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A B S T R A C T   

In some steep valleys, flood-induced changes in river bed elevation pose significantly greater risks to infra
structure than floodwaters alone. Over the short term, the river may aggrade or degrade by several meters during 
a single flood. Whereas floodwaters recede after each event, moreover, riverbed changes add up over successive 
floods. To quantify the resulting geomorphic risk and its evolution over time, we propose in this paper a new 
stochastic model of river bed elevation change. The bed is assumed to rise and drop according to a random walk, 
driven by the composition of two gamma processes that respectively pace the hydrologic forcing and the 
geomorphic response. The model can therefore incorporate various sources of uncertainty, associated with 
precipitation and debris flow activity within the contributing watershed. To test the model, we apply it to a 
highly active montane river, the Laonong River in southwestern Taiwan. Model calibration is achieved from a 
combination of long and short term data, including radiocarbon-dated deposits and modern river records. The 
modelled distributions fit the data well, including the likelihood of extreme changes. The model also produces a 
reasonable hindcast of the geomorphic damage suffered over the last ten years by Highway 20, a vulnerable road 
link sited along the river, and can be used to forecast future geomorphic risk.   

1. Introduction 

River floods represent one of the major threats to civil infrastructure. 
In many cases, floods may not just cause inundation and local scour, but 
also broader geomorphic changes like channel widening or avulsion, 
and changes in river bed elevation (Lane, 1955; Bull, 1988; Kochel, 
1988). In steep valleys, rivers may undergo little change over long pe
riods, then sudden episodes of rapid aggradation and degradation. 
Around the world, several such episodes have been documented, in 
which a single flood has caused the river bed to rise or drop by several 
meters. Early documented cases include episodes in Taiwan (Lane, 
1955), Texas (Baker, 1977), and California (Nolan and Marron, 1985). 
In recent decades, cases that have been documented in detail include 
episodes in Canada (Lapointe et al., 1998; Brooks and Lawrence, 1999; 
Capart et al., 1997), New Zealand (Korup, 2004), La Réunion (Garcin 
et al., 2005), Taiwan (Hsieh and Capart, 2013), and Switzerland (Tur
owski et al., 2013; Ruiz-Villanueva et al., 2018). 

In many recorded cases, rapid changes in river bed elevation have 

threatened or destroyed bridges and roadways (Korup, 2004; Yochum 
et al., 2017; Hackl et al., 2018; Ruiz-Villanueva et al., 2018; Seier et al., 
2020) or other riverine infrastructure like hydropower plants, run-of- 
the-river dams and diversion weirs (Lane, 1955; Lapointe et al., 1998; 
Hsieh and Capart, 2013). When aggradation is severe, such assets may 
directly get buried by the sediments. Aggradation can also indirectly 
raise flood levels, and reduce the clearance necessary to convey floods. 
When the trunk river aggrades, moreover, this raises the base level of 
tributaries, causing debris fan aggradation to reach higher elevations. 
River bed degradation, on the other hand, can undermine banks and 
foundations to the point of failure (Lo et al., 2021). 

An example of such risks is provided by the Laonong river valley, in 
southwestern Taiwan, where an exceptional geomorphic flood event due 
to the 2009 Morakot Typhoon caused multiple bridge failures and the 
partial destruction of Highway 20, sited along the river (Chien and Kuo, 
2011; Yeh, 2012; Lin, 2012). Since then, the reconstructed bridges and 
roadway continue to be threatened by river bed changes. This is illus
trated in Figs. 1 and 2 by the Aqiba bridge site, where three successive 
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bridges have been destroyed or endangered. Before Typhoon Morakot, a 
low girder bridge and a higher suspension bridge were built across the 
Laonong river, with bridge decks set 10 and 23 m above the river bed, 
respectively (Fig. 1a). Due to Typhoon Morakot, the low girder bridge 
was buried beneath 20 m of river bed aggradation. The higher suspen
sion bridge was destroyed by the same flood, but its tower was left 
standing and fully exposed (Fig. 1b). Thereafter, further aggradation 
completely buried the tower, before its top was re-exposed in September 
2019 due to river degradation (Fig. 1c). Most recently, in August 2021, 
the old tower was buried again by renewed aggradation (Fig. 1d). Built 
after Morakot, a new suspension bridge was set significantly higher 
(Fig. 1c and d), but the river bed has now risen to within 6.3 m of the 
bridge deck, and subjected the right abutment to scour damage. The 
three bridges and their height relative to the evolving river bed elevation 
are shown on a cross-section of the valley in Fig. 2. 

To assess risks in such circumstances, a probabilistic or stochastic 
approach is needed. For bridge failure due to flood submersion or local 
scour, probabilistic models have been proposed by Johnson and Dock 
(1998); Anarde et al. (2018), and Lamb et al. (2019), to quantify failure 
probability conditional on the severity of a flood event. The floods 
themselves can often be modelled as independent, identically distrib
uted events, and characterized by an annual exceedance probability. For 
river bed aggradation and degradation, however, the effects of succes
sive floods typically cause cumulative changes in river bed elevation. To 
assess the corresponding risks, therefore, a stochastic model capturing 
the random evolution of the system over time becomes necessary. Such 
models have been proposed to model sediment supply to channel net
works (Benda and Dunne, 1997), episodic coastal cliff retreat (Hall et al., 
2002), general processes of erosion and deposition (Schumer et al., 
2011), gradual changes in river rating curves (Reitan and Petersen- 
Øverleir, 2011), and channel width evolution due to flood erosion and 
vegetation encroachment (Davidson and Eaton, 2018). To our knowl
edge, so far no such model has been developed or tested to model 
episodic river bed elevation changes. 

In this paper, we propose such a model, describing the time evolution 

of the river bed elevation as a random walk. To avoid unbounded drift 
over long times, we model this random walk as a mean-reverting pro
cess. To simulate the episodic pace of river bed evolution, we subordi
nate this process to another random process, which modulates the rate of 
change. We use this to account, first, for the variability over time of the 
precipitation experienced by the watershed. Secondly, we want to ac
count for the uncertainty associated with the geomorphic response of 
the valley (Kochel, 1988; Cenderelli and Wohl, 2003). Specifically, the 
rate of river bed elevation change may be affected by catchment pro
cesses like the supply of sediment by landslides (Korup, 2004; Lin and 
Lin, 2015; Xiong et al., 2022), debris flows (Capart et al., 2010; Hsieh 
and Chyi, 2010) or glacier activity (Knox, 1996; Pfeiffer et al., 2019). To 
include both contributions, we therefore propose to drive the random 
walk by the composition of two processes that respectively pace the 
hydrologic forcing and the geomorphic response. 

The paper is structured as follows. In Section 2, we describe the 
components of our proposed model and the key properties of the 
resulting stochastic process. In Section 3, we describe the Laonong river 
study area selected to test the model and the collected river data. In 
Section 4, we use these data to calibrate model parameters and to 
compare modelled and observed distributions. In Section 5, we use the 
calibrated model to hindcast past damage and forecast future geomor
phic risk to infrastructure in this valley. Finally, conclusions are drawn 
in Section 6. 

