay (i.e., grain/matrix joints), as well as intragranular and trans-granular (i.e., intra- and trans-crystal) microfractures
propagating in non-clay minerals.21 The microcracking is more prone to develop along the contacts (interfaces) between
non-clayminerals and claymatrix. Themicrocracks within the claymatrix and the decohesion around the inclusions take
their origin from heterogeneities at the scale of mineral inclusions.
Furthermore, viscoplastic deformations develop in clay rocks. Plasticity and creep deformation are generally assumed

to mainly occur within the clay matrix.7,11 In fact, clay behaviour under solicitation is usually dominated by irreversible
strain and the physical mechanisms of short-term plastic and time-dependant viscous deformationsmay be due to smaller
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SUN et al. 5

F IGURE 3 Schematic representation of the mesoscopic structure of the COx claystone with microstructural rupture modes and
viscoplastic deformation.

scale heterogeneities in the clay mineral. At small scale inside the microscale clay particles, the main inelastic deforma-
tion mechanism takes place as plastic sliding of clay sheets (unit layers of clay minerals), along parallel inter-layers.11,46
Moreover, the physical mechanism of creep deformation in clay rocks mainly includes two phenomena: the viscosity of
the clay matrix (from smaller scale clay heterogeneities) and the subcritical propagation of microcracks inside the clay
matrix.6,47

3 MODELLING APPROACH

Following the above observations, clay rocks are considered as a heterogeneous assembly of constituents (as heteroge-
neous polycrystalline rocks) at the mesoscale with plasticity and viscosity considered in the clay matrix. The numerical
simulations are conducted under pure mechanical condition, the influence of pore water is therefore not considered in
this study, but is already part of the multiscale modelling framework (van den Eijnden et al.37). A schematic represen-
tation of the mesoscopic structure of the COx claystone is illustrated in Figure 3 with: the mineral inclusions embedded
in the mesoscopic clay matrix, the microstructural rupture modes and the viscoplastic deformation. The microstructural
rupture modes are modelled by decohesion of interfaces around the mineral inclusions and crack mechanisms within
the clay matrix.48,49 The crystal plasticity and microfractures inside the mineral inclusions (e.g., non-clay mineral grain
breakage) are not represented in the model. The irreversible plastic and creep behaviour of the COx claystone is consid-
ered by introducing viscoplastic deformation of the clay matrix. The short-term plastic deformation is considered inside
the clay matrix by assuming that the clay aggregates deform due to small scale processes (e.g., between clay layers inside
clay particles). The time-dependent viscous deformation is considered by assuming two possible scales of viscosity: either
at the mesoscopic scale of the clay matrix or at the microscopic scale of the clay aggregates (corresponding to smaller
scale deformations in clay aggregates, particles, platelets, etc.). The viscosity is then introduced by the development of
two viscous mechanisms schematically represented in Figure 3. Firstly, the “diffused” viscoplastic flow of the clay matrix
is considered. This intra- aggregate viscoplastic flow is assumed to be due to smaller scale heterogeneities as clay parti-
cles, platelets and layers. Secondly, a viscous sliding between large clay aggregates is considered. This inter-clay aggregate
viscous sliding is assumed to develop as microcracks propagate through the clay matrix.
Themorphologically representative element areas (REAs) aremodelled to obtain an accurate reproduction of themate-

rial structure and behaviour. An algorithm, based on Voronoï tessellation from the work of Pardoen et al.48 and van den
Eijnden et al.49 is adopted to generate periodic 2D REAs with random microstructures. Several control parameters are
added to the tessellation algorithm to be able to control the grain geometry statistics. These parameters can be used to
accurately match the geometrical characteristics of the mineral inclusions geometry of COx claystone as characterised by
Robinet et al.20
Figure 4 shows the comparison between material structure obtained from a polished thin section in a plane perpen-

dicular to the stratigraphic plane and numerical simulation at mesoscale. The algorithm allows to generate several REAs
with a certain variability of the mesostructure, for instance, with a variability of its heterogeneity (spatial variability of the
mineral inclusion positions) or of its mineral content. The anisotropic behaviour at the macroscale arises naturally from
the morphology of the microstructure taken at the microscale inside an REA in this construction.49
As for the REA size, the characteristic length of the mesostructure is LREA ≈ 100 µm defined experimentally.18–20 Note

that, if from a morphological point of view, the chosen size of the REAs is considered sufficient, this is not quite the case
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6 SUN et al.

F IGURE 4 Comparison of COx structure at mesoscale obtained respectively from (A) numerical simulation (taken from Pardoen
et al.48) and (B) a polished thin section in a plane perpendicular to the stratigraphic plane (taken from Cosenza et al.18).

from the point of view of the homogenised mechanical response. As for the mineral inclusions size, an artificial size is
assigned to themineral grains by considering themean area of quartz and carbonate inclusions measured experimentally.
For each type of mineral, Pardoen et al.48 give a good agreement between the numerical and experimental results: the
minimal-mean-maximal sizes are: 6−72−230 µm2 for quartz, 6−43−115 µm2 for carbonates and 6−35−84 µm2 for pyrite.
The 2D elementary areas that are considered are representative of (vertical) planes normal to the (horizontal) bed-

ding planes. This would have an influence on the failure and micro-cracks propagation.48 In addition, previous results
have shown that the 2D model overestimates material dilatancy,49 which is related to the displacement of the solid con-
stituents and to the opening of interfaces between them. Since rearrangement of solid constituents is not considered
in the mesoscale model, this opening at solid constituent contacts occurs regardless of the deformation state. A more
accurate depiction of the material microstructure can be achieved through a 3D model. However, before going to this
more realistic 3D representation, the use of 2D calculations serves as a valuable foundation, providing reference results
for subsequent analyses involving 3D computations. As shown in Figure 4, the 2D microstructure is enriched by taking
into account realistic properties of mineral inclusions, such as morphology, area fraction and orientation. orientation,
measured experimentally in 2D material sections.

4 FRAMEWORK OF THEMESOSCALEMODEL

The formulation of themesoscalemodel and of its periodic framework is defined hereafter. Thismodel has been developed
as a part of a double-scale modelling framework, the so-called FE2 method, which allows an upscaling of the material
behaviour by computational homogenisation.37 As mentioned previously, within the framework of computational
homogenisation, a mesoscale computation is carried out on a REA of which the homogenised response is considered
as the local (at a Gauss point) numerical constitutive relation at macroscale. A representative sample of the material
mesostructure is represented andmodelled in a REA. Different components at mesoscale are described by their individual
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SUN et al. 7

F IGURE 5 Deformed local periodic mesostructure. Homologous points 𝑥𝐹𝑖 and 𝑥
𝐿
𝑖 on periodic boundary segments Γ

𝐹 and Γ𝐿.

constitutive models. Considering the existence of discontinuities, as the contact interfaces between the different minerals,
the small strain assumption is used at the microscale to satisfy the requirement of microscale stress continuity.

4.1 Representative elementary area with periodic boundary conditions

The material mesostructure represented in a REA (of configurationΩ) is composed of solid particles, including elastic
mineral inclusions embedded in a clay matrix, separated by cohesive interfaces. Its role is to reproduce the stress-strain
behaviour of the composite material, including the non-linear behaviour which comes from the plasticity of the clay
matrix, the microcracking in the clay matrix, and the decohesion at interfaces around mineral inclusions (modelled by
damage and softening). Macroscale andmesoscale deformations are transferred through the periodic boundary condition
of the REA.
Figure 5 shows a deformed REA with periodic boundary conditions. Due to the existence of contact interfaces with

displacement discontinuities, the weak formulation requires to take into consideration both the internal interfaces Γ𝑖𝑛𝑡
and the external boundary Γ. The latter is the boundary where periodic conditions are imposed and is subdivided into two
parts: the “lead” part Γ𝐿 and the “follow” part Γ𝐹 .
The kinematics of any point 𝑥𝑖 on the follow boundary depend on the kinematics of its corresponding homologous

point on the lead boundary. The distance between these two points is defined by the period vector 𝑦:

𝑥𝐹𝑖 = 𝑥𝐿𝑖 + 𝑦𝑖 (1)

The mechanical part of the periodic boundary conditions of the REA is defined in terms of the mesoscale displacement
𝑢𝑖 relationship between homologous points as:

𝑢𝐹𝑖 = 𝑢𝐿𝑖 + 𝜀𝑀𝑖𝑗 𝑦𝑗 (2)

where 𝜀𝑀𝑖𝑗 is the components of small strain tensor enforced on the REA. Moreover, external boundary tractions 𝑡𝑖 need to
satisfy the antiperiodic condition:

𝑡𝐹𝑖 + 𝑡𝐿𝑖 = 0 (3)

4.2 Microscale constitutive model

Microscale computation allows to assign different constitutive relations to each component. Based on the microstructural
observations of Section 2, an isotropic, linear and elastic behaviour is assumed for the quartz, calcite and pyrite mineral
inclusions, while plasticity and viscosity are considered for the claymatrix. Moreover, the contact interfaces between solid
minerals are modelled, accounting for failure and damage modes at small scale. To do so, the contact interfaces around
mineral inclusions and within the clay matrix are considered as decohesive zones and potential microcracks.
For the clay matrix, an elastoplastic constitutive law is considered for the short-term behaviour whereas a viscous

(elasto-viscoplastic or viscoelastic) constitutive law is considered for the long-term behaviour. For this viscous behaviour,
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8 SUN et al.

F IGURE 6 Concept of microscale mechanical modelling.

F IGURE 7 Damageable cohesive interface model in the (A) normal and (B) tangential directions of contacts between mineral grains.

twomicroscale mechanisms have been introduced: the viscoplasticity of the clay aggregates and the viscoelasticity of their
contacts.

4.2.1 Cohesive model of mineral contacts

Figure 6 illustrates the scheme of cohesive forces acting on the internal boundaries Γ𝑖𝑛𝑡, which is subdivided into lower
and upper parts Γ−∕+𝑖𝑛𝑡 of outward normal 𝑛−∕+. Cohesion (𝑐−∕+𝑖 ; 𝑖 = 𝑡, 𝑛) and displacements (𝑢−∕+𝑖 𝑖 = 𝑡, 𝑛) can be
decomposed into normal (𝑖 = 𝑛) and tangential (𝑖 = 𝑡) parts, in order to account for the displacement discontinuity (i.e.,
interfacial opening and relative sliding) Δ𝑢𝑖 = 𝑢+𝑖 − 𝑢−𝑖 across the interface. As illustrated in Figure 6, the solid phases
are separated by cohesive cracks defined both in the normal and tangential directions to the mineral grain boundary. The
appearance of the microcracks is due to the deformation by solid mineral grain movements (displacements) and their
behaviour can be simulated by damageable cohesive interface models.
As shown in Figure 7, an interface damageable cohesive model including an elastic, a constant cohesion, a softening

and a complete decohesion behavioural phases is used.50 The model provides some flexibilities arising from the four
parameters {𝐷0

𝑡∕𝑛
, 𝐷1

𝑡∕𝑛
, 𝛿𝑐

𝑡∕𝑛
, 𝑐𝑚𝑎𝑥

𝑡∕𝑛
} representing, respectively, the damage initiation, the cohesion softening initiation, the

critical relative displacements for complete decohesion, and the maximum cohesive forces. For example, setting 𝐷0
𝑡∕𝑛

=

𝐷1
𝑡∕𝑛

= 0 leads to a linear interface cohesive model; while setting 𝐷0
𝑡∕𝑛

= 𝐷1
𝑡∕𝑛

≠ 0 leads to a bilinear interface cohesive
model.
As indicated in Figure 7, the development of the cohesive normal and tangential forces cn and ct with interface opening

Δ𝑢𝑛 and sliding Δ𝑢𝑡 (relative displacements in the normal and tangential directions) can be divided into four stages: (1)
from Δ𝑢𝑡∕𝑛

𝛿𝑐
𝑡∕𝑛

= 0 to 𝐷0
𝑡∕𝑛
, the interface undergoes a pure elastic stage; (2) from Δ𝑢𝑡∕𝑛

𝛿𝑐
𝑡∕𝑛

= 𝐷0
𝑡∕𝑛

to 𝐷1
𝑡∕𝑛
, the cohesive interface

starts to degrade, meanwhile, the cohesion force reaches the critical cohesive strength of the interface; (3) as the interface
opening/sliding further increases beyond the point Δ𝑢𝑡∕𝑛

𝛿𝑐
𝑡∕𝑛

= 𝐷1
𝑡∕𝑛

to 1, softening occurs and the interface cohesive force
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SUN et al. 9

decreases continually to zero (complete decohesion); (4) when the interface opening/sliding reaches its maximum value
Δ𝑢𝑡∕𝑛

𝛿𝑐
𝑡∕𝑛

= 1, it is completely debonded and the cohesive force in the interface disappears.

