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Fluxons in a superconducting loop can be coherently coupled by quantum phase slips occurring at
a weak link such as a Josephson junction. If Cooper pair tunneling at the junction occurs through a
resonant level, 2π quantum phase slips are suppressed, and fluxons are predominantly coupled by
4π quantum phase slips. We analyze this scenario by computing the coupling between fluxons as
the level is brought into resonance with the superconducting condensate. The results indicate that
the 4π-dominated regime can be observed directly in the transition spectrum for circuit parameters
typical of a fluxonium qubit. We also show that, if the inductive energy of the loop is much smaller
than the plasma frequency of the junction, the low-energy Hamiltonian of the circuit is dual to that
of a topological superconducting island. These findings can inform experiments on bifluxon qubits as
well as the design of novel types of protected qubits.

I. INTRODUCTION

The inductively shunted Josephson junction plays an
important role in the field of superconducting quantum
devices [1, 2]. The inductive link changes the topology
of the circuit from that of an island to that of a loop,
removing the 2e charge quantization associated with a su-
perconducting island. The charge sensitivity of the device
is exchanged for its flux sensitivity [3], which is exploited
in the design and operation of the fluxonium qubit [4–8].
Furthermore, a large shunting inductance suppresses the
sensitivity to flux noise, as recently demonstrated in the
blochnium qubit [9]. For this reason, the inductive shunt
is a common feature of noise-protected qubit designs [10].

The minimal circuit that models this class of supercon-
ducting devices is simple: it consists of an inductor, a
capacitor and a Josephson element connected in parallel
[Fig. 1(a)]. The inductor and the Josephson junction
form a loop through which an applied magnetic flux Φ is
threaded. The circuit supports persistent current states,
also known as fluxons, in which the superconducting phase
winds by an integer multiple m of 2π when circling the
loop [11]. Fluxons are coupled by quantum phase slips
occurring at the Josephson junction [12], which change
m by an integer ∆m (see Fig. 2).

In a typical Josephson element, e.g. in a tunnel junc-
tion, the amplitude of 2π quantum phase slips (∆m = 1)
is much larger than that of 4π quantum phase slips
(∆m = 2). However, if Cooper pair tunneling across
the Josephson element is resonant – a type of weak link
we call the Josephson resonant level – 2π quantum phase
slips are suppressed [13–16] and 4π quantum phase slips
become the dominant coupling between fluxons. The
bifluxon qubit proposal [17] achieves resonant tunneling
using as a Josephson element a series of two (almost)
identical tunnel junctions separated by a small supercon-
ducting island tuned (close) to a charge degeneracy point.

FIG. 1. (a) Circuit of the inductively shunted Josephson
junction. (b) A junction realized by a resonant level with a
tunable energy ϵr and Cooper pair tunneling rates Γ1 and Γ2.

Alternatively, resonant tunneling can also occur in a semi-
conductor junction, via an isolated energy level forming
in a quantum dot [18–20], as represented in Fig. 1(b). In
the latter system, experiments have demonstrated the
drastic suppression of 2π quantum phase slips close to res-
onance [21, 22], but not yet the occurrence of the regime
dominated by 4π quantum phase slips [16].
In this paper, motivated by these experimental devel-

opments, we study in detail the energy spectrum of an
inductively shunted junction with a Josephson coupling
mediated by a single energy level [Fig. 1(b)]. We focus
on the avoided crossings between energy levels directly
connected to the quantum phase slip amplitudes, and
measurable via microwave spectroscopy. We provide ana-
lytical expressions, backed by numerics, that capture the
entire crossover between 2π- and 4π-dominated regimes
near the resonance, as well as the regime away from reso-
nance.
We also show that, when the inductive energy of the

loop becomes much smaller than the Josephson plasma
frequency, the circuit is well described by a low-energy
theory dual to that of a topological superconducting is-
land. The duality we uncover extends a known duality
between a superconducting loop and a superconducting
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FIG. 2. Potential landscape of the model of Eq. (1). We
depict the two branches of the potential energy U(ϕ) =
1
2
EL(ϕ+ϕext)

2±EA(ϕ). (a) When the external flux is equal to
half a flux quantum, fluxons are localized around the Joseph-
son potential minima at ϕ = 0, 2π (wave functions shown in
orange). Fluxons can tunnel between the minima via a 2π
quantum phase slip (purple arrow). (b) When the external
flux is zero, fluxons localized around ϕ = ±2π can tunnel
via 4π quantum phase slips. Because of the second branch
of the potential, the 4π quantum phase slips can follow two
interfering paths labeled a and b (solid and dashed arrows),
as described in the text.

island [23]. It does so by including an additional degree
of freedom: the fluxon parity of the loop (i.e. the parity
of m), which we show to be dual to the fermion parity
of the island. Similar to fermion parity states encoded
non-locally in Majorana zero modes, states with opposite
fluxon parity have disjoint support in phase and provide
a two-fold quasi-degeneracy to the energy spectrum; thus,
they become an attractive degree of freedom to encode
qubit states [17, 24]. We discuss the implications of our
findings for the design of protected qubits [10, 24] in the
concluding section.

