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Abstract—This paper presents the design problem of 
furniture arrangement in a residential interior living space, and 
addresses it by means of evolutionary computation. Interior 
arrangement is an important and interesting problem that occurs 
commonly when designing living spaces. It entails determining 
the locations of interior elements such as tables, seating elements, 
projection screens etc., in order to satisfy objectives. Despite it’s 
commonality, it is a challenging problem that entails mainly soft 
objectives, related to perception and ergonomics, as well as 
challenging constraints. This paper is an attempt to address this 
problem by means of Evolutionary Computation. We discuss the 
problem formulation focusing on perceptual aspects of the 
various elements of space. In particular, we formulate a three 
objective problem with the following objectives: Maximization of 
visual perception of openings to the outside, maximization of 
inter-person visual perception, from the seating places, and 
maximization of the “openness” of space. We provide results 
from a comparison of two MOEAs, namely NSGA-II and HypE. 

Keywords—interior space, interior architecture, multi-
objectivity, evolutionary computation, perception 

I. INTRODUCTION

The design discipline of Interior Architecture focuses on 
the elaborated analysis of design problems related to living 
spaces and applies ‘the elements and principles of design’ for 
their solutions [1]. One of the most common and yet 
overlooked problems in interior architecture is the arrangement 
of furniture in a living space. As simple as it sounds, the 
solution of such a problem requires the comprehension of a 
spatial organization that structures interior space within 
architectural boundries. Although we recognize the mastery 
that may occur from an experienced designer spending a 
significant amount of their creative effort in designing an 
interior space, we find that it would be beneficial in any case to 
consider a computational system that could serve as support in 
the creative process. 

The challenge for such a problem as interior design and 
arrangement is to well define all factors that leads to a 
successful spatial organization. Quality of a design should 
incorporate a wide variety of design factors, including, but not 
limited to, functional, ergonomic, perceptual and aspects of 
scale. For defining the goals of the computational system, we 
are inspired by criteria for spatial definiton which were derived 

from the definitions presented in [2]. In the following section 
we explain what we mean with the terms interior space, interior 
circulation, interior scale, hierarchy and Connections in interior 
spaces.  

II. BACKGROUND

A. Definitions
We first go through definition of some terms in order to

contextualize the research. 

Interior Space: An interior consists of form and space when 
boundries are made possible through architectural structure. 
For our case we take a living space inside an apartment for our 
interior space. 

Interior circulation: The circulation in interior spaces 
determine the connections between areas. The arrangement of 
interior elements, entrances to other interior spaces and to 
outside determines interior circulation. 

Interior scale: The scale is related with the immediate 
environment. For the interiors the scale should be related to the 
human ergonomics.  

Connections in interior spaces: There are three types of 
connections in an inteiror space: visual, functional and 
structural. Visual connections in an interior space is provided 
with openings within planes. Doors and windows ensure visual 
connection in an interior space. The functional connections are 
determined by the relationships between different activites in a 
living space such as dining, watching TV, relaxing. Structural 
connections are defined as the junctions between structural 
elements such as between floor to wall and wall to ceiling. 

B. Previous Works
Computational Decision Support systems for interior layout

and furniture arrangement have attracted attention in some 
sutdies. 

In [3], the author proposes a pattern-based mutation 
scheme, which allows a series of predetermined elements to be 
interchanged in an indoor environment. However, the positions 
of the elements are held fixed, and as such the search space is 
dramatically constrained. 
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Fig. 1. A graphical scheme of the geometric correspondence between 
decision variable values and placement of furniture. The lower left corner 
of the space is occupied by a balcony. 

In [4], [5], authors have considered the problem of interior 
arrangement of office functions and furniture, both in 
rectangular as well as polygonal spaces. However, their 
objective functions consisted only of criteria regarding the 
functionality of the solutions. As such, soft aspects such as 
perception and openness could not be addresses by this 
approach. 

In [6], authors have considered the placement of furniture 
in an interior space focusing on ergonomic criteria. They 
propose addressing the optimization problem by the use of 
Simulated Annealing algorithm. However, the authors do not 
discuss the issue of conflicting objectives in the problem at 
hand. 