2. Stochastic model of river bed evolution 

In this paper, we propose to model river bed evolution as a random 
walk Z(τg(t)) [m], where Z is the river bed elevation at a station, t [yr] is 
the calendar time, and τg [yr] is a geomorphic time, governing the pace 
of geomorphic evolution. As in the Variance Gamma (VG) process pro
posed by Madan and Seneta (1990) and Madan et al. (1998), we let the 
time evolution of the variable of interest Z result from the composition of 
two random processes. The first governs the evolution of Z as a function 
of τg, and allows both rises and drops to account for aggradation and 

Fig. 1. Risk to infrastructure due to river bed elevation change, as illustrated by the Laonong River at the Aqiba bridge site: (a) before 2009 (roadside hot spring 
advertisement); (b) in February 2010, after the Morakot geomorphic flood; (c) in September 2019; (d) in August 2021 (see text for description). 
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degradation. The second governs the evolution of τg with t, where the 
geomorphic time τg advances monotonously with calendar time t, but at 
a rate that varies randomly over time. We model the first process using 
the stochastic differential equation (SDE) (Reitan and Petersen-Øverleir, 
2011) 

dZ = λg(z∞ − Z)dτg + σg dW(τg), (1)  

where d denotes an infinitesimal increment, and bed elevation in
crements dZ are obtained as the sum of two terms. The first term, 
controlled by the reversion rate parameter λg [yr− 1] represents the 
tendency of the river bed elevation to revert to its long term mean z∞ 

[m]. The second term, controlled by the volatility σg [m yr− 1/2] repre
sents random perturbations modelled by the Wiener process W(τg)

[yr1/2]. A SDE like Eq. (1) is similar to an ordinary differential equation 
but evolves in response to random perturbations instead of a deter
ministic forcing (for an introduction to SDEs, see Øksendal (2000)). 

Taken as a function of τg, the process described by Eq. (1) is known as 
the Ornstein–Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930). 
This process is widely used in many areas of physics (Gillespie, 1996), 
and has been used previously by Reitan and Petersen-Øverleir (2011) to 
model random river bed evolution as a function of calendar time. 
Subordinating an OU process to another random process, called the 
subordinator, to vary the pace of evolution has also been investigated in 
earlier work (Barndorff-Nielsen and Shepard, 2001; Habtemicael and 
SenGupta, 2014). In these earlier models, however, a gamma process 
was used only to drive the Wiener process component of Eq. (1), with 
mean reversion assumed to proceed according to calendar time. 

To model the randomly varying pace of geomorphic evolution, we 
further propose to describe the process τg(t) as the composition 

τg(t) = τgh(τh(t)), (2)  

where τh(t) is a hydrologic time, assumed proportional to the cumulative 
rainfall R(t), and where τgh(τh) maps hydrologic time to geomorphic 
time. The hydrologic time is needed to account for yearly variations in 
the magnitude of the hydrologic forcing. 

For both processes, we assume positive, gamma-distributed in
crements. For the hydrologic time τh(t), we assume gamma-distributed 
precipitation (Eagleson, 1978; Martinez-Villalobos and Neelin, 2019), 
hence increments Δτh = ΔR/μh ∼ Γ(Δt/νh, νh), where μh is the mean 
annual rainfall, Δt/νh [-] is the shape parameter and νh [y] is the scale 
parameter of the gamma distribution. As illustrated in Fig. 3a, the 
gamma process τh(t) results from an accumulation of gamma-distributed 
increments Δτh over successive time increments Δt, and takes the form 
of an irregular staircase with jumps of random magnitude. The scale 

parameter νh sets the amplitude of these steps (see the small scale bar on 
Fig. 3)a and the time intervals between successive steps, hence controls 
the episodicity of the hydrological forcing. We will therefore call this 
parameter the hydrologic episodicity, for short. In the limit of zero epi
sodicity, a continuous ramp with linear rise would be obtained. In 
practice, the process τh(t) is simulated using Monte-Carlo simulations. At 
discrete times tj, τhj =

∑j
k=1Δτhk, where Δτhk = Γhk(Δtk/νh, νh) is a 

gamma-distributed independent pseudo-random number. In Fig. 3a, we 
show 30 realizations of τhj(tj) with νh = 0.5 yr and Δt = 0.1 yr. 

For the process τg(τh), taken as a function of hydrologic time, we 
likewise assume gamma-distributed increments Δτg ∼ Γ(Δτh/νgh, νgh), 
where νgh [yr] is the episodicity of the geomorphic response subject to 
given hydrologic forcing, or geomorphic response episodicity for short. 
In Fig. 3b, we show 30 realization of the process τg(τh), as obtained by 
Monte-Carlo simulations, choosing for the geomorphic response epi
sodicity the larger value νgh = 1 yr. Comparing Fig. 3b with Fig. 3a 
shows that this greater episodicity produces less frequent jumps of 
greater magnitude, hence a signal that drifts more quickly away from a 
proportional rise. The composite process τg(t) = τgh(τh(t)), finally, is 
obtained by composing the two gamma processes illustrated in Fig. 3a 
and b. In Fig. 3c, we show 30 realizations of this composite process, 
again obtained by Monte-Carlo simulations, using the same values νh =

0.5 yr and νgh = 1 yr for the contributing episodicities. From such sim
ulations, we can observe that the composite process τg(t) = τgh(τh(t)) is 
visually indistinguishable from a single gamma process of effective 
episodicity νg given by 

νg = νh + νgh, (3)  

or simply the sum of the two contributing episodicities. In Appendix A, 
we provide a mathematical derivation showing that this equivalence, 
although not exact, holds to a very good approximation. 

To complete the model, we let the geomorphic time τg(t) pace the 
evolution of the SDE defined by Eq. (1). This is done in practice using 
Monte-Carlo simulations, starting each realization from initial condition 
z0, then updating the river bed elevation over successive geomorphic 
time intervals Δτg j by using the recursion 

Zj = Zj− 1 + λg(z∞ − Zj− 1)Δτgj + σgΔWj, (4)  

where 

ΔWj =
̅̅̅̅̅̅̅̅̅
Δτgj

√
Nj(0, 1), (5)  

and where each Nj(0,1) is a pseudo-random number drawn from a 
normal distribution of mean 0 and variance 1. 

