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Abstract—Designing and implementing artificial systems that
can be interfaced with the human brain or that can provide
computational ability akin to brain’s processing information
efficient style is crucial for understanding human brain funda-
mental operating principles and to unleashing the full potential of
brain-inspired computing. As basic neural network components,
responsible for information transfer between neurons, artificial
synapses able to emulate analog biological synaptic behaviour
are of particular interest. State of the art CMOS and memristor-
based synapses suffer from scalability drawbacks (large energy
consumption and area footprint), variability-induced instabil-
ity, and are not bio-compatible. In this paper, we propose a
generic Graphene Nanoribbon (GNR) based synapse structure
and demonstrate that by changing GNR geometry and exter-
nal bias voltages it can emulate different synaptic plasticity
behaviours, i.e., Spike Timing Dependent Plasticity and Long-
Term Depression and Potentiation, and that both excitatory and
inhibitory synaptic behavior can be obtained with the same GNR
geometry. To demonstrate biologically plausible operation, we
make use of low voltage bias, i.e., 0.1V, 0.2V, and consider inputs
consistent with measured brain synapses data, i.e., −50mV to
50mV pre- and post-synaptic spikes voltage range, and −60ms
to 60ms time range. The simulations indicate that by changing
the GNR shape we can enrich the plasticity behaviour (poten-
tially beyond the considered cases) and the plasticity change
of 100% provided by natural synapses can be achieved. Our
investigation clearly suggests that the proposed GNR synapse
structure is a promising candidate for large-scale neuromorphic
systems integration, which might potentially bring novel insight
on brain neurophysiology, as it requires a small footprint, is
energy effective, biocompatible, and versatile from the synaptic
behaviour point of view.

Index Terms—Neuromorphic Computing, STDP, Artificial
Synapse, Graphene, GNR.

I. INTRODUCTION

The human brain, comprising approximately 86 billion
neurons connected through trillions of synapses, is the natural
high performance computing system. Its unique capabilities,
e.g., low power consumption, robustness, massively parallel
information processing, suitability for complex tasks, inspired
Carver Mead in the late 1980s [1] in coining a disruptive
computing paradigm, the Neuromophic Computing (NC). Over
the last decades NC gained substantial momentum, provided
valuable inside into brain’s complex functionality, novel brain-
inspired computation paradigms have been introduced [2], and
biologically-inspired neuromorphic systems fabricated [3].

Synapses are the most ubiquitous neural system compo-
nents which are ensuring information interchange between
neurons. Their essential property is Synaptic Plasticity (SP),
manifested either by the strengthening or the weakening of
the transmitted signals, is the brain learning and memory

enabler. Spike Timing Dependant Plasticity (STDP), which
enables synaptic transmission strength changes according to
the relative timing of pre- and post-synaptic spikes, Long-
Term Potentiation (LTP) and Long-Term Depression (LTD),
which are persistent synaptic strengthening and weakening, re-
spectively, are the essential functionalities an artificial synapse
ought to be endowed with [4].

Given that at any brain inspired system crux of the matter
reside artificial synapses able to emulate the biological ones,
their design and fabrication received massive attention. In
most of today’s neuromorphic computing systems, artificial
synapses are typically implemented using dozens of CMOS
devices [5], [6]. However, CMOS technology inadvertently im-
poses restrictions on both functionality and neuromorphic sys-
tem implementations, foremost in terms of energy efficiency,
scalability, and integration density. Furthermore, CMOS de-
vices cannot truly convey the analog behaviour associated
with biological synapses. Alternatively, emerging resistive
switching memory devices [7] based synapses have been also
proposed [8], [9] and exhibit promising characteristics, e.g.,
simple (a single or a few memristors) structure, inherently
analog conductance, and good scalability potential. However,
they suffer from temporal (cycle-to-cycle) and spatial (device-
to-device) variability of the resistive state even under the same
applied signals, as well as undesired nonlinearities, which may
cause the instability of the entire neuromorphic system.

