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Trim for Maximum Control Authority
using the Attainable Moment Set
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Mark Voskuijl†
Netherlands Defence Academy, Den Helder, 1780 AC, The Netherlands

Leo L. M. Veldhuis‡

Delft University of Technology, Delft, 2629 HS, The Netherlands

This paper presents a method to find trimmed flight conditions while maximizing the available
control authority about one or more motion axes. Maximum pitch-up, or lift-up, control
authority could find interesting application in aborted landing situations, while maximum
balanced control authority about all motion axes is a reformulation of the classic concept
of minimum control effort. The trim problem is formulated in the form of a constrained
optimization problem. The constraints and the objective function are obtained by exploiting
the geometric properties of the Attainable Moment Set, a convex polytope containing the
forces and moments attainable by the aircraft control effectors. The method is applied to an
innovative box-wing aircraft configuration called PrandtlPlane, whose double wing system can
accommodate a large number of control surfaces, and hence allow Pure Torque and Direct
Lift Control possibilities. Control surface deflections are compared for trim conditions with
maximum control authority in the pitch axis, in the lift axis, and maximum balanced control
authority, for symmetric and asymmetric flight. Results show that the method is able to
capitalize on the angle of attack or the throttle setting to obtain the control surfaces deflections
which maximize control authority in the assigned direction.

Nomenclature
α, β, γ angles of attack, side-slip, flight path, rad A control authority
φ, θ, ψ angles of bank, elevation, heading, rad J generic objective function
δ effector positions, rad LA,MA,NA moments in Aerodynamic Axes, N·m
χ trim controls set LB,MB,NB moments in Body Axes, N·m
g gravitational acceleration, m·s−2

` half-line in Moment Space Subscripts and superscripts
p,q,r angular rates in Body Axes, rad·s−1 a, e, r aileron, elevator, rudder
u, v,w velocity components in Body Axes, m·s−1 dyn, kyn dynamic, kynematic
f equations of motion ineq, eq inequality, equality constraint
u, x dynamic system inputs and states lb, ub lower bound, upper bound
B control effectiveness matrix, rad−1 T thrust
C( ) generic non-dimensional coefficient tr trim condition
I inertia tensor, kg·m2 w, h, c wing, horizontal tail, canard
L lift force, N A aerodynamic effect
M∞ free-stream Mach number
V airspeed, m·s−1 Acronyms and abbreviations
W aircraft weight, N AMS Attainable Moment Set
XA,YA, ZA forces in Aerodynamic Axes, N CH Convex Hull
XB,YB, ZB forces in Body Axes, N DoF Degree of Freedom
XE, YE, ZE aircraft position in Earth Axes, m GAMS Greatest Attainable Moment Set
F generalized forces, N or N·m SW side wind
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Fig. 1 Three Northrop Grumman F2F-1 fighters in formation flight, 1939∗.

I. Introduction
Trimming a dynamic system means finding the combination of input and state variables values which set the system in a
steady-state condition [1]. The latter can be representative of either a static or dynamic equilibrium condition. In the
most general case, the dynamic system is represented in the state-space form by non-linear, implicit or explicit equations.
Respectively:

f ( Ûx, x, u) = 0 or Ûx = f (x, u) . (1)

If the system is trimmed, then

f
( Ûxtr= 0, xtr, utr) = 0 or Ûxtr= f

(
xtr, utr) = 0. (2)

The trim problem is the problem of finding the values of xtr and utr such that Eq. 2 is verified.
Let us indicate with X = {x, u} the set of system states and inputs. For a given trim condition, Xtr =

{
xtr, utr}. In

general, some subset χ0 ⊆ X can (or must) be characterized explicitly in order to define the desired trim condition. The
variables belonging to this subset have therefore known values. The remaining subset χ = X − χ0 contains unknown
valued variables, which are referred to as trim controls. By using these definitions, it is possible to represent Xtr either
in terms of system states and inputs or in terms of assigned and unknown trim parameters:

Xtr =
{
xtr, utr} = {χ0, χ}. (3)