II. MODEL

Given a capacitance C and an inductance L, the induc-
tively shunted junction of Fig. 1(a) is described by the
quantum Hamiltonian [3]:

Ĥ = 4Ecn̂
2 + 1

2EL(ϕ̂+ ϕext)
2 + V (ϕ̂) , (1)

where Ec = e2/2C and EL = (Φ0/2π)
2/L. The parameter

ϕext = 2πΦ/Φ0 gives the applied flux Φ through the
inductive loop in units of the flux quantum Φ0 = h/2e.

The Cooper pair number n̂ and phase ϕ̂ are conjugate

variables satisfying [ϕ̂, n̂] = i.

The potential term V (ϕ̂) gives the Josephson en-
ergy, which for a tunnel junction would be the familiar

−EJ cos ϕ̂. For the case in which Josephson coupling is
mediated by an isolated energy level, as in Fig. 1(b), a

minimal model for the potential is:

V (ϕ̂) = −Γ cos(ϕ̂/2)τx − δΓ sin(ϕ̂/2)τy − ϵrτz . (2)

Here, the Pauli matrices τx, τy, τz act on the two-level
system corresponding to the resonant level being empty
or doubly occupied; Γ = Γ1+Γ2 and δΓ = Γ1−Γ2 are the
sum and difference of the 2e tunneling rates Γ1 and Γ2

between the two leads and the resonant level; and finally
ϵr is the energy of the resonant level [see Fig. 1(b)]. This
model for the Josephson resonant level has been discussed
in Refs. [16, 25, 26]. Among other things, these works
discuss the role of a charging energy of the resonant level,
as well as the effect of additional transport channels and
the continuum part of the density of states; all elements
which we do not include in our work for simplicity.

The potential in Eq. (2) also applies to the bifluxon cir-
cuit deep in the charging regime of the middle island [17],
but parameters have a slightly different meaning: Γ1 and
Γ2 are Josepshon energies of two tunnel junctions, and ϵr
is the energy difference between two even-parity charge
states of the superconducting island.

Fluxonium devices are typically operated in a parameter
regime such that there is approximately one bound state
in each of the local minima of the modulated potential
of Eq. (1) [4]. These bound states are fluxons with a
parabolic energy dispersion ≈ 1

2EL(2πm + ϕext)
2 [see

Fig. 3(a)], and become degenerate for particular values
of ϕext. At the degeneracy points, quantum phase slips
create coherent superpositions of fluxons.
In particular, at ϕext = π the potential landscape is

a degenerate double well for fluxons with m = 0 and
m = −1, which couple via 2π quantum phase slips [see
Fig. 2(a)]. At ϕext = 0, instead, fluxons with m = ±1
occupy degenerate minima symmetrically placed around
ϕ = 0, and are coupled by 4π quantum phase slips [see
Fig. 2(b)]. When V (ϕ) = −EJ cosϕ, the 4π quantum
phase slips have a much smaller amplitude than 2π ones,
since they are a higher-order process involving two 2π-
slips [3].

This is not necessarily the case for the Josephson reso-
nant level [Eq. (2)], because of the presence of a second
branch corresponding to an excited Andreev pair in the

junction [27]. Indeed, the matrix-valued potential V (ϕ̂)
has eigenvalues ±EA, with

EA = ΓA

√
cos2(ϕ/2) + |r|2 sin2(ϕ/2) , (3)

where

ΓA =
√

Γ2 + ϵ2r , (4)

and

r =
ϵr + iδΓ

ΓA
(5)

is the reflection amplitude of the junction.
The excited energy branch +EA is shown as a black

dashed line in Fig. 2(a,b). The relevant feature of
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Eq. (3) is an avoided crossing of magnitude |r|ΓA at
ϕ = ±π,±3π, . . . . In the next section we show that in
the limit r → 0, when the branches cross, the amplitude
of 2π phase slips vanishes. The system thus enters the
regime in which 4π phase slips are dominant.

III. WENTZEL–KRAMERS–BRILLOUIN (WKB)
ANALYSIS

An observable consequence of quantum phase slips are
avoided crossings in the flux dependence of the energy
spectrum of the circuit, see Fig. 3. There, ∆2π is the
splitting of the crossing between states with m = 0 and
m = −1 at ϕext = π; it originates from 2π phase slips.
∆4π is the splitting of the crossing between states with
m = −1 and m = 1 at ϕext = 0; it originates from 4π
phase slips. The magnitude of these avoided crossings can
be computed using the WKB method [28], with calcula-
tions similar to the one described in detail in Ref. [16].
One must perform separate calculations to determine ∆2π

and ∆4π, respectively using the two potential landscapes
at ϕext = π and ϕext = 0 [Fig. 2(a,b)]. In both cases,
the presence of a second branch of the potential crucially
modifies the WKB tunneling amplitude under the barrier
separating different local minima [13–16, 29].