Fig. 2. Cross-section across the Laonong valley at the Aqiba bridge site, showing the current and previous bridges, and successive changes in river bed elevation 
(dashed lines). 
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The resulting model behavior is illustrated in Fig. 3d, for assumed 
hypothetical parameter values λg = 0.05yr− 1, z∞ − z0 = 20 m, σg =

1.5 myr− 1/2. In Fig. 3d, we show 30 realizations of the process (gray 
lines), as obtained from Monte Carlo simulations. Over short times, the 
paths undergo a sequence of sudden rises and drops, causing a cumu
lative drift. Over long times, however, the paths do not drift away 
without bounds. After a few decades, they eventually fluctuate around 
the long term mean with finite variance. Unlike previous models 
(Barndorff-Nielsen and Shepard, 2001; Habtemicael and SenGupta, 
2014), which revert to the mean gradually, here the process does so by 
way of discontinuous jumps. 

The process described above is straightforward to simulate by 
Monte-Carlo, but difficult to analyze and calibrate due to the influence 
of multiple parameters. To clarify model behavior and guide the cali
bration of its parameters, it is therefore useful to consider a simpler, 
approximate version. for this purpose, we approximate the composite 
process τg(t) = τgh(τh(t)) by a single gamma process τ(t), characterized 
by increments Δτ ∼ Γ(Δt/νg,νg), of effective episodicity νg given by Eq. 
(3). Subject to this approximation, the river bed evolution Z(t) becomes 
an Ornstein–Uhlenbeck process Z(τ) subordinated to the single gamma 
process τ(t). This process is governed by the stochastic differential 
equation 

dZ = λg(z∞ − Z)dτ+ σg dW(τ), (6)  

where τ(t) has gamma-distributed increments Δτ ∼ Γ(Δt/νg, νg). Using 
variation of parameters, we can then derive explicit formulas for the 
time-evolving mean and variance of this approximate process (detailed 
derivations are presented in Appendix B). For the time-evolving mean, 
or expected elevation of the river bed as a function of time, we get 

E[Z(t)] = z0 +(z∞ − z0)
(

1 − (λgνg + 1)− t/νg
)
. (7)  

where E denotes the expectation operator. The mean gradually transi
tions from the initial condition z0 to the long term mean z∞. Likewise the 
time-evolving variance reads 

Var(Z(t)) =
σ2

g

2λg

(
1 − (2λgνg + 1)− t/νg

)
, (8)  

which converges asymptotically towards a finite long term variance 
σ2

∞ = σ2
g/2λg. The episodicity νg does not affect the long term asymp

totes, but alters the time evolution of the two moments (the mean and 
the variance). In the limit as νg→0, the known formulas for the time- 
evolving mean and variance of the standard OU process (Gardiner 
et al., 1985, Chapter 4.4.4) are recovered. 

Although the time-evolving mean and variance can be obtained 
analytically, the corresponding time-evolving probability distribution 
function (pdf) is beyond our reach. For our field case of interest, how
ever, there is a clear separation between the short time scale governing 
episodicity, and the long time scale governing mean reversion. Over 
short times, when Z is still close to z0, the mean-reversion term can be 
approximated by a constant drift λ(z∞ − z0)dτ hence the process of Eq. 
(6) reduces to the Variance-Gamma (VG) process 

dZ = μ0 dτ+ σ dW(τ), (9)  

where μ0 = λ(z∞ − z0) is the assumed constant drift rate. The resulting 
increments ΔZ have the pdf of the VG process, given by (Madan and 
Seneta, 1990; Brigo et al., 2009) 

Fig. 3. Monte-Carlo simulations of river bed elevation change assuming hypothetical parameter values Δt = 0.1 yr, λg = 0.05yr− 1, z0 = 0 m, z∞ = 20 m, σg =

1.5 m/yr1/2, νh = 0.5 yr, νgh = 1 yr: (a) 30 sample paths of hydrologic time τh as a function of calendar time t; (b) 30 sample paths of geomorphic time τg as a function 
of hydrologic time τh; (c) 30 sample paths of the composite process τg(t) = τgh(τh(t)); (d) 30 bed elevation histories Z(t) (gray lines) and the evolving mean ± 2 
standard deviations obtained from M = 105 MC simulations (dots) and from the approximate formulas Eq. (7) (continuous line) and Eq. (8) (dashes); (e) elevation 
distribution at different times obtained from M = 105 MC simulations (dots), and from the approximate short and long time pdfs (solid lines). 
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fΔZVG (Δz|Δt) =
2eμ0Δz/σ2

g

̅̅̅̅̅
2π

√
σgνΔt/νg

g Γ(Δt
/

νg)

(
|Δz|

ζ

)η

Kη

(
|Δz|ζ

σ2
g

)

, (10)  

where ζ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μ2
0 + 2σg/νg

√

, η = Δt/νg − 1/2, and Kη(⋅) is the modified 
Bessel function of the second kind with index η. Over long time, the 
central limit theorem applies and the process approaches the normal 
distribution with stationary mean z∞ and variance σ2

∞. In the next sec
tion, we will exploit this property to calibrate parameters sequentially 
based on long and short term data. 

In Fig. 3d and e, we compare the above analytical results with the 
Monte-Carlo simulations. In Fig. 3d we plot the time-evolving mean 
(solid line) plus/minus two standard deviations (dashed lines), as 

calculated using Eqs. (3), (7) and (8). These can be compared with the 
numerical values calculated from M = 105 Monte Carlo simulations 
(dots). This confirms that a single gamma process with aggregate epi
sodicity approximates well the composition of two gamma processes. 
The analytical results for the approximate model match closely the 
Monte-Carlo results for the time-evolving mean elevation, but under
estimate slightly the corresponding variance at intermediate times. 

In Fig. 3e, the time evolution of the pdf is illustrated, allowing us to 
compare the analytical short and long term pdfs (solid lines) with results 
from M = 105 Monte Carlo simulations (dots). At the relatively short 
time t = 2 yr, the simulated pdf (dots) agrees well with the analytical VG 
distribution given by Eq. (10) (solid line), which features an asymmetric 
shape and a cusped peak. The simulated pdfs then gradually evolve 

Fig. 4. Geological map of the study area (map credit: Pai-Chiao Lo).  
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towards the normal distribution. At time t = 120 yr, the simulated pdf 
(dots) nearly coincides with the asymptotic normal distribution N(z∞,

σ2
∞) (solid line). 

3. Study area and data sources 

To test the model, we apply it to the Laonong River, a highly active 
montane valley located in Southwestern Taiwan (Fig. 4), focusing on the 
segment extending from Aqiba Bridge to Salaawu Bridge, some 12 km 
downstream. The regional geological setting is illustrated in Fig. 4. The 
river drains an elongated, narrow watershed oriented parallel to faults, 
synclines and anticlines. Both sides of the valley feature steep water
sheds prone to landsliding and debris flows, providing an intermittent 
supply of debris to tributary mouths. This produces the formation of 
tributary fans that record past and recent episodes of debris supply. 