Lastly, in [7], authors use interior design guidelines to 
generate a density function with respect to positioning of 
furniture. They sample the distribution to generate solutions. 
This approach, while quite unique, does not directly guarantee 
satisfiability of goals, as well as relying on user input to guide 
the system. 

In view of the works presented above, this paper considers 
an approach to addressing the interior arrangement problem by 
means of Soft Computing. In particular, we make use of Visual 
Perception definitions, and Evolutionary Computation. 

III. PROBLEM FORMULATION 
We formulate the interior furniture arrangement problem as 

a constrained real parameter optimization problem with 16 
Decision Variables and three Objective Functions. As will be 
explained in detail, our decision variables correspond directly 
to element positions within the space, and objective functions 
focus on soft aspects of space such as visual perception and the 
perception of openness. 

For simplicity, in the current version of the proposed model 
we do not consider quality of access in the space, apart from 

the basic clearance requirements, e.g. around tables, in front of 
seating elements etc. However, it is our plan to include specific 
access-related design goals in the near future. 

We formulate a scenario that concerns furniture placement 
in a living room of an apartment residence. The rectangular 
space has dimensions of roughly 5.5m x 5.0m, with one corner 
of the rectangle occupied by a balcony. One of the sides of the 
living room has a large opening to the outside. A diagram of 
the space in question is available in Fig. 1. 

A. Decision Variables 
We define a total of 16 decision variables (DVs). For each 

of the four pieces of furniture to be arranged, correspond three 
DVs: Two control the position of the element in space, px, py , 

and one controls it’s rotation, rxy . Position variables form real 
numbers, while rotation is a discrete variable. 

In principle, the scheme described above should be enough 
to fully describe an instance of our interior space arrangement. 
However, we have found it is beneficial as for the results, to 
include four additional variables, which would control the 
ordering of the furniture with respect to their anchor points. In 
other words, we first specify four anchor points using the 12 
variables discussed above, and subsequently we assign one 
element to each, according to an ordering, which is itself 
subject to optimization. This is a trick that has been reported 
several times in previous works [6], [8], and allows for radical 
changes in the phenotype to take place with minimal change in 
the genotype, i.e. furniture positions could be potentially 
completely re-arranged, through a slight change in two or three 
DVs. An overview of DVs is available in Table I.  

TABLE I.     DECISION VARIABLE NOTATIONS AND UNITS 

Notation Unit Interval or 
Values 

No. of 
DVs 

Description 

px,i  m [0.0, 5.5] 4 Position in the X direction 

py,i  m [0.0, 5.5] 4 Position in the Y direction 

ri  rad {0, π/2, π, 
3π/2, 2π} 

4 Rotation 

oi  - [0.0, 1.0] 4 Assignment parameter 

 

B. Objective Functions and Constraints 
We define a total of three objective functions (OFs).The 

first OF regards the visibility of exterior openings from the 
hypothetical observers occupying two seating positions of the 
interior space (Sofa A and Sofa B). The second OF regards the 
inter-person visual perception between occupants of the same 
seating positions. The third OF regards the perceived 
“Openness” of the space, which, broadly speaking, corresponds 
to the existence of a single and unpartitioned area within the 
space. The solutions are subject to two constraints, ga and gb, 
which ensure feasibility of the solution, with respect to object 
overlaps. Thus, our problem formulation is as follows: 

max(OView,OVis,ODist )  
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Fig. 2.  An instance of potential furniture arrangement, with visual 
perception areas being highlighted. For S1, around 20% of the visual area 
is occupied by S2, and around 40% by table T. For S2, around 35% is 
occupied by S1, and 30% by table T. 

subject to: 

ga,gb ≥ 0  

To evaluate visual perception, we implement the visual 
perception model introduced by Çiftçioğlu and Bittermann in 
[9], [10]. The model in question is a probabilistic model that 
manages to provide a quantitative figure of unbiased observer 
visual perception, effectively abstracting much of the 
biological complexity that belies the human faculty of vision.  

In the stochastic version of the model, the visual field is 
defined as a cone with an apex angle of 90 degrees, located at 
the observer and aligned with their viewing direction. Within 
the cone, a number of “visual rays” are considered, which are 
generated according to a uniform random distribution with 
respect to their angle of departure from the observer. The 
degree of awareness of a particular object or region in the 
visual field is then defined as the proportion of visual rays that 
intersect it, over the total rays considered: 

 

ps,o =
intersect(Ri,O)i=1

n
∑

n
 

 
In the above formula, S is the spectator, O is the object or 

region in question, and intersect is a function that returns 1 if a 
ray intersects an object, and 0 otherwise. 