In this section, we discuss the implications of this fact
using a WKB calculation appropriate for the parameter
regime typical of fluxonium qubits, in particular with
respect to the value of EL. In the next section, the results
are generalized to arbitrarily low values of the inductive
energy.
For the 2π quantum phase slips at ϕext = π, under

validity conditions discussed at the end of the Section,
one obtains

∆2π = w(r)ωp

(
b20ωp
2πEc

)1/2

exp

(
−b1

ωp
Ec

+ b2
EL
ωp

)
. (6)

where

ωp =
√

2TΓAEc , T = 1− |r|2 , (7)

and b0, b1, b2 are numerical coefficients which depend
smoothly on the transmission probability T . They are
given in Appendix A. The pre-factor w(r) is given by

w =

√
2π

λ

e−λλλ

Γ(λ)
, λ =

|r|2

4

ΓA
Γ

√
ΓA
Ec

. (8)

with Γ(λ) the gamma function evaluated at λ, not to be
confused with tunneling rates. The amplitude w vanishes
when r → 0, making the fluxon bound states degenerate at
ϕext = π. The parameter λ sets the scale for the crossover
into the degenerate regime: the suppression of ∆2π takes
place when λ ≪ 1, namely when |r|2 ≪

√
Ec/Γ, while

w ≈ 1 in the opposite limit λ ≫ 1. The mechanism
behind the suppression is the imaginary-time Landau-
Zener transition across the avoided crossing [13].

The WKB calculation of ∆4π is more delicate, because
there are two tunneling paths between the minima at
ϕ = ±2π, labeled a and b in Fig. 2(b). They differ by the
branch of the potential that they take between the two
avoided crossings at ϕ = ±π. Path a takes place via the
lower branch of the potential. It consists of the sequence of
two 2π phase slips, passing through a classically available
region around ϕ = 0. Path b, instead, takes place via
the excited branch of the potential and passes through a
single 4π-wide tunneling barrier.
Notably, the two contributions interfere. The interfer-

ence phase is that of the reflection amplitude r = |r| eiα,
which distinguishes the path going through the avoided
crossings from the one which does not. The sensitivity of
energy levels to the phase acquired at the avoided crossing
is akin to the Landau-Zener-Stückelberg interference [30].
The final result for the energy splitting takes the form

∆4π =
√

∆2
a +∆2

b − 2∆a∆b cos(2α) . (9)

Here, ∆a is the contribution due to the sequence of two
2π phase slips. It takes the form:

∆a =
∆2

2π

4π2EL

(
b20ωp
2Ec

)2π2EL/ωp

(10)

where ∆2π is the same as given in Eq. (6). Note that this
contribution vanishes when r → 0. On the other hand,
∆b is the amplitude of a direct 4π quantum phase slip. It
does not vanish at resonance, and is given by

∆b = ωp

(
b20ωp
2πEc

)1/2

exp

(
−b3

√
ΓA
Ec

+ b4
EL
ωp

+ b5

)
(11)

with b3, b4, b5 another three coefficients smoothly depend-
ing on T , also given in Appendix A.

The results of Eq. (6) and (9) are illustrated in Fig. 3.
The parametric plot of ∆4π versus ∆2π shows that, close
to resonance, ∆2π vanishes and ∆4π remains finite. The
4π-dominated regime is approached differently depending
on whether the junction is tuned to resonance by varying
δΓ or by varying ϵr. When δΓ ̸= 0, α = π/2 in Eq. (9),
and so ∆a and ∆b can never cancel out. When ϵr ̸= 0,
α = 0, and so complete cancellation (∆4π = 0) occurs at
the value of ϵr such that ∆a = ∆b.

