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ABSTRACT

In this paper, a methodology is proposed to quantitatively evaluate precipitation products for multiple

purposes. Evaluation mainly focuses on rainfall characteristics relevant to hydrological or agricultural ap-

plications: spatial distribution pattern, effect of aggregation over time, the capture of small-scale variability

and seasonality, detection of dry spells and wet spells, and timing and volume of heavy rainfall events.

Verification statistics were modified and metrics were reported for extreme weather performance, such as

flood and drought monitoring. The analysis was performed for different rainfall categories, over regions

dominated by different weather systems or with different topographical structures. The latest versions of

seven commonly available, high-resolution rainfall estimates have been evaluated by themethod against daily

data from 16 rain gauge stations over Tanzania, during 1998–2006. They were TRMM 3B42, CHIRPS,

TAMSAT, CMORPH_RAW, CMORPH_BLD, WFDEI_CRU, and CPCU. All products, except for

CMORPH_BLD and CPCU, were poorly correlated to gauge data at daily time scale with correlation

coefficients, 0.5. Five-day aggregationwas theminimum time scale that can be used for the products to reach

an accuracy better than monthly-mean of gauge data. Their performance varied across different climatic or

topographical regions and different rainfall seasons. Timing of precipitation was inaccurately estimated by

all products, particularly for heavy rains, with less than 40% hits. The results of the evaluation procedure

allow discrimination between available products and better selection of the product to be used for a specific

application, such as crop insurance or flood early warning, under particular climatic conditions.

1. Introduction

Accurate rainfall observations at high resolution are

an urgent priority for development of weather services

(Pendergrass et al. 2017), such as flood prediction (IPCC

2012), crop yield management (Rowhani et al. 2011),

and weather-index-based insurance (Collier et al. 2009).

Quantitative precipitation estimates (QPEs) based on

satellite imagery and/or numerical weather prediction

(NWP) model outputs are being widely used to seek

evidence of climate change in precipitation, to improve

the understanding of the hydrologic cycle, or as input to

precipitation-related models (such as crop yield model

or flood warning system). Thorough and quantitative

evaluation ofQPEs across a range of rainfall features for

multiple purposes is critical for selection of datasets,

decision-making, and risk assessment. However, it is a

challenge when using existing evaluation approaches,

especially over regions with limited gauge availability.

Unfortunately, the network of functional weather sta-

tions has been deteriorating progressively and signifi-

cantly since the 1980s (Shiklomanov et al. 2002; Stokstad

1999), and Africa in particular has the lowest report-

ing rate of any region in the world (Washington et al.

2006). An exception is the fast growing Trans-African

Hydrometeorological Observatory (TAHMO) network,

but this is a very recent development (van deGiesen et al.

2014). Uneven and sparse distribution of gauges com-

bined with high spatial variability of (daily) rainfall limits

the representativeness of gauge data, particularly for re-

gions of complex topography (Flitcroft et al. 1989).

Recently, an evaluation of 22 global datasets was

conducted by Beck et al. (2017a) using both gauge data

and hydrological modeling. One of their conclusions

stated that notably for Africa, global precipitation

products performed poorly, and the limited availability

and quality of rain gauge and flow data makes it difficult

to provide reliable recommendations for the use of
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precipitation products in this region. Most of the eval-

uation work from past studies focused on particular

aspects, such as the ability to deal with the complex to-

pography (Dinku et al. 2007, 2010), the performance

during a specific season (Jobard et al. 2011), or for a

certain application (Cohen Liechti et al. 2012; Gosset

et al. 2013; Li et al. 2013; Thiemig et al. 2012). They

looked at the general rainfall characteristics relevant to

hydrological uses, such as spatial distribution, season-

ality, and number of dry/wet days. Few focused on ex-

treme weather conditions, such as length of dry spells

and wet spells, and heavy rainfall intensities. These is-

sues are critical for many applications, but are difficult

to be evaluated with existing methods that are mostly

conducted using basic performance scores, such as Pearson

correlation coefficient (PCC), Nash–Sutcliffe efficiency

score (NSE), root-mean-square error (RMSE), bias in

the annual rain amount (Bias), and bias in the frequency

of rainy days (FBias). These performance scores, how-

ever, have implicit shortcomings. For instance, PCC and

NSE are insensitive to short-scale variability (precipita-

tion pattern) in a climate with large seasonal variability.

RMSE,Bias, and FBias represent the degree of error, and

bias in rain rate or rain frequency, but give no information

on timing of heavy rainfall and dry/wet spells. To better

understand the sources of error or use a product properly,

evaluation is also required of the performance of the

QPEs for different rainfall regimes, different seasons, and

the timing of rainfall with respect to wet spells and heavy

rains. In addition, local climatology should be taken into

account for the classification of wet seasons and dry sea-

sons, instead of applying a uniform classification over the

whole region of study, especially for gauge-scarce regions.

In this study, we propose a methodology that com-

bines evaluation of multiple performance aspects of

rainfall products to identify minimum conditions under

which QPEs can be used or, conversely, to quantify per-

formance given a certain application context. Specifically,

we seek implications of performance for application

for extreme weather services such as flood prediction,

drought assessment, and weather-index-based insur-

ance. The method aims to better understand the sources

of error (e.g., data inputs or estimation algorithms), the

impact of different factors (e.g., local climatology or

topography) on their performance, and their ability to

capture extreme weather, in order to identify pathways

for improvement. The evaluation method for extreme

weather is inspired by the fundamental definition of

extreme weather conditions (Karl et al. 1999; Schmidli

and Frei 2005). We apply the method to evaluate the

performance of seven widely used high-resolution da-

tasets for Tanzania, where high-quality gauge data are

available. The application for the Tanzania datasets

demonstrates how the method works in a challenging,

data-scarce environment. Section 2 briefly describes the

geography and climate of the study region, and the da-

tasets to be evaluated. Section 3 presents the methodol-

ogy of the evaluation, including the definition of a range

of performancemetrics. Section 4 analyzes the results and

gives an in-depth discussion. Conclusions are drawn in-

cluding the summary for individual dataset in section 5.

2. Datasets

a. Selection of study region and its rainfall climate

For this study, we selected Tanzania as study region, it

being representative of data-scarce environments, typi-

cal of Africa and other tropical regions, and including a

complex topographyofmountains and coastline.Moreover,

a unique dataset of 36 years and good quality was available

from 16 rain gauges across the country. Tanzania lies be-

tween the water bodies of Lake Victoria in the north, Lake

Tanganyika to the west, Lake Nyasa to the south and the

Indian Ocean to the east. Its mainland is divided into a

central plateau, highlands along the north and south,

and coastal plains. Northeast Tanzania is mountainous

and includes Mount Meru, Mount Kilimanjaro (the high-

est point in Africa, 5950 m above mean sea level), and the

Usambara and Pare mountain ranges. West of those

mountains lies the Gregory Rift, which is the eastern arm

of the Great Rift Valley. The center of Tanzania is a large

plateau, which is part of the East African Plateau. Most of

Tanzania, except the eastern coastline lies above 200 m

above mean sea level (MSL) as shown in Fig. 1b.