For our purposes, we make use of the model to perform 
four measurements:  

1. Perception of observers in sofa S1  by observers at 
sofa S2, RS2S1. 

2. Perception of observers in sofa S2  by observers at 
sofa S1, RS1S2. 

3. Perception of coffee table by observers in sofas S1 
and S2 RS1T. 

4. Perception of exterior openings by observers in 
sofas S1 and S2 RS1E, RS2E. 

The above mentioned measurements are outlined visually 
in Fig. 2. 

Finally, for the first objective, we need to combine visual 
perception measurements 1, 2, and 3, as outlined above, in a 
single figure, to produce the actual OF value. We perform this 
by summing up the individual visual perception measurements, 
and applying a non-linearity, in our case the logistic function, 
to the result: 

OVis =
1

1+ e−m*(Svis−c)  

Svis = P1+P2+P3  

Where P1, P2 and P3 are the individual objecive function 
values. The last objective concerns, as already mentioned, 
maximizing the perceived “Openness” of the indoor space. The 
reason for considering this objective is explained as follows: In 
order to satisfy the previously explained objectives, namely 
perception of exterior openings and perception of seating 
spaces, many different arrangements may be considered. 
However, some of them include furniture that are placed in 
such ways that partition the space in smaller areas that are 
difficult to be used, and furthermore, impede movement 
through space. Ideally, we would like to have a single, 
unpartitioned area within the interior, that may be used as 
required, and would not inhibit movement. In other words, our 
third objective serves as an indication of the fragmentation of 
the interior space.  

To model this aspect of space, we refer to the following 
method: N points are distributed uniformly in the boundaries of 
the space. From each of the points, we measure the distance to 
each of the geometrical features of the furniture, as well as the 
boundaries of the space itself, and consider the smallest one, 
which we term Di,min for the ith point. The final objective 
function value is given by the largest among the N values of 
Di,min: 

ODist =maxi=1
N (min j=1

k pi − e )  

Constraints are mainly related to the presence of 
geometrical overlapping between each one of the furniture in 
the space, and between the boundaries of the space and the 
furniture. Overlaps may be caused in both cases by unsuitable 
position and rotation decision variable values. In order to 
evaluate the overlaps between furniture, we compare the area 
of the union of the geometric shapes of the furniture, with the 
summation of each of the funrniture’s area: 

ga =min(0,h(F1 F2∪ F3∪ F4∪ )− h(Fi )
i=1

4

∑ )  



 

Fig. 3.  Screenshot of the Geometric Model, the Objective Function 
computation and Constraint computation scheme in visual format, as 
developed in the Grasshopper Visual Programming environment. 

In the above equation, F is the geometrical shape, including 
orientation, for each of the elements in space and h is a 
function that takes a geometrical shape as an argument, and 
gives it’s area. With respect to the second constraint, we 
compare the area of the room to the area of the union of the 
room with the furniture: 

gb =min(0,h(R)− h(F1 F2∪ F3∪ F4∪ R∪ ))  

In the above equation, R denotes the shape of the space in 
question, and the rest of the variable names are as previously. 
This provides an easy way of comparing for overlaps and 
collisions, as the geometric operations, such as unions, are 
readily available from the CAD program in use, which is the 
Rhinoceros 3D program and the associated parametric 
modeling plugin, Grasshopper. A screenshot of the visual 
representation of the objective function algorithm is available 
in Fig. 3. 

IV. ALGORITHMS 

A. NSGA-II 
The Non-Dominated Sorting Genetic Algorithm-II (NSGA-

II) is perhaps one of the most widely known algorithms in the 
field of MOEA. Here we wish to provide a brief overview of 
the main characteristics of the algorithm, but for a detailed 
treatise the interested reader is referred to the original NSGA-II 
publication [11].  