Eqs. (6) and (9) are valid when Ec ≪ ΓAT/4, EL ≪ ωp,
and max(∆2π,∆4π) ≪ EL, and apply only to the splitting
of fluxons belonging to the lowest harmonic level in the
relevant potential minima. The first condition is required
for the validity of the semiclassical WKB approach. The
second condition guarantees that we can disregard fluxons
originating from the other harmonic levels inside the
wells. Finally, the third condition allows us to ignore the
presence of the higher-energy minima of the potential
energy. The assumed hierarchy of energy scales is in line
with experimentally reported parameters of fluxonium
devices [4, 31, 32], with better accuracy in the “heavy”
regime Ec ≪ ΓAT/4 [31, 32].
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FIG. 3. (a) Energy spectrum as a function of flux, ϕext. The blue and red insets zoom in on the avoided crossings due to 2π
and 4π quantum phase slips respectively (the vertical span of the insets is 1 GHz). The energies are computed numerically
from Eq. (1), with Ec/h = 2.5 GHz, EL/h = 0.25 GHz, Γ/h = 5 GHz, δΓ/h = ϵr = 0.5 GHz. These parameters correspond to
a reflection coefficient |r| = 0.14. The dashed gray lines illustrate the resonant case in which ϵr = δΓ = 0 and so r = 0. (b)
Comparison of the avoided crossings ∆2π and ∆4π when sweeping system parameters. For all curves, we fix Ec/h = 2.5 GHz
and EL/h = 0.25 GHz. The pink and green data show results obtained approaching resonance in two different ways. In both
cases we set Γ/h = 10 GHz. In green, ϵr/h is varied between 0 and 1 GHz, with δΓ = 0. In pink, δΓ/h is varied instead between
0 and 1 GHz, with ϵr = 0. For both curves, |r| ≈ 0.1 on the right side of the plot, and tends towards 0 on the left side of the
plot, where δΓ = ϵr = 0 and ∆2π vanishes. Dots are computed numerically by diagonalizing Eq. (1), while dashed lines are
obtained from the WKB result of Eqs. (6) and (9). The grey dots show the low-transparency scaling obtained from numerical

diagonalization of Eq. (1) with V (ϕ̂) = −EJ cos ϕ̂, varying EJ/h between 10 and 40 GHz. The dashed line corresponds to the
T ≪ 1 limit of Eqs. (6) and (9), with the correspondence EJ = ΓAT/4.

In Eqs. (6) and (11) we include contributions to the
WKB exponent proportional to the small parameter
EL/ωp. These contributions originate from the lifting
of the energy minima of the periodic potential V (ϕ), as
well as the change in the WKB momentum due to the EL
term. Although they are sub-leading contributions to the
WKB integrals, and are subtle to compute, we find that
they are important for the agreement with numerical cal-
culations in the parameter regime of the aforementioned
experiments, such as the parameters used in Fig. 3.

As long as Ec ≪ ΓAT/4, Eqs. (6) and (9) remain valid
also in the low-transparency regime T ≪ 1, away from res-
onance. In fact, in the limit T ≪ 1, Eq. (6) and (9) match
exactly the results of an equivalent WKB calculation done

with the tunnel junction potential V (ϕ̂) = −EJ cos ϕ̂, pro-
vided that one sets EJ = ΓAT/4 so that ωp =

√
8EJEc.

In this off-resonant regime one always has ∆4π ≪ ∆2π,
as shown by the gray lines in Fig. 3.

IV. DUALITY WITH A TOPOLOGICAL
SUPERCONDUCTING ISLAND

We now ask what happens to the low energy spec-
trum when EL is lowered, so that the assumption EL ≫
max(∆4π,∆2π) behind the results from the last section

is violated and the discussed eigenstates are delocalized
over more minima.

The scaling of the energy spectrum of Eq. (1) towards
the limit EL → 0 is shown in Fig. 4. In the limit EL ≪ ωp,
as more and more local minima of the potential appear
at energies below ωp, we observe the condensation of
bands of narrowly spaced energy levels. We now derive an
effective Hamiltonian appropriate to describe this regime,
via similar steps as those described in Ref. [3] for the
standard fluxonium Hamiltonian. The derivation will
establish the duality with the topological superconducting
island mentioned in the introduction.

To begin with, when EL ≪ ωp, it becomes convenient to
write the Hamiltonian (1) in the eigenbasis of its EL →
0 limit. The eigenfunctions can be represented in the
following way:

Ψns(ϕ) = e−inϕuns(ϕ) ≡ ⟨ϕ | n, s⟩. (12)

Here, s is an integer number that refers to a band index
and n is a continuous variable, n ∈ [0, 1). By substitu-
tion into (1), the spinor wave functions uns(ϕ) satisfy a
transmon-like equation:

[4Ec(−i∂ϕ − n)2 + V (ϕ)]uns = Es(n)uns, (13)

with the boundary condition that was derived in Ref. [16]:

uns(ϕ+ 2π) = τzuns(ϕ) . (14)
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FIG. 4. Energy spectrum as a function of decreasing inductive energy EL. (a) Energy levels determined from direct numerical
diagonalization of Eq. (1); the parameters are Ec/h = 2.5 GHz, Γ/h = 5 GHz, ϕext = 0, ϵr/h = 10 MHz and δΓ = 0,
corresponding to r ≈ 0.002, very close to resonance. As EL → 0, the energy levels tend to fill the areas shaded in red and green.
These correspond to the energy bands defined in Eq. (15) for s = 0, 1. The bandwidth of the s = 0 band is barely resolvable
at about 16 MHz and so it is also indicated by the red arrow. (b) Result of the numerical diagonalization of the effective
Hamiltonian Hs of Eq. (18), separately for s = 0, 1. The quantum phase slip amplitudes used in the effective Hamiltonian are
A0 ≈ 2.8 MHz, B0 ≈ 6.6 MHz; and A1 ≈ 7.8 MHz, B1 ≈ 133 MHz. While the effective spectrum in (b) faithfully reproduces the
clustering of energy levels into bands, it does not capture avoided crossings in (a) that originate from the inter-band couplings.
(c) Low-lying energy levels computed for the s = 0 band at ϕext = π both on resonance (δΓ = ϵ = 0) and off-resonance
(δΓ = ϵr = 0.5 GHz, i.e., |r| ≈ 0.14). The low-energy effective parameters are A0 = 0 and B0 ≈ 6.6 MHz for the resonant case,
and A0 ≈ 160 MHz and B0 ≈ 7.3 MHz for the off-resonant case. The panel illustrates the different degeneracy of energy levels
that is observed in the two cases: degenerate doublets in the resonant case split off-resonance due to 2π quantum phase slips.

Note that uns are defined on the circle ϕ ∈ [0, 2π) and, at
a fixed n, they form an orthonormal basis with respect to
the band index s. This ensures that Ψns(ϕ), which are
functions of a non-compact phase, form an orthonormal
basis with different s and n.
This eigenvalue problem was analyzed in Ref. [16],

where we showed that the eigenspectrum takes the form:

Es(n) = ϵs+As cos(2πn+αs)+Bs cos(4πn+ βs) . (15)

Here, As and Bs are the 2π and 4π quantum phase slip
tunneling amplitudes for the periodic potential V (ϕ), and
αs and βs are associated phase shifts. The bands are
harmonically spaced, ϵs ≈ ωp(s +

1
2 ), while As and Bs

are exponentially small in ωp/Ec. Detailed expressions
as a function of Ec, Γ, δΓ and ϵr are derived in Ref. [16]
and restated in Appendix B. The simple form above for
the energy bands was derived via the WKB method. It
is accurate for Ec ≪ ΓAT/4 and for low-lying bands.
For the lowest band, the parameters A0 and B0 are

closely connected to the quantities ∆2π and ∆4π computed
in the previous section. In particular, A0 can be identified
with the limit EL/ωp → 0 of ∆2π in Eq. (6), but the
same is not true for B0, since in Eq. (9) the ratio ∆2π/EL
appears as well (i.e., both A0 and B0 contribute to ∆4π).
We have verified numerically that the low-energy spectrum
of the s = 0 band, discussed in more detail below, matches

the expressions for the energy splittings given in Eqs. (6)
and (9). This is true provided EL is low enough to neglect
the sub-leading EL/ωp terms in those equations, but large
enough so that EL ≫ max(∆2π,∆4π) as required in the
previous section.

In the basis |n, s⟩, the phase operator is represented as

ϕ̂ = −i∂n − Ω̂. It couples different bands only via the
connection matrix elements Ωss′ :

⟨n, s| Ω̂ |n′, s′⟩ = δ(n− n′)Ωss′(n)

Ωss′(n) = i

ˆ 2π

0

u†ns∂nuns′dϕ
(16)

These can be evaluated in the same limit where (15) was
calculated:

Ωss′(n) ≈ −
(

8Ec
ΓAT

)1/4 (√
sδs′,s+1 +

√
s+ 1δs′,s−1

)
.

(17)
The interband couplings can be neglected for Ec ≪
ΓAT/4. Therefore, the original Hamiltonian of Eq. (1)
separates into blocks labelled by the band index s:

Hs =
1
2EL(−i∂n + ϕext)

2 + Es(n) . (18)

It must be solved with the periodic boundary conditions
ψs(n+1) = ψs(n). The eigenvalues of this block-diagonal
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Hamiltonian, shown in the right panel of Fig. 4, compare
favorably to the numerical solution of the full Hamiltonian,
Eq. (1), shown in the left panel of Fig. 4.
The fluxon states localized around minima ϕ = 2πm

with integer m are related to |n, s⟩ via the Fourier trans-
form:

|2πm, s⟩ =
ˆ 1

0

dne2πimn |n, s⟩ . (19)

It is easy to see that, at resonance, As vanishes and the
parity of m becomes conserved. With this in mind, we
introduce in lieu of |n, s⟩ a new basis |n, σ, s⟩ endowed
with a spin-like degree of freedom related to the fluxon
parity:

|n, ↑, s⟩ = |n, s⟩+ |n+ 1/2, s⟩√
2

, (20)

|n, ↓, s⟩ = |n, s⟩ − |n+ 1/2, s⟩√
2

, (21)

with n ∈ [0, 1/2). In terms of these basis states,

|2πm, s⟩ =
√
2

ˆ 1/2

0

dn |n, σ, s⟩ e2πimn , (22)

where m is even for σ = ↑ and odd for σ = ↓.
The Hamiltonian Hs in this doubled space reads