The trim problem consists then in determining the values of the trim controls χ that verify Eq. 2.
We can indicate with Nf the number of dynamic equations f , and with Nχ the number of trim controls χ. The

trim problem is said to be over-determined if Nf > Nχ , determined if Nf = Nχ , or under-determined if Nf < Nχ .
This classification does not give any indication on the number of solutions that the trim problem can have. Due to
non-linearities and couplings in the dynamics equations, even a determined trim problem can have zero or more than
one solution: an example of this is shown in Fig. 1. In the figure, the leader is trimmed in straight and level flight. The
followers are trimmed in an anti-symmetric, steady forward-slip flight. This attitude requires additional contemporary
deflection of ailerons and rudders to maintain the asymmetric flight condition. The additional trim drag requires in turn
a higher engine setting to maintain a horizontal trajectory. The complexity of a given trim problem increases with the
number of trim controls, making under-determined problems generally tougher to solve than determined ones.

For aircraft flight mechanics applications, a common choice for the state vector x is:

x =
[
xdyn, xkyn

]
with xdyn = [u, v,w, p,q,r], xkyn = [ψ, θ, φ,XE,YE, ZE]. (4)

∗Courtesy of the National Archives and Records Administration; catalog number: 80-G-409231.
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where ψ, XE and ZE have no influence on dynamics (in case of non geo-referenced applications), and ZE is only used for
retrieving the properties of the atmosphere at the current altitude. Alternatively, the velocity components in Body Axes
[u, v,w] are sometimes replaced by airspeed and aerodynamic angles [V, α, β]. Also, the Euler angles [ψ, θ, φ] are often
replaced by the attitude quaternion, in order to avoid the “gimbal lock” phenomenon [2].

An extensive and detailed analysis of the trim problem for rigid aircraft 6-DoF dynamics is presented in [3]. A
remarkable effort is devoted to a unified analytical derivation of the equations of motion and to the formulation of the
trim problem for typical flight conditions. In all cases, a conventional aircraft configuration is considered, with four
input variables related to the four classic control effectors (throttle position, and elevator, aileron and rudder deflections).
The two ailerons are considered ganged, i.e. their deflections are linked through a fixed gearing ratio. The same is done
with the elevators, if more than one is present. Hence, each of these pairs of control surfaces represents only one input
variable for the aircraft dynamic system:

u = [δT, δe, δa, δr]. (5)

The trim problem is formulated as the following optimization problem:

min
χ

J =
 Ûxdyn

2

subj. to χlb ≤ χ≤ χub

(6)

and assumes the aircraft is trimmed when the non-negative objective function J approaches 0 within a certain tolerance.
The problem is then, in essence, a root finding problem. For every desired flight condition the number of assigned trim
parameters χ0 is chosen so that the trim problem is determined. Since a dynamic model based on the 6-DoF rigid-body
equations of motion is adopted, each trim problem has six trim controls: the four input parameters of Eq. 5, plus two
Euler angles. This approach shows its limitations when considering aircraft configurations with higher number of inputs,
e.g. with redundant or unganged sets of control effectors, for which the trim problem becomes under-determined.

An early attempt at solving an under-determined trim problem for aircraft longitudinal dynamics is provided in [4].
The trim problem is formulated as an induced drag minimization problem, with constraints on the vertical and rotational
equilibrium in the longitudinal axis. The equations of motion are linearized with classic assumptions for the cruise
condition and a closed form solution is derived. Examples are provided for a three-lifting surface-aircraft and a fighter
jet with thrust vectoring capabilities. The trim controls χ for the first system are the lifts of each surface, while those for
the second case are the lifts of wing and tail, and the engines’ thrust angle. In both cases, Nχ = Nf + 1 and therefore it
is possible to optimize a single scalar parameter, induced drag, while trimming the aircraft.

The case of under-determined trim problems due to control effectors redundancy has been analyzed in [5], with
application to the Blended Wing Body (BWB) aircraft configuration. Two approaches to the trim problem are proposed:

1) A Minimum Drag Trim Optimization (MDTO) formulation applied to 6-DoF dynamics.
2) A Trim Direct Allocation (TDA) formulation, analogous to the one in Eq. 6.

With the MDTO formulation, the trim controls χ directly include unganged control surfaces deflections δ. In this way,
the dimension of χ increases linearly with the amount of control effectors, making the trim problem more complex for
highly-redundant aircraft configurations.

