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Adaptive-size dictionary learning using
information theoretic criteria for image
reconstruction from undersampled k-space
data in low field magnetic resonance
imaging
Emmanuel Ahishakiye1,2* , Martin Bastiaan Van Gijzen3, Julius Tumwiine4 and Johnes Obungoloch2

Abstract

Background: Magnetic resonance imaging (MRI) is a safe non-invasive and nonionizing medical imaging modality
that is used to visualize the structure of human anatomy. Conventional (high-field) MRI scanners are very expensive
to purchase, operate and maintain, which limit their use in many developing countries. This study is part of a
project that aims at addressing these challenges and is carried out by teams from Mbarara University of Science
and Technology (MUST) in Uganda, Leiden University Medical Center (LUMC) in the Netherlands, Delft University of
Technology (TU Delft) in the Netherlands and Pennsylvania State University (PSU) in the USA. These are working on
developing affordable, portable and low-field MRI scanners to diagnose children in developing countries with
hydrocephalus. The challenges faced by the teams are that the low-field MRI scanners currently under development
are characterized by low Signal-to-Noise Ratio (SNR), and long scan times.

Methods: We propose an algorithm called adaptive-size dictionary learning algorithm (AS-DLMRI) that integrates
information-theoretic criteria (ITC) and Dictionary learning approaches. The result of the integration is an adaptive-
size dictionary that is optimal for any input signal. AS-DLMRI may help to reduce the scan time and improve the
SNR of the generated images, thereby improving the image quality.

Results: We compared our proposed algorithm AS-DLMRI with adaptive patch-based algorithm known as DLMRI
and non-adaptive CSMRI technique known as LDP. DLMRI and LDP have been used as the baseline algorithms in
other related studies. The results of AS-DLMRI are consistently slightly better in terms of PSNR, SNR and HFEN than
for DLMRI, and are significantly better than for LDP. Moreover, AS-DLMRI is faster than DLMRI.
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Conclusion: Using a dictionary size that is appropriate to the input data could reduce the computational
complexity, and also the construction quality since only dictionary atoms that are relevant to the task are included
in the dictionary and are used during the reconstruction. However, AS-DLMRI did not completely remove noise
during the experiments with the noisy phantom. Our next step in our research is to integrate our proposed
algorithm with an image denoising function.

Keywords: Compressed sensing, Dictionary learning, Image reconstruction, Information-theoretic criteria, Low-field
MRI

Background
Magnetic resonance imaging (MRI) is a technique that
uses magnetic fields to create tomographic images
without exposure to radiation. The use of MRI technol-
ogy in medicine provides noninvasive and nonionizing
visualization of the structure of human anatomy [1]. The
MRI systems are classified according to the strength of
the magnetic field they produce (in Tesla): Ultra high
field > 3 T, high field (1 - 3 T), midfield (0.5 - 1 T), low
field (0.1–0.5 T) and ultra-low field < 0.1 T [2]. The con-
ventional MRI scanners (high-field) are very expensive
to purchase, operate and maintain and are therefore
often out of reach in developing countries. These limita-
tions can be overcome by developing affordable, portable
and low-field MRI scanners that can be used to diagnose
conditions that do not require a high resolution, such as
hydrocephalus [3].
Moreso, MRI scanners have long acquisition time, and

this means that MRI is a slow imaging modality. The
challenge of long acquisition time in MRI can be ad-
dressed by using either hardware or software approach.
The hardware approach uses a multichannel parallel
MRI but it is economically expensive and requires con-
siderable time in development [4]. The software ap-
proach uses efficient algorithms majority of which are
based on compressed sensing (CS) [5]. Using CS based
reconstruction algorithms guarantees improvement in
image quality and also improvement in acquisition speed
because images/signals can be accurately recovered
using fewer measurements than mandated by the trad-
itional Nyquist sampling [6].
Recently, CS theory has been applied to MRI demon-

strating high quality reconstructions from fewer mea-
surements than those mandated by the traditional
Nyquist sampling [6]. CS is defined as “the process of
efficiently acquiring either a sparse signal directly or a
signal which is compressible in some known domain”
[4]. Using CS theory, a sparse signal x ∈ Cncan be ac-
quired using a measurement matrix A ∈ Cm x n with
m > n so that the measured signal y = Ax Then, x can be
reconstructed from y ∈ Cm if both x and A are sparse
or at least compressible in some transform domain [4]
by solving the minimization problem in Eq. 1 below.