Hs =
1
2EL(i∂n − ϕext)

2 +Asσx cos(2πn+ αs)

+Bs cos(4πn+ βs) + ϵs . (23)

The Pauli matrices act on the spin-like degree of freedom
and the boundary conditions in the halved Brillouin zone
become twisted:

ψs(n+ 1
2 ) = σzψn(n) . (24)

Although Eq. (23) is just a re-writing of Eq. (18), it
illuminates the fact that the low-energy description is pre-
cisely dual to that of a superconducting island shunted to
ground by a topological Josephson junction with coupled
Majorana zero modes [see Fig. 5(a)]. The Hamiltonian of
such an island is [33–36]

HM = 4Ec(i∂ϕ − ng)
2 + EM iγ1γ2 cos(ϕ/2)

− EJ cosϕ . (25)

Here, the first term is the charging energy of the island, ng
is the induced charge in units of 2e, EJ represent standard
Cooper pair tunneling, and the last term represents single-
charge tunneling due to the Majorana zero modes γ1 and
γ2 coupled across the topological junction (the fractional
Josephson effect). Note that there are four Majorana zero
modes in the model, with γ0 and γ1 located on the island
and γ2 and γ3 located on the ground plane (see Fig. 5).
Although only γ1 and γ2 appear in the Hamiltonian, the
boundary condition for Eq. (25) depends on the fermion
parity operator of the island iγ0γ1:

ψ(ϕ+ 2π) = (−1)p ψ(ϕ) , (26)

FIG. 5. (a) Schematic illustration of the duality between a
supercondcting loop (left) with 2π and 4π phase slip elements
A0 and B0 and a topological superconducting island (right)
with 1e and 2e tunnel couplings EM and EJ . The four grey
dots on the right represent four Majorana zero modes, two
on the island and two on the ground. Φ and Vg are the flux
and voltage applied to the loop and island, corresponding
to the tuning parameters ϕext = 2πΦ/Φ0 and ng = CVg/2e.
(b) Dispersion of the three lowest energy levels of the circuit
as a function of flux, obtained from diagonalization of the
s = 0 band Hamiltonian of Eq. (18). We set Ec/h = 2.5 GHz
and Γ/h = 5 GHz, and ϵr/h = δΓ/h = 10 MHz. In these
conditions, the quantum phase slip parameters of Eq. (18) are
A0 ≈ 3.3 MHz and B0/h ≈ 6.7 MHz. The dashed parabo-
las are the energies of uncoupled fluxons, which are dual to
uncoupled charge states. Labels relate avoided crossings to
model parameters on either side of the duality. (c) Flux dis-
persion of the energy levels of the circuit for lower values of
EL, illustrating the “transmon” regime. The solid lines are
obtained for the same parameters as in panel (b), while the
dashed lines are obtained at resonance: ϵr = δΓ = 0. In this
case, A0 = 0 and energy levels gather in almost degenerate
doublets. In panel (b), B0/(2π

2EL) ≈ 0.3, while in panel (c)
B0/(2π

2EL) ≈ 3.3 and 6.6. Note that the vertical energy scale
changes between plots, following the reduction in EL.
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with p = (1−iγ0γ1)/2 = 0 or 1 if the parity is even or odd.
The operator iγ0γ1 appearing in the boundary condition
anticommutes with iγ1γ2 appearing in the Hamiltonian,
just like the fluxon parity σz entering the boundary con-
dition of Eq. (24) anticommutes with σx.
As illustrated in Fig. 5(a) and (b), the duality is es-

tablished via the following correspondences: ϕ ↔ 4πn,
ϕext ↔ 4πng, Ec ↔ 2π2EL, EJ ↔ Bs, EM ↔ As. The
operator iγ1γ2 changes the fermion parity of the island,
just like the operator σx changes the fluxon parity. The
phase shifts αs and βs can be included in the correspon-
dence by adding a relative phase between the EM and EJ
terms, which could arise for instance in a superconduct-
ing quantum interference device (SQUID) configuration.
Finally, we note a difference between this duality and
the one between the Cooper-pair box and the phase-slip
junction discussed by Mooij and Nazarov [23]: in our
case, 2π quantum phase slips are dual to charge 1e tun-
neling, rather than 2e tunneling. This different mapping
means that the duality of Mooij and Nazarov cannot be
recovered simply by disregarding 4π phase slips.