Tanzania has a tropical climate but has regional

variations influenced by its location with respect to

the equator (latitude), the impact of the Indian Ocean,

topography (elevation), and proximity to large water

bodies. Seasonal rainfall is driven mainly by the migra-

tion of the intertropical convergence zone (ITCZ). The

ITCZ migrates southward through Tanzania in October

to December, reaching the south of the country in

January and February, and returns northward in March,

April, and May. This causes the north and east of

Tanzania to experience two distinct wet periods, while

other parts of the country have only one (Okoola 1999).

b. Rain gauge data

Daily rain gauge data of high quality from Tanzania

Meteorological Agency (TMA) were used as reference

ground observations. The data were quality controlled

basedona standardizedquality control procedure (USAID

2016). They were made available for this research, but are

not available openly. The country-level records can

contain more data than those that are publicly available.
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The dataset covers the years from 1970 to 2006, which

were used for the computation of critical thresholds such

as 90th and 99th percentiles of precipitation as explained

in section 3c. The period of study is from 1998 to 2006,

since some satellite-based QPE products are available

only from 1998 onward.

c. Satellite-based and model-based rainfall estimates

Seven datasets are evaluated in this study, since they

performed relatively well over Africa according to past

studies, and are representative of a variety of rainfall

estimation algorithms. Five of them are satellite-based

products that combinemultiple microwave, infrared and

radar sensors: the Tropical Rainfall Measuring Mission

Multisatellite Precipitation Analysis (TMPA) 3B42,

version 7.0 (TRMM 3B42; Huffman et al. 2010; Huffman

and Bolvin 2015); Tropical Applications of Meteorology

Using Satellite and Ground Based Observations, version

3.0 (TAMSAT; Tarnavsky et al. 2014; Maidment et al.

2014, 2017); the Climate Hazards Group Infrared

Precipitation with Stations, version 2.0 (CHIRPS; Funk

et al. 2015); a satellite-only product created using the

Climate PredictionCentermorphingmethod (CMORPH),

version 1.0 (CMORPH_RAW; Joyce et al. 2004); and a

satellite–gauge blended product created using CMORPH,

version 1.0 (CMORPH_BLD; Xie and Xiong 2011). The

sixth is a model-based analysis dataset, WATCH Forcing

Datamethodology applied toERA-Interim reanalysis data

with bias correction from Climatic Research Unit (CRU)

time series (WFDEI_CRU; Dee et al. 2011; Weedon et al.

2014). A gauge-based gridded dataset, NOAA Climate

Prediction Center Unified daily gauge analysis (CPCU;

Xie et al. 2007, 2010), is used to demonstrate the degree

of dependence of the TMA gauge data, whose perfor-

mance will not be as thoroughly diagnosed as the other

six datasets. A brief description of the seven datasets is

given in Table 1.

The five satellite datasets have different input sources.

CMORPH_RAW is the only product that does not in-

gest gauge data. TAMSAT is the only IR-based product,

while others use a combination of IR and PMV for

rainfall estimation.

d. Data preprocessing

Analysis was conducted at five time scales, which were

daily, pentadal (5-day), 5-day moving average, dekadal

(10-day), and monthly basis. We defined pentads and

dekads such that every calendar month contains six

pentads and three dekads, respectively. The following

data preprocessing procedures were performed. Days

withmissing observations, pentadal and dekadal periods

with at least one day missing data, and months with at

least three days missing data were removed from the

datasets for the four time scales, respectively.

For the calculations of moving average and number of

consecutive dry or wet days (required in section 3c), in-

filling of the missing data was needed. Each dataset was

checked for five or more days of missing data in dekads

and 30 or more days of missing data in one year, the

maximal period deemed acceptable for interpolation.

FIG. 1. Topographical information of Tanzania and the TMA stations with (a) geographical location of Tanzania;

(b) locations of TMA stations and topographical map of Tanzania with major rivers and lakes (white regions),

where Lake Victoria is the white area marked by the blue circle; and (c) topographical classes of the stations.
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The datasets in the period of the study do not have

missing data more than these thresholds, except for

TAMSAT, which contains nine pentads of missing data

in this 9-yr period of study. Missing data were filled in by

taking the value of the temporally closest good data.

Given the small number of data gaps, this is not expected

to decrease the reliability of the evaluation.

3. Multiobjective evaluation methodology

In addition to the conventional validation statistics

(summarized in Table 2) such as PCC, RMSE, NSE, and

FBias, the new methodology proposes a range of per-

formance characteristics that are relevant for specific

applications, such as floodwarnings and crop insurances.

The performance characteristics are (i) QPEs’ ability to

capture variability at small time scale without influence

of seasonality; (ii) QPEs’ detection of intensities

and timing of extreme weather conditions in terms of

dry/wet spell and moderate/heavy rainfall; (iii) QPEs’

performance over different rainfall-only related climate

zones (characterized by yearly totals, minimal monthly

totals, and maximal monthly totals of precipitation) and

different rainfall seasons associated with climate zones

(characterized by monthly means instead of the four

calendar seasons); and (iv)QPEs’ performance on extreme

weather detection over different regions characterized by

climate patterns (e.g., climate zones) and topography (e.g.,

elevation). The last two aspects aim to make full use of the

gauge data to achieve a thorough evaluation when gauges

are scarce, and to improve the understanding of error

sources (climate and topography) in the algorithms of

QPEs. Code and tutorial of the implementation of this

evaluationmethod can be found at https://surfdrive.surf.nl/

files/index.php/s/cESQ5pjY6p8XSgi.

a. Validation statistics

Table 2 summarizes the verification statistics or per-

formance scores, which were used in the point-to-pixel

analysis of QPEs. RMSE, Bias, and PCC were used for

comparison with existing studies. Bias gives the tendency

of a specific QPE to overestimate or underestimate the

rainfall rates. PCC reflects the linear correlation between

gauge data and QPEs. Zero precipitation accumulations

were included in these quantitative comparisons to

account for both the evaluation on rainfall occurrence

and on rain rates, although this could bias the results.

Categorical statistics, probability of detection (POD),

success rate (SR), frequency bias (FBias), and threat

score (TS), were introduced to measure the ability of

QPE to detect occurrence of rainfall based on a contin-

gency matrix (Table 3) defined by the hits, misses, false

alarms (FAs), and correct negatives (CNs). FBias gives

T
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the bias of the frequency of detected rainfall occurrences

for QPEs. POD, SR, and TS can be viewed as alternative

measures of detection performance that are more sensi-

tive to the timing of theQPEwith respect to the reference

measurement.

A Taylor diagram (Taylor 2001) was utilized to visu-

alize three performance scores measuring the errors in

the estimates of rain rates, RMSE, PCC, and standard

deviation (SD), in a single diagram, following their

relationship:

RMSE2
E 5 SD2

O 1 SD2
E 2 2SD

O
SD

E
PCC

O,E
, (1)

where O represents the reference (gauge) data, and E

represents the estimates (QPEs).

A Roebber performance diagram (Roebber 2009) was

used to visualize four performance scores measuring per-

formance related to rainfall occurrences: SR, POD, TS,

and FBias. These statistics can be combined in one dia-

gram, sinceTS andFBias can be related to SRandPODby

TS5
1

1

SR
1

1

POD
2 1

, and (2)

FBias5
POD

SR
. (3)

b. Spatial and temporal representativeness

For comparison of spatial rainfall patterns, all datasets

were regridded to 0.258 resolution, where WFDEI_CRU

and CPCU data were downscaled and TMA sta-

tion data were interpolated, both by inverse distance

weighted method. CHIRPS and TAMSAT were sim-

ply aggregated, and others remained at their original

resolution. Since no validation statistics were com-

puted over these gridded data, more sophisticated

interpolation methods (such as kriging method) were

not deemed necessary.

Rainfall over Tanzania shows strong seasonality, in

which case, one QPE could yield a good NSE or PCC

score when it explains the seasonality, even it fails to

reproduce smaller time-scale fluctuations. The same

applies when the rainfall shows strong spatial variability.