The damage parameter 𝐷𝑡∕𝑛 represents the current interface state based on time history (0 ≤ 𝜏 ≤ 𝑡):

𝐷𝑡∕𝑛 = min

(
max

(
𝐷0
𝑡∕𝑛

,
1

𝛿𝑐
𝑡∕𝑛

𝑚𝑎𝑥0 ≤ 𝜏 ≤ 𝑡

(|||Δ𝑢𝜏𝑡∕𝑛|||))
, 1

)
(4)

If 𝐷𝑡∕𝑛 = 𝐷0
𝑡∕𝑛
, then the interface is in the elatic stage; if 𝐷0

𝑡∕𝑛
< 𝐷𝑡∕𝑛 ≤ 𝐷1

𝑡∕𝑛
, then the interface is in the degrade stage

without softening; if 𝐷1
𝑡∕𝑛

< 𝐷𝑡∕𝑛 < 1, then the interface is in the damaged softening stage; if 𝐷𝑡∕𝑛 = 1, then the interface
is completely damaged.
Taking the normal components of interface cohesion as an example, the cohesive force 𝑐𝑡𝑛 at current time 𝑡 is represented

mathematically as:

𝑐𝑡𝑛 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐸0𝑛 Δ𝑢
𝑡
𝑛

𝑐𝑚𝑎𝑥𝑛

(
1 − 𝐷1

𝑛

)
𝑐𝑚𝑎𝑥𝑛

(
1 − 𝐷𝑡∕𝑛

)
;

0 ;

𝐸𝑢𝑛𝑛 Δ𝑢𝑡𝑛 ;

𝑐𝑡+𝑛 − 𝜅Δ𝑢𝑡𝑛
2
;

Δ𝑢𝑡𝑛 ≤ 𝐷0
𝑛𝛿

𝑐
𝑛

𝐷0
𝑛𝛿

𝑐
𝑛 < Δ𝑢𝑡𝑛 ≤ 𝐷1

𝑛𝛿
𝑐
𝑛

𝐷1
𝑛𝛿

𝑐
𝑛 < Δ𝑢𝑡𝑛 ≤ 𝛿𝑐𝑛

𝛿𝑐𝑛 < Δ𝑢𝑡𝑛

0 ≤ Δ𝑢𝑡𝑛 < max
(
Δ𝑢𝑡𝑛

)
Δ𝑢𝑡𝑛 ≤ 0

(5)

where Equation (5) correspond to the cohesive force during the opening loading stage, Equation (5)-5 corresponds to
the elastic closing unloading/reopening reloading stage, and Equation (5)-6 corresponds to the case of Δ𝑢𝑡𝑛 < 0 avoiding
interpenetration of minerals. In Equation (5)-6, 𝑐𝑡+𝑛 is the cohesion calculated with one of the Equation (5), and the param-
eter 𝜅 is a penalty coefficient whose value should be taken large to obtain physically relevant contacts avoiding mineral
interpenetration of solid minerals (Δ𝑢𝑡𝑛 < 0), but not too large for the numerical accuracy of the system of equations. In
Equation (5)-1, the initial elastic normal stiffness 𝐸0𝑛 reads:

𝐸0𝑛 =
𝑐𝑛
Δ𝑢𝑛

=
𝑐𝑚𝑎𝑥𝑛

(
1 − 𝐷0

𝑛

)
𝐷0
𝑛𝛿

𝑐
𝑛

(6)

The constant softening slope of interface cohesion is given by:

𝐸𝑠𝑛 = −
𝑐𝑚𝑎𝑥𝑛

𝛿𝑐𝑛
(7)

Furthermore, for the standard interface cohesive model under elastic unloading (i.e., interface closing), the crack is
fully closed50 and the cohesion returns to zero following the relationship 𝑐𝑡𝑛 = 𝐸𝑢𝑛𝑛 Δ𝑢𝑡𝑛 (Equation (5)-5). The subsequent
reloading follows the same path as illustrated in Figure 7. In Equation (5)-5, 𝐸𝑢𝑛𝑛 is the elastic normal stiffness at unloading
(closing) and reloading (reopening) stages and is defined by:

𝐸𝑢𝑛𝑛 =
𝑐𝑡𝑛
Δ𝑢𝑡𝑛

(8)

The above developments for the normal cohesive forces can be replicated to the tangential cohesive forceswhich develop
under sliding Δ𝑢𝑡 (tangential relative displacements) of solid minerals in contact. In this case, the tangential contact
behaviour is symmetric for both sliding directions Δ𝑢𝑡 < 0 and Δ𝑢𝑡 > 0.
With the above equations, themechanical behaviour of solidmineral contacts (interfaces), which are assumed as poten-

tial microcracks within the clay matrix and decohesion zones around mineral inclusions, is completely defined. The
independent (unrelated) constitutive laws used for normal and tangential mechanical behaviours of mineral interfaces
imply a decoupled relationship between them. Thus, both damage components can develop on the samemineral contact.
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10 SUN et al.

Although the dependence between the tangential and normal interface behaviours is not explicitly accounted for by the
microscale cohesive model, the homogenised mechanical response of the mesoscale model (REA) can capture the mean
stress dependence of the clay rock shear strength.51

4.2.2 Elastoplastic model of clay aggregates

The plastic behaviour of the claymatrix and clay aggregates is modelled hereafter. In the following equations, compressive
stresses and strains are considered negative according to the material mechanics sign convention. Under the assumption
of small strains, the strain tensor of the clay aggregates at microscale can be decomposed into its elastic and plastic parts,
denoted, respectively, by superscripts e and p:

𝜀̇𝑖𝑗 = 𝜀̇𝑒𝑖𝑗 + 𝜀̇
𝑝
𝑖𝑗 (9)

The elastic model is classical and the elastoplastic model used in this paper is taken from Abou-Chakra Guéry et al.11 A
modified Drucker-Prager yield criterion is used to model the shear strength of the clay aggregates. The yield function 𝐹𝑒𝑝
reads:

𝐹𝑒𝑝
(
𝜎𝑖𝑗, 𝛾

𝑝
)
= 𝑞 + 𝛼𝑝 (𝑝 − 𝑐0) (10)

where 𝑝 is the mean stress, 𝑞 =
√

3

2
𝑠𝑖𝑗𝑠𝑖𝑗 is the equivalent deviatoric stress with 𝑠𝑖𝑗 the deviatoric parts of the stress

tensor, 𝑐0 represents the hydrostatic tensile strength related to material cohesion of the clay aggregates, and 𝛼𝑝 represents
their shear strength dependency to the mean stress level (internal friction parameter). The consistency condition enforces
that the stress state always remains on the yield surface during plastic deformation: 𝐹𝑒𝑝 = 0 and 𝐹̇𝑒𝑝 = 0. A higher
compression with 𝑝 < 0 will make 𝐹𝑒𝑝 more negative hence delay shear-induced yielding. Moreover, 𝛼𝑝 is a hardening
function depending on the internal variable 𝛾𝑝, which is the equivalent deviatoric plastic strain (or plastic distortion),
written as:

𝛼𝑝 (𝛾𝑝) = 𝛼
𝑝
𝑚 −

(
𝛼
𝑝
𝑚 − 𝛼

𝑝
0

)
e−𝑏𝛾

𝑝 (11)

𝛾̇𝑝 =

√
2
3
𝑒̇
𝑝
𝑖𝑗𝑒̇

𝑝
𝑖𝑗; 𝛾𝑝 =

𝑡

∫
0

𝛾̇𝑝 𝑑𝜏 (12)

where 𝑒𝑝𝑖𝑗 denotes the deviatoric parts of the plastic strain tensor, Ȧ is the rate of variable A, 𝑏 controls the kinetics of
the evolution of plastic hardening, 𝛾̇𝑝 is the rate of the equivalent deviatoric plastic strain, 𝛼𝑝0 and 𝛼

𝑝
𝑚 are the slopes of

the initial yield and failure surfaces. Therefore, the hardening process is described by the variation of 𝛼𝑝 from its initial
threshold 𝛼𝑝0 to its ultimate value 𝛼

𝑝
𝑚. A non-associated flow rule is considered here with the plastic potential, defining

the direction of the plastic strain rate, defined as:

𝐺𝑒𝑝
(
𝜎𝑖𝑗, 𝛾

𝑝
)
= 𝑞 + 𝛽𝑝 (𝛾𝑝) 𝑝 (13)

where 𝛽𝑝(𝛾𝑝) is a parameter controlling plastic volumetric strain rate, and we have compressibility for 𝛽𝑝 ≤ 0 and
dilatancy for 𝛽𝑝 > 0. 𝛽𝑝 is also a function of the hardening plastic variable 𝛾𝑝:

𝛽𝑝 (𝛾𝑝) = 𝛽
𝑝
𝑚 −

(
𝛽
𝑝
𝑚 − 𝛽

𝑝
0

)
e−𝑏

′𝛾𝑝 (14)

where 𝛽𝑝0 and 𝛽
𝑝
𝑚 are the initial and final dilatancy parameters and 𝑏′ controls the rate kinetics of the plastic volumetric

strain. Such expressions of Equations (11) and (14) make the values of 𝛼𝑝 and 𝛽𝑝 vary within an increment of equivalent
deviatoric plastic strain 𝛾𝑝.
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SUN et al. 11

Using the expression of the plastic potential 𝐺𝑒𝑝, the plastic strain rate is written as follows:

𝜀̇
𝑝
𝑖𝑗 = 𝜆̇𝑝

𝜕𝐺𝑒𝑝
𝜕𝜎𝑖𝑗

(15)

where 𝜆𝑝 ≥ 0 is the plastic multiplier and the volumetric 𝜀̇𝑝𝑝 and deviatoric 𝜀̇
𝑝
𝑞 plastic strain rates are defined by:

𝜀̇
𝑝
𝑝 = 𝜆̇𝑝

𝜕𝐺𝑒𝑝
𝜕𝑝

; 𝜀̇
𝑝
𝑞 = 𝜆̇𝑝

𝜕𝐺𝑒𝑝
𝜕𝑞

(16)

Combining Equations (12), (15) and (16), the hardening variable can be formulated as:

𝛾̇𝑝 = 𝜆̇𝑝 = 𝜀̇
𝑝
𝑞 (17)

The relation (17) is useful for the elastoplastic stress update in Appendix B.