With the TDA formulation, the unknown control surfaces deflections δ are replaced, in the trim control subset χ, by
a set of unknown aerodynamic actions due to the control effectors ∆F. A Direct Control Allocation (DCA) method fCA,
as developed in [6], is used to establish a relation between ∆F and the control surfaces deflections δ, through the control
effectiveness matrix B:

∆F = Bδ ⇒ δ = fCA(B)∆F . (7)

With this approach, the dimension of χ does not depend on the control redundancy of the aircraft configuration. The
dimension of ∆F, here indicated with NF , is somewhat arbitrary and depends on which motion axes are selected to be
controlled: ∆F contains up to two elements (lift and pitch moment) for flight simulations constrained in the longitudinal
plane, or up to four elements (lift, and roll, pitch, yaw moments) for 6-DoF simulations. It is noted that the number and
type of elements in ∆F has a significant impact on the control surfaces deflections at trim δtr.

Comparing the two approaches presented in [5] would be overall unfair. The MDTO is an optimization-based
approach that exploits controls redundancy to minimize drag at trim conditions. The TDA is a root-finding trim approach
that copes with control redundancy through a neutral objective Control Allocation (CA) algorithm. No parameter is
explicitly optimized with the latter formulation and indeed the method is not capable of returning the minimum drag
trim condition. With reference to the TDA approach, it is shown that introducing lift in the trim control vector results in
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Table 2 Summary of trim problem formulations from the reviewed literature.

Reference DoF Objective Trim Controls Control Surfaces Gearing

[3] 6 Trim θ, ψ, δT, δe, δa, δr Ganging
[4] 3 Drag CL,w, CL,h, CL,c Not modeled

3 Drag CL,w, CL,h, δT Not modeled
[5] 3,6 Trim, drag α, θ, δ, δT None

3 Trim α, θ, M, δT DCA [6]
3 Trim α, θ, M, ZB, δT DCA [6]
6 Trim α, θ, ψ, φ, L, M, N, ZB, δT DCA [6]

trim conditions with better aerodynamic efficiency, i.e. lower drag. Drag is not explicitly included in χ because the
DCA would poorly approximate its quadratic behavior with deflection angles.

Advanced CA algorithms that explicitly minimize drag have been developed in the past, but never applied to the trim
problem. For example, an incremental, or frame-wise, expansion of the DCA method is presented in [7]. Alternatively,
a model-specific incremental CA method is presented in [8], where drag is expressed as a quadratic function of the
effectors, and the CA algorithm solves a quadratic programming optimization problem.

A synthetic scheme of the reviewed trim problem formulations is shown in Table 2.
This paper presents a trim problem formulation aimed at achieving maximum control authority in a specific direction

of one or more motion axes. The trim problem is formulated in the form of a constrained optimization problem. The
constraints and the objective function are obtained by exploiting the geometric properties of the Attainable Moment Set
(AMS), a convex polytope representing all the possible forces and moments attainable by the aircraft control effectors.
Forces and moments are then mapped to the effectors using a Linear Programming formulation of the DCA method.

Control authority is here defined as the ability of the control effectors to generate forces and moments in the given
direction of the selected set of motion axes. For example, maximizing balanced control authority about all motion axes
can be interpreted as a reformulation of the classic problem of minimizing total control effort.

The condition in which an aircraft is flying in equilibrium but is capable of generating maximum pitch-up control
moment could be of interest for an aborted landing situation. In such a flight scenario, due to high lift devices introducing
a consistent additional pitch-down moment, conventional aircraft configurations need to deploy a significant pitch-up
elevator deflection just to trim the aircraft. The greater the trim deflection demanded to the elevator for trim, the smaller
the control authority left for emergency pitch-up maneuvers. Searching for trim conditions which guarantee rotational
equilibrium and at the same time increase the control authority for pitch-up is therefore interesting with regards to
safety purposes. A similar scenario can be envisioned to justify the interest in trim with maximum lift-up control
authority. Because lift lies perpendicular to the velocity vector, by definition, an increase in lift introduces a centripetal
acceleration V Ûγ which is the most direct way to bend the trajectory upwards. The study of control authority in the lift
axis is particularly aimed at exploiting one of the most interesting capabilities of the box-wing aircraft configuration:
the innovative way of implementing Direct Lift Control (DLC). With the redundant controls on the double wing system,
box-wings are capable of generating substantial variation in lift, while decoupling, partially or totally, the control of
pitch moment from the one of vertical forces.