NSGA-II is a elitist MOEA that is based on a quick non-
dominated sorting procedure to apply selection pressure to the 
population. In addition, population diversity is ensured by 
favoring individuals in less crowded areas of the objective 
function space. This is achieved by means of a Crowding 
Distance indicator, which indicated the relative crowding 
among individuals of the same dominance rank. Analytically, 
the process followed by the algorithm in one generation are as 
follows: 

1. Perform non-dominated sorting. 

2. Assign crowding distances to individuals for each 
Pareto rank. 

3. Perform binary tournament selection and form the 
mating pool. 

4. Elitist reduction of the combined previous and 
current populations. 

B. HypE 
The Hypervolume Estimation Multi-Objective algorithm 

(HypE) is an algorithm developed by Bader and Zitzler [12] 
that belongs to the category of indicator-based MOEAs. The 
algorithm has been mainly developed to address problems 
where the number of objectives is high. In these types of 
problems, Pareto dominace-based algorithms are problematic, 
due to the decreasing selection pressure that the non-
dominance principle is able to apply in many-dimensional 
spaces.  

 HypE makes use of the Hypervolume metric, Ih as a fitness 
assignment scheme. In particular, it measures the hypervolume 
that can be attributed to each one of the solutions in the 
population. The corresponding figure, Ikh, is assigned as a 
fitness value to each of the individuals. Selection happens by 
binary tournament selection. Elitism is enforced by two 
mechanisms: i. Through Pareto dominance-based comparison 
of the combined population and ii. through Ih fitness 
comparison between remaining non-dominated individuals. 
Analytically, the steps followed by the algorithm for each 
generation are as follows, given population P : 

• Form P '  by mating selection through binary 
tournament using Ih as selection criterion. 

• Form P ''  by recombination of individuals in P '  
using genetic operators. 

• Environmental selection based on P P∪ ''  , 
using Non-Dominated sorting and Ih. 

We make use of a HypE implementation that uses 
Simulated Binary Crossover and Polynomial Mutation as 
recombination operators. Both algorithms have been 
implemented as part of the CIDEA decision support platform 
[13]. 

V. COMPUTATIONAL RESULTS AND DISCUSSION 
We have performed 10 optimization runs for each of the 

two algorithms in comparison. The settings for each algorithm 
are available in Table II. In summary, the algorithms were 
allowed to run for 140 generations in total, with a population of 
140 individuals. The runs were performed on an Intel Core i7 
2.2GHz computer with 16GB of RAM.   

With respect to the results of NSGA-II, we observed that 
the algorithm converges to a Pareto front around generation 
100. By comparison, the HypE algorithm seems to converge at 
around generation 110. The solutions present in the final 
generation of the run, for each of the algorithms, is available in 
Fig. 4. 



Fig. 4.  Final population for the two EAs after 140 generations. Left: NSGA-II, Right: HypE. 

TABLE III.     DECISION VARIABLE COMPOSITIONS OF SOME NON-DOMINATED INDIVIDUALS FROM THE NSGA-II AND HYPE RUNS 

Item Position 
(factor of dimension [0,1]) 

Item Rotation 
(factor of full circle, [0,1]) 

Item Assignment 
(relative order [0,1]) 

EA 

Indexes Correspondence: 1: Couch A, 2: Couch B, 3: Dining Table, 4: Coffee Table 
px1 px2 px3 px4 py1 py2 py3 py4 r1 r2 r3 r4 o1 o2 o3 o4 

0.686 0.133 0.687 0.576 0.949 0.872 0.244 0.619 0.513 0.950 0.358 0.822 1.0 0.8 0.7 0.7 HypE 
0.745 0.722 0.132 0.741 0.467 0.839 0.746 0.242 0.287 0.850 0.759 0.832 0.1 0.4 0.7 0.6 HypE 
0.679 0.133 0.693 0.574 0.949 0.872 0.244 0.616 0.510 0.949 0.359 0.822 1.0 0.8 0.7 0.7 HypE 
0.705 0.578 0.202 0.248 0.933 0.447 0.790 0.514 0.567 0.568 0.840 0.059 1.0 0.2 0.0 0.9 NSGA-II 
0.697 0.898 0.204 0.258 0.933 0.155 0.982 0.667 0.612 0.566 0.832 0.089 1.0. 0.2 0.1 0.6 NSGA-II 
0.705 0.588 0.209 0.248 0.945 0.442 0.790 0.514 0.367 0.568 0.840 0.058 1.0 0.2 0.3 0.7 NSGA-II 

 