minx xk k0subject to y ¼ Ax; ð1Þ
where║x║0 indicates the nonzero coefficients in x.
Equation (1) is non-convex and is solved by replacement
of ℓ0– minimization with ℓ1– minimization, described
as;

minx xk k1 subject to y ¼ Ax; ð2Þ
where ║x║1 =

Pn
i¼1 j xi j. ℓ1– minimization is a convex

problem that can be solved using a linear programming
approach, a primal-dual interior-point method, and also
using greedy algorithms such as Orthogonal Matching
Pursuit (OMP) [7]. Greedy algorithms are fast, simpler
and suitable for hardware implementation [4]. Some-
times the measured signal y may contain noise from the
surrounding environment, we can then relax the equality
constraint and rewrite Eq. 2 as shown in Eq. 3.

minx xk k1 subject to minx y−Axk k2≤ε; ð3Þ
where ε is a positive constant indicating the noise level.
MRI inherently fulfills all the requirements for com-

pressed sensing theory for image reconstruction because
images are sparse in wavelet domain and there exist a
strong incoherence between the Fourier and the wavelet
domain [8]. However, non-adaptive CS techniques are
usually limited in typical MR images to 2.5–3 fold
undersampling. They also result into many undesirable
artifacts and loss of features. Also, explicit k-space
interpolation in CSMRI [8] leads to poor reconstructions
due to the lack of local structure in k-space [6]. To over-
come the challenges of non-adaptive CS techniques,
Ravishankar & Bresler [6] proposed an adaptive patch-
based framework known as DLMRI [6] for simultan-
eously learning the dictionary and reconstructing the
image from highly undersampled k-space data. In
DLMRI [6], the researchers learnt an image-patch dic-
tionary from a small number of k-space samples. Adap-
tive CS techniques can sparsify images better compared
to non-adaptive CS techniques [8] since they are learnt
for the particular image instance or class of images. The
shift from global image sparsity to patch-based sparsity
is captivating since patch based dictionaries can capture
local image features effectively, and can potentially re-
move noise and aliasing artifacts in CSMRI [8] without
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sacrificing resolution. The advantage of DLMRI [6]
framework is that it increases the reconstruction accur-
acy even in the absence of the reference image by dir-
ectly adapting to the image content. However,
determining the optimal dictionary size that is satisfac-
tory for a given input signal in DLMRI [6] and other
adaptive transforms is currently a challenge.
Determining the fitting dictionary size is very crucial

in image processing tasks. This is due to the fact that
large dictionaries influence both the dictionary learning
process and the representation speed. Large dictionaries
may lead to overfitting as the number of dictionary
atoms increases and therefore the dictionary becomes
less representative of the input signal. On the other side,
a dictionary with fewer atoms may lead to the loss of
some image features since some of the important dic-
tionary atoms are left out and this has an impact on the
quality of the final image. According to literature, the
common method is to impose a representation error
and then selecting a dictionary size that gives the mini-
mum error [9]. The algorithms using this technique use
sparse coding and dictionary update where atoms are
added or removed during the dictionary learning (DL)
process. The techniques that are currently available
works as follows; (1) an algorithm starts with a diction-
ary with a small number of atoms and then new atoms
are added during the DL iterations that are able to
minimize the error, or (2) an algorithm starts with a dic-
tionary with a large number of atoms and then less sig-
nificant ones are removed during the DL iterations [9].
In this study, we propose an image reconstruction algo-
rithm that adapts the dictionary size using information-
theoretic criteria (ITC). Our proposed framework com-
bines the advantages of adaptive patch-based dictionaries
with those of optimal dictionary size resulting into high
quality reconstructions. We hypothesize that by using an
adaptive-size dictionary learning we can increase the
performance on image reconstruction over previous
methods.