The aircraft flight mechanics and simulation model used is presented in Sec. II. The concept of control authority
is formalized in the scope of CA theory in Sec. III, and the new trim problem formulation is illustrated in Sec. IV.
Applications to 3-DoF simulations are presented for explanatory purposes. Results for 6-DoF simulations are shown in
Sec. V for maximum control authority in the pitch and lift axes, as well as for maximum balanced control authority
about all motion axes. Finally, conclusions and further studies are presented in Sec. VI.

II. Aircraft and Simulation Model
The concepts developed in this work apply to any aircraft configuration, with any level of control redundancy. The
aircraft model used as the main application case for this paper is an unconventional, box-wing configuration referred
to as the PrandtlPlane (PrP). The specific PrP used for this study is a 300 passenger, transonic, commercial transport
aircraft, currently being designed within the scope of the PARSIFAL project [9, 10], in the framework of the European
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Horizon 2020 research program. The box-wing has been known for a long time to be the “best wing system” for induced
drag performance [11], and the PrP concept strives to integrate it in an innovative aircraft architecture for sustainable
future aviation. The double wing system of the PrP, including the side wings connectors, allows the installation of
multiple control effectors. This poses an interesting design challenge, as shown in [12, 13], and at the same time enables
original and innovative control possibilities, like Direct Lift Control (DLC) and Direct Side-Force Control. The aircraft
configuration is shown in Fig. 2.

The aircraft geometry is created in the Multi Model Generator (MMG), an in-house developed Knowledge
Based Engineering (KBE) toolbox [14]. This tool provides automatic, configuration-agnostic modeling and meshing
capabilities, which can be interfaced with selected aerodynamic solvers. By making use of the commercial panel method
code VSAERO [15], a vast aerodynamic database for the PrP has been generated in the form of look-up tables. The
database for steady aerodynamics expresses the six non-dimensional aerodynamic actions in Body Axes{

CXB,CYB,CZB,CLB,CMB,CNB

}A (8)

as tabular functions of α, β, M∞ and control surface deflections δ. Dynamic derivatives with respect to rotational rates
p,q,r are calculated for each flight condition with a second order finite difference formula. Each of the six aerodynamic
actions in Eq. 8 is then expressed as the following superposition of effects:

CAF = CF0 (α, β,M∞,δ = 0)︸                    ︷︷                    ︸
steady, clean

+

Nδ∑
i=1
∆CF (α, β,M∞, δi)︸                      ︷︷                      ︸

steady, control effectors

+
∑

ω=p,q,r

CFω (α, β,M∞,δ = 0)ω︸                                ︷︷                                ︸
unsteady, clean

. (9)

For the aerodynamic database used in the present study, both α and β range from −6° to 6° in steps of 3°, while two
mach numbers have been analyzed, namely M∞ = 0.3 and M∞ = 0.6. Additionally, each control surface has been
deflected, independently from all the others, from −30° to 30° in steps of 10°.

The aerodynamic database is imported in the Performance, Handling Qualities, and Loads Analysis Toolbox
(PHALANX). This is a non-linear simulation and analysis toolbox, which integrates data and sub-models from various
aeronautical disciplines (aerodynamics, propulsion, flight control system, weight and balance, etc.), in order to generate
a complete Flight Mechanics Model (FMM) of the aircraft. PHALANX is developed in MATLAB®/Simulink and
revolves around a Simscape Multibody Dynamics core. This allows to model and simulate systems dynamics without
the need to explicitly write the analytical equations of motion. In this way, it is possible to model complex phenomena
like relative motion of aircraft parts (e.g. center of gravity due to fuel consumption) or wing flexibility, and measure
local flight parameters at specific aircraft locations. For the current work, with the aircraft having neither moving parts,
nor variable mass components and not interacting with the ground, the underlying equations of motion reduce to the

Fig. 2 PrP aircraft configuration as modeled in the MMG, with control surfaces highlighted on the main wings.
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classic 6-DoF rigid body dynamic equations, written in Body Axes:
Ûu
Ûv
Ûw