To account for spatial variability and seasonality, ‘‘zero-

skill’’ models were established with respect to a season-

and spatial-regime-neutral reference. These were the

time series of dekadal, monthly, 3-monthly, 6-monthly,

and yearly rainfall means, averaged over the period of

study at each station. To measure the efficiency or ac-

curacy relative to the zero-skill models, we revised NSE

and PCC as follows:

re_NSE5 12
�
L

l51
�
M

m51

(O
i,l,m

2E
i,l,m

)2

�
L

l51
�
M

m51

(O
i,l,m

2O
l,m
)2
, (4)

re_PCC5
�
L

l51
�
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m51

(O
i,l,m

2O
l,m
)(E

i,l,m
2E

l,m
)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
L

l51
�
M

m51

(E
i,l,m

2E
l,m
)2

s , (5)

where l and m represent time step in zero-skill models

and station location, respectively; L 5 12, 4, 2, 1 for

monthly, 3-monthly, 6-monthly, and yearly zero-skill

model, respectively; and Ol,m and El,m are the monthly,

3-monthly, 6-monthly, or yearly mean values at time

step l, location m. For instance, for monthly zero-skill

model,O1,1 represents monthlymean of January averaged

over 1998–2006, for TMA station ‘‘Arusha.’’ The relative

NSE (re_NSE) shows the improvement (value . 0) or

degradation (value , 0) of QPEs over the zero-skill

models. The relative PCC (re_PCC) shows the correla-

tion between QPEs and gauge data accounted for the

seasonality produced by zero-skill models.

c. Extreme weather detection

The skill of the QPEs to estimate the frequency,

intensity, and severity of extreme weather is partic-

ularly relevant for applications related to drought or

TABLE 3. Rainfall contingency table. A threshold value of

0.2 mm day21 is chosen to separate rain from no-rain events.

‘‘Observed’’ represents gauge data and ‘‘estimated’’ represents

rainfall estimates.

Observed

Estimated Rain No rain

Rain Hit False alarm

No rain Miss Correct negative
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flood warning. The approach was to first determine the

occurrence of extreme weather, and then use categorical

statistics, such as FBias, TS, POD, and SR, to give a

quantitative evaluation. Two types of conditions can be

used to determine the occurrence: 1) count of consecutive

days with rainfall rates above or below certain thresholds;

2) precipitation sums in a day or a period (such as 5-day or

10-day) above or below fixed thresholds.

First, the occurrences of consecutive dry day (CDD)

and consecutive wet day (CWD) were defined. The

minimum length of 10 days was chosen to be agricul-

turally (Sivakumar 1992; Barron 2004) and hydrologi-

cally critical, and length of 20 days was used to

investigate the influence of time windows on the

evaluation results. Threshold of 0.1 mmday21 was

used for dry days with respect to the usual precision of

rain gauges, and 1 mmday21 for wet days on the as-

sumption that rainfall less than this amount is evap-

orated off directly (Mathugama and Peiris 2011). For

the determination of CWD, a 5-day moving average

was used instead of daily rainfall accumulation, which

allows to better account for severe prolonged wet

spells. The 5-day moving average of the current day is

the mean of the previous 5 days in this study. The

indicators of dry spell and wet spell are given by

CDD10/CDD20: the occurrences are counted of days

in a period where there are at least 10 or 20 consec-

utive dry days with precipitation less than 0.1 mm;

CWD10/CWD20: the occurrences are counted of days

in a period of 5-daymoving average where there are

at least 10 or 20 consecutive wet days with precipi-

tation larger than 1 mm.

The four indicators are defined for nonoverlapping

periods. Take CDD10 for example, if there is a period of

15 days without rainfall, then the 15 days all count as the

occurrence of CDD10. If there is an intermittent wet

day, the count starts anew.

Second, heavy rains were defined as precipitation

above a certain precipitation percentile. This percentile

definition was guided by the official recommendation

of the World Meteorological Organization for extreme

weather analysis (Klein Tank et al. 2009). The 90th and

99th percentiles (90P and 99P, respectively) were calcu-

lated for each station from historical TMA daily obser-

vations in the period of 1970–2006. The values of 90P and

99P are shown inTable 4, and can be viewed as thresholds

for moderate rain and heavy rain, respectively.

For applications where the timing of the very heavy

rainfall (99P) is not a big issue, such as for crop

models to estimate potential yields, a lag of 3 days

between the occurrence in observations and in theQPEs

was allowed. A reference period of one week was ap-

plied around the occurrence in gauge data, with 3 days

before and 3 days after this occurrence. The steps of the

implementation of the ‘‘lagged detection’’ are 1) check

the occurrences in the time series of a single gauge;

2) when an occurrence is detected, search the QPE data

for an occurrence within its reference period; 3) pick the

nearest one and move it to the day when occurrence

happened in the gauge data; 4) repeat steps 1–3 for all

gauges. In this way, values of FBias do not change, and

duplicated detection for the occurrence (the hits) in

QPE will be avoided, which could happen if simply

counting the occurrence of a QPE in the reference

TABLE 4. Description of the stations and data from TanzaniaMeteorological Agency in the period of 1970–2006. The first four columns

from the left are geographic information of the stations, and the other columns are precipitation statistics from the historical data.

Definition of precipitation patterns can be referred to in Table 5.

Name Longitude Latitude Elevation (m MSL)

Precipitation

pattern

Annual total of

precipitation (mm)

90P

(mmday21)

99P

(mmday21) Gap_7%

Arusha 348S 36.78E 1372 Bimodal 716 5.8 37.4 11.4

Bukoba 1.38S 31.88E 1144 Monsoon 1856 18.8 52 9.4

DIA 6.98S 39.28E 53 Bimodal 1058 8.6 48.4 12.1

Dodoma 6.28S 35.88E 1120 Arid 559 1.6 38.4 10.3

Iringa 7.78S 35.78E 1428 Arid 610 4 30.8 12.9

Kigoma 4.98S 29.68E 885 Winter-dry 917 8.4 39.8 3.6

Mbeya 8.98S 33.48E 1759 Winter-dry 923 8.4 35 14.7

Morogoro 6.58S 37.48E 579 Bimodal 795 6.4 37.4 2.8

Mtwara 10.38S 40.28E 113 Winter-dry 1082 8.2 47.4 8.3

Musoma 1.58S 33.88E 1147 Bimodal 897 6.6 37 13.9

Mwanza 2.58S 32.98E 1140 Winter-dry 1091 9 43.4 2.8

Same 4.18S 37.78E 860 Bimodal 544 3 30.4 10.7

Songea 10.78S 35.68E 1067 Winter-dry 1008 9.2 45.2 7.1

Tabora 5.088S 32.88E 1265 Winter-dry 967 8 40.2 11.7

Tanga 5.18S 39.18E 9 Monsoon 1157 9.2 54.4 16.7

Zanzibar 6.18S 39.28E 18 Monsoon 1641 13.8 64 24.2
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period as a hit. The lag value could be chosen such that

only a limited number of occurrences in the QPEs will

be moved back and forth. To select an appropriate lag

value, a criterion, Gap_n with n 5 2 3 lag 1 1, was de-

fined to be the percentage of multiple occurrences of 99P

within a period of n days with respect to all 99P events,

with 0 being the perfect value.A lag of 3 dayswas selected

for our case asmost occurrences of 99P in the observation

dataset have a gap or intermission time larger than 7 days

based on the values of Gap_7 in Table 4.

d. Regional and seasonal classification

To evaluate the performance of QPEs under various

morpho-climatic conditions, a classification was applied

to distinguish between different seasons, climatological

and topographical regions that potentially influence the

rain-producing mechanism and the quality of the QPE

products. A climate zone classification and seasonal clas-

sification related to precipitation were developed, which is

more specific than the common way of applying Köppen–
Geiger method (see the following paragraph) for regional

classifications and using the four calendar seasons for sea-

sonal classification. Rainfall seasons should be classified in

relation to climate zones, instead of using a uniform clas-

sification over the whole region. For instance, a dry season

should be defined in summer over regions with a summer-

dry climate and in winter with a winter-dry climate.