Along the valley segment, four tributaries exhibit elevated terraces 
built up by debris flows over the past 2000 years (Hsieh and Chyi, 2010; 
Hsieh and Capart, 2013). From upstream to downstream, they are the 
Ching-Shui, Putunpunas, Yu-Shui, and Mei-Sho tributaries (Figs. 4 and 
5). Their levels of activity have varied significantly over recent decades. 
On the right side of the valley, the Putunpunas tributary was already 
moderately active before Morakot Typhoon, and contributed massive 
volumes of debris both during the typhoon and over the ensuing years 
(Hsieh and Capart, 2013). The Ching-Shui tributary, previously 
dormant, was reactivated by Typhoon Morakot to produce a fresh trib
utary fan. On the left side, the Yu-Shui tributary was less active before, 
during, and in the first few years following Typhoon Morakot, but pro
duced fresh fan deposits over the last three years (Yang et al., 2022). 
Finally the Mei-Sho tributary, in spite of its thick ancient terraces, has 
not delivered significant debris volumes over the last 20 years. 

Within each catchment, landslides respond intermittently rather 
than proportionately to each storm or typhoon. The recent aggradation 
of the Yu-Shui debris fan, for instance, is associated with the fresh 
activation of a large landslide within its catchment (Yang et al., 2022). 
Our proposed stochastic model does not represent such catchment dy
namics explicitly, but accounts for their influence on trunk river evo
lution via the composition (Eq. 2). The supply of debris by different 
tributaries thus exhibits a lack of synchronicity, despite their forcing by 
roughly the same precipitation history. Accounting for geomorphic 
response episodicity in addition to hydrologic episodicity therefore ap
pears necessary to model the response of this valley. 

Sited along this valley is an important roadway link, Highway 20, 
forming part of the southern cross-island highway that connects the 
western and eastern parts of Taiwan. The road also serves a number of 
communities along the valley, for which it is a vital transportation link. 
Due to typhoon Morakot, in August 2009 the highway segment, its 
bridges and slope-retaining structures were buried by 20 m of trunk river 
aggradation. The segment was also among the last to be reconstructed 
after the typhoon, coming back into service only in 2017 with the 
completion of Minbaklu Bridge (Fig. 5). More recently, in 2021, the 
roadway was again damaged by the accumulation of fresh fan deposits 

at the Yu-Shui confluence (Yang et al., 2022). An oblique aerial view of 
the valley and Highway 20 soon after this most recent geomorphic 
episode is shown in Fig. 5. 

As illustrated in long profile by Fig. 6, a number of infrastructure 
assets have been destroyed along this segment due to changes in river 
bed elevation. In 2007, aggradation helped destroy the 100 m long 
Hsing-Huei Bridge, by raising the water profile and causing flood waters 
to push the concrete bridge deck off its lateral and central supports 
(Capart et al., 2010). In 2009, the record-breaking geomorphic flood due 
to Typhoon Morakot caused the burial or flood destruction of five 
bridges across the Laonong River. From upstream to downstream: the 
Aqiba girder and suspension bridges, the Ching-Shui and Shao-Nian 
suspension bridges, and the Salaawu girder bridge. River aggradation 
also buried the site of a weir and tunnel entrance then under construc
tion on the right side of the valley (Hsieh and Capart, 2013). 

For this valley segment, the data available for model calibration are 
unusually complete (see Table 1). First, two sets of river elevation data 
can be exploited: radiocarbon-dated terrace deposits, for the long term, 
and modern river elevation records, for the short term. Along the 
segment, multiple wood and vegetation fragments collected from 
exposed fluvial and debris flow sequences were radiocarbon-dated, and 
their elevations registered relative to the river long profile (Hsieh and 
Chyi, 2010; Hsieh and Capart, 2013). The locations in plan are illus
trated in Fig. 4, and we also show the locations, elevations, and dates (xi,

zi, ti) of these dated deposits in profile in Fig. 6. The deposits from 
gravelly debris fan, sandy dammed-lake, and gravelly trunk river are 
labeled as red, blue, and green triangles, respectively. As illustrated in 
Fig. 7a, they provide a record of the river elevation changes experienced 
by the valley over the last two millennia and indicate that, over this 
period, the Laonong river underwent multiple episodes of rapid aggra
dation and degradation, including changes of even greater magnitude 
than the 2009 Morakot event. Knox (1996) likewise used radiocarbon- 
dated deposits to reconstruct past alluvial episodes along the Upper 
Mississipi River. 

Among these dated deposits, trunk river deposits (green bars) were 
preserved only near the bottom of the valley. Tributary debris fan (red 
bars) and dammed lake deposits (blue bars), however, could be identi
fied over a wide range of elevations. Since their elevations approximate 
the trunk river elevation at the time of deposit, we will use them as 
proxies for past river bed elevations. No samples could be collected 
below the lowest profile attained by the river over the period of data 
collection, hence this record is truncated at the elevation of the 2008 
river bed. The 19 dated tributary debris fan and dammed lake deposit 
records are sparse, and their dates uncertain, hence they do not accu
rately resolve river elevation fluctuations over short time scales. They 
do, however, provide an approximately random sample of the river bed 
elevations experienced over a long time period. 

To document more recent river elevation changes, we compiled all 
the river bed elevation data available to us at the Aqiba Bridge site 
(Fig. 8a). At this site, a gauging station operated by the Taiwan Water 
Resources Agency (WRA) acquired detailed records of river bed 

Fig. 5. Composite aerial view of the valley segment showing tributaries, Highway 20 and the along-river Minbaklu Bridge after the most recent episode of river 
aggradation in August 2021. 
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elevations over periods 1994–2009 and 2014–2017. This station was 
destroyed by Typhoon Morakot in 2009, and rebuilt in 2014. We sup
plement these data with elevations estimated from site photos, in 2010, 
2012, and 2013, and with elevations acquired by topographic survey in 
2018 and 2019. To estimate the hydrological forcing experienced by the 
valley, finally, we have at our disposal the daily rainfall data acquired by 
the WRA at the Tian-Chi rain gauge over the period 1994–2019. 

4. Model calibration and comparison 

To apply our proposed stochastic model to the Laonong valley 
segment described in the previous section, it is necessary to calibrate 

seven distinct model parameters, listed in Table 2. Four of these pa
rameters can be calibrated from recorded river elevation changes alone: 
the long-term mean z∞, the reversion rate parameter λg, the volatility σg, 
and the geomorphic episodicity νg. Two parameters can be determined 
from hydrological records alone: the hydrological episodicity νh and 
mean annual rainfall μh. Finally a combination of river and rainfall re
cords is needed to calibrate the geomorphic response episodicity νgh. 

