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Summary 
 
We conducted laboratory experiments using large-scale samples (height: 0.47, diameter: 0.39 m) of 

basalt and marble coiled with telecommunication fibre. The fibre optical cable was converted to an array 
of densely spaced receivers (0.01 m) using distributed acoustic sensing (DAS) technology, and the 

source was placed on top of the samples. We demonstrate with an active acoustic setup how we can 

capture both the natural and artificial fracture responses. Therefore, this work investigates the 
applicability of the DAS method for seismic imaging on the lab scale for further technological 

advancement of vertical seismic profiling using DAS. 
 



Introduction

Developing carbon capture storage (CCS) and geothermal reservoirs require a comprehensive under-
standing of geological structures and stress conditions. The characterisation of the faults and fractures
plays a vital role in the assessment of the uncertainties and risks related to subsurface operations. Al-
though seismic methods allow imaging of fractured reservoirs with high resolution at significant depths
(Casini et al., 2010; Hloušek et al., 2015; Lim et al., 2020; Salaun et al., 2020; Martuganova et al.,
2022), understanding the fracture characteristics using active seismic methods and detailed assessment
of induced strain and its association with recorded seismic signals still remains challenging.

Monitoring using distributed acoustic sensing (DAS) technology allows cost-effective and nearly con-
tinuous data recording using fibre optical cables, which create a receiver array with a dense spacing.
Time-lapse DAS vertical seismic profiling has proven to be a reliable technique for monitoring CO2
storage facilities (Correa et al., 2019; Götz et al., 2018; Wilson et al., 2021). In this work we investigate
the applicability of DAS for high resolution fracture imagining on a laboratory scale. Moreover, our
experimental work aims to improve the quantification of the fault/fracture responses using fibre optical
data. An accurate estimation of the fracture response allows us to better understand and estimate the
effects of fractures in the reservoir areas and improve seismic monitoring method.

Experiment setup

We used large marble and basalt and marble blocks for our experiments which were collected from the
outcrop around Kızıldere geothermal site in Turkey (Janssen et al., 2021) and the Hellisheiði geothermal
field in Iceland (Janssen et al., 2022), respectively. We will refer to the marble sample as Kevin and the
basalt as Bob (see Figure 1a). The height of both samples is the same, namely 0.474 m; the diameter
equals 0.388 m (Figure 1b). The marble Kevin has a natural fracture occurring at around 0.056 m from
the top of the sample. To simulate a similar fracture in basalt Bob, the top part of the sample was
sawed through to create an artificial fracture. Thus, these two samples serve as a good approximation
for homogeneous low porosity (Kevin, Figure 1c), and highly porous and heterogeneous (Bob, Figure
1d) reservoirs. As a source, we used The Simrad 38/200 Combi D transducer, of which we only used
the transducer with a centre frequency of 38 kHz to emit a pulse with a 16 kHz central frequency. The
output of the wave generator was plugged into the amplifier, which was connected to the transducer. The
resulting source signal in the time domain is shown in Figure 1e. The frequency spectrum has a peak
at 16kHz (Figure 1f) but is distorted by the amplifier and thus shows a range of frequencies between 8
at 30kHz and artefact signals at around 6kHz. As a receiver, a standard telecommunication fibre with
a diameter of 0.0016 m was tightly coiled around both samples and connected to the interrogator unit
from Alcatel Submarine Networks (ASN) (Waagaard et al., 2021). This allowed us to create a vertical
seismic profiling (VSP) setup with a dense array of receivers with 0.01 m spacing in sample’s height.
We set the gauge length for the marble Kevin to 15 m and the basalt Bob to 25 m. The gauge length was
selected by finding a compromise between good signal penetration through the whole sample and the
finest resolution possible.