It follows from the duality that, in the limit of low EL,
the flux dispersion of the energy levels of the circuit is
equivalent to the charge dispersion of the energy levels of
a superconducting island governed by Eq. (25). The first
consequence of the duality is illustrated in Fig. 4(c), where
we focus on the lowest energy levels of the s = 0 band
when ϕext = π. In this case, at resonance, fluxon parity
provides a two-fold degeneracy to the energy spectrum of
the circuit, which is broken by 2π quantum phase slips
away from resonance. The flux dispersion of energy levels
away from this point is instead shown in Fig. 5: when
2π2EL ≫ B0, the circuit is in a “Cooper-pair box regime”:
the energy levels are essentially given by parabolas with
small avoided crossings at degeneracy points [see Fig. 5(b)].
On the other hand, when 2π2EL ≪ B0, the circuit is in
a “transmon regime” [see Fig. 5(c)], characterized by a
flattening of the dispersion of energy levels as a function of
flux. The spacing between these flat energy levels depends
on the value of A0. If A0 = 0, the energy levels become
fluxon-parity degenerate doublets at all values of the flux
in the limit EL → 0, with a spacing between doublets
∼

√
ELB0 [dashed lines in Fig. 5(c)]. A finite but small

2π quantum phase slip amplitude splits the doublets by
an amount ≈ A0 [solid lines in Fig. 5(c)].

V. DISCUSSION

The difficulty of measuring directly the 4π-dominated
regime occurring at resonance lies in the smallness of 4π
quantum phase slips. This was the reason, for instance,
that the effect of 4π quantum phase slips was not detected
in the transmon experiments of Ref. [21, 22]. The results
of Fig. 3 show that measuring the 4π-dominated regime
should be feasible in circuit with typical fluxonium pa-
rameters: Ec/h = 2.5 GHz and EL/h = 0.25 GHz. At
perfect resonance, when ∆2π vanishes, ∆4π/h ≈ 5 MHz if

Γ/h ≈ 5 GHz: albeit small, splittings of this magnitude
have been detected and exploited in heavy fluxonium
circuits [31, 37]. Larger values of ∆4π can be obtained
by decreasing ΓA/Ec (somewhat exiting the domain of
validity of our WKB results).

The 4π-dominated regime is narrow: with the parame-
ters of Fig. 3, one needs ϵr/Γ <∼ 10−3 and δΓ/Γ <∼ 10−3

to achieve ∆2π
<∼ ∆4π. For bifluxon circuits, it may be

difficult to limit the asymmetry δΓ, which is set by the
fabrication of the tunnel junctions [38, 39] and cannot be
tuned afterwards, unless SQUIDs are added to the design
for the purpose. For semiconductor junctions, instead, a
difficulty would be to maintain ϵr and δΓ in such narrow
ranges in the presence of charge noise. However, we argue
that semiconductor junctions present a qualitative advan-
tage relative to the bifluxon: stronger coupling between
the weak link region and the superconducting leads can
be achieved without sacrificing anharmonicity, namely
without compromising the two-level approximation used
in the model for the weak link [40]. As we explain below,
the possibility to increase Γ without exiting the regime of
validity of the model may be beneficial to find a parameter
regime which offers more benevolent conditions to observe
the 4π-dominated regime.

The duality derived in Sec. IV is suggestive for the de-
sign of protected qubits. In the topological superconduct-
ing island, the regime EM = 0 defines a parity-protected
qubit [41]: as long as EJ ≫ Ec, noise acting on the is-
land can neither dephase nor flip the qubit encoded in
the parity of the Majorana pair. In our inductive loop,
a similar regime corresponds to the resonant condition
A0 = 0 together with the condition 2π2EL ≪ B0 [17].
In this regime, noise in the loop cannot dephase or flip
the qubit encoded in the fluxon parity of the loop. The
former process is suppressed exponentially in the ratio√
8B0/(2π2EL).

From the theoretical point of view, both models dis-
cussed in Sec. 5 can be cast as a one-dimensional tight-
binding model in which the nearest-neighbor hopping (EM
or A0) can become smaller than the next-nearest neighbor
hopping (EJ or B0); the hopping represents tunneling
of charge or flux depending on the side of the duality.
When the nearest-neighbor hopping is set to zero but the
next-nearest neighbor hopping is not, the one-dimensional
lattice disconnects in two separate pieces, corresponding
to “even” and “odd” sites of the lattice. Protected qubits
can then be encoded in the parity degree of freedom: par-
ity states are degenerate and have disjoint support. The
degeneracy is broken by the inductive or charging energy,
which assigns different energies to even and odd sites, but
does not couple them [42]. With this general picture in
mind, it becomes intuitive to see that the duality can be
extended to other circuits – for instance, a transmon with
both a cos(ϕ) and a cos(2ϕ) Josephson element – thus
defining a sort of equivalence class of different models of
protected superconducting qubits. Dualities of this type
have also been discussed in Ref. [43].