Context of our study
Our research is part of a larger programme funded by
the Dutch organization NWO-WOTRO to stimulate re-
search that addresses the Sustainable Development
Goals (SDGs). By developing low-cost MRI scanners we
aim to contribute to SDG 3: “Ensure healthy lives and
promote well-being for all at all ages”. Our project is
carried out by teams from Mbarara University of Science
and Technology (MUST) in Uganda, Leiden University
Medical Center (LUMC) in the Netherlands, Delft Uni-
versity of Technology (TU Delft) in the Netherlands and
Pennsylvania State University (PSU) in the USA and
aims to develop low-field MRI scanners and image
processing algorithms in particular for low-resource

settings. The low-field MRI systems under development
are characterized by a low signal-to-noise ratio, and this
has a very big impact on the quality of the final image
[10]. Also, it takes a long time to acquire an image (takes
more than 16 min to scan an object). With the algorithm
that is described in this paper, we aim to eliviate these
drawbacks of low-field MRI. Our project is ongoing and
we expect to start clinical trials in the first half of 2021.
The prototype that has been developed by the LUMC
will be shipped for testing at MUST in Uganda once
total lockdowndue to Covid19 is lifted.

Methods
Dictionary learning (DL)
Dictionary learning problem is the search for optimal
dictionaries for a specific set of training signals. The
technique that is commonly used in DL problems is
sparse coding. Sparse coding is a technique of finding a
representation of a given signal with a smaller number
of significant coefficients. The study [6] noted that “Non
adaptive CSMRI techniques are limited by the degree of
undersampling at which they can still give clinically use-
ful reconstructions”. Adaptive dictionaries lead to higher
sparsities and hence to potentially higher undersampling
factors in CSMRI. DL is a key to adapting dictionaries of
the data required for CSMRI reconstructions.
Given an image x ∈Cn, xij ∈C

n is the vector represen-
tation of a square 2D image patch of √n x √ n pixels
indexed by the location of its top-left corner (i, j) in the
image. D ∈ Cn X K is used to represent the image patched
dictionary with K atoms each with n-vector correspond-
ing to a √n x √ n elemental patch. In Compressed Sens-
ing MRI, it is assumed that each patch xij can be
approximated as a linear combination Dαij of the dic-
tionary atoms, where αij ∈C

K is sparse. D can be prede-
fined (such as overcomplete wavelets) or learned. Each
column in the dictionary (D) is called an atom and D
has K atoms. When the number of atoms equals the
number of the patch (K = n), D is said to be the basis
(complete dictionary). The dictionary D is “overcom-
plete” in case K > n with the latter being a typical as-
sumption for a sparse dictionary learning problem. The
issue of a complete dictionary is not considered because
it does not provide any improvement from a representa-
tional point of view. Therefore during this study, we
considered a case of K > n.
The DL problem aims at solving the following

optimization problem:

min
D;Γ

X
ij
Rijx‐Dαij

�� ��2
2subject to αij

�� ��
0≤T0∀i; j; ð4Þ

Where Rij ∈C
n X P represents the operator that ex-

tracts the patch xij from x as xij = Rijx. The ℓ0 quasi norm
(║αij║0) is used to encode the sparsity of the patch
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representation and T0 is the required sparsity level. Г is
used to denote the set {αij}ij of the sparse representa-
tions of all the patches. The optimization of a dictionary
D and sparse coefficients Г is a nonconvex problem. This
problem is related to sparse coding that requires finding
a sparse code and also the dictionary for sparse presen-
tation has to be estimated simultaneously. The easiest
way of solving such a problem is to solve separately
sparse code and the dictionary and iteratively alternating
their solutions until convergence. There are two major
efficient algorithms to learn dictionaries that utilize vari-
ants during the iterative optimization strategy and these
are the K-SVD [11] and the method of optimal direc-
tions (MOD) [12]. It is noted from the literature that K-
SVD converges with fewer iterations than MOD. For
more details, refer to [11, 12].