Taking advantage of the separation of scale property described in the 
previous section, the radiocarbon-dated records allow calibration of the 
mean z∞ and variance σ2

∞ = σ2
g /(2λg) of the long time stationary pdf. For 

this purpose, we take as observed data the dated deposit elevations y =

{y1,…, yN} relative to the 2008 river profile, where yi = zi − z2008(xi). To 
account for the truncation of these data below elevation z2008 (y = 0), 
we adopt the modified likelihood function (Hald, 1949) 

L(y; θ) =
∏N

i=1

f (yi; θ)
1 − F(0; θ)

, (11)  

where θ = (z∞, σ∞), F is the cdf, and f is the pdf of the normal distribu
tion. Maximum likelihood estimation (MLE) then yields the estimates 
z∞ = z2008 +22.4 m and σ∞ = 35.4 m. In Fig. 7b, the re-scaled cdf 
(F(y) − F(0))/(1 − F(0)) (line) is plotted against the empirical cdf (circle). 
This is set equal to (i − 0.5)/N where i is the rank of the i-th observed 

Fig. 6. Engineered structures and dated deposits along a segment of the Laonong river valley, shown relative to long river profiles and to truncated debris fans. A 
date in parentheses indicates the year of destruction of a structure. Dated sample: Debris fan deposits (red triangle), dammed lake deposits (blue triangle), and trunk 
river deposits (green triangle). 

Table 1 
Model calibration data.  

Data Period No. of 
data 

Source 

Dated deposit heights y 2500–0 cal. BP 19 Hsieh and Capart 
(2013) 

River elevation records 
ΔZ 

1994–2019 25 WRA 

Annual rainfall ΔR 1994–2019 25 WRA  

Fig. 7. Model calibration from radiocarbon-dated deposits: (a) river elevation record over the last two millennia deduced from dated trunk river (green bars), 
tributary debris fan (red bars) and dammed lake deposits (blue bars), with bar widths indicating date uncertainties and the dashed line a tentative reconstruction 
considering deposit thickness Hsieh and Chyi (2010); Hsieh and Capart, 2013; (b) calibrated (lines) and empirical (circles) long term elevation distributions. 
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data, sorted in ascending order. As seen from the comparison, the 
truncated normal distribution fits the observed data relatively well. 

Once the long time behavior has been determined, the parameters 
governing the short time behavior can be calibrated from the recent 
river elevation data recorded at the Aqiba bridge site (Fig. 8a). As 
described in the previous section, the short term evolution of the river 
bed elevation can be approximated as a Variance Gamma process, 
whereby the yearly changes ΔZ have the pdf given by Eq. (10). The 
unknown parameters of this distribution can therefore be determined by 
MLE from the recorded yearly changes Δzi. In this procedure, we 
constrain parameters so that they match the long term stationary dis
tribution determined earlier. This is done by setting the volatility to 
value σg =

̅̅̅̅̅̅̅
2λg

√
σ∞ and the mean reversion rate to value λg =

μ0/(z∞ − z0), where z0 = (z1994 + z2019)/2. Thus only two free param
eters remain to be calibrated: the initial drift rate μ0, and the geomorphic 
episodicity νg, for which MLE yields the values μ0 = 0.029 m/yr and νg =

2.38 yr. For the constrained parameters, the corresponding values are 
σg = 3.33 m/yr1/2 and λg = 0.0044yr− 1. In Fig. 8b, we compare the cdf 
calibrated in this way (line) with the empirical cdf (circles). 

Over the short term, the observations exhibit a strong bias towards 
aggradation, with the rises having greater magnitude than the drops. 
Since the river started off significantly lower than the long term mean 
elevation z∞, the model also exhibits this bias, but not as strongly. For 
aggradation, the modelled distribution matches well the observations, 
featuring frequent small changes (0⩽Δz < 1 m), and occasional episodes 
of moderate (1⩽Δz < 10 m) to extreme aggradation (Δz⩾10 m). For 
degradation (Δz < 0), on the other hand, moderate river elevation drops 
( − 10⩽Δz < 1 m) are more frequent in the modelled distribution than in 
the recently measured record. Over the long term (see Fig. 7a), aggra
dation and degradation must balance out, hence this under- 
representation of degradation episodes may be due to the limited 
duration of the recent record. Alternatively, it may indicate a persistence 
of the direction of change (aggradation or degradation) over a certain 
time scale, an effect that is not included in our model. Overall, the 
modelled distribution fits the data well, including the likelihood of 
extreme changes, which do not have to be treated as outliers as would be 

the case if a Gaussian distribution were assumed. Over short time scales, 
episodicity must be included to reproduce the observed behavior. 

To characterize the hydrologic forcing independently from the 
geomorphic response, the corresponding model parameters can be 
calibrated directly from rainfall data. For this purpose, we use the daily 
rainfall data at the Tian-Chi rain gauge reported by the WRA for the 
period 1994–2019. Fig. 9a shows the corresponding cumulative rainfall 
record R(t). To avoid complications associated with seasonality, we use 
annual rainfall data to calibrate the gamma process representing the 
hydrologic forcing. This is done by fitting the gamma distribution Γ(1/
νh, νhμh) to the 26 annual totals ΔR, yielding the values μh = 3691 mm/ 
yr for the mean annual rainfall and νh = 0.08 yr for the hydrologic 
episodicity. In Fig. 9b we plot the calibrated cdf (line) against the 
empirical cdf (circles). From the comparison, it can be seen that the 
gamma distribution fits the observed annual rainfall data rather well. 

Using the approximate additivity property of Eq. (3), we can deduce 
for the geomorphic response episodicity the value νgh = νg − νh = 2.30 
yr. For comparison, we can also estimate the geomorphic response 
episodicity by looking at yearly bed elevation changes Δz dependent on 
the actual annual rainfall ΔR recorded the same year. This provides data 
pairs (Δτh,Δz) = (ΔR/μh,Δz), in which the calendar time t is replaced by 
the hydrologic time τh. Over the short term, the conditional distribution 
fΔZVG (Δz|Δτh) is again a Variance Gamma pdf, the parameters of which 
can be estimated by MLE in the same way as before. This alternative 
procedure yields for the geomorphic response episodicity the slightly 
smaller value νgh = 2.24 yr. Although small, the difference between the 
two values is of the same order as the hydrologic episodicity νh. This may 
indicate more complex interactions between hydrologic forcing and 
geomorphic response than can be described by the simple composition 
τgh(τh(t)) assumed in Eq. (2). 

Regardless of how it is estimated, the geomorphic response epi
sodicity νgh is found to be approximately 20 times greater than the hy
drologic episodicity νh = 0.08 yr. It therefore makes the dominant 
contribution to the geomorphic episodicity νg. This is also manifest from 
a visual comparison between Figs. 8 and 9. Comparing Figs. 8a and 9a, 
we can see that the evolution of the river bed elevation is much more 
episodic than the evolution of the cumulative rainfall over the same time 
period. Episodes of strong aggradation, like those produced by Typhoon 
Mindulle in 2004, Typhoon Morakot in 2009, and the June 10 torrential 
rain event of 2012, are indeed associated with intense rainfall. However 
other rainfall events of similar intensity did not produce commensurate 
geomorphic responses. Taken on a yearly basis, moreover, the rainfall 
totals experienced by the watershed and the corresponding river 
elevation changes show strikingly different distributions. Whereas the 
annual rainfall distribution of Fig. 9b features an elongated body but 
short tails, the river bed change distribution of Fig. 8b features a 
compact body (for most years |Δz| < 1 m) but very long tails, associated 

Fig. 8. Model calibration from river elevation records; (a) river bed elevation at Aqiba Bridge since 1994; (b) calibrated distributions (lines) and field data (circles) 
for the yearly change in elevation. 