 = −


p
q
r

 ×


u
v

w

 +
g

W


CXB (α, β, θ, φ,δ) −W sin θ
CYB (α, β, θ, φ,δ) +W sin φ cos θ
CZB (α, β, θ, φ,δ) +W cos φ cos θ


Ûp
Ûq
Ûr

 = I−1 ©«−


p
q
r

 × I


p
q
r

 +


CLB (α, β, θ, φ,δ)
CMB (α, β, θ, φ,δ)
CNB (α, β, θ, φ,δ)


ª®®¬

(10)

The toolbox is aircraft configuration-agnostic and data-driven, meaning that its fidelity depends on the data and
formulations used in the sub-models. This allows PHALANX to operate consistently at different stages of the aircraft
design process. The toolbox has been used in the past for the positioning and sizing of control surfaces of the
PrP [12, 13], and the analysis and simulation of novel aircraft configurations like the BWB [16] and the Delft University
Unconventional Configuration (DUUC), featuring the propulsive empennage concept [17].

III. Theoretical background
As mentioned previously, control authority is here defined as the ability of the control effectors to generate forces and
moments (or generalized forces) in the selected direction of one or more motion axes of interest. It is here indicated
with the symbol A±F . For example, pitch-up control authority is defined as the ability to generate the largest pitch-up
moment, i.e. the largest positive moment about the pitch axis, from a given reference condition. It is calculated as

A+M =
��Cmax
M − Cref

M
��. (11)

In a similar fashion, pitch-down control authority is defined as the ability to generate the largest negative moment about
the pitch axis, and is calculated as

A−M =
��Cmin
M − Cref

M
��. (12)

Because Cmax
M and Cmin

M are, in general, quantities of opposite sign, the control authorities A+M and A−M are very
different in magnitude, for the same reference condition. When more than one motion axis is of interest, the definition
can be extended to the norm of a vector quantity:

AF =
Clim

F − Cref
F

. (13)

Although control authority is a function of all flight and aircraft configuration parameters, for a given flight condition
{α, β,M∞} it only depends on the position of the control effectors. In this case, it can be expressed in terms of the
aerodynamic actions due to the control effectors ∆CF :

∆AF =
∆Clim

F − ∆Cref
F

. (14)

This definitions are used in the following subsections, where more concepts related to CA theory are recalled.

A. The Attainable Moment Set
In order to visualize the definition given in Eq. 14, and understand its geometrical interpretation, it is useful to recall the
definitions of Control Space and Moment Space, as defined in [6]:

Control Space is a Cartesian axis system in the RNδ space, with a control effector position varying on each axis.
Each combination of control effectors positions is represented by a point in Control Space. The set of all possible
effectors positions is called the Admissible Controls Set (ACS). If the effectors positions are simply bounded, the
ACS is a hyper-rectangle in Control Space (i.e. a rectangle in R2, a parallelepiped in R3, etc.).

Moment Space is a Cartesian axis system in the RNF space, with a generalized force varying on each axis. The
generalized forces generated by a combination of effectors positions are represented by a point in Moment Space.
The set of all possible generalized forces generated by the effectors is called the Greatest Attainable Moment Set
(GAMS).
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δ1,lb

δ1,ub

δ2,lb

δ2,ub
δ3,lb

δ3,ub

δ1

δ2

δ3

a) Generic Admissible Control Set in R3

B7−−−−→

∆CLB ∆CMB

∆CNB

b) Generic Greatest Attainable Moment Set in R3 for
the classic "three moment" allocation

Fig. 3 Mapping of the Admissible Control Set (ACS) to the Greatest Attainable Moment Set (GAMS) through the control effectiveness
matrix B. In this specific example, both the AMS and the GAMS are subspaces of R3.

It should be clear, at this point, how the GAMS is a function of the ACS. As shown in Eq. 9, for a given flight condition,
the aerodynamic actions on the aircraft are related to the effectors position through the control-dependent part of the
non-linear aerodynamic model. Due to non-linearities and couplings in the aerodynamic model, it is usually hard to
characterize the GAMS in Moment Space. One notable analytic effort is presented in [18]. If Eq. 9 is linearized w.r.t.
the control effectors positions, the control effectiveness matrix B is introduced:

B =
∂CF

∂δ
=
∂∆CF

∂δ
=



∂CF1/∂δ1 ∂CF1/∂δ2 . . . ∂CF1/∂δNδ

∂CF2/∂δ1 ∂CF2/∂δ2 . . . ∂CF2/∂δNδ

...
...