Information-theoretic criteria (ITC)
The ITC implementation that we used during this study
was adapted from [13]. We used ITC for assessing the
adequacy of a model for dictionary learning by combin-
ing its goodness of fit (root mean square error) with its
complexity. For a given training signal Y ∈CmxN, the sig-
nal to be reconstructed X ∈CnxN, the sparsity s, and the
dictionary D ∈Cmxn, the root mean square error and
complexity are expressed as shown in Eqs. 5 and 6 as
follows;

Root mean square error RMSEð Þ ¼ 1ffiffiffiffi
Q

p Y−DXk kF where Q ¼ mN

ð5Þ

where m and N are the dimensions of the training
signal.
The complexity depends on several parameters and it

is defined as follows:

complexity Pð Þ ¼ sN þ m−1ð Þn; ð6Þ

where the first term (sN) corresponds to the number of
nonzero elements in X while the second term corre-
sponds to the number of independent elements of the
dictionary [13].
Basing on the Eqs. 5 and 6, two ITC formulations are

computed as shown in Eqs. 7 and 8. The formulation in
Eq. 7 is known as Extended Bayesian Information Criter-
ion (EBIC), while that in Eq. 8 is known as Extended
Renormalized Maximum Likelihood (ERML). Both for-
mulations are capable of determining the optimal dic-
tionary size during medical image reconstruction tasks.
EBIC and ERML are shown in the Eqs. 7 and 8
respectively;

EBIC ¼ 2 log RMSE þ log Qð Þ
Qð Þ P þ 2N

Qð Þ log
n
s

� �
;

ð7Þ
where the first two terms are standard ITC terms and
the third term accounts for all possible positions of the
non-zero entries in the matrix X.

ERML ¼ Q−Pð Þ log RMSE2

Q−Pð Þ þ P log
DXk k2F
Q:P

þ log P Q−Pð Þ½ � þ 2N log n
s

� �
: ð8Þ

All the experiments during this study use the EBIC ap-
proach. For more details, refer to [13].

Candidate dictionaries
Using the ITC approach, several candidate dictionaries
are needed from which a selection is made to a diction-
ary with the minimum ITC value. Usually, a single in-
stance of the learning algorithm is run and therefore a
single dictionary is available. The only possibility avail-
able is to compare smaller dictionaries made of a subset
of the atoms, which requires large number of possible
combinations. Their numbers can be reduced by order-
ing the atoms basing on their importance in representa-
tions. Given that,

DX ¼
Xn

j¼1
d jx

T
j ; ð9Þ

where xj
T is the jth row of X, we sort the atoms in de-

creasing order of their “power” (importance),

P d j
� � ¼ xTj

���
���
2�

ð10Þ

After the operations in Eqs. 9 and 10, we obtain a
sorted dictionary, D. During selection, dictionaries Dh ∈
Cmxh are considered that are made of h ≤ n atoms of D.
This shows that there are atmost n candidate dictionar-
ies. Imposing a lower bound, nmin helps to eliminate
small dictionaries that are not useful and therefore, we
have n ≥ nmin. Also, nmin =m can be chosen. For more
details, refer to [13].

Image reconstruction formulation in MRI
The image reconstruction formulation used during this
study was adapted from Ravishankar and Bresler [6].
Consider the formulation below,

F0ð Þ min
x;D;Γ

X
ij
Rijx‐Dαij

�� ��2
2 þ w Fux‐yk k22 subject to αij

�� ��
0≤T0∀i; j;

ð11Þ
where the first term captures the quality of sparse ap-
proximations of the image patches with respect to the
dictionary D while the second term enforces data fidelity
in the k-space. The weight w is defined as w = (⋋/δ),
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where ⋋ is a positive constant. The formulation has been
proven to be more robust to noise [6]. This formulation
was proposed by [6], it is capable of designing an adap-
tive dictionary, and can also be used to reconstruct an
underlying image from k-space measurements. It can
potentially remove aliasing and noise while learning the
local image features effectively. However, eq. (11) is NP-
hard and nonconvex even when the ℓ0 quasi norm is re-
laxed to ℓ1 quasi norm. it was solved using a two-step
procedure in DLMRI [6] as explained below.

i) The first step (dictionary learning step): in this step,
x remained fixed, and the dictionary and sparse
representations of the patches are jointly learnt.
The corresponding subproblem is:

F1ð Þ min
D;Γ

X
i; j

Rijx‐Dαij
�� ��2

2 subject to dkk k2 ¼ 1∀k; αij
�� ��

0≤T0∀i; j;

ð12Þ
In DLMRI, the dictionary D was learnt using the K-

SVD algorithm [11] and once the dictionary is learned,
sparse coding was performed on all patches to determine
the αij using OMP [7].

ii) The second step (updating the reconstruction): in
this step, the formulation (F0) is solved with the
fixed dictionary and sparse representations. The
corresponding subproblem is:

F2ð Þ min
x

X
ij
Rijx‐Dαij

�� ��2
2
þ v Fux‐yk k22; ð13Þ

Equation (12) is a least-squares problem which was
solved in DLMRI [6] using the Eq. (14) below.