1) CLIMATOLOGICAL CLASSIFICATION

The domain was divided into five climatic zones accord-

ing to the Köppen–Geiger classification (Peel et al. 2007).

This method uses three parameters to characterize climate

zones: main climate, precipitation pattern and temperature

pattern (optional). Main climate is more commonly used in

previous studies (Beck et al. 2017), however, the pre-

cipitation pattern is more closely related to evaluating

the performance of QPEs or analyzing the sources of

errors for QPEs. To decrease the number of zones for a

gauge-sparse environment, in this paper a classification

based only on precipitation pattern was used. Figure 2a

shows the Tanzania climate map consisting of five climatic

zones: ‘‘arid,’’ ‘‘winter-dry,’’ ‘‘summer-dry,’’ ‘‘monsoon,’’

and ‘‘full-humid.’’ The map was generated using the

dataset from digital world map of Köppen–Geiger classi-

fication at 0.58 resolution covering 1976–2000, and each

zone in the map includes multiple of Köppen climate

classes. For instance, the winter-dry zone includes Köppen
climates of Cwa, Cwb, and Aw. None of the stations are

located in summer-dry or full-humid zone and most of the

stations are located into the winter-dry zone. Figure 2d

shows the histograms of the monthly mean averaged over

stations in the same climatic zone over the period of study

(1998–2006). Based on the precipitation patterns, stations

classified as winter-dry were further divided into a winter-

dry pattern with one continuous rainy season during

November until May in a year, and a ‘‘bimodal’’ pattern

with two rainy seasons in a year. As a result, there are four

climatic classes for stations and five over thewhole domain

as depicted by Figs. 2c and 2b.

2) SEASONAL CLASSIFICATION

First, two main seasons over the whole domain were de-

termined independent of local climatological behavior, in

order to assess the overall performance for the spatial

FIG. 2. Climatological information of Tanzania and the stations with (a) climate map of Tanzania, (b) legend of the climatic zones, (c) climatic

classes of the stations, and (d) histogram of the monthly mean averaged over the stations in the class and over the period of 1998–2006.

1230 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/6/1223/4952179/jhm

d190157.pdf by guest on 15 July 2020



distribution of rainfall in different seasons. The wet season

covers the months from November to April, and dry season

covers fromMay to October. This classification is generated

according to themonthlymean precipitation pattern over all

stations.

A more detailed seasonal classification was made based

on the rainfall patterns in different climate zones for fur-

ther investigation ofQPE sensitivity to rainfall seasonality.

Three seasons: dry season, light rain season, and heavy rain

season, were distinguished based on thresholds varying

between climate zones, as shown in Fig. 2d. Details in-

cluding the number of stations in each climate zone,

threshold values for the classification, and months in-

cluded in each seasonal class are given by Table 5.

3) TOPOGRAPHICAL CLASSIFICATION

To investigate the topographical influence on the

QPEs and the capability of QPEs to capture orographic

rainfall, the stations were divided into three classes: low

altitude (,1000 m MSL) mainly located in the coastal

plain, medium altitude (1000–1300 m MSL) located on

the central plateau, and high altitude (.1300 m MSL)

located in the north–south highlands, as illustrated in

Figs. 1b and 1c by dots with different sizes.

4. Results and discussion

This section illustrates the use of the proposedmethod

to evaluate, compare, and select QPEs with six satellite-

based and reanalysis datasets as case study, with a gauge-

based product as additional reference to TMA gauge

data. We discuss how to use, modify and improve the

evaluation method, with recommendations of the six

QPEs, for different applications in sections 4a–4f. Factors

that influence the reliability of evaluation results, and

sources of errors in the estimation algorithms of theQPEs

are discussed in section 4g.

a. Overall performance

Taylor and Roebber performance diagrams provide a

quick overview of skills of QPEs at rain rates and

rainfall occurrences, respectively, over the whole domain.

In the two diagrams, ‘‘A’’ (black dot) is the observation

(gauge) data being treated as the reference QPE. Hence,

its RMSE 5 0 mmday21, PCC 5 1, SR 5 1, POD 5 1,

TS 5 1, FBias 5 1, and its SD 5 8.73 mmday21. The

Taylor diagram in Fig. 3a illustrates the values of RMSE,

PCC and SD for the six QPEs. In the diagram, PCC is

related to the polar angle (blue line), SD is proportional to

the radial distance from the origin (black arc centered at

origin) and RMSE is proportional to the radial distance

from A (green arc centered at A). PCC, 0.5 implies low

correlation between QPEs and gauge data. SD represents

the variability of rainfall in a given QPE. The Roebber

performance diagram in Fig. 3b visualizes values of SR,

POD, TS and FBias. In the diagram, SR and POD are

represented on the x axis and y axis, respectively, FBias is

represented by the slope value in red dashed lines and TS

by the blue solid contours centered at A. SR , 0.75,

POD , 0.75, and TS , 0.7 can be viewed as bad timing

with too many false alarms, misses and inaccurate rainfall

occurrences in a QPE, respectively. FBias . 1.25 or ,0.8

represents large over or underestimation of rainfall fre-

quencies, respectively.

Observed from Fig. 3, all QPEs perform poorly at daily

rainfall estimation of both the intensities and occurrence.

Figure 3a shows all datasets except CMORPH_BLD and

CPCU are poorly correlated to gauge data, with PCC

scores , 0.45. All QPEs except TRMM 3B42 underesti-

mate rainfall variability, as indicated by SD values lower

than SD of the observation dataset (A). Figure 3b shows

all the QPEs have difficulties to determine the timing of

rainfall, with best TS scores given by CMORPH_BLD to

0.59 and other TS scores, 0.45. In addition,WFDEI_CRU

and CMORPH_RAW significantly overestimate the

frequency of rainfall, where WFDEI_CRU estimates oc-

currences of precipitation more than twice as high as

observed by the gauges.

It can be noticed that CMORPH_BLD and CPCU have

very similar performance for the seven performance scores,

while CMORPH_BLD is slightly better for all aspects.

b. Spatial pattern of precipitation

First, we check whether the climatology obtained by dif-

ferent datasets are spatially consistent to the gauge-based

rainfall fields (TMA and CPCU), or to each other in this

TABLE 5. Seasonal classification.

Climate

zone

No. of

stations

Threshold for dryjlight
rain (mm month21)

Threshold for lightjheavy
rain (mm month21)

Dry

months Light rain months

Heavy rain

months

Arid 2 30 120 May–Nov Feb–Apr Jan and Dec

Winter-dry 6 50 150 May–Oct Feb, Apr, and Nov Jan, Mar, and

Dec

Bimodal 5 50 150 Jun–Oct Jan–Mar, May, Nov, and Dec Apr

Monsoon 3 50 200 Jul Jan–Mar, Jun, and Aug–Dec Apr–May
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gauge-sparse environment with complex topography.