From a practical point of view, an immediate problem
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with the protected regime of our model is the requirement
for extreme smallness of EL: to the best of our knowledge,
the current record in the literature stands at EL/h ≈
65 MHz [9], likely higher than what would be needed for
the condition 2π2EL ≪ B0. A related issue is that the
level spacing would be in the MHz range, requiring some
active cooling to reach the quantum regime at accessible
temperatures (milliKelvin scale). At low values of EL –
often reached via high-kinetic inductance thin-films with
very low Cooper-pair densities – the occurrence of phase
slips across the inductor, neglected here, may also have to
be taken into account. A common strategy to minimize all
the problems mentioned so far is to increase the quantum
phase slip rates as well as the plasma frequency, essentially
trying to maximize both ΓA and Ec while keeping the ratio
ΓA/Ec constant and of order one. Using superconductors
with a larger energy gap than Al in the resonant level
junction would allow more room to increase ΓA without
exiting the tunneling limit. It is also essential to minimize
the quasiparticle poisoning rate of the quantum dot (which
is an analogue of the poisoning events of the Cooper pair
box island in the bifluxon [17]), as our model (2) assumes
even occupation numbers of the Andreev bound state.

Even then, the protected regime is fine-tuned by the
need for the resonant condition to eliminate 2π quan-
tum phase slips, which couple fluxons of different parity,
breaking the parity protection. Possible circuit extensions
that work around this fine-tuning problem were already
discussed in the bifluxon proposal of Ref. [17] and could
be adapted to semiconductor junctions as well.

Despite these obstacles, the existence of a protected
regime, corroborated by the duality derived in this work,
will make it interesting and rewarding to reach the hard-
to-reach parameter regime in which the inductive energy
becomes much smaller than the quantum phase slip rates.
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Appendix A: Definitions of the coefficients

In this Appendix, we give the explicit expressions for
the coefficients b0, b1, b2, b3, b4, b5 used in the paper. We
introduce auxiliary definitions first:

u(ϕ) = EA(ϕ)/ΓA =

√
1− T sin2(ϕ/2) , (A1)

µ(ϕ) = arcsin

√
u(φ)− |r|
u(φ) + |r|

, (A2)

h =
|r|

(1 + |r|)
√
1− |r|

, (A3)

k =

√
1− |r|
1 + |r|

. (A4)

Then b0 and b1 are defined in terms of elliptic integrals
of the first and second kind, as follows:

b0 = lim
ψ→0

ψ e
√
2h[2Π(µ(ψ),k−2,k)−(1−|r|)F (µ(0),k)] (A5)

b1 =
√
8h [−F (µ(0), k) + 2Π(µ(0), 1, k)] . (A6)

For the rest of the coefficients, we have:

b2 =

√
T

8

ˆ π

0

(π2 − ϕ2)dϕ√
1−

√
1− T cos2 ϕ/2

. (A7)

b3 =
√
2T b1 +

ˆ π

0

√
1 + u(ϕ)dϕ (A8)

b4 =

√
T

8

ˆ π

0

[
ϕ(4π − ϕ)√
1− u(ϕ)

+
4π2 − ϕ2√
1 + u(ϕ)

]
dϕ , (A9)

b5 =

√
T

8

ˆ π

0

dϕ√
1 + u(ϕ)

. (A10)

Appendix B: Expressions for the low-energy
Hamiltonian parameters

The expressions below are given in Ref. [16], where
As, Bs are denoted δ

2e
s , δ

1e
s and αs, βs are denoted β

2e
s , β

1e
s

respectively. We state them here for convenience. They
have been derived using parabolic cylinder functions near
the minima of the Josephson potential. The intermediate
expressions (B1), (B3), (B4) are different from [16], but
the results for As, αs and Bs, βs are the same after the
substitution of (B3) into (B1), (B4). The 2π-tunneling
amplitude and phase for a band s are given by:

As =
wωp
zπ

e−τs , αs = π(s+ 1)− α (B1)

z =
s!es+1/2

(s+ 1/2)s+1/2
√
2π
, (B2)
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with w and α as defined in the main text. Here, τs is
some WKB integral that can be evaluated to:

e−τs =
z
√
2π

s!

(
b20ωp
4Ec

)s+ 1
2

exp

(
−b1

ωp
Ec

)
. (B3)

Note that the expression for As=0 coincides with Eq. (6)
when EL/ωp → 0.

For 4π phase slips, there are two terms contributing to
the overall amplitude Bs and phase βs, which are defined

by the equality:

Bs cos(4πn+ βs) =
(−1)s+1ωp

πz
e−ρse−τs cos (4πn)

+
w2ωp
2π2z2

log

[
b20ωp

4Ec
(
s+ 1

2

)] e−2τs cos (4πn− 2α) . (B4)

Here ρs is another WKB integral, this time evaluating to

ρs = (b3 −
√
2Tb1)

√
ΓA
Ec

− b5 (2s+ 1). (B5)
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