Fx kx; ky
� � ¼

M kx; ky
� �

; kx; ky
� �

∉Ω
M kx; ky
� �þ v Mo kx; ky

� �
1þ v

; kx; ky
� �

∈Ω

8<
:

ð14Þ
where Fx(kx, ky) represents the updated value at location
ðkx; kyÞ;M0 ¼ F FH

u y represents the zero-filled k-space
measurements, and Ω represents the subset of k-space
that has been sampled. The reconstruction, x, is then ob-
tained by IFFT of Fx. For more details, refer to [6].

The proposed algorithm
In this paper, we propose an adaptive-size dictionary
learning algorithm (abbreviated as AS-DLMRI), an ex-
tension of DLMRI [6]. In the subsequent sections, we
will be AS-DLMRI uses an ITC approach to determine

anoptimal dictionary size. As with DLMRI, AS-DLMRI
also have two steps namely, the dictionary learning step
and the reconstruction update step. The two steps are
explained in details as follows;

i. In the first step (the dictionary learning step), x is
fixed, and then the dictionary and sparse
representations of the patches are jointly learned.
we initialize the dictionary with the left singular
vectors of the training data. Also, our proposed
algorithm assumes an initial dictionary size (ninit).
We learned the dictionary using the Approximate
K-SVD (AK-SVD) algorithm [14], and sparse coding
using OMP [7]. It is during this step that the candi-
date dictionaries are sorted in the order of import-
ance using ITC as explained above. To avoid
overcomputation, only a small number of candidates
ncand is considered. We also consider nITC as the
minimum size of the ITC value among the ncand. We
then consider nITC as an the indicator in which n
evolves. Then, the following three tests are per-
formed. (1) if nITC is much smaller than the current
dictionary size n, we decrease the size by e-, (2) if
nITC is slightly smaller than the current dictionary
size n, we decrease the size by one, and (3) if
nITC equals to n, we increase the size by e +. During
our experiments, we used 5 for the values e- and e +.
Incase new atoms are required, a random technique
is used to generate them. After P iterations, the value
of nITC is considered as the true dictionary size. For
final refinement, k more iterations are required.

ii. In the second step (Updating the reconstruction), x
is updated but the dictionary and the sparse
representations are fixed. This step involves solving
a least squares problem, and we also used eq. 14 to
solve it. The summary of our proposed algorithm is
summarized in Fig. 1. Below.

Data sources
The measured image that is used in this study was ob-
tained from the low-field MRI system that is currently
under development at Leiden University Medical Center
(LUMC). Figure 2 shows this low-field MRI scanner [15]
and a 2D phantom image [16]. The 3D-printed physical
phantom displayed in Fig. 2 (middle) is modeled after the
classical Shepp-Logan phantom. It is 70mm wide, 90mm
tall, 35mm thick and filled with agar gel. The Image was
acquired using a non-selective single-slice spin-echo se-
quence with the following parameters: Field of view:
128 × 128mm, Acquisition matrix: 128 × 128, TR/TE: 500
ms/10ms, scan duration: 2min 4 s. In addition to this
measured image, an MRI brain image obtained from [6]
was used during the experiments. Further details on the
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low-field MRI scanners that are currently under develop-
ment can be obtained from [2, 15, 16].