Results

Figure 2 shows two seismic sections for the marble and basalt samples. The processing of the data
included stacking the individually recorded source signal bursts sent by the wave generator, each 5 or
10 ms, to improve signal-to-noise ratio. Strain data recorded using marble Kevin has a very distinct
first arrival (blue arrow, Figure 2a) and complex interference of the reflections (see violet arrow, Figure
2a) and multiples. Most interestingly, a fracture zone is clearly visible. Firstly, at the sample length
corresponding to the fracture, we can see multiple phase discontinuities and amplitude variations (for
instance, the green arrow in Figure 2a). Furthermore, at around 0.6 ms there is a V-shaped structure (ma-
genta arrow, Figure 2a), which could potentially correspond to the reflection from the fracture. The time
difference between the sample’s top and bottom equals 0.0084 ms. Considering the sample’s height, this
gives a 5642.86 m/s velocity estimation for the whole sample, which agrees with the P-wave estimation
interval 5500-5800 m/s from Janssen et al. (2021). Basalt Bob has a distinct difference in the appearance
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Figure 1 (a) The laboratory setup showing the marble and basalt samples coiled in fibre and the Simrad
38/200 Combi D transducer location. Wavy orange and solid lines show known locations of the natural
and artificially created fractures in the marble Kevin and basalt Bob, respectively. (b) A top view of
the Marble sample. Photos of similar smaller cores for marble (c) and basalt (d) rocks. (e) The source
signal function in the time domain after amplification. (f) Frequency spectrum of the source with a
central frequency at 16 kHz.

Figure 2 Seismic sections for the (a) marble and (b) basalt samples. Colored arrows (exemplary): direct
downgoing P-wave (dark blue), V-shaped reflections from the top of the fracture (magenta), reflections
in the lower part of the samples (violet), phase discontinuities (light green). Wavy orange and solid lines
show known locations of the natural and artificially created fractures in the marble Kevin and basalt
Bob, respectively.
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Figure 3 Power spectral density calculated for marble Kevin and basalt Bob. Wavy orange and solid
lines show known locations of the natural and artificially created fractures in the marble Kevin and
basalt Bob, respectively.

of the seismic data in the time domain. We can mainly see numerous reverberations in the top part of
the sample that look like high-amplitude stripy reflections. The amount of energy which travels down
passing the fracture area is significantly lower than for the marble sample. The first arrival (blue arrow,
Figure2b) is very poorly visible, as well as reflections and multiples. Although the signal-to-noise ra-
tio is very poor for the lower part of the basalt, curiously enough, we still can see some low frequent
reflections (violet arrow, Figure 2b).

In the frequency domain (Figure 3), the difference in sample fracture responses becomes even more
apparent. The upper part of the marble Kevin power spectral density (PSD) plot (Figure 3a), before
the fracture, shows repetitive maxima. Then there is a discontinuation in amplitude, corresponding
to the natural fracture response. The lower part of the marble sample PSD has elongated, irregularly
shaped high amplitude areas in the frequency range between 10 to 28 kHz, which roughly coincides
with the source frequencies range. A line at around 6 kHz corresponds to the artefact occurring due to
the distortion by the amplification. Basalt Bob’s PSD (Figure 3b) shows mainly energy accumulated in
reverberations in the upper part of the sample before the artificial fracture. The lower part of the sample
on the PSD has significantly lower amplitudes; the main energy is focused at around 20kHz. Some
smaller high amplitude zones are noticeable between 10 and 28kHz, which vary with the sample height.
The fracture zone area is shown beyond the exact location due to more averaging by the larger gauge
length, which causes, the smearing of the amplitude.

Conclusions and Outlook

With our laboratory work, we created a VSP setup by using thinly coiling an optical fibre around a basalt
and marble cylinders. Each seismogram allows the connection of the depth information (sample) height
with the time domain directly to characterise the structure of reservoir rock samples. With this simple
active acoustics setup, we show that we can capture both artificial and natural fractures in potential
reservoir outcrops. Further tests for the cable coupling improvement tests for the basalt Bob are planned,
including applying the rubber sleeve and a coupling agent. After improving the signal-to-noise ratio,
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we plan to conduct measurements at elevated stress conditions to study the signature of fractures on
seismic wave propagation in more detail, develop a workflow for the lab vertical seismic profiling, which
includes the application of the smooth inversion method (Lizarralde and Swift, 1999) to calculate the
velocity profile for the whole sample to acquire a 3D seismic image of the sample. The resulting seismic
image can be compared with similar smaller CT scan images of the analogous reservoir samples. Further
lab work includes studying and quantifying the strain applied for fracture opening with the recorded
seismic signals using distributed acoustic sensing technology.
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