Second, critical regions can be identified where the

QPEs differ the most from each other to provide advi-

sory information for optimal location of new gauges,

which could be used for both calibrating rainfall models

and assessing QPEs.

Figure 4 shows spatial precipitation patterns of the

regridded QPEs at 0.258 resolution over Tanzania, for

mean annual and seasonal (wet/dry) precipitation. All

datasets capture the general northeast–southwest pre-

cipitation gradient over Tanzania, which is caused by the

north–south movement of the ITCZ and the influence of

the highlands, mainly the Tanzania southern highlands.

Compared to TMA and CPCU, the other six QPEs

overestimate rainfall over the west to south Tanzania in

wet seasons (see the third and bottom rows of Fig. 4).

However, the rainfall intensities of different datasets

vary significantly spatially and no pair of QPEs show a

similar pattern.

Critical regions where QPEs show large differences

are areas along coastlines and around Lake Victoria

(blue circle) in the dry seasons (see the second and the

fifth rows of Fig. 4): northeast of the southern high-

lands, the Lake Victoria region, and the southwest

part of the central plateau in wet seasons (see the

third and bottom rows of Fig. 4). From maps of yearly

totals (the top and fourth rows of Fig. 4) we can see

peaks around Mount Kilimanjaro covered by snow

(green circle) and Lake Eyasi (cyan circle), over

which the error of different rainfall estimation algo-

rithms should be investigated.

Note that rainfall is a phenomenon characterized

by high variability both in space and time. Number

and distribution of gauges, spatial correlation, and

interpolation methods (IDW method for TMA and

topography-based method for CPCU) can impact the

resulting rainfall fields. This may be the reason for the

dependency between spatial rainfall patterns in the in-

terpolated TMA data and in CPCU, which makes it

difficult to determine which QPE performs better at

nongauge locations.

c. Performance dependency on temporal scale

To identify at what temporal scale a QPE is usable,

how it performs compared to zero-skill models defined

in section 3b, and what their ability is to capture small-

scale variability and seasonality (e.g., temporal scales

larger than a month), re_NSE and re_PCC scores are

developed with their values given by the six datasets

shown in Fig. 5. In the figure, x axis represents temporal

scales of zero-skill models, and y axis represents tem-

poral aggregation scales for QPEs. re_NSE , 0 means

the performance of a QPE at y-axis scale is not better

than using gauge data at x-axis scale, and re_NSE . 0

means sufficient quality of the QPE with respect to both

correlation and magnitude of error. re_PCC in a column

can be used to diagnose the influence of aggregation

scales on QPE performance, and re_PCC in a row to

FIG. 3. Diagrams to visualize the performance scores with (a) Taylor diagram to illustrate RMSE in the

green curve centered at ‘‘A’’ (black dot), PCC in the blue line, and SD in the black curve centered at the

origin, where RMSE measures the magnitude of error, PCC the linear correlation, and SD the rainfall

variability and (b) Roebber performance diagram to illustrate SR on the x axis, POD on the y axis, TS in the

blue curve centered at ‘‘A,’’ and FBias in the red dashed line, where SR, POD, and TS measure the ratio of

accurate detection of rainy days with respect to misses, false alarms, and both, respectively, and FBias is the

bias in the frequency of rainfall.
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FIG. 4. Spatial distribution of the mean annual rainfall, monthly rainfall over the dry season (May–October), and monthly rainfall over

the wet season (November–April) for the eight datasets, averaged over 1998–2006, regridded to 0.258 resolution. Blue, green, and cyan

circles represent locations of Lake Victoria, Mt. Kilimanjaro, and Lake Eyasi, respectively.
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FIG. 5. Re_NSE and re_PCC scores of the seven QPEs compared to TMA data on a daily, pentadal, dekadal, and monthly basis, with

respect to climatology (zero-skill models) at dekadal, monthly, 3-monthly, 6-monthly, and yearly scales. Values of performance scores

show the QPE performance to capture rainfall variability at y-axis scales by removing the influence of seasonality at x-axis scales.
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diagnose how the variance in model error compared to

seasonality.

From Fig. 5 we can observe, in general, that the per-

formance of QPEs increases with aggregation over larger

time periods and/or at larger scales. CMORPH_BLD

shows the best agreement of gauge data at all temporal

scales. By looking at rows of table we can observe that, at

daily scale, re_NSE values are negative for four out of the

six QPEs, that is, these estimates are worse than using

monthly or even yearly mean of gauge data. At 5-day to

monthly aggregation scale, QPEs are slightly better, but

two QPEs are still worse than monthly gauge rainfall.

Correlation improves for all products with the removal

of the influence of larger-scale variability, but the im-

provement is larger at larger aggregation scale, as indi-

cated by rows of re_PCC values. As shown by values in

the bottom rows, comparing daily re_PCC correspond-

ing to monthly versus yearly zero-skill models, skill

improves only little, which means the QPES can hardly

capture small (daily) scale variability, and the uncer-

tainty is too large to effectively represent seasonality.

A modest requirement is that both re_NSE . 0 and

re_PCC . 0.5 for a product to be viewed as acceptable.

In this case, all sevenQPEs except, CMORPHBLD and

CPCU, perform poorly at daily scale. Even at pentadal

scale, only TRMM3B42, CHIRPS, CMORPHBLDand

CPCU are usable. In addition, the small re_NSE values

(,0.5) of CPCU at daily scale indicate high level of in-

dependence of the TMA data as a reference dataset.

d. Performance related to climate regime

Rainfall-related seasonal classification in relation to

climate regions can be used to understand sources of

error, and help to objectively select QPEs for a certain

region or season, and give instructive information on

adjustment of model parameters in QPE algorithms.

Figure 6 shows the performance statistics in different

regional and seasonal categories by the spider charts

for PCC, Bias, FBias, and TS for rainfall at daily scale.

POD and SR can also be used for certain applications

where misses and false alarms play an important role,

and RMSE can be used in combination with Bias to

diagnose the amount of error due to bias in the datasets,

which are not included in this section.

In Fig. 6 the asymmetry in the spider charts indicates

unbalanced scores across climate zones, while star-shaped

patterns indicate poor seasonal performance. This uneven

distribution of values in different categories indicates

significant influence of climatology and seasonal factors

on the quality of QPEs. We can observe that regional

and seasonal performance of CMORPH_BLD and

CPCU closely resemble each other. Figure 6a shows

that CMORPH_RAW and TAMSAT perform better

over the winter-dry, bimodal, and monsoon regions,

while CHIRPS shows better performance for wet

seasons. TRMM 3B42, CMORPH_BLD, CPCU, and

WFDEI_CRU tend to have a more uniform behavior

regardless of the impact of climate and seasons.

Figures 6b and 6c illustrate the bias in the estimation

of rainfall intensity and frequency, respectively. Generally,

the seasonal dependencies are stronger than the differ-

ences across climate zones. In dry seasons, TAMSAT

and CHIRPS tend to underestimate the frequency and/or

intensity of rainfall over the whole domain, while TRMM

3B42, CPCU, and CMORPH products overestimate

them over winter-dry and arid regions. For wet seasons,

CMORPH products and CPCU underestimate intensity

and overestimate the frequency of rainfall. TAMSAT

and CHIRPS have a better performance on rainfall in-

tensity estimation but uneven performance on frequency

estimation over different regions. TRMM 3B42 and

WFDEI give a better estimation in heavy rain seasons

than in light rain seasons. WFDEI_CRU overestimates

the frequency of rainfall bymore than a factor of 2, while

its bias in rainfall intensity over the wet seasons is the

smallest. This implies that smaller rainfall events are

produced more frequently in wet seasons compared to

gauge observations.