4.2.3 Elasto-viscoplastic model of clay aggregates

Similar to the elastoplastic part, under the assumption of small strains, the strain tensor of clay aggregates at microscale
can also be decomposed into its elastic and viscoplastic parts, denoted, respectively, by superscripts e and vp:

𝜀̇𝑖𝑗 = 𝜀̇𝑒𝑖𝑗 + 𝜀̇
𝑣𝑝
𝑖𝑗 (18)

The viscoplastic model for clay aggregates is established based on Perzyna’s overstress concept52 and Lemaitre’s creep
model.53 The latter one is well documented and has an extensive experimental basis. The classic Lemaitre’smodel neglects
the volumetric creep strain and uses an associated flow rule. Both of these points are not realistic for rock materials. We
aim to revise these points in the present study.
For the viscoplastic yield function, we suggest the following form:

𝐹𝑣𝑝 = 𝑞 + 𝛼𝑣𝑝 𝑝 − 𝜎𝑠 (19)

where 𝛼𝑣𝑝 ≥ 0 is a model parameter quantifying themean stress level sensitivity of the creep behaviour and 𝜎𝑠 is the creep
threshold above which viscoplastic strains start to develop. The viscoplastic potential 𝐺𝑣𝑝 takes the following form:

𝐺𝑣𝑝 = 𝑞 + 𝛽𝑣𝑝𝑝 (20)

where 𝛽𝑣𝑝 > 0 corresponds to viscous dilatancy of rock and 𝛽𝑣𝑝 < 0 corresponds to viscous contraction. Then, the
viscoplastic flow rule reads:

𝜀̇
𝑣𝑝
𝑖𝑗 = 𝜆̇𝑣𝑝

𝜕𝐺𝑣𝑝
𝜕𝜎𝑖𝑗

(21)

where 𝜆𝑣𝑝 ≥ 0 is the viscoplastic multiplier and 𝐺𝑣𝑝 is the non-associated viscoplastic potential defining the direction of
viscoplastic strain rate.
In practice for rocks, although contraction may be observed under small shear strain or before becoming dilatant at the

beginning of creep tests,54,55 creep dilatancy is still prevalent in most rocks. To reproduce the transition between creep
contraction and dilation, 𝛽𝑣𝑝 should not be a constant but must vary from negative (contraction) to positive (dilation)
values. Some authors mentioned the concept of variable dilatancy parameter for plasticity56 as well as for viscoplasticity.54
In this case, the dilatancy parameter can be defined as a function of the damage variables and the plastic deformation.
However, this progressive change of dilatancy is out of the scope of this paper. In the following sections, 𝛽𝑣𝑝 will be
considered to be a positive constant.
Inspired by Lemaitre’s model, the viscoplastic multiplier 𝜆̇𝑣𝑝 is defined as follows:

𝜆̇𝑣𝑝 =
1
𝜂

⟨
𝐹𝑣𝑝
𝜎𝑟

⟩𝑛

𝑒−𝑘 𝛾𝑣𝑝 (22)
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12 SUN et al.

F IGURE 8 Schematic representation of the viscoelastic model of clay aggregate contacts.

where 𝐹𝑣𝑝 is the viscoplastic yield function, ⟨ ⟩ stands for the Macaulay’s brackets with ⟨𝑥⟩ = 𝑚𝑎𝑥(0, 𝑥), while 𝜂, 𝑛, 𝑘
and 𝜎𝑟 are model parameters. The parameters 𝑛 ≥ 1 and 𝑘 ≥ 0 represent, respectively, the effect of stress intensity and
strain hardening on the creep strain rate. The parameter 𝜂 (in seconds) represents the clay aggregates viscosity and 𝜎𝑟
is a reference stress ( 𝜎𝑟 = 1 MPa). The power form of the hardening variable 𝛾𝑣𝑝−𝑘 in the original Lemaitre’s model is
replaced by an exponential form e−𝑘𝛾

𝑣𝑝 after comparing their simulation results with experimental data from Armand
et al.12
The viscoplastic distortion 𝛾𝑣𝑝 (i.e., the equivalent deviatoric viscoplastic strain) is chosen as the hardening parameter:

𝛾̇𝑣𝑝 =

√
2
3
𝑒̇
𝑣𝑝
𝑖𝑗 𝑒̇

𝑣𝑝
𝑖𝑗 = 𝜆̇𝑣𝑝 (23)

where 𝑒̇𝑣𝑝𝑖𝑗 denotes the deviatoric part of the viscoplastic strain tensor. Nevertheless, if the material is viscoplastically
incompressible, that is, 𝛽𝑣𝑝 = 0, this hardening variable is the same as for the original Lemaitre’s model where the
hardening variable is the accumulated deviatoric viscoplastic strain.
Injecting Equations (19), (20) and (23) into (21), the viscoplastic strain rate is finally expressed as follows:

𝜀̇
𝑣𝑝
𝑖𝑗 =

1
𝜂

⟨
𝑞 + 𝛼𝑣𝑝𝑝 − 𝜎𝑠

𝜎𝑟

⟩𝑛

𝑒−𝑘 𝛾𝑣𝑝
(
3𝑠𝑖𝑗
2𝑞

+
𝛽𝑣𝑝

2
𝛿𝑖𝑗

)
(24)

Note that the consistency condition does not apply for viscoplasticity; thus, the viscoplastic yield function can be positive
𝐹𝑣𝑝 > 0. When the current stress state is located outside the viscoplastic loading surface (overstress concept with𝐹𝑣𝑝 > 0),
viscoplastic deformations 𝜀̇𝑣𝑝𝑖𝑗 > 0 are generated. The viscoplastic strain rate reduces with the accumulation of viscoplastic
distortion 𝛾𝑣𝑝 and can become null if the current stress state returns to the interior of the viscoplastic yield surface. Lastly,
the thermodynamic consistency of the proposed viscoplastic model has to be verified. See Appendix A for the discussion
of this part.
At each time step, the stresses and tangent operators for the elastoplastic and viscoplastic models need to be iteratively

updated. These details can be found in Appendices B and C.

4.2.4 Viscoelastic model of clay aggregates contacts

As aforementioned, another possible consideration of the clay rock viscosity is to add it into the microcracks within the
clay matrix. Thus, the contact interfaces between elastic clay aggregates are assumed as viscoelastic. The corresponding
rheological model, commonly denominated as the Standard Linear Solid model (SLS) or alternatively Zener model is
represented in Figure 8. It consists of a damageable elastic spring (the top part in Figure 8) connected in parallel with
one Maxwell element, composed of an elastic spring and a viscous dashpot (the bottom part in Figure 8). The behaviour
of the damageable elastic spring is described using a bilinear interface cohesive model as shown in Figure 7. The total
viscoelastic relative displacement Δ𝑢𝑣𝑒

𝑡∕𝑛
is the sum of the elastic and the viscous parts:

Δ𝑢𝑣𝑒
𝑡∕𝑛

= Δ𝑢
𝑡∕𝑛

+ Δ𝑢𝑣
𝑡∕𝑛

(25)

and the total cohesive forces are the sum of the elastic and viscous cohesions:

𝑐𝑣𝑒
𝑡∕𝑛

= 𝑐
𝑡∕𝑛

+ 𝑐𝑣
𝑡∕𝑛

(26)
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SUN et al. 13

The relation between the elastic and the viscous cohesive forces is linked using a material parameter 𝛽, such as 𝑐𝑣
𝑡∕𝑛

=

𝛽 𝑐
𝑡∕𝑛

leading to 𝑐𝑣𝑒
𝑡∕𝑛

= (1 + 𝛽) 𝑐
𝑡∕𝑛
. The evolution law for the viscoelastic opening and sliding is taken as:

Δ𝑢̇𝑣
𝑡∕𝑛

=
𝛿𝑐
𝑡∕𝑛

𝑐𝑣
𝑡∕𝑛

𝜇𝑡∕𝑛
(27)

where 𝜇𝑡∕𝑛 is the viscosity of the clay aggregate contacts (i.e., clay-clay interfaces). The derivation of the update of the
cohesion and of the consistent tangent operator using recursive algorithm can be found in thework of Simo andHughes.57

4.3 Balance equation at mesoscale

The assumption of small strains at microscale makes the Cauchy stress tensor 𝜎𝑚𝑖𝑗 approximately equals to the first Piola–
Kirchhoff stress tensor 𝑃𝑚𝑖𝑗 . Moreover, gravity is neglected. Therefore, the momentum balance equation of the mesoscale
BVP reads:

𝜕𝜎𝑚𝑖𝑗
𝜕𝑥𝑗

= 0 (28)

The principle of virtual work states that the system is in equilibrium if internal virtual work equals to external one.
Considering an admissible virtual velocity field 𝑢∗𝑖 , the weak formulation of Equation (28) reads:

∫
Ω

𝜎𝑚𝑖𝑗
𝜕𝑢∗𝑖
𝜕𝑥𝑗

𝑑Ω = ∫
Γ+𝑖𝑛𝑡

𝑐+𝑖 𝑢
∗,+
𝑖 𝑑Γ + ∫

Γ−𝑖𝑛𝑡

𝑐−𝑖 𝑢
∗,−
𝑖 𝑑Γ (29)

by considering the antiperiodic boundary tractions.
The mesoscale BVP is solved by discretising the REA and linearising the field equations with finite elements (FE). At

the small scale, the solid constituents are modelled using two-dimensional four-node isoparametric quadrilateral FE with
four integration points. For the contact interfaces between solid minerals, a four-node one-dimensional interface element
is used with two integration points with initial zero thickness. A full Newton–Raphson iterative procedure is used to
solve the boundary value problem numerically under the applied loading conditions. Moreover, the mechanical periodic
boundary conditions of the REA (Equation (2)) are implemented by considering a penalty for the displacements of the
homologous point (for example, a pair of points at 𝑥𝐿 and 𝑥𝐹 in Figure 5).

4.4 Homogenisation of stress

The overall stress tensor over theREA results from thehomogenisation process of themicroscale stress tensor.Hill-Mandel
principle of meso-homogeneity58,59 allows to write:

𝜎𝑖𝑗 =
1
Ω ∫

Γ𝐹

𝑡𝑖 𝑦𝑗 𝑑Γ (30)

The corresponding homogenised consistent tangent operator is obtained by static condensation within the scheme of
computational homogenisation.35,37

5 ASSESSMENT OFMESOSCALEMODEL

In this section, numerical predictions frommesostructure calculations are compared with experimental data obtained on
the COx claystone to examine the efficiency of the proposed model to reproduce the claystone creep deformations. To
minimise the influence of mineralogical variability on experimental results, Armand et al.12 performed triaxial and creep
compression tests on COx claystone samples extracted from horizontal boreholes in the same geological horizon and in
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14 SUN et al.

TABLE 1 Microscale elastoplastic parameters of solid mineral constituents and their damageable contacts.

Materials 𝑬 (GPa) 𝒗 (−)
Tectosilicates (quartz) 95 0.074
Carbonates (calcite) 84 0.317
Heavy minerals (pyrite) 305 0.154
Clay matrix 2.3 0.110
Clay aggregates 𝜶

𝒑
𝒎 𝜶

𝒑

𝟎
𝒃 𝒄𝟎 (MPa) 𝜷

𝒑

𝟎
𝜷
𝒑
𝒎 𝒃′

3.0 0.1 300 14 0 0.8 300
Interfaces 𝜹𝒄

𝒕∕𝒏
(−) 𝑫𝟎

𝒕∕𝒏
(−) 𝑫𝟏

𝒕∕𝒏
(−) 𝒄𝒎𝒂𝒙

𝒕
(MPa) 𝒄𝒎𝒂𝒙

𝒏 (MPa)

0.1 0.001 0.01 2.5 1.0

the same area of the Andra’s URL. The results of the numerical modelling are compared hereafter to these experimental
data. It should be noted that the calibration of the parameters in the model is based on limited experimental data, which
means that the uniqueness of the calibration cannot be guaranteed. Concerning the numerical modelling, morphologi-
cally representativemesostructures are firstly generated. Unless otherwise specified, severalmorphological characteristics
of themesostructures (REAs) are fixed: themineral contents of quartz, carbonates, pyrite and clay are considered as being
their average values in the COx clay-rich unit of 18%, 30%, 2% and 50%, respectively; the preferential orientation of min-
eral inclusions is parallel to the (quasi-)horizontal bedding planes; the angularity and elongation of mineral inclusions
reproduce their morphology according to experimental evidences18–20 and previous generations of morphologically rep-
resentative mesostructures.48 Then, mesoscale deviatoric compression tests and creep tests are numerically reproduced.
The elastoplastic part of the model is first evaluated, followed by the viscous part of the models of clay aggregates and
of their contacts. Note that the elastoplastic and viscoplastic models of clay aggregates are two separate models, both of
which have no influence on each other. Lastly, the mechanical material response and the time-evolution of creep strain
is analysed. The influence of several microscale characteristics on the mesoscale mechanical material response is studied
through sensitivity analyses, followed by the study of temporal evolution of interface damage state.