Parameter selection
During our experiments, our algorithm was initialized
with a zero-filled Fourier reconstruction. The images
used in all the experiments were converted to overlap-
ping patches of size √n x √ n . During this study, we used
n = 36. It is from these image patches that we initialized
data for dictionary learning. Left side vectors of the
image patches were used as our initial dictionary. During
the experiments, the following parameters were used;
sparsity level, s is 5; DL iterations varied from 5 to 20;
minimum considered dictionary size, nmin is 64; nminus

is 5 (how much n decreases); nplus is 5 (how much n
grows); ncand is 20 (number of size candidates for ITC);
itc_index = 13 (ITC codes (11 for EBIC, 13 for ERNML)),
K = n = 36, sparsity τ0 = 6, γ = 140, overlap stride r = 1.
The matlab implementation of DLMRI [6] and non-
adaptive CSMRI technique known as LDP by Lustig
et al. [8] are both available, and we used the built in set-
tings for both algorithms in our experiments.

The performance metrics used
During this study, we adopted four performance metrics
that have been used by other researchers in related stud-
ies. The four metrics are Peak Signal to Noise Ratio
(PSNR), Signal to Noise Ratio (SNR), high-frequency

Fig. 1 Our proposed Adaptive-Size Dictionary Learning MRI (AS-DLMRI) Algorithm

Fig. 2 (Left) A low-cost portable MRI at LUMC, (Middle) The 3D printed phantom (Shepp Logan) and (Right) The image of the 2D phantom
acquired using the Low-Field MRI scanner on the left
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error norm (HFEN) [6, 17] and reconstruction time.
PSNR (measured in decibels-dB) is computed as the ra-
tio of the peak intensity value of the reference image to
the root mean square (RMS)reconstruction error relative
to the reference image. This metric is considered as the
image quality measure and has been used a lot in image
compression and denoising tasks. HFEN was used to
quantify the quality of reconstruction of edges and fine
features. A rotationally symmetric LoG filter was used to
capture edges. HFEN was then computed as the norm of
the result obtained by LoG filtering the difference be-
tween the reconstructed and reference images. However,
the parameters we used do not represent perceptual vis-
ual quality which can only be assessed by human visual
observer studies accurately.

Results
In this section, we present the performance of our pro-
posed algorithm AS-DLMRI. We compared the perform-
ance of our proposed algorithm with an adaptive patch-
based dictionary learning technique known as DLMRI
by Ravishankar & Bresler [6] and the leading non-
adaptive CSMRI technique known as LDP by Lustig
et al. [8]. DLMRI and LDP were selected because they
have been widely used in the literature as the benchmark
algorithms in related studies. Also, All the implementa-
tions were coded in Matlab 2017a. Also, all the experi-
ments were performed with an intel core i7 8th
generation CPU at 1.80 GHZ (8 CPUs) and 16 GB mem-
ory, employing a 64 bit windows 10 operating system.
The Matlab implementation of both DLMRI and LDP
are available from authors’ websites. For more details,
refer to [6] for DLMRI and [8] for LDP. We used an
MRI image from [6] and a phantom image from a low
field MRI scanner from [16]. We also used undersam-
pling masks with several downsampling factors from [6].
Figure 3 shows an MRI image, a phantom image and
one of the sampling masks that we used during this
study: a sampling mask in k-space with 20 fold
undersampling.

Experiment on reconstruction visual quality
In this section, we present the results of one of the sev-
eral experiments that we did demonstrating the visual
quality of the reconstructed images using AS-DLMRI,
DLMRI and LDP. For the results shown in Fig. 4 below,
we used a sampling mask in k-space with 10 fold under-
sampling, and the number of iterations was fixed to ten.
It was noted that the visual quality for the images recon-
structed by AS-DLMRI and DLMRI were almost identi-
cal, and therefore no significance visual difference
between the images reconstructed by both algorithms.
However, we noted a significance difference in visual
quality of AS-DLMRI and LDP. We did other experi-
ments with different undersampling masks and altering
the number of iterations for dictionary learning, and we
observed that AS-DLMRI and DLMRI produced almost
identical visual quality results with a significance differ-
ence in visual quality when compared to LDP.