For the timing of rainfall illustrated by Fig. 6d, per-

formance in dry seasons is much worse than that in the

two wet seasons over each climate zone for all QPEs.

Combined with the FBias values, this indicates that the

ability of the QPEs to capture rainfall occurrences im-

proves for seasons with higher rainfall frequency.

The seasonal classification is also useful for agricul-

tural applications, with crop grown mainly in the light

rain and heavy rain seasons.

e. Detection of dry and wet spells

Dry and wet spell defined by CDD10, CDD20, CWD10,

and CWD20 can be important weather conditions for

many applications, for instance, in the context of weather

index insurance for agriculture where payouts to small-

holder farmers are determined by a proxy of crop yield

loss, such as precipitation. The evaluation of QPEs on

dry/wet spell detection over different regions, classified

by climate patterns or topography, can be helpful to select

proper models as input to crop yield models for different

purposes. Dry spells can be used for drought detection,

which is a frequently occurring phenomenon in Tanzania.

Wet spell is critical to monitor and predict the crop

growing process.

Performance of QPEs averaged over the domain at

daily scale is expressed in terms of POD, SR, FBias, and

TS in the Roebber performance diagram, and perfor-

mance over different regions classified by climate and by
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elevation is shown in spider charts in Fig. 7. This figure

shows that TAMSAT and CHIPRS have a bias to over-

estimate the number of CDD10 events, while the other

products tend to underestimate. The same applies for

CDD20 events, with only CHIRPS and CMORPH_RAW

having a slight improvement on the frequency of events and

others becoming worse. Figures 7b and 7c show that all

datasets except forTRMM3B42 tend to performbest (with

best FBias and TS scores) on CDD10 over arid region

categorized by very little rainfall in the dry period. For

topography classes, all satellite-based QPEs except

TRMM 3B42 tend to perform better for higher al-

titudes, based on the FBias and TS scores. If one

selects a QPE which achieves a minimum TS of 0.7

with 70% of droughts being identified, for 10-day dry

spell detection with acceptable FBias of 0.8–1.25.

Then only CMORPH_BLD and CPCU can be possibly

used in all regions and climate zones. CHIRPS and

TAMSAT are good for arid and winter-dry, while some

of the other products are restricted to use over the arid

zone. Figures 7e and 7f show a decrease of the QPE’s

performance on the timing of CDD20 events compared

to CDD10 over monsoon region, especially for TAMSAT

and CHIRPS since they produce a significant increase of

overestimation (by around 1 and 0.5 times, respectively).

For CWD10 detection, Fig. 7g shows that CMORPH_BLD

and CPCU underestimates the occurrence, while TRMM

3B42, TAMSAT, CHIRPS, and especially WFDEI_CRU

overestimate. Figures 7h–i show that the performance of

TRMM3B42, CHIRPS, TAMSATandCMORPH_RAW

FIG. 6. (a)–(d) Spider charts of the validation statistics for datasets at daily scale in different seasons represented

byDry, LR, andHR in the inner circle, which are defined over different climatic zones represented byA,W, B, and

M in the outer circle.
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FIG. 7. Roebber performance diagrams and spider charts for the detection of (a)–(c) CDD10, (d)–(f) CDD20 (dry

spell), (g)–(i) CWD10, and (j)–(l) CWD20 events (wet spells) at daily scale by the seven products. Spider charts show

their performance over different climates zones represented by A, W, B, and M, and over different topographical

regions represented by low, medium, and high.
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are at the same level. Compared to CDD10 detection,

performance is less influenced by climate, as shown by

the more evenly distributed scores over climate zones in

Figs. 7e and 7f, with slight underestimation of the fre-

quency over monsoon regions and overestimation over

arid regions. All satellite-based QPEs tend to give the

largest FBias and TS values at medium altitudes. With

TS . 0.7 and 0.8 , FBias , 1.25, only CMORH_BLD

and CPCU can be used over arid and winter-dry regions.

Figures 7k and 7l show that for CWD20 detection, all

data except CMORPH_BLD andCPCUhas an increase

of overestimation compared to CWD10 detection and

consequently a decrease of timing, over winter-dry and

especially arid regions.

In general, the datasets perform worse with increase

of time window of consecutive dry/wet days, with increased

overestimation or underestimation. Thismeans they have a

tendency to exhibit persistence of dry and wet days.

The evaluation approach can be easily adapted to

evaluate and select the QPEs for various applications,

by determining and modifying the thresholds for mini-

mum acceptable performance. Threshold of drought, for

example, the length of consecutive dry days, can be flexibly

adjusted based on drought vulnerability of a given crop

and local soil characteristics. One could choose to focus

the evaluation only over growing seasons of that crop

instead of the whole year. In addition, high SR means

few false alarms in drought detection, which implies the

insurance company will have a limited economic loss

due to paying farmers for false alarms of drought. High

POD implies farmers have a good probability of avoiding

loss. SR can be translated into a risk of loss for the insurers,

and POD for the farmers. With respect to wet spell de-

tection, both the minimum length of CWDs and the

threshold for wet-or-dry day determination could be

adjusted depending on sensitivity of the growing phase

of a certain crop. In the definition of wet spell, we used

5-daymoving average, where consecutive wet days and a

heavily rainy day followed by several dry days are as-

sumed to make not much difference on a crop growing

process. The use of n-day moving average could also be

modified according to the user’s needs.

f. Detection of moderate and heavy rainfall

Moderate and heavy rainfall, characterized by 90th

and 99th percentiles of daily rainfall in this study, are

crucial in flood-related applications. Threshold values

are different for each station as shown in Table 4. The

numbers of days with rain rates above the thresholds

(number of 90Ps and 99Ps), however, are similar.

Figures 8a–c illustrate the ability of QPEs to the

capture of moderate rains (90th percentile). All QPEs

overestimate the number of moderate rains, except the

two CMORPH products. The timing of QPEs is poor,

except CMORPH_BLD, with more than 50% misses

andmore than 50% false alarms, indicated by POD# 0.5

and SR# 0.5, respectively. FBias and TS values increase

with smaller 90th percentile values for a given climate

zone. For instance, all QPEs, except CMORPH_BLD,

overestimate the number of 90Ps over arid zones but

underestimate that over monsoon zones. With respect

to the topographical impact, TRMM 3B42, TAMSAT,

and CHIRPS perform the best at low altitude, while

CMORPH_BLD and WFDEI_CRU respectively un-

derestimate and overestimate for all altitudes.

The second and third rows of Fig. 8 exhibit the de-

tection and lagged detection of 99Ps. All datasets except

for TRMM3B42 significantly underestimate the frequency

of heavy rains, and the performance varies strongly across

the climatological and topographical regions, indicated by

spikes in the spider charts. The TS scores of the lagged

detection (Fig. 8i) are 2–3 times better than regular detec-

tion (Fig. 8f) for all datasets, except for CMORPH_BLD

which shows less improvement on the timing. This indicates

thatmost of the 99Poccurrences in theQPEproducts do not

coincide with gauge observations, but are located within a

one-week period around them. The absolute mean values in

Table 6 show that CMORPH_BLD and TAMSAT have

smaller lag time than the other products. Themean values of

lag time in Table 6 show that satellite-based QPEs tend

to give delayed detection of 99Ps while the reanalysis

dataset (WFDEI_CRU) produces earlier detection.

In general, none of the QPEs are recommended

if the selection criteria are 0.8, FBias, 1.25, TS. 0.6,

and POD . 0.7 (e.g., less than 30% misses), with

CMORPH_BLD acceptable only over arid regions.