 TABLE II.     ALGORITHM SETTINGS NSGA-II AND HYPE 

Setting NSGA-II Value HypE Value 

Crossover p 1.0 1.0 

Mutation p 0.15 0.15 

η Crossover 10 10 

η Mutation 30 30 

Ih Samples - 10000 

 

 We have performed a Hypervolume comparison for each 
of the two algorithms. Using a 2-sample t-test, we have 
confidently concluded that the Hypervolume performance of 
HypE is superior. This suggests, in our case, that HypE is able 
to identify a better Pareto front than NSGA-II. The result of the 
comparison is available in Table IV. The Pareto front in both 
cases is developed in the dimension of all three objectives, 
supporting the claim of the objectives being conflicting to each 

other. However, as can be seen in Fig. 4., NSGA-II presents a 
more uniformly distributed set of solutions. 

It has come to our notice that certain designs do not appear 
on every pareto front, but only once in a while. As such, it can 
be speculated that the full Pareto front of the problem is not 
achieved. Or alternatively, it is possible that solutions exist 
with very similar performance but different decision variable 
compositions. We speculate that a more advanced method of 
handling constraints would be also beneficial to the 
performance of the algorithms, and would result to better 
approximation of the theoretical Pareto front. 

With respect to the architectural qualities of the solutions, 
we are able to recognize several different types of designs. 
They are summarized visually in Fig. 5. Several of the design 
types present indeed plausible arrangements. For instance, 
Fig.5 top presents a corner arrangement of the sofas near to the 
exterior opening, with the coffee table in the middle. In the 
same arrangement, the dining table is placed to the one side of 
the room, and there is plenty of space for accessing all 



 

Fig. 5.  Promising solutions identified by the proposed approach, using 
both NSGA and HypE algorithms. Images have been visualized using the 
Rhinoceros CAD program. 

 

Fig. 6.  Solutions that satisfy objective functions specified, but are not 
plausible from a design perspective. Images have been visualized using 
the Rhinoceros CAD program. 

 functions (although this has not been explicitly stated as an 
objective). In another type of arrangement, the sofas are placed 
across each other, and the coffee table is placed either between 
them or on one side. There exist also solutions where the 
dining table is in fact next to the exterior opening. Naturally, 
these types of solutions do worse in the Exterior View 
objective. 

TABLE IV.     HYPERVOLUME PERFORMANCE FOR NSGA-II AND HYPE 

Algorithm Ih 95% CI 

NSGA-II 0.105 0.08 to 0.13 

HypE 0.600 0.54 to 0.67 

 

We have also identified solutions that satisfy objectives 
well, but are not plausible enough to be part of a real design. 
Some are presented in Fig. 6. For instance, Fig. 6 top, is 
characterized by an offset arrangement of the sitting sofas, 
which is not ideal given that there is plenty of space for a more 
efficient arrangement. Fig 6 center, on the other hand, presents 
an infeasible, by design standards, arrangement. 

The presence of well-performing but not plausible solutions 
definitely gives a hint for the future elaboration of the 

objectives. Specifically, elaboration on the perceptual aspects 
of room occupants should be central to the development of a 
more capable interior arrangement system. 

VI. CONCLUSION 
 

We presented a method for automatic design of interior 
space arrangement of furniture, using Evolutionary 
Computation. We have formulated a Multi-Objective 
constrained optimization problem, based on three soft, 
perception-related objectives, and two constraints that ensure 
plausibility of the solution. We have compared the 
performance of two MOEAs, namely NSGA-II and HypE, and 
identified that HypE is superior in terms of Hypervolume 
performance, however NSGA-II presents a more uniformly 
distributed solution set.  

The qualitative results of our investigation demonstrate 
interesting design approaches taken by the algorithm, some of 
which are plausible and close to what a human designer would 
come up with, and others are ignoring some more elaborate 
aspects of space planning.  

This last observation leads to the most prominent direction 
for future development of the work, which is the elaboration 
of the objective functions, by introducing more elaborate 



perceptual treatment of the various stimuli found within the 
space. In parallel to that, a stronger constraint-handling 
scheme could reveal a wider array of solutions, and lead to 
more promising and unexpected designs. Finally, it may be 
worth exploring more rigorously, and formulating as 
objectives, aspects related to the ergonomics of space. 
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