Experiment on PSNR, HFEN and iteration number
Using the above images and the sampling mask, we did
an experiment to determine how PSNR in each of the
images changes as the number of iteration increases. It
was observed as shown in Fig. 5 below that the PSNR
with AS-DLMRI and DLMRI steadily increased as the
number of iterations increased. However, AS-DLMRI
had a slightly higher PSNR when compared to DLMRI.
Also, It was observed in both AS-DLMRI and DLMRI
that there is a very small difference between the PSNR
when the number of iterations was 25 and PSNR when
the number of iterations was 30. We therefore conclude
that the number of iterations for the practical implemen-
tations of AS-DLMRI is in the order of 25 for sufficient
quality. In comparison with LDP, AS-DLMRI produced
better PSNR which steadily increased as the number of
iterations increased, while for LDP, the value of PSNR
remained constant as shown in Fig. 5 below. Higher
values of PSNR indicates that AS-DLMRI reconstructs
high quality images when compared with DLMRI and
LDP. For HFEN, the value drastically decreased both for

Fig. 3 (Left) MRI image from [6], (Middle) phantom image from [15], and (Right) a sampling mask in k-space with 20 fold undersampling from [6]
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Fig. 4 Experiment on reconstruction visual quality. (Top row) (left)- reconstruction of an MRI image using our proposed algorithm AS-DLMRI,
(middle)-reconstruction using DLMRI and (right)-reconstruction using LDP. (Bottom row) (left)- Reconstruction of a phantom image using AS
DLMRI, (middle)-reconstruction using DLMRI and (right)-reconstruction using LDP

Fig. 5 Experiment on PSNR, HFEN and Iteration Number. (Top) Experiment using an MRI image, (left) PSNR vs iteration number, (right) HFEN vs
iteration number. (Down) Experiment using a Phantom image, (left) PSNR vs iteration number, (right) HFEN vs iteration number
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AS-DLMRI and for DLMRI but it remained constant for
LDP. HFEN is lower for AS-DLMRI than for DLMRI
and LDP in all our experiments indicating the superior
performance of AS-DLMRI in capturing edges and fine
features.

Experiment on PSNR, HFEN and Undersampling factor
In this section, we discuss the results of our experiment
in terms of PSNR, HFEN for different undersampling
factors when the number of iterations was fixed to ten.
It was observed as shown in the Fig. 6 below that PSNR
reduces drastically with AS-DLMRI, DLMRI and LDP as
the value of the undersampling mask in k-space in-
creases. It was noted that AS-DLMRI produced a rela-
tively high values of PSNR with different undersampling
factors when compared to DLMRI and LDP. On the
otherhand, the value of HFEN increases as the under-
sampling factor increases. It was noted as shown in Fig.
6 that AS-DLMRI had lower HFEN values with all the
undersampling values.

Experiment on SNR with Undersampling masks and
iteration number
This section presents an experiment to study how the
SNR varies with the number of undersampling masks,
and the number of iterations (Fig. 7). This experiment

was done because the major problem in low field MRI
systems is low SNR. We demonstrated the significance
of AS-DLMRI in improving the SNR of the low-field
MRI systems that are currently under development. It
was observed, as shown in Fig. 7 below, that the value
SNR increases as the number of iterations increased
both with AS-DLMRI and DLMRI, and it remained con-
stant with LDP. A related experiment was also done to
determine SNR with different values of undersampling
masks in k-space, and it was observed that the values of
SNR decreased as the value of undersampling masks in-
creased in k-space. In both experiments, AS-DLMRI
produced relatively higher values of SNR when com-
pared to DLMRI and LDP.

Computational cost
Determining the complexity of the algorithm with sev-
eral dictionary variations is challenging [13]. It was also
difficult for us to determine the actual complexity of AS-
DLMRI but we explained the complexity of some of the
operations. Nevertheless, experimental results reveal that
AS-DLMRI is relatively faster than DLMRI. The opera-
tions that increase the complexity of our algorithm are:

(1) The number of dictionary learning iterations, P. For
the dictionary size to converge, both P and K

Fig. 6 Experiments on PSNR, HFEN and Iteration Number. (Top) (left) PSNR vs undersampling factor using MRI image, (right) HFEN vs
undersampling factor using MRI image, (Down)(left) PSNR vs undersampling factor using phantom image, and (right) HFEN vs undersampling
factor u using phantom image
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should be large (in all our experiments, we used P ≥
200 and k = 5).