Graphene, one of the prominent post-Si forerunners, owing
to its outstanding properties, e.g., fast switching speed, low
energy, thermal stability, ultimate thinness, flexibility, and
biocompatibility [10], [11], has emerged as a potent material
[12] and previous work demonstrated that graphene-based
artificial synapse can emulate plasticity. In [13], by changing
the back-gate voltage, the authors obtained various synaptic
plasticities within the same device. However, quite large
back-gate voltages (20 V, 40 V) and input pulses (2 V) are
utilized, which are faraway larger than the electric potentials
measured in natural neurons, and are negatively affecting the
power consumption. Moreover, the obtained synaptic weight
change is relatively small (≈ 10%) when compared with
(100%) in biological counterparts, and the provided synaptic
plasticity is restricted. In [14], a fabricated graphene-based
electrochemical synapse is reported, whose conductance is
modulated by changing the Li ion concentration between the
graphene layers. This synapse enables low-power switching,
exhibits low variability, and is potentially suitable for large-
scale integration. However, the reported STDP conductance
change of ≈ 2% and timing difference around 1000 ms are in
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a different range than the one of natural synapses, i.e., ≈ 100%
and 100 ms, respectively.

In this paper, we propose a generic Graphene Nanoribbon
(GNR) based synapse structure consisting of a GNR mono-
layer placed above an insulator and a doped substrate. Two
top contacts are utilized to bias the GNR and its conduction
modulated by means of electrostatic interaction via top and
back gates reflects the synaptic weight. Specifically, we con-
sider 2 fundamental synapse functionalities, i.e., Spike Timing
Dependant Plasticity (STDP) and Long-Term Plasticity (LTP),
which are known to underlie learning and memory in brain.
By carving the GNR synapse geometry and changing the
bias and back-gate voltages we successfully emulate: Bal-
anced Hebbian STDP, Potentiation Dominated Hebbian STDP,
Potentiation Dominated Anti-Hebbian STDP, and Long-Term
Plasticity. Furthermore, we demonstrate that both excitatory
and inhibitory synaptic behaviours can be obtained with the
same GNR synapse, simply by changing the bias back-gate
voltage. To demonstrate biologically plausible operation, we
bias the GNRs at low voltage (0.1 V, 0.2 V) and consider
inputs consistent with measured brain synapses data, i.e.,
−50 mV to 50 mV pre- and post-synaptic spikes voltage range,
and −60 ms to 60 ms time range.

The simulations indicate that by changing the GNR shape
we can enrich the plasticity behaviour (potentially beyond the
4 considered cases) and the plasticity change of 100% pro-
vided by natural synapses can be achieved. Our investigation
clearly suggests that the proposed GNR synapse structure is a
promising candidate for large-scale neuromorphic systems in-
tegration, which might potentially bring novel insight on brain
neurophysiology, as it is small (e.g., 38 nm2), energy effective,
biocompatible, and versatile from the synaptic behaviour point
of view.

The remaining of this paper is organized as follows: Section
II outlines basic synapse and plasticity concepts, and intro-
duces the proposed GNR-based synapse. In Section III we
describe the simulation model employed for simulating the
GNR electronic properties, and the overall simulation setup
and methodology. In Section IV we present the obtained
simulation results, and in Section V we conclude the paper.

II. SYNAPTIC PLASTICITY AND GRAPHENE-BASED
SYNAPSE

In this section, we briefly present the synaptic plasticity un-
derlying concepts and then introduce the proposed graphene-
based synapse.

To explain the role of a synapse in the neuron information
interchange, Figure 1 depicts a very small network composed
of two neurons, Nj and Nk, connected via synapses to a
third neuron, Ni. Neuron Ni collects input signals from
the two pre-synaptic neurons, Nj and Nk, and when their
cumulated signals effects exceed a certain neuron-specific
firing threshold, neuron Ni generates an output signal (spike)
which then propagates through all its terminations. From
the synapse perspective, (consider for instance the synapse
between neurons Ni and Nj), there are (i) two input spikes: the
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Fig. 1: Synaptic-based information interchange.