5.1 Elastoplastic modelling of claystone

The accuracy of the elastoplastic modelling of the clay aggregates (Section 4.2.2) is assessed in this section by modelling
the material stress-strain behaviour for validation against experimental results. The mineral inclusion behaviours are
considered as being elastic and all mineral contact behaviours are modelled with the cohesive model (Section 4.2.1). The
elastic parameters of the minerals as well as the strength and damage parameters of their contacts have been calibrated
by van den Eijnden51 and Pardoen et al.,48 based on the results of triaxial compression tests, and are listed in Table 1.
However, the plastic parameters of the clay aggregates remain to be calibrated to reproduce the stress-strain behaviour of
the clay rock.
Previous results have shown that the heterogeneity of the clay rockmesostructure with spatial variability of themineral

inclusions (random positions) has an influence on the overall response of different mesostructures subjected to deviatoric
loading.48 Therefore, several mesostructures of the COx claystone are generated and mechanically solicitated with 2D
biaxial (deviatoric) compression tests. 10 REAs (an experienced value from Pardoen et al.48) of 100 × 100 µm are randomly
generated with the same morphological characteristics of the mineral inclusions (granulometry, elongation, angularity
and preferential orientation). An example is given in Figure 10B. A confining pressure of 𝜎𝑀11 = 12 MPa is applied on
the REAs which corresponds to the amplitude of the in situ stress at the median depth of the COx formation. There-
fore, this confining pressure has been considered in all the compression tests presented hereafter. The isotropic confining
phase is followed by a deviatoric loading phase, with controlled global (homogenised) vertical strain rate (strain rate
of𝜀̇𝑀22 = 3.5*10−6 s−1) and constant lateral stress 𝜎𝑀11.
The numerical results of the global mechanical responses of the mesostructures are detailed in terms of deviatoric

homogenised stress 𝑞𝑀 versus homogenised strains curves in Figure 9. They are compared to experimental data (from
Armand et al.12; Pardoen and Collin3). The variability of the rock mechanical response at mesoscale (as observed by
Pardoen et al.48), due to themesostructuralmineral spatial variability, is visible and only the range of the response curves is
shown frommost and least resistant responses. The plastic parameters of the clay aggregates are calibrated, as it was done
for other micromechanical properties,48 on a set of several mesostructures and by considering their average mechanical

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3617 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [19/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SUN et al. 15

F IGURE 9 Variability of clay rock mechanical responses at mesoscale under biaxial compression.

F IGURE 10 Influence of the internal friction parameter 𝛼𝑝𝑚 of the clay aggregates (A) on the clay rock mechanical responses of (B) one
mesostructure under biaxial compression.

response. The average response is represented in terms of the maximum deviatoric stress in stress-strain curves or the
creep strains at the end of computation in strain-time curves, assuming it is representative of the material. The calibrated
plastic parameters are listed in Table 1.
It should be noted that a 2D case is simulated at mesoscale to reproduce the experimental data from macroscale tri-

axial compression test. The numerical results concern individual REAs and interactions of different REAs at macroscale
are therefore not included. Thus, the comparison is meaningful only for homogeneous modes of deformation (before
the peak-deviatoric stress in stress-strain curves and before tertiary creep stage in strain-time curves). Macroscale non-
homogeneous deformationmodes, induced for example by strain localisation or fractures, will lead to structural responses
which cannot be compared directly to the constitutive behaviour.Moreover, themacroscale responses exhibit amuchmore
pronounced softening behaviour than the constitutive responses due to the macroscale non-homogeneous deformation.
The comparison of the results after the peak stress (in the strain softening stage) is feasible in the case of a simulation at
the scale of laboratory specimen by conducting FE2 simulations, which is out of the scope of this paper.
Figure 9 shows the evolution of the deviatoric homogenised stress 𝑞𝑀 with the vertical homogenised strain 𝜀𝑀22 during the

loading. A certain degree of variation exists in the material response from the most resistant samples to the least resistant
ones due to the variability of the mesostructure. Figure 10A enlightens the influence of the slope of the failure surface
𝛼
𝑝
𝑚 on the 𝑞𝑀 − 𝜀𝑀22 response curve for one mesostructure under biaxial compression. The selected mesostructure shown
in Figure 10B and labelled REA250_1 allowed to calibrate the clay plastic parameters of Table 1. This plastic parameter
𝛼
𝑝
𝑚 defines the dependency of the clay aggregates shear strength on their mean stress level (internal friction parameter),

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3617 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [19/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 SUN et al.

at the end of the clay hardening. From Equations (10) and (11), a smaller value of 𝛼𝑝𝑚 means that the material yields at a
lower deviatoric stress, leading to higher plastic deformations in the clay matrix at the same level of deviatoric loading.
Thus, a reduction of this plastic parameter causes a reduction of the mesostructure overall shear strength 𝑞𝑀𝑚𝑎𝑥 as well as
an increase of themesostructure overall deformation. This is visible in the response curves in Figure 10A. On the contrary,
a large value of 𝛼𝑝𝑚 corresponds to an increase of the clay matrix shear strength and a reduction of its plastic deformation.
An increase of this parameter increases the rock overall shear strength 𝑞𝑀𝑚𝑎𝑥 and reduces its overall deformation (under
the same deviatoric stress level). This delays the clay rock overall deformation, for example, 𝜀𝑀11 and 𝜀

𝑀
22, at which the effect

of the clay matrix plastic strain becomes dominant in the overall stress-strain behaviour (Figure 10A). Furthermore, if the
plastic deformation of the clay aggregates is not considered, by assuming that they are elastic, the overall non-linearity of
the microstructure behaviour is due to the initiation and development of micro-damage.

5.2 Viscous modelling of clay aggregates and of their contacts

The viscous behaviour of the clay rock is now considered. The behaviour ofmineral inclusions remains elastic while that of
the contacts around them (i.e., contacts between inclusions or between an inclusion and the clay matrix) is still described
by the cohesive model (Section 4.2.1). However, the creep behaviour of the clay matrix within the COx claystone is added.
It is introduced by two microscale viscous mechanisms: the elasto-viscoplasticity of the clay aggregates (Section 4.2.3) or
the viscoelasticity of their contacts (Section 4.2.4) studied separately.
The statistical averages ofmineral contents in the COx clay-rich unit are again represented in numericalmesostructures

of size 100 × 100 µm. The viscoplastic parameters of the clay aggregates and the viscoelastic parameters of their contacts
remain to be calibrated to reproduce the creep behaviour of the clay rock. Similarly, tomacroscale creep tests on laboratory
specimen, the numerical simulations (in 2D) of creep tests under deviatoric loading on clay rocks consist of three stages.
Firstly, the sample is subjected to an isotropic confining loading 𝜎𝑀11 = 𝜎𝑀22 = 𝜎𝑀𝑖𝑛𝑖 . Secondly, the confining pressure 𝜎

𝑀
11 is

then kept constant and the axial stress 𝜎𝑀22 is gradually increased until the designed deviatoric stress 𝑞
𝑀 = 𝜎𝑀22 − 𝜎𝑀11 is

reached. Lastly, the creep deformation occurs in the third stage, during which the confining stress 𝜎𝑀11 and the axial stress
𝜎𝑀22, and thus the deviatoric stress 𝑞

𝑀 , are kept constant for a period of time.

5.2.1 Elasto-viscoplastic modelling of clay aggregates

In this case, the clay aggregates are elasto-viscoplastic (Section 4.2.3) and the inter-aggregate contacts are modelled with
the damageable cohesive interface model (Section 4.2.1). The calibration of the viscoplastic parameters is, as previously
(Section 5.1), realised by considering the average mechanical response of a set of several mesostructures (10 REAs used
in Section 5.1). In Equation (20), 𝛽𝑣𝑝 is a volumetric deformation parameter. Considering the very small dilatancy of clay
rocks,3 we fix the value of 𝛽𝑣𝑝 = 0. This is a simplifying assumption in which the phenomenon of progressive transition
from contractive to dilative behaviour of most rocks is neglected. The viscoplastic stress threshold 𝜎𝑠, in Equation (19),
abovewhich creep strain develops in clay aggregates should be a small-scale parameterwhich is not known.Atmacroscale,
its determination is very difficult and it is closely linked to the duration of observation and to the confining pressure.60
Some previous experimental results43 suggest that the viscoplastic stress threshold should be lower than 2 MPa for the
long-term creep behaviour of clay rock. Souley et al.61 suggests that creep may take place beyond a threshold of 3 to 5 MPa
based on the results of creep tests on COx claystone, and Mánica et al.60 gives the threshold as 4 MPa in their study. A
value of 𝜎𝑠 = 3 MPa is considered. Furthermore, in Equation (22), the parameter 𝜂 represents the clay aggregates viscosity
and 𝑛 controls the rates (slope of the time evolution curve) of the viscoplastic strain for a short period of time as well as
the difference in strain magnitude when different deviatoric stress levels are applied under the same confining pressure.
Then, the parameter 𝑘 controlling the hardening effect influences the viscoplastic strain rate at larger times. The calibrated
viscoplastic parameters are listed in Table 2.
The variability of deviatoric homogenised stress 𝑞𝑀 is first shown in Figure 11A in this case. Figure 11B shows

the geometrical configuration of the mesostructured REA250_1 exhibiting an average numerical material response.
Compared with Figure 9, the peak strengths increase obviously and are more consistent with laboratory results. Then,
creep experiments under 𝜎𝑀11 = 12 MPa of confining pressure and for different deviatoric stress levels, 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 50%,
75% and 90%,12 are numerically reproduced. The statistical mean value of the maximal deviatoric stress that the clay rock
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SUN et al. 17

TABLE 2 Microscale parameters of viscoplastic clay aggregates and damageable mineral contacts.

Clay aggregates 𝜼 (s) 𝜶𝒗𝒑 𝜷𝒗𝒑 𝝈𝒔 (MPa) 𝒏 𝒌

9.8*1012 0.1 0 3 4.62 260
Interfaces 𝜹𝒄

𝒕∕𝒏
(−) 𝑫𝟎

𝒕∕𝒏
(−) 𝑫𝟏

𝒕∕𝒏
(−) 𝒄𝒎𝒂𝒙

𝒕
(MPa) 𝒄𝒎𝒂𝒙

𝒏 (MPa)

0.1 0.001 0.01 2.5 1.0

F IGURE 11 Variability of clay rock mechanical responses at mesoscale under biaxial compression (left) and reference REA with
average numerical material response (right).