Table 2 
Calibrated model parameters.  

Parameter Calibrated value Data Fitted distribution 

z∞ − z2008 22.4 m y Truncated normal 
σ∞ 35.4 m 
μ0 0.029 m/yr ΔZ Variance-Gamma 
νg 2.38 yr 
μh 3691 mm ΔR Gamma 
νh 0.08 yr 
νgh 2.24 yr ΔR and ΔZ Gamma  
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with infrequent extreme events like the exceptional aggradation episode 
Δz = 24 m associated with Typhoon Morakot. To facilitate reference, all 
the calibrated model parameters are listed in Table 2. 

5. Application to risk assessment 

Once calibrated, as described in the previous section, our stochastic 
model can be applied as follows to assess risks to riverine infrastructure. 
Starting from some initial river profile z0 at initial time t0, we can 
evaluate the probability P+

E (z,T) that the randomly evolving river bed 

elevation Z(t) will exceed elevation z at least once over some planning 
horizon T: 

P+
E (z,T) = P{max(Z(t))⩾z, t0⩽t⩽t0 +T}. (12)  

This exceedance probability, therefore, measures the risk that river 
aggradation will bury an asset (say a roadway or bridge deck) of 
elevation z during the time period T. Likewise, we can evaluate the 
probability P−

E (z,T) that the river bed elevation will drop below level z at 
least once over the planning horizon T: 

Fig. 9. Model calibration from precipitation data; (a) cumulative rainfall at Tian-Chi rain gauge since 1994; (b) calibrated distributions (lines) and field data (circles) 
for the annual rainfall. 

Fig. 10. Hindcast of bed elevation change and infrastructure damage along the Laonong River, for planning horizon 2010–2020: (a) stochastic river bed elevation 
histories (black lines) and exceedance probability P+

E (z,T) (red) and P−
E (z,T) (blue) obtained by 30 Monte-Carlo simulations; (b) exceedance probability as a function 

of relative elevation for different time horizons, from M = 105 Monte-Carlo simulations of the calibrated stochastic model; (c) long profiles of the river and road, 
showing the hindcasted elevation range at risk of aggradation (red) and degradation (blue) over period 2010–2020, for risk levels (probability of exceedance) PE =

0.2 and 0.5 (light and dark bands). 
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P−
E (z,T) = P{min(Z(t))⩽z, t0⩽t⩽t0 +T}. (13)  

This measures the risk that river degradation will expose or undermine a 
foundation element (say a pile cap or caisson base) set at elevation z 
during the time period T. Over a given time horizon, aggradation risk to 
a certain asset will depend on the relative height of its superstructure. 
Likewise, degradation risk will depend on the relative depth of its sub
structure. In practice, the probabilities P+

E and P−
E can be calculated by 

running a large number of Monte-Carlo simulations, and evaluating the 
proportion of realizations meeting the conditions defined by Eqs. (12) 
and (13). Below we demonstrate this approach by assessing the 
geomorphic risk incurred by Highway 20 along the Laonong river 
segment going from Ching-Ho to Fu-Xing, and described earlier in Sec
tion 3. 

To check that the approach gives reasonable results, we first produce 
a hindcast, starting from the known river bed elevation in 2010 and 
calculating the aggradation and degradation risk incurred by Highway 
20 over the 10 year period from 2010 to 2020. This can then be 
compared to the actual river elevation change and highway damage 
observed over the last 10 years. Fig. 10 shows the simulation steps and 
the resulting calculated risk levels. In Fig. 10a, we show 30 sample paths 
(black lines) generated by Monte-Carlo simulation, and their contribu
tion to the aggradation (in red) and degradation risk (in blue) over time. 
As can be seen from the figure, each time the simulated river bed level 
exceeds a certain elevation z for the first time, this produces an incre
ment in the probability P+

E at this elevation z, over all ensuing times t. 
Likewise each time the simulated river bed level drops below a certain 
elevation z for the first time, this produces an increment in the proba
bility P−

E at this elevation, over all ensuing times t. 
By taking cross sections through this evolving probability distribu

tion, we can obtain profiles of the elevation-dependent risk P+
E (z) over 

time horizons of interest, for instance 10, 20 and 50 years, as shown on 
Fig. 10b. To obtain these profiles, we conduct a larger number of Monte- 
Carlo runs (M = 105), producing smooth exceedance probability curves. 
Over time, it is clear that the risk of either aggradation or degradation at 
a certain elevation can only increase, hence the probability curves 
gradually diffuse up and down, as illustrated in Fig. 10b. Along the 
segment considered, the 2010 river long profile is on average 25.6 m 
higher than it was in 2008 prior to Typhoon Morakot. This is close to the 
long term mean elevation z∞ = z2008 +22.4 m estimated from the dated 
deposits. Starting from the 2010 profile, therefore, the mean-reverting 
term of the model is weak, and the risk curves for aggradation and 
degradation in Fig. 10b are nearly symmetric. Because river elevation 
changes are cumulative, the elevation range over which infrastructure is 
at risk depends strongly on the time horizon. A bridge deck positioned 
20 m above the river bed, for instance, will be buried with probability 
P+

E = 0.040 over time horizon T = 10 yr, but the risk increases to P+
E =

0.13 over time horizon T = 20 yr, and to P+
E = 0.32 for T = 50 yr. This 

represents a greater increase than if risk were like flood risk, with an 
annual exceedance probability independent from year to year, in which 
case we would have PE(T) = 1 − (1 − PE(1))T . 

To check that the simulations produce reasonable results, in Fig. 10c, 
we show simulated risk bands over time horizon T = 10 yr, calculated 
using the 2010 river profile as initial condition. On the same long pro
file, we also show the roadway, bridges and bridge pile foundations of 
Highway 20, illustrating their location-dependent vulnerability due to 
differences in relative elevation with respect to the river bed. In 2020, 
we conducted a new survey of the river long profile, shown in Fig. 10c 
together with the roadway profile and the river profiles surveyed earlier. 
We can therefore compare the actual changes experienced by the river 
from 2010 to 2020 with those expected from the model. For this pur
pose, we use the curves of Fig. 10b to determine the rise Δz+P (T) and drop 
Δz−P (T) associated with risk level P over horizon T, and add these relative 
elevations to the initial long profile to determine risk bands. To test 
whether our stochastic model would have provided a reasonable 

assessment of risk over horizon T = 10 yr, we can then compare the 
resulting bands to the actual profile changes, and to the actual damage 
done to Highway 20 since 2010. This is illustrated in Fig. 10c, using red 
and blue bands to represent rises and drops, respectively, associated 
with risk levels PE = 0.5 and 0.2. 