pre-synaptic spike Sj , which comes from neuron Nj , and the
post-synaptic spike Si, which is generated by neuron Ni, and
(ii) one output spike Sout

j , which will be transmitted to neuron
Ni. In general, the synaptic transmission efficiency - quantified
through the synaptic weights W - is variable, either weakening
or strengthening the magnitude of the signals transmitted via
the synapse. This property is known as synaptic plasticity and
it is believed to hold a crucial role in learning and memory
in brain. Spike Timing Dependent Plasticity (STDP) [15] is a
widely utilized Hebbian synaptic learning rule, for which the
synaptic weight changes based on the relative timing between
the pre- and post-synaptic spikes, as follows: (i) when the pre-
synaptic spike arrives shortly prior to the post-synaptic one,
the synaptic weight increases and this may lead to a persistent
weight increase (Long-Term Potentiation (LTP)); otherwise,
the synaptic weight decreases and may lead to a persistent
weight decrease (Long-Term Depression (LTD)), and (ii) if the
pre- and post-synaptic spikes arrive very close to each other, a
large synaptic weight change occurs. We denote by ∆W , the
synaptic weight change, and by ∆t = tpost − tpre, the arrival
time difference of the pre- and post-synaptic spikes. Figure
2 graphically illustrates ∆W (∆t) according to a biological
synapse measured data [16]. Even though the data exhibit
stochasticity, a widely accepted interpolating model is the
following:

∆W (∆t) =

{
A+ · exp(−∆t/τ+), for ∆t > 0

−A− · exp(∆t/τ−), for ∆t < 0,
(1)

where A+ and A− are parameters determining the magnitude
of synaptic potentiation and depression, while τ+ and τ− are
time constants in the order of 10 ms fitted by experimental
data reflecting the temporal range over which the synaptic
strengthening and weakening occurs.

Figure 3 illustrates the proposed graphene-based generic
synapse structure. It consists of a monolayer Graphene
Nanoribbon (GNR) located above an insulating layer and
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a doped substrate, which serves as back-gate. The GNR
constitutes a conduction channel when applying a bias voltage
Vd − Vs between the source and the drain contacts and
its conductance G can be modulated by the input voltage
Vg applied on the top-gate. From the synapse operational
standpoint, the top-gate is used for applying the synaptic input
signals, the plasticity is reflected in the GNR conductance
change, and the drain-to-source current is the synapse output
current, which corresponds to the synaptic output spike Sout

j

in Figure 1. When applying an input spike, which can be
regarded as a time varying voltage, the synapse output current
magnitude will depend on the cumulated previous activities
in the synapse (for all the discrete voltages corresponding
to the input spike). This dependance is accounted for in
GNRs via a hysteretic I-V behaviour (specifically drain-to-
source current vs. top-gate voltage), which is usually caused
by defects in the top-gate oxide, that trap and release GNR
carriers [17]. In the following we demonstrate that, different
from previous graphene based synapse proposals, we can
accommodate various plasticity types, by shaping the GNR

in non-rectangular forms. Furthermore, by tuning the back-
gate voltage properly, both excitatory and inhibitory synapses
can be implemented with the same graphene-based synapse.

III. SIMULATION FRAMEWORK

In this section, we present the model we used for deriv-
ing the electronic properties of the graphene synapse, and
describe the simulation setup and the employed methodology
to calculate the synaptic weight change (the GNR conductance
change) and to obtain the plasticity behaviour.

A. Simulation Model

For the electronic transport computation, we used an NEGF-
based hysteresis-aware simulation model [17]. Tight Binding
(TB) Hamiltonian matrix H = H0 + U is used in this model
to model the interaction between carbon atoms (via H0) and
external potentials (via U ). The interaction matrix is calculated
as follows:

H0 =
∑
i,j

ti,j |i〉 〈j| , (2)

where ti,j =

{
τ, if atoms i and j are adjacent
0, otherwise.