F IGURE 1 2 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests for three deviatoric stress levels
𝑞𝑀∕𝑞𝑚𝑎𝑥 = (A) 90%, (B) 75%, (C) 50% in which 𝑞𝑚𝑎𝑥 = 34.9 MPa.

can sustain 𝑞𝑚𝑎𝑥 = 34.9 MPa,12 that is, its shear strength, under 12 MPa of confining pressure is used as a reference for
the creep experiments. A comparison of numerical and experimental evolution of vertical strains during the creep stage
is shown in Figure 12 at different stress levels of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 50%, 75% and 90%, corresponding to thus 𝑞𝑀 = 17.5 MPa,
26.2 MPa and 31.4 MPa. After parameter calibration of 𝜂, 𝛼𝑣𝑝, 𝑛 and 𝑘 (Table 2), one can observe that the numerical
model reproduces well the strain evolution (i.e., the vertical homogenised creep strain 𝜀𝑣𝑝,𝑀22 ) of the COx claystone over
time. As for previous modelling, a variability of the rock mechanical response, related to the mineral spatial variability
at mesoscale, is obtained. In fact, with identical mineral contents, the Voronoï tessellation allows to generate periodic
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18 SUN et al.

F IGURE 13 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests considering viscoplastic clay
aggregates, under a constant deviatoric stress level of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 75%, for four proportions of clay mineral contents: (A) 30%, (B) 40%, (C) 50%
and (D) 60% of clay.

2D REAs with random mesostructures (i.e., random positions of mineral inclusions), which is one of the origins of the
mesoscale behaviour scattering.48
This influence of the mesostructure spatial variability can be observed in Figure 12, leading to a range of creep material

response for each deviatoric stress level. As previously, only the range of the response curves is shown frommost and least
development of viscous strain with time. The mesostructured REA250_1 shown in Figure 11B exhibits an average numer-
ical creep material response. It allowed to calibrate the viscoplastic parameters of the clay aggregates. This mesostructure
is considered as a reference REA for the following sensitivity analyses, small‑scale damage state analyses, and double-
scale numerical simulation. Furthermore, the deviatoric stress level has a significant influence on the creep behaviour, as
depicted in Figure 12A–C. A higher constant deviatoric stress engenders a larger development of creep strain with time,
as observed experimentally.

Sensitivity analyses on creep deformation
In this section, the influence of several mesostructure properties and viscoplastic parameters on the creep behaviour of
the COx claystone is investigated. Firstly, the clay content variation is considered. Experimental studies have shown that
a certain variability of the mineralogical composition exists within the COx claystone.5,12,18–20 It is expected that a larger
clay content will produce larger creep deformation, due to its viscous nature. To enlighten this, REAs with the same
characteristic length (LREA ≈ 100 µm) but different clay contents of 30%, 40%, 50% and 60% are considered. For each clay
content, creep tests aremodelled on 10 REAs under constant confining pressure of 𝜎𝑀11 = 12MPa and deviatoric stress level
of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 75%. The results are shown in Figure 13 and compared to experimental measurements on a macroscale
sample from the clay-rich unit of the COx claystone, thus for 50% of clay mineral content (Figure 13C). As expected, the
homogenised creep strains become greater as clay content increases. The average REA vertical creep strains for these four
mineral content cases at 100 days of creeping are, respectively, 𝜀𝑣𝑝,𝑀22 = 0.36%, 0.54%, 0.77% and 1.04%. The increase of the
vertical creep strain as a function of the clay mineral content is represented in Figure 14. A quasi-linear relation can be
found between the vertical creep strain and the clay mineral content for the configurations considered here. It seems that
under a deviatoric stress level of 75% of the rock shear strength (under 𝜎𝑀11 = 12 MPa), each 10% increase in clay content
increases the vertical creep strain by 0.23%.
Secondly, the influence of the characteristic size 𝐿𝑅𝐸𝐴 of the mesostructure is considered, for 50% of clay content. To

study the influence of themesostructure size on thematerial creep response,we generate REAswith an increasing number
of Voronoï cells of 50, 100 and 250 numerical cells, corresponding to 𝐿𝑅𝐸𝐴 ≈ 50, 70 and 100 µm, respectively. The variability
of the material responses, in term of vertical creep strain evolution during creep simulations, over 10 tested REAs for each
case of mesostructure size is shown in Figure 15. One can observe that a range exists in the material response for each
case. The response under the same model parameters and simulation conditions are similar but its variability decreases
with the increase of the REA size. In fact, the larger the REA, the more representative this behaviour is. The partial lack
of representativeness of small mesostructures can be avoided by increasing the REA size; however, this increases the
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SUN et al. 19

F IGURE 14 Influence of the clay mineral content on the average vertical creep strain, under a constant deviatoric stress level of
𝑞𝑀∕𝑞𝑚𝑎𝑥 ≈ 75%, after 100 days of biaxial creep test.

F IGURE 15 Variability of clay rock mechanical creep response due to different characteristic sizes of the mesostructure during biaxial
creep test under a constant deviatoric stress level of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 75%.

computation time. The creep response dispersion of microstructures of 100 × 100 µm (250 cells) is relatively limited and
is a good compromise between representativeness and computation time cost.48
The influence of viscous parameters of the clay aggregates is now considered. Figure 16A,B show the influence of the

hardening parameter 𝑘 and of the viscoplastic threshold 𝜎𝑠 on the creep deformation. In Figure 16A, it can be seen that
reducing 𝑘 engenders an increase of the creep strain rate and thus of the creep strain in the long term. Therefore, as
aforementioned, the hardening parameter 𝑘 can be determined by comparing the slope of creep strain curves in the long
term between numerical and experimental results. In Figure 16B, as expected, larger values of the viscoplastic threshold
𝜎𝑠 generate lower viscous deformations. The vertical creep strain 𝜀

𝑣𝑝,𝑀
22 decreases from 0.9% to 0.67% after 100 days of

creeping when the threshold increases from 0 to 5 MPa. The viscoplastic threshold has mainly an influence on the creep
strain generated during a short time period because the curves are nearly parallel in the long term.

Creep-induced micro‑damage of mineral contacts
Figure 17 illustrates the mesostructure (reference REA250_1) deformation and interface damage state for different times
and vertical total strains, 𝜀𝑀22 = 0.89%, 1.9% and 2.6%. These strains correspond to the end of deviatoric compres-
sion phase, creep deformation after 1 year, and creep deformation after 100 years, respectively. The interface states
(degrade, softening and full damage) are indicated by different colours and a larger symbol corresponds to the greater
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20 SUN et al.

F IGURE 16 Influences of (A) the hardening parameter 𝑘 and of (B) the viscoplastic threshold 𝜎𝑠 on the overall vertical creep
deformation during biaxial creep test under a constant deviatoric stress level of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 75%.

F IGURE 17 Evolution of clay rock damage at different vertical total strains under biaxial creep test: (A) material response and (B)
patterns of mineral interface damage state.

interface relative displacements and damage. From Figure 17, one can observe that the interface damage can develop
with time under constant stress conditions due to the viscosity of the clay aggregates. The creep deformation of clay
aggregates leads to a gradual increase and accumulation of damage (i.e., cohesion softening) of the mineral contacts,
as more mineral interfaces becomes partially damaged over time. Note that the damage develops preferentially in the
interfaces around mineral inclusions rather than between the clay aggregates. Desbois et al.21 have observed similar
decohesion and microcrack developments, after shear failure tests, with analyses using a combination of SEM and
broad ion beam (SEM-BIB). Two explanations can be envisaged: firstly, the stresses at the matrix-inclusion interfaces
are higher than those between clay aggregates due to the higher contrast in stiffness (between the stiff mineral inclu-
sions and the soft clay matrix), and therefore lead to larger relative displacements; the second reason is that only the
clay aggregates generate creep deformation, and this tends to reduce substantially the stresses generated at the inter-
face between clay aggregates, hence also their relative displacements. This increase of damage at the mineral contacts
during material creeping, due to the clay matrix viscosity, might further lead to the development of microcracks (i.e.,
complete decohesion at mineral contacts, or fully damaged interfaces) for very large creep deformations in the long
term.
In order to better investigate the creep-induced damage state of the mineral interfaces as shown in Figure 18, four indi-

cators are introduced to quantify its development. The first indicator (Figure 18A) is the maximal values of damage in the
tangential 𝐷𝑚𝑎𝑥

𝑡 and normal (opening) 𝐷𝑚𝑎𝑥
𝑛 directions among all interfaces. It is a local indicator which specifies when
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SUN et al. 21

F IGURE 18 Indicators of the development of mineral interface damage state considering viscoplastic clay aggregates under biaxial
creep test: (A) maximal and average interface damage in tangential and normal directions, (B) proportions to the total number of interfaces in
different states and (C) proportions to the total number of interfaces undergoing more relative displacements in tangential or normal
direction.

the most damaged mineral contact in a mesostructure starts to become partially damaged, in softening, or fully damaged.
The second indicator (Figure 18A) 𝐷𝑚𝑒𝑎𝑛

𝑡∕𝑛
is the mean values of damage of all mineral interfaces in their two directions.

It is a global indicator which reflects the average damage state of the mesostructure in shear or opening mode. The third
indicator (Figure 18B) is the proportions to the total number of interfaces that are currently in the elastic (𝐷𝑡∕𝑛 ≤ 𝐷0

𝑡∕𝑛
),

degraded (𝐷0
𝑡∕𝑛

< 𝐷𝑡∕𝑛 ≤ 𝐷1
𝑡∕𝑛
), softening in shear mode (𝐷1

𝑡 < 𝐷𝑡 ≤ 1) and softening in opening mode (𝐷1
𝑛 < 𝐷𝑛 ≤ 1).

This indicator reflects the trend of the interfaces in different states and their quantity. The last indicator (Figure 18C) is
the proportions to the total number of interfaces in the partially damage state (degrade and softening) which damage in
the tangential direction is greater (𝐷𝑡 > 𝐷𝑛) or lower (𝐷𝑡 < 𝐷𝑛) than that in the opening direction. It allows to determine
the dominant deformation and damage mode of the REA which can be in shear or in opening mode. The complete deco-
hesion mode (𝐷𝑡 or 𝐷𝑛 > 1) is not indicated here since no mineral interface have reached this state under the REA creep
test.
The curves in Figure 18 start at the end of the isotropic compression, at which the proportions to the total number

of interfaces in elastic, degrade, shear softening and open softening are, respectively, 89%, 10%, 0% and 0% (Figure 18B).
It can be seen that at the end of the isotropic compression about one tenth of the interfaces have already undergone a
certain relative displacement to reach the degrade state. Nevertheless, Figure 18A indicates that 𝐷𝑚𝑎𝑥

𝑡 (𝐷𝑚𝑒𝑎𝑛
𝑡 ) is usually

a bit larger than 𝐷𝑚𝑎𝑥
𝑛 (𝐷𝑚𝑒𝑎𝑛

𝑛 ). This indicates that the generated relative displacement in the tangential direction of all
mineral interfaces is larger than that in the normal direction in opening. This is because theREA is subjected to a deviatoric
loading.
During the deviatoric loading, which is the second stage of the simulation, the proportions of interface damage state

vary most significantly, for each damage state (Figure 18B). At the end of the deviatoric loading, the majority of the elastic
interfaces becomes degraded and a small proportion already enters the shear softening and open softening states.
Afterwards, during the creep phase, the proportions of elastic and degraded interfaces and thus, the proportion of

interfaces in softening regime increase. This indicates that the proportion of interfaces entering the degraded state from
elasticity is smaller than the proportion of interfaces entering the softening state from the degraded state. During the creep
phase (Figure 18B), the relative displacements occurring at the mineral contacts lead to a transition of the interface dam-
age state from degraded to softening. At any time, a majority of the mineral interfaces undergo larger tangential relative
displacement (Figure 18C).
The results of Figures 17 and 18 highlight that shearing is the dominant mode of deformation (relative movements) and

damage at the mineral contacts. In fact, under deviatoric loading, shear deformations and tangential relative movements
between mineral grains (at clay-clay aggregate, clay-inclusion and inclusion-inclusion contacts) are predominant.48 As
time increases during the creeping of the entiremesostructure of the clay rock, tangential sliding displacement and normal
opening displacement of mineral contacts, especially at interfaces between clay aggregates and mineral inclusions, occur
due to the creep deformation of the clay aggregates. Therefore, the internal damage accumulates and the creep deformation
of the clay matrix can be a driving factor of time-dependent micro-damage processes.
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22 SUN et al.