As seen on Fig. 10c, the actual elevation changes observed between 
2010 and 2020 are consistent with this envelope. Upstream and down
stream, the trunk river approximately aggraded up to the Δz+0.2 level. In 
the middle, the profile instead remained with the PE = 0.5 band. Start
ing from the 2010 profile, the model identifies two low segments of 
Highway 20 as vulnerable to damage due to trunk river aggradation over 
a 10 year horizon, and these segments did indeed experience such 
damage over the ensuing decade. The segment upstream of the Putun
punas confluence has been flooded repeatedly in recent years, which 
would not have occurred had the river not aggraded between 2010 and 
2020. Downstream of the Putunpunas confluence, on the other hand, 
aggradation along the left bank caused the roadway to be partially 
buried. The model therefore shows potential as a tool to assess 
geomorphic risks to roadways and other infrastructure, in this and 
similar valleys. To evaluate risk more precisely, one would need to 
consider the local influence of tributary debris fans (Lei et al., 2022). In 
August 2021, for instance, local aggradation of the Yu-Shui debris fan 
contributed to the destruction and burial of the downstream spans of 
Minbaklu Bridge (Yang et al., 2022). 

Finally, we can use the model to forecast the risk of future aggra
dation and degradation along the segment. For this purpose, we again 
conduct M = 105 Monte-Carlo simulations, taking the river elevation 
profile we surveyed in early 2022 as initial condition. The predicted 
results are illustrated in Fig. 11, using red and blue bands to represent 
rises and drops, respectively, associated with risk levels PE = 0.5 over 
different time horizons T. As seen on Fig. 11, over a 10 year horizon, the 
model identifies two low segments of Highway 20 (the downstream of 
the Ching-Shui confluence and upstream of the Mei-Sho confluence) as 
vulnerable to damage due to trunk river aggradation. Over a 20 year 
horizon, the first vulnerable segment expands to the upstream of the 
Ching-Shui confluence. Besides, a pile of the Pansunnuan Bridge be
comes exposed to failure risk due to trunk river degradation. Further 
extending to a 50 year horizon, the Highway 20 between the Putunpu
nas and Mei-Sho tributary confluences, including the Minbaklu Bridge, 
and the segment near Ching-Ho Village and the Dong-Zhuang tributary 
confluence also become subject to a high risk of aggradation damage. 
There is also a high risk that the foundations of Minbaklu bridge will 
become exposed and undermined due to trunk river degradation. 

From the forecast, we can also note a very significant risk that trunk 
river aggradation will affect the town of Ching-Ho. Over a 50 year ho
rizon, our calibrated model indicates that it is as likely than not (P+

E =

0.5) that trunk river aggradation will rise up to the level of the lower 
houses of the settlement. Over shorter time horizons, the probability that 
river aggradation could rise up to this level is not quite as high, but the 
risk remains significant. Over time horizons T = 5, 10, and 20 years, 
respectively, we calculate risk levels P+

E = 0.05, 0.14, and 0.29. As this 
could entail a significant threat to lives and livelihoods, a more complete 
assessment of aggradation and flood risk to Ching-Ho and other towns of 
low elevation relative to the current Laonong river bed (like the town of 
Fu-Xing not far upstream) is recommended as a high priority. 

6. Conclusions 

In this paper, we proposed a new stochastic model of river bed 
elevation changes in steep valleys. Building on previous work, the model 
lets the bed rise and drop according to a random walk, taking both mean 
reversion and episodicity into account. To avoid unbounded drift over 
long times, the walk was described as a mean-reverting Orn
stein–Uhlenbeck process. To account for short term episodicity, the OU 
process was driven by another random process, or subordinator, con
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trolling the pace of evolution. To resolve separately the contributions of 
hydrologic forcing and geomorphic response, this subordinator was 
taken as the composition of two gamma processes. In the resulting 
model, the evolution Z(t) of the bed elevation as a function of calendar 
time t is described as a composite random process Z(τg(τh(t))), where τg 

is a geomorphic time and τh a hydrologic time. 
This model was shown to exhibit useful mathematical properties, 

that clarify its behavior and facilitate parameter calibration. First, the 
composition of two gamma processes can be approximated by a single 
gamma process, with episodicity equal to the sum of the contributing 
episodicities. For the resulting approximate process, we could next 
obtain the time-evolving mean and variance, and derive probability 
distribution functions for the short and long time limits. Monte-Carlo 
simulations were used to check these approximations, and calculate 
results for the complete version of the model. 

Applied to the Laonong River, southwestern Taiwan, the model was 
found to fit well observed distributions of river bed elevations and 
elevation changes. Over the long term, mean reversion lets the model 
converge to a stationary distribution, consistent with the large but finite 
range of river elevation variation deduced from dated deposits. By ac
counting for episodicity, the model can also reproduce the compact body 
and long tails of the short term river bed changes derived from gauge 
records. By combining river and rainfall data, it was found possible to 
estimate the relative contributions of hydrologic and geomorphic factors 
to the variable pace of river bed change. The geomorphic response was 
found to be much more episodic than the hydrologic forcing, indicating 
that catchment processes play an important role. The model was also 
found to produce a reasonable hindcast of the geomorphic damage 
suffered over the last ten years by Highway 20. Finally, we showed how 
the model can be used to forecast future risks to riverine infrastructure 
due to trunk river aggradation and degradation. 

Nevertheless, the proposed model is subject to various limitations. 
First, it does not yield an explicit time-evolving pdf for intermediate 
times. Second, it does not allow for the possible persistence over time of 
the tendency of the river bed to aggrade or degrade. Third, it does not 
yet consider the influence of river bed level rise on flood water levels or 
bank erosion risk. Finally, it does not resolve longitudinal variations of 
the river long profile, nor the local influence of debris influx at tributary 
confluences. Addressing these limitations would allow more precise risk 
assessment, and are suggested as avenues for future work. 
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T.-Y.K. Chen et al.                                                                                                                                                                                                                              

https://doi.org/10.5281/zenodo.5731490


Engineering Geology 309 (2022) 106845

12

Appendix A. Additivity of contributing episodicities 

In this appendix, we present an analytical derivation demonstrating that the composition of two gamma processes can be approximated by a single 
gamma process with additive episodicities. Our goal is to show that the single process τ(t) of episodicity νg = νh +νgh has approximately the same 
distribution as the composite process τgh(τh(t)), with contributing episodicities νh and νgh. We will establish this by using moment-generating functions 
(MGF) and their logarithms, called cumulant-generating functions (CGF). It is known (Stirzaker, 1999) that if two random variables share the same 
MGF or the same CGF, then they share the same distribution. In our case, the composite and single processes are not identical, but we will show that 
their CGFs match to a close approximation. 