For flood warning systems, the thresholds of heavy

rainfall can be adjusted for flood triggering over a spe-

cific region at different levels, instead of using 90th or

99th percentiles. An adjustment in the temporal scale

could also bemade, for instance, instead of daily rainfall,

one could use rainfall accumulation over several days as

the thresholds. This would limit applications to large

systems characterized by long response times. For urban

drainage systems, QPE performance needs to be satis-

factory at subdaily scales. Upper and lower boundary of

the lag time for lagged detection could also be adapted,

for instance, to the range of [23, 0] to exclude QPE

which would trigger delayed flood forecast. Acceptable

FBias, SR or POD score ranges can be determined by

the user’s inclination to less false alarms or less misses

when choosing among the QPEs.

g. Evaluation reliability and uncertainty in the QPEs

The outcomes of this study are similar to that from

other literature. For instance, QPEs perform poorly
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FIG. 8. Roebber performance diagrams and spider charts for the detection of daily rain rates above the thresholds of (a)–(c) 90th

percentile, (e)–(f) 99th percentile, and (g)–(i) lagged detection for 99th percentile by the seven products. Spider charts show their per-

formance over different climates zones represented by A, W, B, and M, and over different topographical regions represented by low,

medium, and high.
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over regions of Africa. Similar correlation values were

shown byDinku et al. (2007) over East Africa’s complex

topography compared to gauge data averaged over

0.258–2.58 grid boxes at dekadal and monthly scales, and

byMaidment et al. (2013) overUganda (near Tanzania),

who compared kriged averaged gauge data to satellite

grids at dekadal scale. Beck et al. (2017) evaluated 22

QPEs globally, where 13 nongaugeQPEs resulted in low

PCC values overAfrica when compared to gauge data at

3-day, monthly and 6-monthly scales, and the other 9

gauge-corrected QPEs gave lowNSE values over Africa

when compared to catchment data using hydrological

modeling at 3-day scale. Another example is that QPEs

tend to underestimate heavy rainfall events, in terms of

frequencies of 99Ps in our study, and in terms of maxi-

mal rainfall intensities per year shown by Thiemig et al.

(2012) over basin regions.

There are several factors that influence the reliability

of the evaluation.

(i) Due to the scarcity or the lack of gauges in critical

regions, such as Mount Kilimanjaro, Lake Eyasi,

and the coastal plain, the spatial distribution of

precipitation over these regions is poorly repre-

sented by the interpolated gauge observations. The

abrupt change of the terrain structure over these

regions increases the spatial variability of rainfall

patterns, which makes it problematic to draw reli-

able conclusions using the current station network.

(ii) The reference gauge data are not totally indepen-

dent from the datasets that are evaluated, there-

fore, all satellite products may not be consistently

assessed in this study. The weight and amount of

the gauge data used in these products influences the

evaluation results, but not necessarily the accuracy

of the products.

(iii) The scale mismatch, spatial mismatch, and tempo-

ral mismatch were not accounted for in the point-

to-pixel analysis. The spatial integration of satellite

estimates could smooth extremes. Averaging or

interpolating point gauge data to QPE grids, or

downscaling QPEs to smaller scales can be a solu-

tion, however, this may introduce sampling errors.

We have chosen to use the point scale as reference

for the evaluation analysis, since the scale of many user

applications is closer to the point than satellite pixel

scale (e.g., crop field, city neighborhoods). The mis-

matches of the start of day between the gauges and

datasets, and diurnal rainfall are not accounted for in

this study. There is a consistent time differences be-

tween the definitions of ‘‘day’’ for the various datasets:

TMA gauge data are at UTC 1 0 h, TRMM 3B42

at UTC1 1:30 h,WFDEI_CRUatUTC2 3 h, CHIRPS

at UTC 1 0 h, TAMSAT at UTC 1 6:15 h, CMORPH

products at UTC 1 6 h, and CPCU at UTC 1 0 h. The

mismatches between independent gauges and QPEs

could lead to unreliable evaluation conclusions, espe-

cially over regions with frequent and heavy rainfall at

subdaily time scales. For gauge data that aremerged into

QPEs, impact of diurnal rainfall is already included in

the gauge-satellite calibration process.

There are several sources of error that can be found in

reanalysis data.

(i) Theareal-averageeffect canbe found inWFDEI_CRU

and probably in other reanalysis datasets. Its

physical model, ECMWF, uses a mass-flux scheme

to propagate convection, cloud, and resolved vari-

ables. The average (resolved) of temperature, humid,

and cloudiness over the large grid box (e.g., 0.58 for
WFDEI_CRU), might lead to the underestimation

TABLE 6. Lag time of the detection for 99P events over different regions classified by climate and topography as well as the whole

region of study.

Arid Winter-dry Bimodal Monsoon Low Medium High Tanzania

Mean (day) TRMM 3B42 0 0.30 20.08 0.33 0.22 0.21 0.08 0.15

WFDEI_CRU 1 20.75 0.21 22 0 1 20.4 20.11

CHIRPS 1 0.10 0.36 0 0.17 0.23 0.29 0.26

TAMSAT 0 20.6 0.3 0.3 0.82 20.13 20.05 0.06

CMORPH_RAW 1 0.2 0.15 0.58 0.44 0.04 0.34 0.38

CMORPH_BLD 0.15 0.13 20.03 0.14 20.04 0.09 0.14 0.1

CPC 0.05 0.35 0.52 0.40 0.46 0.26 0.4 0.39

Absolute mean (day) TRMM 3B42 0.71 0.90 0.66 0.56 0.57 0.55 0.88 0.73

WFDEI_CRU 1 1.75 1.5 2 0 1.67 1.47 0.89

CHIRPS 1.5 0.87 0.93 0.70 0.74 1 1.03 0.90

TAMSAT 0 0.6 0.57 0.9 1.36 0.38 0.37 0.45

CMORPG_RAW 1 1.08 0.8 1.0833 0.76 0.92 1.09 0.91

CMORPH_BLD 0.21 0.27 0.42 0.26 0.25 0.44 0.29 0.36

CPC 0.05 0.35 0.52 0.40 0.46 0.26 0.4 0.39
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of rain rates in most rainfall events or, in this study,

the underestimation of the frequency of 99P events

(that are defined based on historical gauge records).

(ii) The lack of ground observations to calibrate the

parameters of the convection schemes in the tropics

and the lack of other rain-production processes in the

NWPmodelmay cause the low skill ofWFDEI_CRU.

(iii) Another cause of the poor performance of

WFDEI_CRU lies in its initialization strategies. It

assimilates the factors that influence the formation

of rainfall, such as humidity, temperature, and total

column water vapor, instead of the rainfall itself. This

results in relatively low correlation with daily rainfall

observations. Therefore, although WFDEI_CRU, or

its precursors—ECMWF and ERA-Interim—perform

well in some gauge-dense countries, for instance,

some of the European countries (Kidd et al. 2012;

de Leeuw et al. 2015), indicating a good param-

eterization over these regions, this parameteri-

zation is not suited everywhere and requires

adjustment for other regions.

The performance of the satellite-based QPEs is not re-

lated to their spatial resolutions, but related to input sour-

ces, the algorithms for the retrieval of precipitation-related

geophysical parameters, and the algorithms for the pre-

cipitation estimation from these parameters (some algo-

rithms retrieve precipitation directly from satellite inputs).