(3)

We account for the first nearest-neighbor interaction with τ =
−2.7eV . The potential distribution U is calculated by solving
a 3D Poisson equation self-consistently with finite difference
method. As the interface traps cause an equivalent shift of the
gate voltage, denoted ∆Vg

, we update the potential profile with
Vg + ∆Vg

while solving the Poisson equation. The interface
trap charge can be calculated with an accumulation equation:

Qit =
∑

αi ·Qq · exp(−(t− tarrival)/ttrap), (4)

where tarrival is the input spike arrival time. The value of α can
be calculated as a function of the interface traps capacitance
Cit:

α(Cit) =
Cit · (VgCox −Qq)

Qq · (Cit + Cox)
, (5)

where Vg is the top-gate voltage, Qq is quantum capacitor
charge, Cox is the oxide capacitance, and Cit is the interface
traps capacitance, expressed as a function of the traps density
as Cit = q2 ·Dit.

The source and drain contacts along the end sides of
graphene channel, which sustain the conduction, can be mod-
eled with self-energy matrices Σ1 and Σ2, respectively. Thus,
the transmission function T (E) that models the possibility of
one electron being transmitted between the source and drain
contacts, can be derived as a function of energy:

T (E) = Trace
[
Γ1 GR Γ2 G

†
R

]
, (6)

where
GR(E) = [EI −H − Σ1 − Σ2]−1, (7)

Γ1,2 = i[Σ1,2 − Σ†1,2]. (8)
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The current through the graphene channel is calculated by
Landauer formula:

I =
q

h

∫ +∞

−∞
T (E) · (f0(E − µ1)− f0(E − µ2)) dE, (9)

where f0(E) denotes the Fermi-Dirac distribution function at
temperature T , and µ1,2 represents the source and drain con-
tacts electrochemical potential. A block-by-block algorithm
[18] for computing matrix inversion is used to speedup the
calculation of GR. Then the conductance of GNR device is
calculated as:

G =
I

Vd − Vs
. (10)

B. Simulation Setup and Methodology

In order to apply the input spikes to the graphene synapse,
we employ a single-input scheme, as exemplified in Figure
4. The signal applied as input to the synapse is computed
as a superposition of the pre- and post-synaptic spikes (i.e.,
the voltage difference between the two spikes). We define
Toverlap as the arrival time of the secondly arriving spike. To
perform biologically plausible simulations, we considered data
consistent with measured data from brain synapses: −50 mV
to 50 mV pre- and post-synaptic spikes voltage range, and
−60 ms to 60 ms ∆t range (which covers the general time
range for biological LTP and LTD) [15], [16].

As concerns the GNR, we define its topology in Figure
5. In particular, W and L represent the GNR width and

length, PVg
signifies the distance between the top-gate and

the drain contact, and WVg denotes the width of the top-
gate contact. In our simulation, we considered multiple non-
rectangular GNRs with different shapes but the same overall
W = 39a and L = 28

√
3a. For the top-gate contact we

set PVg
= 8
√

3a and WVg
= 6
√

3a, where a is 0.142 nm.
Concerning the traps induced hysteresis, we assume a density
of interface traps of 2.5 × 10−12cm−2(eV )−1, and we set a
trapping/detrapping time constant of 20 ms. Subsequently, we
present the overall design and simulation methodology. For a
desired plasticity behaviour, we first determine a potentially
appropriate GNR geometry and drain-to-source and back-gate
voltages. Subsequently, we subject the graphene synapse to a
train of spikes applied via the top-gate, one spike for each
∆t in the considered range. Corresponding to each input
spike, we then measured the synaptic weight change ∆W
(the difference between the GNR conductance values at two
consecutive time moments, i.e., Toverlap and the immediately
previous time moment), and asses its compliance with the
desired ∆W (∆t) plasticity curve. If results are not according
with the desired plasticity we change the GNR geometry and
bias voltages.

IV. SIMULATION RESULTS

To evaluate the capabilities of proposed graphene synapse,
we target 3 common plasticity types underlying balanced and
potentiation dominated learning [19], [20]: Hebbian STDP
with balanced LTD and LTP (Figure 6 (a)), LTP-biased Heb-
bian STDP (Figure 6 (d)), and LTP-biased Anti-Hebbian STDP
(Figure 6 (g)).