F IGURE 19 Variability of clay rock mechanical creep response at mesoscale during biaxial creep tests considering viscoelastic clay
aggregate contacts under two deviatoric stress levels of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = (A) 90% and (B) 75%.

F IGURE 20 Influence of (A) clay aggregate contact viscosity 𝜇𝑡∕𝑛 and (B) viscous parameter 𝛽 on the vertical creep deformation
under 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 75%.

5.2.2 Viscoelastic modelling of clay aggregate contacts

In this approach, it is considered that the viscous behaviour of the clay rock, in the clay matrix, is related to the devel-
opment of viscous relative displacements (i.e., a time-dependent sliding and opening) between large clay aggregates. The
latter are considered as rigid elastic entities. As previously, the elastic parameters of theminerals as well as the parameters
of their contacts are listed in Table 1. A biaxial creep test has been simulated on COx claystone mesostructures with vis-
cous contacts between clay aggregates, that is, clay-clay interfaces. The creep test modelling has been performed on the 10
REAs of 100× 100 µmhaving a 50% clay content, which have been used in Section 5.2.1. Themodelling has been performed
under a confining stress of 𝜎𝑀11 = 12MPa and under a deviatoric stress of 𝑞𝑀∕𝑞𝑚𝑎𝑥 = 75% and 90%, thus 𝑞𝑀 = 26.2MPa and
31.4 MPa. Figure 19A,B show the time evolution of the vertical creep strain 𝜀𝑣𝑝,𝑀22 under two constant deviatoric stresses.
When viscosity exists only in the contact between clay aggregates, one can observe that the overall (homogenised) vertical
creep deformation 𝜀𝑣𝑝,𝑀22 generated by the viscosity is small compared to experimental data, in both short and long terms.
The creep strains finally tend asymptotically towards constant values due to the used viscoelastic model, which corre-
sponds to the secondary creep (creep deformation reaching a steady state). However, this behaviour may become different
when the applied deviatoric stress is much closer to the peak stress. This will be discussed in the following.

Sensitivity analyses on creep deformation
The simulations are carried out on the same set of 10 mesostructures and only the average response of REAs (mesostruc-
ture REA250_1) is shown. Figure 20A,B illustrates the influence of the viscous parameters 𝛽 and 𝜇𝑡∕𝑛. The simulation
conditions and the other model parameters are the same as before. As expected, the viscosity of the clay aggregates con-
tacts 𝜇𝑡∕𝑛 only influences the rate at which the creep deformation reaches a steady state (Figure 20A), not its final value.
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SUN et al. 23

F IGURE 2 1 Creep stages and induced failure in clay rock during biaxial creep test considering viscoelastic clay aggregate contacts: (A)
material response and (B) microscale damage and mesoscale cracking pattern induced by the material creep with time.

On the other hand, a larger value of the viscous parameter 𝛽 leads to a larger vertical creep strain development; however,
this effect reduces as the value of 𝛽 increases. Note that the clay aggregate interface elastic stiffness also depends on 𝛽,
which can be seen from Figure 8. However, Amore realistic modelling of the clay aggregate contacts should consider their
irreversible relative sliding and opening. This will be further investigated in future studies.

Creep-induced micro‑damage of mineral contacts
Themesostructure REA250_1 (Figure 11B) is again consideredwith 50% of clay content, viscoelastic clay aggregate contacts
and the following clay-clay interface parameters: 𝑐𝑚𝑎𝑥𝑡 = 0.025MPa, 𝑐𝑚𝑎𝑥𝑛 = 0.01MPa, 𝛿𝑐

𝑡∕𝑛
= 0.1, 𝐷0

𝑡∕𝑛
= 0.001, 𝐷1

𝑡∕𝑛
=

0.01, 𝛽 = 100 and 𝜂 = 109 MPa s. Under confining pressure of 𝜎𝑀11 = 12 MPa and biaxial compression (loading rate
of𝜀̇𝑀22 = 3.5*10−6 1/s), the mesostructure deviatoric stress 𝑞𝑀 versus axial strain 𝜀𝑀22 response is visible in Figure 21A. Under
this confining pressure, the maximal deviatoric stress (i.e., the shear strength) that the mesostructure can sustain is about
𝑞𝑀𝑚𝑎𝑥 = 47 MPa. Then, a creep test is performed under constant confining pressure of 𝜎𝑀11 = 12 MPa and deviatoric stress
of 𝑞𝑀 = 44 MPa.
A high value of the constant deviatoric stress is chosen close to the shear strength of the REA to study the possible

damage induced by the creep. Three stages of creep can develop in viscous materials as clay rocks: a primary creep in
the short term with a decrease of the creep strain rate (rate decelerating), a secondary creep with a stabilisation of the
creep strain rate over time (steady state creep with constant rate), and a possible tertiary creep in the long term with an
increase of the creep strain rate (rate accelerating) towards creep failure.22 These three stages of creep developed by our
model are shown in Figures 21A and 23A. The tertiary creep occurs for materials exhibiting a softening, damageable, or
quasi-brittle behaviour, as dense soils, overconsolidated clays and rocks.62 These three creep stages are also observed for
the COx claystone during creep tests under triaxial compression conditions.22 Even if it has been seldomobserved in rocks,
the increase of the creep rate appears to be related to the onset and development of damage.22 The later can further lead
to a creep-induced failure of the material.
Figure 21A illustrates both the evolution of the vertical total strain 𝜀𝑀22 with the deviatoric loading and with time, which

corresponds to the creep process. An interesting result is observed when the applied constant deviatoric stress (44 MPa) is
close to the peak deviatoric stress (47 MPa): the third stage of creep (accelerated creep stage) which can lead to the creep
failure is observed. Indeed, the creep deformation rate starts to increase after a time period of 16 year and then increases
rapidly. Furthermore, the development of microscale damage and mesocracking pattern induced by the material creep
with time is shown in Figure 21B, at the end of the deviatoric loading and during the accumulation of creep deformation.
It is observed that the overall material damage at mineral contacts increases and that only a few interfaces reach full
decohesion at the end of the creep, after 19.5 years. In fact, at the end of the creep, the complete decohesion appears in
a localised manner for a small proportion of mineral contacts. Therefore, the creep strain development induces damage
accumulationwhich leads to the initiation of themesostructure cracking and failure. Similarly, tertiary creepwith damage
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24 SUN et al.

F IGURE 22 Indicators of the development of mineral interface damage state considering viscoelastic clay aggregate contacts under
biaxial creep test: (A) maximal and average interface damage in tangential and normal directions, (B) proportions to the total number of
interfaces in different states and (C) proportions to the total number of interfaces undergoing more relative displacements in tangential or
normal direction.

accumulation and creep failure was observed during creep at macroscale in the COx claystone by Liu et al.22 Numerically,
the FE computation is performed until it fails to converge at the point of failure.
Four indicators, as described in Section 5.2.1, are analysed in Figure 22 to better investigate the creep-induced damage

state of the interfaces between minerals for the results shown in Figure 21. As aforementioned, shearing is the dominant
mode of deformation, relative movements and damage under deviatoric loading. Then, during creep stage after deviatoric
compression, when viscosity exists at the contacts between clay aggregates, it implies an increase of the damage and
relative displacements between mineral grains. This overall microscale damage increase was also observed for viscous
clay aggregates (Section 5.2.1, Figure 18). Moreover, there are only 2 mineral interfaces (over a total of 1582 interfaces) that
have reached the complete decohesion state in the tangential direction (black symbols in Figure 21B) after 19.5 years of
creep. The microscopic damage induced by the creep is therefore very localised. These fully damaged contacts are not
shown in Figure 22B due to their small proportion.

5.2.3 Influence of viscous modes on tertiary creep and creep failure

Although tertiary creep has been rarely observed to date on clay rocks, it may occur and lead to claystone failure over time
under certain conditions.22 The possible occurrence of creep failure has been studied from a mesostructural perspective
by considering the material heterogeneity at the mesoscale with various mineral spatial arrangement. To investigate the
influence of the viscosity of the claymatrix (both of clay aggregates and of their contacts) on the overall creep deformation,
several mesostructures are generated and submitted to a creep test with an applied constant deviatoric stress close to their
peak stress value. Three REAs with 50% of clay content have been randomly generated with different heterogeneous
mesostructures of 100 × 100 µm, labelled REA250_1, REA250_2 and REA250_3.
Hereafter, the viscosity of the clay aggregates and of their contacts is studied separately, considering either viscoplastic

clay aggregates and damageable mineral contacts as in Section 5.2.1, either viscoelsatic clay aggregate contacts and elastic
clay aggregates as in Section 5.2.2. For each mesostructure, the microscale constitutive parameters are the same as those
used previously in Section 5.2.1. For the former mesostructure REA250_1, the effect of the viscosity of the clay aggregate
contacts has already been studied and has led to tertiary creep and creep failure (Figure 21). Then, the viscosity of the clay
aggregates is now considered. For the latter mesostructures REA250_2 and REA250_3, both viscosity types are consid-
ered. The deviatoric strengths of the mesostructures 1, 2 and 3 under biaxial compression with 𝜎𝑀11 = 12 MPa (strain rate
of𝜀̇𝑀22 = 3.5*10−6 s−1) are, respectively, of 𝑞𝑀𝑚𝑎𝑥 = 47 MPa, 46 MPa and 39.1 MPa. The applied constant deviatoric stresses
during the creep phase are, respectively, of 𝑞𝑀 = 44 MPa, 44 MPa and 37 MPa.
Figure 23 shows the relation between the evolution of the creep deformation (Figure 23A) and the micro-damage and

mesocracking patterns induced by the viscosity of the clay aggregates (Figure 23B) or of their contacts (Figure 23C), for
the three mesostructures. These patterns are shown, for each mesostructure, for a vertical total strain 𝜀𝑀1 inducing the
mesoscale tertiary creep by one or the other mode of clay matrix viscosity. From the creep curves shown in Figure 23A,
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SUN et al. 25

F IGURE 2 3 Relation between (A) creep deformation evolution under and (B,C) induced micro-damage and mesocracking patterns for
several mesostructures when viscosity is considered in clay aggregates or at clay aggregate contacts.

one can observe that the viscosity in clay aggregates or in their contacts can both cause accelerated creep of the rock (e.g.,
mesostructures REA250_1 and REA250_2). Furthermore, under the same vertical total strains, the clay aggregate interface
viscosity induces more damage betweenminerals in the mesostructure, which can be seen in terms of damage magnitude
and distribution (Figure 23B,C). The analyses of the numerical results indicate that the viscosity at the clay aggregate
contacts is more likely to cause rock damage and may have an important contribution to the creep-induced failure of the
claystone.

6 CONCLUSIONS

In order to investigate the time-dependent mechanical behaviour of heterogeneous clay rocks, the contribution of
microscale viscous characteristics of minerals to the mesoscale creep behaviour of the COx claystone has been investi-
gated. This has been achieved by micromechanical approach in which the clay rock is considered as a composite medium
consisting of rigid elastic mineral inclusions (quartz, calcite and pyrite) embedded in a clay matrix.
At the microscale, the damage and failure modes have been reproduced by considering potential decohesion around

mineral inclusions and potential microcracking within the clay matrix. The latter are modelled at the interfaces between
solid mineral grains as damageable cohesive contacts. Considering the viscosity of the claystone, it is assumed to be orig-
inated from the time-dependent creep deformation of the clay matrix. Two origins have been considered: either viscous
clay aggregates or viscous intergranular microfractures propagating in the clay matrix between rigid clay aggregates. Both
viscousmodes have been considered either by a viscoplastic behaviour for the clay aggregates or by a viscoelastic behaviour
of the inter-clay aggregate contacts. The viscoplastic model of the clay aggregates, satisfying the thermodynamic consis-
tency conditions, is based on Lemaitre’s form, in which a mean stress dependence and a non-associated flow rule are
introduced. The new hardening law based on an exponential function instead of a power law obtains a creep evolution
that is more consistent with experiment results.
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26 SUN et al.