(2) The computation of ITC, which is computed
for each dictionary’s representation. The
overall operation is bounded by (ncands/n) N,
which depends on the number of signals
present on each iteration and this operation

happens only every kth iteration, the extra
complexity is relatively small. During the
experiment, it was noted that AS-DLMRI re-
quired relatively low reconstruction time when
compared to DLMRI and LDP. Figure 8 below
shows the reconstruction time for each of the
three algorithms.

Fig. 7 Experiments on SNR. (Top) (left) SNR vs iteration number using MRI image, (right) SNR vs iteration number using a phantom image,
(Down)(left) SNR vs undersampling factor using MRI image, and (right) SNR vs undersampling factor using a phantom image

Fig. 8 Algorithms’ Reconstruction time: (left) using MRI image, and (right) using phantom image
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Discussions
In this section, we discuss the performance of AS-
DLMRI in comparison to DLMRI and LDP. During this
study, a brain MRI image obtained from [6] and a Phan-
tom image that was acquired using low-field MRI at
LUMC, were used in all our experiments. We used four
performance metrics which include PSNR, SNR, HFEN
and reconstruction time. These metrics were selected
because they have been used in related studies. Also, all
the experiments were done on a computer with no
Graphical Processing Unit (GPU). In the results section,
starting with reconstruction visual quality, it was ob-
served that there was a slight improvement in recon-
struction quality with AS-DLMRI when compared to
DLMRI and LDP. However, there was only a small visual
difference between AS-DLMRI and DLMRI. When com-
pared to LDP, there was a significant difference in visual
quality between AS-DLMRI and LDP. Comparing AS-
DLMRI and DLMRI in terms of PSNR, AS-DLMRI had
slightly higher values of PSNR. For LDP, the PSNR
values remained almost constant as the number of itera-
tions increased. For HFEN, the values reduced as the
number of iterations increased in both AS-DLMRI and
in DLMRI while the value remained constant with the
number of iterations with LDP algorithm. The decrease
in HFEN indicates that AS-DLMRI and DLMRI demon-
strated superior performance in capturing edges and fine
features during reconstruction. Experiments on various
undersampling factors revealed that the values of PSNR
reduced with the increase in number of undersampling
factors while the values of HFEN increased with increas-
ing undersampling factors with both AS-DLMRI and
DLMRI. This means that lower values of undersampling
masks in k-space resulted into a high PSNR value and
lower value of HFEN resulting into high quality re-
constructions. Experiments on SNR revealed that the
value increased with the increase in the number of it-
erations in both AS-DLMRI and DLMRI but it
remained constant with LDP. AS-DLMRI had higher
SNR values when compared to DLMRI and LDP
demonstrating its potential for addressing the issue in
systems with low SNR problems like low-field MRI.
Experiments on SNR with undersampling factors in
k-space revealed a decrease of SNR with increase in
the values of undersampling factors in all the algo-
rithms but AS-DLMRI had a slightly higher values
when compared to DLMRI and LDP. All the experi-
ments demonstrated the potential of using AS-DLMRI
on ordinary computers using a standard CPU and no
GPU. Therefore, AS-DLMRI maybe suitable for use in
low-field MRI and in low resource settings like
Uganda where access to high-end computing hard-
ware like Graphical Processing Units (GPUs) is still
limited.

Conclusions
Our proposed algorithm adapts the size of the dictionary
that is suitable for the input signal. It has been noted in all
our experiments that AS-DLMRI was slightly better in
terms of PSNR, SNR and HFEN when compared to
DLMRI and was significantly better than for LDP. More-
over, our proposed algorithm is also faster than DLMRI.
Moreover, a steady increase of PSNR and SNR was ob-
tained as the dictionary learning iterations increased,
thereby concluding that AS-DLMRI adjusts well to our in-
put signal. During this study, we compared our results
with DLMRI and LDP. This is because these two algo-
rithms have been used as a benchmark algorithm in re-
lated studies. Experimental results revealed that using an
adaptive-size dictionary may help to reduce the computa-
tional complexity, and also to improve the quality of the
reconstructed images since only relevant atoms are uti-
lized during reconstruction. However, AS-DLMRI did not
completely remove noise during the experiments with the
noisy phantom. Therefore, integrating AS-DLMRI with an
image denoising function may remove noise completely
from noisy images that are common with Low-Field MRI
systems. This will be the next step in our research.
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