For a random variable X that is gamma-distributed with shape α and scale β, the moment-generating function of X, denoted by MX, is (Stirzaker, 
1999) 

MX(u) = E[euX ] = (1 − βu)− α
, (A.1)  

where u is the function variable. The cumulant-generating function of X, denoted by KX, is the natural logarithm of its moment generating function 
(Stirzaker, 1999). Therefore, 

KX(u) = log(MX(u)) = logE[euX ] = − αlog(1 − βu). (A.2)  

For Δτg ∼ Γ(Δτh/νgh,νgh), we have the moment-generating function 

MΔτg (u) = E
{(

1 − νghu
)− Δτh/νgh

}
, (A.3)  

which can be rewritten 

MΔτg (u) = E

{

exp
(

Δτh

νgh
log
(

1
1 − νghu

))}

. (A.4)  

Let log
(
1/(1 − νghu)

)
be the function variable, Eq. (A.4) is also the moment-generating function of the random variable Δτh/νgh, which has a gamma 

distribution with shape Δt/νh and scale νh/νgh. Therefore, 

MΔτg (u) = MΔτh/νgh

(

log
(

1
1 − νghu

))

=

(

1 −
νh

νgh
log
(

1
1 − νghu

))− Δt/νh

. (A.5)  

Taking the natural logarithm of this moment-generating function, the cumulant-generating function of Δτg can be obtained and expanded into the 
Taylor series 

KΔτg (u) = log(MΔτg (u)) = −
Δt
νh

log
(

1 −
νh

νgh
log
(

1
1 − νghu

))

= Δt
(

u +
1
2
u2(νh + νgh) +

1
6
u3(2ν2

h + 3νhνgh + 2ν2
gh) + …

)

.

(A.6)  

On the other hand, based on Eq. (A.2), a gamma-distributed random variable Δτ ∼ Γ(Δt/(νh +νgh), νh +νgh) has the cumulant-generating function 

KΔτ(u) = −
Δt

νh + νgh
log
(
1 − (νh + νgh)u

)
, (A.7)  

which can be expanded into the Taylor series 

KΔτ(u) =
Δt

νh + νgh

∑∞

n=1

((νh + νgh)u)n

n!

= Δt
(

u +
1
2
u2(νh + νgh) +

1
6
u3(νh + νgh)

2
+ …

)

.

(A.8) 

Comparing the two cumulant-generating functions (Eqs. A.6 and A.8), the first two terms of the two series are the same. That is to say, we can 
approximate KΔτg (u) = KΔτ(u) with an error term that is third-order error in the variable u and second order in the episodicities νg and νgh. The 
composite gamma process can therefore be closely approximated by a single gamma process with increments Δτg ∼ Γ(Δt/(νh + νgh), νh + νgh), and 
aggregate episodicity 

νg = νgh + νh, (A.9)  

which is simply the sum of the two contributing episodicities. To the best of our knowledge, this remarkable property characterizing the composition 
of two gamma processes had not been established before. 
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Appendix B. Moments of the gamma-subordinated OU process 

In this appendix, we derive the time-evolving mean and variance of an Ornstein–Uhlenbeck process Z(τ) subordinated to a single gamma process 
τ(t). This is governed by the stochastic differential equation (SDE) 

dZ = λ(z∞ − Z)dτ+ σ dW(τ), (B.1)  

where τ(t) has gamma-distributed increments Δτ ∼ Γ(Δt/ν, ν). Here to make notations more compact we have set λ = λg, σ = σg and ν = νg. Using 
variation of parameters, we can then derive explicit formulas for the time-evolving mean and variance of this approximate process. To start the 
derivation, we first define a function g = g(Z, τ) = Zeλτ. By the chain rule, the corresponding differential can be written 

dg(Z, τ) = d(Zeλτ) = λZeλτ dτ+ eλτ dZ. (B.2)  

Substitution of Eq. (B.1) then yields 

d(Zeλτ) = eλτλz∞ dτ+ eλτσ dW(τ). (B.3)  

We can then replace τ by a variable of integration u and integrate Eq. (B.3) from time 0 to t (Z from z0 to Z(t), u from 0 to τ(t)) to get 

Z(t)eλτ(t) − z0 = z∞(eλτ(t) − 1)+ σ
∫ τ(t)

0
eλudW(u). (B.4)  

Moving z0 to the right hand side and dividing each side by eλτ(t), we obtain the solution 

Z(t) = z0e− λτ(t) + z∞(1 − e− λτ(t)) + σ
∫ τ(t)

0
e− λ(τ(t)− u)dW(u). (B.5)  

Taking the expectation, the third term averages out since dW(u) is normally distributed. The expectation of the first two terms can be calculated as 

E[Z(t)] =
∫ ∞

0
(z0e− λτ + z∞(1 − e− λτ))f (τ; t

/

ν, ν)dτ. (B.6)  

where 

f (τ; t
/

ν, ν) = ν− t/ντt/ν− 1e− τ/ν

Γ(t/ν) (B.7)  

is the probability density function (pdf) of the gamma-distributed τ. Therefore Eq. (B.6) can be rewritten into 

E[Z(t)] =
(z0 − z∞)ν− t/ν

Γ(t/ν)

∫ ∞

0
τt/ν− 1e− τ(λ+1/ν)dτ+ z∞

∫ ∞

0
f (τ; t

/

ν, ν)dτ, (B.8)  

where the integral of the gamma-distributed pdf from 0 to ∞ equals 1 and 

Γ(t
/

ν) = (λ + 1/ν)t/ν
∫ ∞

0
τt/ν− 1e− τ(λ+1/ν)dτ, (B.9)  

obtained by substituting x = τ(λ+1/ν) and y = t/ν into the definition of gamma function Γ(y) =
∫∞

0 xy− 1e− x dx. We therefore obtain for the time- 
evolving mean the result 

E[Z(t)] = (z0 − z∞)(λν + 1)− t/ν
+ z∞

= z0 + (z∞ − z0)
(

1 − (λν + 1)− t/ν
)
.

(B.10)  

The mean thus gradually transitions from the initial condition z0 to the long term mean z∞. Using the Ito isometry (Øksendal, 2000), the time-evolving 
variance can also be calculated as 

Var(Z(t)) = E

[(

σ
∫ τ

0
e− λ(τ− u)dW(u)

)2
]

= E

[

σ2
∫ τ

0
e− 2λ(τ− u)du

]

. (B.11)  

Integrating with the pdf of Eq. (B.7), we obtain for the time-evolving variance the result 

Var(Z(t)) = σ2
∫ ∞

0

∫ τ

0
e− 2λ(τ− u)ν− t/ντt/ν− 1e− τ/ν

Γ(t/ν) dudτ =
σ2

2λ

(
1 − (2λν + 1)− t/ν

)
, (B.12)  
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which converges asymptotically towards a finite long term variance σ2
∞ = σ2/2λ. To our knowledge, these results for the moments of a gamma- 

subordinated OU process had not been obtained before. 
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