The contributions of the two consideredmicroscale origins of the claymatrix viscosity to themesoscale creep behaviour
of the COx claystone have been both studied. The numerical results indicate that the viscosity, in both cases, has an
influence on the overall creep deformation of the clay rock. Considering the viscosity in the clay aggregates allows to
reproduce the time evolution of the COx claystone creep strain with a good agreement to experimental measurements
from triaxial creep tests. Nevertheless, considering the viscosity at the contacts between clay aggregates generates a smaller
creep deformation of the rock compared to experimental measurements. Furthermore, stress level and mineralogical
composition affect the overall creep deformation of the claystone. Numerical results indicate that both high the deviatoric
stress level and the high clay content increase the creep deformation, as observed by experimental studies. In the context of
radioactive waste repositories in the COx claystone, it is therefore crucial to understand the phenomena involved during
the long-term creep of the rock around the galleries excavated in the clay-rich lithostratigraphic unit. During material
creep under deviatoric loading, shearing is the dominantmode of deformation and of relative displacement at the contacts
betweenmineral grains. Creep-induced relativemovements betweenmineral grains (at clay-clay aggregate, clay-inclusion
and inclusion-inclusion contacts) occur mainly by sliding (i.e., tangential movements) along the interfaces, resulting in
shear deformations inside the mesostructure.
A particular attention has to be paid to creep when it occurs at a high deviatoric stress level, for a long period of time

and in an indurated clay rock which exhibits a quasi-brittle behaviour (softening behaviour). Under these conditions, an
increase of the creep strain rate (tertiary creep) can occur and may lead to creep-induced failure. In addition to the first
stages of creep (primary and secondary creep), this phenomenon of accelerated creep strain in the long term has also been
reproduced and demonstrated numerically. Considering the material damage, creep deformation can be a driving factor
of time-dependent microscale damage and cracking processes. It has been found that that creep strain development can
induce the accumulation of damage at mineral grain contacts in a localised manner, leading to microcrack development.
The microcracks induced by creep deformation tend to preferentially develop at the interfaces around mineral inclusions
rather than between clay aggregates. Eventually, these phenomena lead to the initiation of mesostructure cracking and
rock failure. Furthermore, both origins of viscosity can lead to creep failure of the claystone as long as the damage of
contact interfaces between mineral grains reaches a certain damage level.
Furthermore, though numerical simulations can provide valuable insights and predictions, experimental observations

and a deep understanding of the underlying physics are crucial to ensure the reliability and accuracy of any conclusions
drawn from simulations.
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APPENDIX A: THERMODYNAMIC CONSISTENCY OF THE VISCOPLASTICMODEL
From Equation (24), the viscoplastic dissipation is defined as:

Φ𝑣𝑝 = 𝜎𝑖𝑗 𝜀̇
𝑣𝑝
𝑖𝑗 =

1
𝜂

⟨
𝑞 + 𝛼𝑣𝑝𝑝 − 𝜎𝑠

𝜎𝑟

⟩𝑛

𝑒−𝑘 𝛾𝑣𝑝 (𝑞 + 𝛽𝑣𝑝𝑝) (A-1)

The thermodynamic consistency implies thatΦ𝑣𝑝 ≥ 0 (i.e., the viscoplastic dissipationmust be non-negative). In regard
to the form of Equation (A-1), this requirement should be examined considering two cases: 𝜎𝑖𝑗 ≥ 0 (tensile stress for i= j)
and 𝜎𝑖𝑗 < 0 (compressive stress for i= j). In the first case, it can be seen that 𝐺𝑣𝑝 = 𝑞 + 𝛽𝑣𝑝𝑝 ≥ 0 and therebyΦ𝑣𝑝 ≥ 0. In
the second case, considering the overstress concept that creep deformation develops only if the stress state is outside the
elastic domain, that is, 𝐹𝑣𝑝 = 𝑞 + 𝛼𝑣𝑝𝑝 − 𝜎𝑠 > 0, the non-negativity of Φ𝑣𝑝 leads to the following requirement:

𝛼𝑣𝑝 ≥ 𝛽𝑣𝑝 (A-2)

Indeed, Equation (20) leads to 𝐺𝑣𝑝 = 𝑞 + 𝛽𝑣𝑝 𝑝 = 𝑞 + 𝛼𝑣𝑝 𝑝 + (𝛼𝑣𝑝 − 𝛽𝑣𝑝)(−𝑝) > 0 if the inequality (A-2) is fulfilled.
The inequality (A-2) is realistic for geomaterials for which associated viscoplastic flow rules might predict too much creep
dilatancy, and for which non-associated viscoplastic flow rules are more suitable. Its physical meaning implies that the
creep dilatancy is smaller than the creep yield sensitivity to the mean stress level. It is quite similar to the observation,
under elastoplastic behaviour, that the dilation angles of clays and clay rocks are generally smaller than their friction
angles. Moreover, these parameters 𝛼𝑣𝑝 and 𝛽𝑣𝑝 need to be calibrated based on experimental data.

APPENDIX B: ELASTOPLASTIC STRESS UPDATE
The procedures for updating the elastoplastic stress in the clay aggregates is defined hereafter. For brevity of notation, the
subscript 𝑛 + 1 at the end of a time step is omitted to express the quantities in the new current material configuration, that
is, at the actual time 𝑡 = 𝑡𝑛+1 . The implicit Euler scheme is adopted here and also for the viscoplastic stresses update in
Appendix C. During a time interval Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 from times 𝑡𝑛 to 𝑡𝑛+1, the elastoplastic model can be described with
the following incremental forms:

Δ 𝜎
=
= ℂ𝑒 ∶ Δ𝜺

=
𝒆 = ℂ𝑒 ∶

(
Δ𝜺
=
− Δ𝜺

=
𝒑
)

(B-1)

Δ𝜺
=
𝒑 =

1
2
Δ𝜀

𝑝
𝑝 𝜹=

+ Δ𝜀
𝑝
𝑞 𝒏=

(B-2)

Δ 𝛾𝑝 = Δ𝜀
𝑝
𝑞 (B-3)

and the plastic function:

𝐹𝑒𝑝 (𝑝, 𝑞, 𝛾𝑝) = 0 (B-4)

In Equation (B-1), ℂ𝑒 is the Hooke elastic constitutive tangent tensor. The stress at the end of the current time step is
elastically predicted:

𝝈
=
= 𝝈
=𝑛

+ Δ 𝝈
=
= 𝝈
=𝑛

+ ℂ𝑒 ∶
(
Δ𝜺
=
− Δ𝜺

=
𝑝
)
= 𝝈
=
tr − 𝐾Δ𝜀

𝑝
𝑝 𝜹=

− 2𝐺Δ𝜀
𝑝
𝑞 𝒏=

(B-5)

𝝈
=
tr = 𝝈

=𝑛
+ ℂ𝑒 ∶ Δ𝜺

=
(B-6)

where the superscript ‘tr’ represents the elastic trial state. Thus, 𝝈
=
tr is the elastic stress predictor or elastic trial stress.

Moreover, the elastic parameters are G the shear modulus and K the bulk modulus of the material. From Equation (B-5),
the mean stress 𝑝 and the deviatoric stress 𝑞 are obtained as follows:

𝑝 = 𝑝𝑡𝑟 − 𝐾Δ𝜀
𝑝
𝑝 (B-7)

𝑞 = 𝑞𝑡𝑟 − 2𝐺Δ𝜀
𝑝
𝑞 (B-8)
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After some algebraic operations, the following relation is obtained:

𝒏
=
= 𝒏
=
tr =

3𝒔
=
tr

2𝑞tr
(B-9)

A residual vector 𝒓 = {𝑟1 𝑟2}
T is then defined, in which 𝑟1 and 𝑟2 are written as follows:

𝑟1 = Δ𝜀
𝑝
𝑝

𝜕𝐺𝑒𝑝
𝜕𝑞

− Δ𝜀
𝑝
𝑞

𝜕𝐺𝑒𝑝
𝜕𝑝

(B-10)

𝑟2 = 𝐹𝑒𝑝 (𝑝, 𝑞, 𝛾𝑝) (B-11)

The unknows in the above two equations are 𝒙⃗ = {Δ𝜀
𝑝
𝑝 Δ𝜀

𝑝
𝑞 }

T. To find a solution 𝒙⃗′ that cancels the residuals such
that 𝒓(𝒙⃗’) = 0⃗, the well-known Newton–Raphson method is used to solve the equations since it has a second order
(i.e., quadratic) convergence rate. In each iteration, the corrections of the unknowns 𝑑Δ𝜀𝑝𝑝 and 𝑑Δ𝜀

𝑝
𝑞 , giving the unknow

correction vector 𝑑𝒙⃗ = {𝑑Δ𝜀
𝑝
𝑝 𝑑Δ𝜀

𝑝
𝑞 }

T, are obtained by solving:

𝑨
=
𝑑𝒙⃗ = −𝑑𝒓 ⇔

[
𝐴11 𝐴12

𝐴21 𝐴22

] {
𝑑Δ𝜀

𝑝
𝑝

𝑑Δ𝜀
𝑝
𝑞

}
= −

{
𝑑𝑟1
𝑑𝑟2

}
(B-12)

where the four components of the Jacobian matrix 𝐴𝑖𝑗 (i,j = 1,2) are defined at the end of this section. The stress at the
end of the time step, that is, at time 𝑡 = 𝑡𝑛+1 , can then be updated using Equation (B-5).
The consistent tangentmodulus provides a softer overall REA response, but can increase the stability of the local consti-

tutive integration and homogenisation process.63 Therefore, the consistent tangent operator instead of continuum tangent

operator is used hereafter. The commonly used elastoplastic consistent tangent modulus is
𝜕 𝝈=
𝜕 𝜺=

which is defined as the

variation of stress caused by the variation of total strain at the end of the time step. However, another form of elastoplastic
consistent tangent modulus is used here:

ℂep =
𝜕 𝝈
=

𝜕 𝜺
=
tr (B-13)

where ℂ𝑒𝑝 is defined as the variation of stress caused by the variation of elastic trial strain (i.e., elastic strain predictor):

𝜺
=
tr = 𝜺

=
𝐞 = 𝜺

=
− 𝜺
=
𝑝

𝑛
= 𝜺
=𝑛

+ Δ𝜺
=
− 𝜺
=
𝑝

𝑛
(B-14)

at the end of current time step. Such scheme proposed by Lee and Zhang64 is able to deal with certain extreme cases
without extra matrix inversion, and has been successfully implemented by Zeng et al.65,66
Differentiating Equation (B-5) gives:

𝑑 𝝈
=
= ℂep ∶ 𝑑 𝜺

=
tr =

⎛⎜⎜⎝ℂ𝑒 − 𝐾𝜹
=
⊗

𝜕Δ𝜀
𝑝
𝑝

𝜕 𝜺
=
tr − 2𝐺𝒏

=
⊗

𝜕Δ𝜀
𝑝
𝑞

𝜕 𝜺
=
tr − 2𝐺Δ𝜀

𝑝
𝑞

𝜕𝒏
=
tr

𝜕 𝜺
=
tr

⎞⎟⎟⎠ ∶ 𝑑 𝜺
=
tr (B-15)

and differentiating Equations (B-10) and (B-11) gives:

𝑨
=
𝑑𝒙⃗ = −𝑑𝒓 =

[
𝐴11 𝐴12

𝐴21 𝐴22

] {
𝑑Δ𝜀

𝑝
𝑝

𝑑Δ𝜀
𝑝
𝑞

}
= −

{
𝑏11𝑑𝑝

tr + 𝑏12𝑑𝑞
tr

𝑏21𝑑𝑝
tr + 𝑏22𝑑𝑞

tr

}
(B-16)

where the values of coefficients 𝑏𝑖𝑗 (i,j= 1,2) are defined in function of the expression of 𝐹𝑒𝑝 and 𝐺𝑒𝑝 (in Equation (B-21)).
Solving the above equations gives the linear relationship between 𝑑Δ𝜀𝑝𝑝 , 𝑑Δ𝜀

𝑝
𝑞 , 𝑑𝑝𝑡𝑟 and 𝑑𝑞𝑡𝑟.