(i) Input sources can have a great influence on estima-

tion performance. For instance, without merging

gauge data, CMORPH_RAW is intrinsically less

correlated to TMA data than the other satellite-

based QPEs (Fig. 5). CMORPH_BLD resembles

CPCU in all aspects, probably due to its merging

of CPCU for bias correction (Xie et al. 2017). Low

gauge density can lead to inaccurate calibration of

satellite-rainfall models. It either produces statis-

tically unreliable models if the model is calibrated

by regional gauges, or results in a small weight over

that region if the model is calibrated by worldwide

gauges. The sensitivities and uncertainties of rain-

fall with respect to different sensors (IR or MW)

can vary to a large extent for different topograph-

ical characteristics and rain types. This effect is visible

in Fig. 4: IR-only data (TAMSAT) are partly influ-

enced by snow-covered regions (Mount Kilimanjaro)

and not influenced bywaterbodies (LakeVictoria and

Lake Eyasi); MW-calibrated IR data, depending

more on IR (CHIRPS), are influenced by snow, and

partly influenced by waterbodies; and IR-assisted

MWdata depending more onMW (CMORPH and

TRMM 3B42) are influenced by both snow and

waterbodies.

(ii) The discrimination of precipitating from nonpreci-

pitating scenes is problematic for both IR and MW

retrievals. Most products estimate rainfall occur-

rences by threshold methods. The formation of rain

in the real world is complex and has more random-

ness, therefore, threshold of a certain cloud feature

lacks complexity for modeling rainfall statistically.

(iii) Aims of a product and techniques used in their

estimation also introduce errors. For instance, the

droughtmonitoring products TAMSATandCHIRPS

tend to underestimate both occurrences and inten-

sities of rainfall during dry seasons and, thereby,

overestimate droughts. The overestimation of the

occurrences of consecutive dry/wet days in TAMSAT

and CHIRPS lies in the fact that they downscale

pentadal rainfall fields to obtain daily data, so they

tend to underestimate temporal variability, result-

ing in underestimation of intermittency during dry

or wet periods. CMORPH utilizes a snow-screening

process (Joyce et al. 2004) and input source (retrievals

from AMSU instruments) that remove estimates

over the snow/ice covered regions. This could prob-

ably result in underestimation of rainfall over Mount

Kilimanjaro. Note that the operational CMORPH

constituent algorithms have recently been enhanced

for snowfall detection.

(iv) The representativeness error and inherent error in

the QPEs are difficult to be removed or taken into

account, which may also lead to the discrepancy

between gauge data and QPEs. Gauges provide

point measurements over continuous periods of time.

QPEs are derived from remote sensing signals aver-

aged or interpolated over the period between passage

times (from 3-hourly to daily) or even longer periods

(pentadal to monthly) to give homogeneous rainfall

over a grid cell. Therefore, the timing of rainfall is not

well determined, which is illustrated by lagged de-

tection of 99P showing better TS scores than regular

detection (Fig. 8).

5. Conclusions

A methodology for evaluation of rainfall products

(e.g., QPEs) was developed to better understand their

performance under a wide variety of aspects, and to

select the best products for different applications. In

addition to the classic performance scores, such as

PCC, NSE, RMSE, Bias, FBias, and TS, to assess the

overall performance on the estimation of rainfall in-

tensity and occurrence, the method can also evaluate

the detection of extreme weather events over differ-

ent rainfall regimes and seasons characterized by

monthly rainfall.
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Seasonally adjusted PCC and NSE were developed

to assess QPEs’ ability to capture rainfall variability at

small time scale, which were less sensitive to large

seasonality than regular PCC and NSE. The extreme

weather conditions related to agricultural and hydro-

logic applications included dry/wet spell, moderate and

heavy rainfall, which were defined as consecutive 10 or

20 dry/wet days, and 90th and 99th percentiles for each

location, respectively. They were transformed to bi-

nary events, and the estimation of their intensity and

timing by the QPEs were evaluated by categorical

scores of FBias, TS, POD, and SR. Sources of errors

were analyzed over regions and seasons, where the

domain was partitioned into climate zones (e.g.,

rainfall regimes) and topographical regions, and a

year was partitioned into ‘‘dry,’’ ‘‘light rain,’’ and

‘‘heavy rain’’ seasons by thresholds of monthly mean

over each climate zone.

Seven rainfall estimates (QPEs) were then evaluated

using the method, against rain gauge data provided by

Tanzania Meteorological Agency over the total land

surface of Tanzania during 1998 to 2006: TRMM 3B42

v7.0, TAMSAT v3.0, CHIRPS v2.0, CMORPH_RAW

v1.0, CMORPH_BLD v1.0, WFDEI_CRU, and CPCU.

CPCU was used to demonstrate the degree of co-

incidence between the reference gauge data and

gauge data merged in the QPEs and detailed diag-

noses for CPCU were not given. In general, for the

example region the chosen datasets perform poorly

at daily scale, the replication of monthly to yearly

climatology, timing of rainfall, and extreme weather

detection.

In fact, using QPE at smaller than pentadal time

scale, one is not better off than simply using a monthly

mean of gauge data. Or conversely, to reach a quality of

rainfall estimates better than gauge monthly rainfall,

the minimum time scale that can be used for QPE is

5-day aggregations. Variability smaller than this scale

can simply not be represented by QPE products.

With respect to extreme weather, given the types and

sources of the input data they used, and the algorithms

they employed to produce rainfall estimates, the prod-

ucts showed strengths and weaknesses for different

applications.

(i) Fordry spell detection,CHIRPSandCMORPH_BLD

perform better than others, where CHIRPS overesti-

mates drought over monsoon regions by around 100%

whereCMORPH_BLDunderestimates by 20%.Since

CHIRPS only overestimates the occurrence of dry

days in the dry season in monsoon regions, which is

not a growing season for crops, CHIRPS is a better

option for drought detection for agricultural use.

(ii) Forwet spell detection, CMORPH_BLDandTRMM

3B42 perform well, where CMOPRH_BLD slightly

underestimates the occurrences of wet spells by

5% but has the best estimation of timing with

65% hits, and TRMM 3B42 slightly overesti-

mates by around 15%.

(iii) Moderate rains and heavy rains are poorly detected

by all products. All QPEs except the two CMORPH

products overestimate the occurrences of moderate

rains. CMORPH_BLD has the best skill at timing of

heavy rains with 49% hits, while other products

have$50%misses and$50% false alarms. For heavy

rainfall detection, all products except TRMM 3B42

underestimate the occurrences, where TRMM 3B42

shows the best performance on the estimation of the

frequencywithFBias5 1 andCMORPH_BLDof the

timing with 40% hits.

The regions influenced by a combination effect of

complex terrain and climate show large spatial and

temporal rainfall variability, which requires more

gauges to improve the understanding of the rainfall

characteristic and uncertainty, and to achieve more

reliable evaluation results.

The methodology can be used for, and easily adapted

to, agricultural and hydrological applications. Seasonally

adjusted PCC and NSE can identify the minimal temporal

scale at which a product is useful for models that take

rainfall as input (e.g., cropmodels), without the need to run

the actual models. Dry/wet spells are crucial for crop

growth processes, and the detection of them is important

for risk assessment and decision-making. Capturing of

moderate and heavy rainfall is critical for flood prediction

andwarning. The thresholds used in the definitions of these

extreme weather conditions can be adjusted to agricultural

droughts and floods for a given crop, or to thresholds that

trigger floods in a certain region. Besides, the rainfall zones

and rainfall seasons can be classified for different crop

types and their growing phases for agricultural use, or by

runoff systems for flood warning.
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