Figure 6 (b) depicts the GNR synapse shape we obtained
for the Hebbian STDP with balanced LTD and LTP scenario,
biased at Vd =0.2 V and back-gate voltage Vback =0.2 V.
The simulated synaptic weight change (conductance change)
(Figure 6 (c)) indicates a good resemblance with the Hebbian
STDP with balanced LTD and LTP weight change trend. In
biological models, there is a certain randomness in the synapse
reaction. We seek a synaptic reaction tendency closer to the
plasticity models. When fitting the simulated conductance
change with the canonical model in Equation 1, we obtained
τ+ =23 ms and τ− =37 ms. Since for a biologically plausible
input, we obtain an amplitude of the conductance change
around 100%, which is consistent with biological synapse
measured data shown in Figure 2, the proposed graphene
synapse can enable potentially biologically plausible imple-
mentations (artificial synapses which can be interfaced with
biological neurons in the context of, e.g., neural prosthetics).

Figure 6 (e) and (h) illustrate the obtained GNR synapse
shapes for LTP-biased Hebbian STDP and LTP-biased anti-
Hebbian STDP, respectively. The drain voltage Vd is set to
0.1 V for both shapes, while the applied back-gate voltage is
0 V and −0.5 V, respectively. The simulated synaptic weight
change (conductance change) in Figure 6 (f) and (i) is tem-
porally asymmetric, being dominated by (LTP) potentiation
for both graphene synapses. When fitted with the model in
Equation 1, we obtained τ+ =21 ms and τ− =10 ms for the
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LTP-biased Hebbian synapse, and τ+ =19 ms and τ− =15 ms
for the LTP-biased Anti-Hebbian synapse.

A synapse can either be excitatory (i.e., potentiation for
pre-before-post synaptic spikes arrival) or inhibitory (i.e.,
depression for pre-before-post synaptic spikes arrival). Tradi-
tionally, 2 artificial synapses are employed, but we are able
to obtain both excitatory and inhibitory behaviours with a
single synapse, which is beneficial from the area and energy
standpoints for large-scale integrations. For instance, the GNR
synapse shape illustrated in Figure 6 (b) exhibits an excitatory
behaviour but by simply changing the biasing gate voltage

Vback from 0.2 V to 0.5 V, while the other GNR applied
voltages (Vd and Vg) are identical the inhibitory counterpart
is obtained, as depicted in Figure 7.

Apart from STDP, Long-Term Plasticity is a fundamental
synaptic functionality, dominant for how the brain stores in-
formation, which is obtained when applying an identical spike
consecutively. In our experiments we considered the GNR
synapse shape from Figure 6 (h) and applied 50 mV input
spikes with an intermission period between the spikes of 1 s.
For each spike, we measured the GNR drain to source current,
which represents the current of the output spike generated
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by the graphene synapse (e.g., Sout
j in Figure 1). The long

lasting potentiation and depression are successfully emulated
for the considered time range with positive and negative
back-gate voltage, respectively, as illustrated in Figure 8.

Note that the proposed GNR synapses exhibit a small
footprint (e.g., 38 nm2), and can operate with low voltages,
resulting in low energy consumption, which is one of the
desired characteristics for large-scale artificial neural network
implementations.

V. CONCLUSIONS

In this paper, we proposed and evaluated non-rectangular
Graphene Nanoribbon (GNR) based artificial synapses. We
demonstrated that by changing the GNR shape and tuning
the back-gate voltage, various synaptic plasticity types can
be achieved and that the same GNR shape can provide both
excitatory and inhibitory synaptic behaviours. We success-
fully emulated two fundamental synapse functionalities: Spike
Timing Dependent Plasticity and Long-Term Plasticity, which
underlie learning and memory in brain. We demonstrated that
the plasticity can be tuned by changing the GNR synapse
shape and topology, thus even though only three STDP types

have been considered the presented GNR synapse design
methodology is generic and can be utilized for the design
of synapsed able to provide other plasticity types. All the
simulations have been performed with biologically plausible
settings, which indicates that GNR based biologically com-
patible synapses can be designed, fabricated, and eventually
interfaced with biological neurons. The proposed synapses
have a small area footprint (order of 10 nm2) and operate at
low operating voltages (order of 100 mV), which makes them
strong candidates for the potential implementation of large-
scale energy effective artificial neural networks.
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