𝑑Δ𝜀
𝑝
𝑝 = 𝑐11 𝑑𝑝

𝑡𝑟 + 𝑐12𝑑𝑞
𝑡𝑟

𝑑Δ𝜀
𝑝
𝑞 = 𝑐21 𝑑𝑝

𝑡𝑟 + 𝑐22𝑑 𝑞
𝑡𝑟 = 𝑞𝑡𝑟 − 2𝐺Δ𝜀𝑞

(B-17)
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where 𝑐11 =
𝐴12𝑏21−𝑏11𝐴22

det(𝑨=
)

; 𝑐12 =
𝐴12𝑏22−𝑏12𝐴22

det(𝑨=
)

; 𝑐21 =
𝐴21𝑏11−𝑏21𝐴11

det(𝑨=
)

; 𝑐22 =
𝐴21𝑏12−𝑏22𝐴11

det(𝑨=
)

; det (𝑨
=
) = 𝐴11 𝐴22 − 𝐴12𝐴21.

Finally, the consistent tangent modulus ℂ𝑒𝑝 writes66:

ℂep = ℂ𝑒 − 𝑐11𝐾
2𝜹
=
⊗ 𝜹
=
− 2𝑐12KG𝜹= ⊗ 𝒏

=
tr − 2𝑐21KG𝒏=

tr ⊗ 𝜹
=
− 4𝐺2𝑐22𝒏=

tr ⊗ 𝒏
=
tr −

4𝐺2Δ𝜀
𝑝
𝑞

𝑞tr

(
3
2
𝕂 − 𝒏

=
tr ⊗ 𝒏

=
tr
)

(B-18)

where the fourth-order deviatoric identity tensor (projection tensor)𝕂writes, in indicial notation,K𝑖𝑗𝑘𝑙 = I𝑖𝑗𝑘𝑙 − J𝑖𝑗𝑘𝑙 with
the fourth-order symmetric identity tensor I𝑖𝑗𝑘𝑙 =

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) and the fourth-order volumetric (spherical) identity

tensor J𝑖𝑗𝑘𝑙 =
1

2
𝛿𝑖𝑗𝛿𝑘𝑙.

Eventually, for 𝐹𝑒𝑝 and 𝐺𝑒𝑝 given by Equations (10) and (13), and their hardening functions 𝛼𝑝 and 𝛽𝑝 from
Equations (11) and (14), the expressions of the coefficients of 𝐴𝑖𝑗 and 𝑏𝑖𝑗 are given by:

𝐴11 =
𝜕𝑟1

𝜕Δ𝜀
𝑝
𝑝
= 1;𝐴12 =

𝜕𝑟1

𝜕Δ𝜀
𝑝
𝑞
= −𝛽𝑝

(
𝜀
𝑝
𝑞

)
+ Δ𝜀

𝑝
𝑞

𝜕𝛽𝑝
(
𝜀
𝑝
𝑞

)
𝜕Δ𝜀

𝑝
𝑞

;

𝐴21 =
𝜕𝑟2

𝜕Δ𝜀
𝑝
𝑝
= −𝐾𝛼𝑝

(
𝜀
𝑝
𝑞

)
; 𝐴22 =

𝜕𝑟2

𝜕Δ𝜀
𝑝
𝑞
= −2𝐺 +

(
𝑝𝑡𝑟 − 𝐾Δ𝜀

𝑝
𝑝 − 𝑐0

) 𝜕𝛼𝑝
(
𝜀
𝑝
𝑞

)
𝜕Δ𝜀

𝑝
𝑞

;

(B-19)

𝜕𝛼𝑝
(
𝜀
𝑝
𝑞

)
𝜕Δ𝜀

𝑝
𝑞

= 𝑏
(
𝛼
𝑝
𝑚 − 𝛼

𝑝
0

)
𝑒
−𝑏

(
𝜀
𝑝
𝑞;𝑛+Δ𝜀

𝑝
𝑞

)
;
𝜕𝛽𝑝

(
𝜀
𝑝
𝑞

)
𝜕Δ𝜀

𝑝
𝑞

= 𝑏′
(
𝛽
𝑝
𝑚 − 𝛽

𝑝
0

)
𝑒
−𝑏′

(
𝜀
𝑝
𝑞;𝑛+Δ𝜀

𝑝
𝑞

)
(B-20)

𝑏11 =
𝜕𝑟1
𝜕𝑝𝑡𝑟

= 0; 𝑏12 =
𝜕𝑟1
𝜕𝑞𝑡𝑟

= 0; 𝑏21 =
𝜕𝑟2
𝜕𝑝𝑡𝑟

= 𝛼𝑝
(
𝜀
𝑝
𝑞

)
; 𝑏22 =

𝜕𝑟2
𝜕𝑞𝑡𝑟

= 1 (B-21)

APPENDIX C: VISCOPLASTIC STRESS UPDATE
The procedures for updating the viscoplastic stress in the clay aggregates is defined hereafter. As previously, we drop the
subscript 𝑛 + 1 of the variable at time 𝑡𝑛+1 for brevity of notation. During a time interval Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 from times 𝑡𝑛 to
𝑡𝑛+1, the viscoplastic rate equations (21) and (24) are defined in incremental forms as:

Δ𝜺
=
vp = Δ𝑡

[
(1 − 𝜃) 𝜺̇

=
vp

𝑛
+ 𝜃 𝜺̇

=
𝑣𝑝

]
(C-1)

Δ 𝛾𝑣𝑝 = Δ𝑡
[
(1 − 𝜃) 𝛾̇

𝑣𝑝
𝑛 + 𝜃𝛾̇𝑣𝑝

]
(C-2)

where 𝜃 is an integration parameter ranging from 0 to 1. 𝜃 = 0 corresponds to an explicit Euler time integration scheme
and 𝜃 = 1 to an implicit Euler scheme.
For a viscoplastic model like Equation (24), the stress tensor and the hardening variable at time 𝑡 = 𝑡𝑛+1 can be written

as:

𝝈
=
= 𝝈
=
tr − ℂ𝑒 ∶ Δ𝜺

=
𝑣𝑝 = 𝝈

=
tr −

Δ𝑡
𝜂
ℂ𝑒 ∶

(
𝐹𝑛 𝑒−𝑘𝛾

vp 𝜕𝐺vp
𝜕 𝝈
=

)
(C-3)

𝛾𝑣𝑝 = 𝛾
𝑣𝑝
𝑛 + Δ 𝛾𝑣𝑝 = 𝛾

𝑣𝑝
𝑛 + Δ𝑡 𝛾̇𝑣𝑝 (C-4)

where ℂ𝑒 is the fourth-order elastic stiffness tensor; 𝝈
=
tr = 𝝈

=𝑛
+ ℂ𝑒 ∶ Δ𝜺

=
is the elastic stress predictor at time 𝑡 = 𝑡𝑛+1 ;

⟨𝐹𝑣𝑝
𝜎𝑟

⟩𝑛 is replaced by 𝐹𝑛 = ⟨𝐹𝑣𝑝
𝜎𝑟

⟩𝑛 for writing simplicity. The residual equations based on Equations (C-3) and (C-4) are
written as follows:

𝒓
=1

= 𝝈
=
−𝝈
=
tr +

Δ𝑡
𝜂
ℂ𝑒 ∶

(
𝐹𝑛 e−𝑘𝛾

vp 𝜕𝐺vp
𝜕 𝝈
=

)
(C-5)

𝑟2 = 𝛾𝑣𝑝 − 𝛾
𝑣𝑝
𝑛 −

Δ𝑡
𝜂

(
𝐹𝑛 e−𝑘𝛾

𝑣𝑝) (C-6)
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32 SUN et al.

Symbolically, Equation (C-5) is a tensor equation, but we can assume it to be vectorised so that the total residual vector
may be defined as 𝒓 = {𝒓

=1
𝑟2}

T , where 𝒙⃗ = {𝝈=
𝛾vp}T is the vectorised set of unknowns.

To find a solution 𝒙⃗’ that cancels the residuals such that 𝒓 (𝒙⃗’) = 0⃗ , the Newton–Raphson method is used to solve the
equations and the following Jacobian matrix is needed in each iteration:

𝑨
=
=

⎡⎢⎢⎣
𝑨
=11

𝐴⃗12

𝐴⃗𝑇
21 𝐴22

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝜕 𝒓=1

𝜕 𝝈=

𝜕 𝒓=1

𝜕𝛾vp

𝜕𝑟2

𝜕 𝝈=

𝜕𝑟2

𝜕𝛾vp

⎤⎥⎥⎥⎥⎦
(C-7)

Note that 𝑨
=11

is a 4 × 4 submatrix for full 2D applications, 𝐀⃗12 and 𝐀⃗𝑇
21 are column and row vectors, and 𝐴22 is a scalar.

The elements in the matrix 𝑨
=
include:

𝑨
=11

=
𝜕 𝒓
=1

𝜕 𝝈
=

= 𝕀 +
Δ𝑡
𝜂
ℂ𝑒 ∶

[
𝑒−𝑘𝛾

vp

(
𝐹𝑛

𝜕𝐺2
vp

𝜕2 𝝈
=
+
𝜕𝐹𝑛

𝜕 𝝈
=

⊗
𝜕𝐺vp
𝜕 𝝈
=

)]
(C-8)

𝑨⃗12 =
𝜕 𝒓
=1

𝜕𝛾vp
=
Δ𝑡
𝜂

ℂ𝑒 ∶

[
−𝑘 𝑒−𝑘𝛾

vp
𝐹𝑛

(
3𝒔
=
2𝑞

+
𝛼vp

2
𝜹
=

)]
(C-9)

𝑨⃗21 =
𝜕𝑟2
𝜕 𝝈
=

=
Δ𝑡
𝜂

(
−𝑒−𝑘𝛾

vp 𝜕𝐹𝑛

𝜕 𝝈
=

)
(C-10)

𝐴22 =
𝜕𝑟2
𝜕𝛾𝑣𝑝

= 1 +
Δ𝑡
𝜂

(
𝑘 𝑒−𝑘𝛾

𝑣𝑝
𝐹𝑛

)
(C-11)

where II is the fourth-order symmetric unit tensor writes I𝑖𝑗𝑘𝑙 =
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). The initial values of the unknows at

the beginning of the iteration correspond to the converged solutions at the last time step in implicit method (or to the
results calculated by the explicit method in the current time step). The update of the unknowns after the i-1th iteration
then writes:

𝒙⃗𝑖 = 𝒙⃗𝑖−1 −
(
𝑨
=
𝑖−1

)−1
𝒙⃗𝑖−1 (C-12)

According to the chain rule, the updated algorithm viscoplastic tangent modulus ℂ𝑣𝑝 at time 𝑡𝑛+1 is calculated by:

ℂvp =

(
𝑨
=
′

11

)−1

∶ ℂ𝑒 (C-13)

where 𝑨
=
′

11
is the value of 𝑨

=11
evaluated at the converged local configuration 𝒙⃗’.
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