. . .
...

∂CFNF
/∂δ1 ∂CFNF

/∂δ2 . . . ∂CFNF
/∂δNδ


. (15)

If the aircraft has Nδ control effectors and NF controlled forces, B defines a linear function

B : RNδ → RNF

δ 7→ ∆CF = Bδ
(16)

which maps the ACS to an approximation of the GAMS. The goodness of such approximation depends on how accurately
the linear model of Eq. 16 represents the non-linear one of Eq. 9 for the selected flight condition.

If B is constant and with the ACS being a convex set, it can be proven that the GAMS is a bounded convex polytope
set in RNF (i.e. a polygon in R2, a polyhedron in R3, etc.) [19], as shown in Fig. 3. The geometric algorithm to construct
the GAMS, given a constant B matrix and the effectors positions saturation limits, is described in [6] for NF = 2 and
NF = 3. In this work, it has been generalized to any number of generalized forces.

The convexity of the GAMS guarantees the existence of an interior and of a boundary of the GAMS. The generalized
trim control forces ∆Ctr

F are represented by a point belonging to the interior or to the boundary of the GAMS
corresponding to the given trim flight condition. The inverse is obviously not true: not all points belonging to the
interior or the boundary of the GAMS are trim points. Within this scope, trimming the aircraft means finding the flight
condition and the set of control aerodynamic actions ∆Ctr

F , lying inside or on the boundary of the corresponding GAMS,
so that Eq. 2 is verified.
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−1.7 1.7

−0.7

0.7

∆Cref
F ∆C lim

+M∆C lim
−M

∆C lim
−Z

∆C lim
+Z

∆C lim
F

∆A+M∆A−M
∆A−Z

∆A+Z
∆AF

∆CMB

∆CZB

GAMS boundary

Fig. 4 Geometric interpretation of control authority about various motion axes and directions in an R2 Moment Space. The GAMS for
the lift force and pitch moment allocation has been obtained for α = 0°, β = 0° and M∞ = 0.5 at standard sea level conditions.

B. Control Authority
In light of the formal definitions given with Eq. 13 and Eq. 14, it is clear that control authority is not expressed in terms
of effectors positions, but in terms of the actual generalized forces. It is therefore a quantity which lives in Moment
Space, and in particular within the GAMS.

The reference combination of generalized control forces ∆Cref
F is represented by a point in the interior or on the

boundary of the GAMS: this is going to be referred to as the reference point. The limit combination of attainable
generalized control forces ∆Clim

F is represented by a point on the boundary of the GAMS: this is going to be referred to
as the limit point. The limit point is found at the intersection of the GAMS boundary and a half-line having the initial
point in ∆Cref

F and the prescribed control authority direction in Moment Space. With respect to a given direction in
Moment Space, control authority is then represented as the distance between the reference point and the limit point, as
shown in Fig. 4.

Trimming the aircraft for maximum control authority along a specific axis and direction (e.g. pitch-up) means
finding ∆Cref

F = ∆Ctr
F in the interior or on the boundary of the GAMS, so that its distance from ∆Clim

F is maximum and
Eq. 2 is verified. The trim problem formulation for maximum control authority is formalized in Sec. IV.

C. Control Allocation
Every point ∆CF in Moment Space has to be associated with a combination of control effectors positions δ. This task
constitutes the CA problem and, in the scope of the linear formulation shown in Eq. 16, resolves in inverting the control
effectiveness matrix B. If the matrix is square, i.e. the number of controlled axes NF is equal to the number of control
effectors Nδ , the solution is unique and immediately determined. This is generally the case for conventional aircraft
configurations with ganged control surfaces. Aircraft featuring redundant and/or unganged control effectors usually
result in a B matrix having more columns than rows, which therefore cannot be inverted. A function or algorithm
fCA (B) has then to be found to perform the CA, as previously shown in Eq. 7.

A vast variety of CA methods has been developed in the past, for both linear and non-linear aerodynamic models.
Most CA algorithms rise from the formulation of an optimization problem. Some methods are targeted to simply
minimize the difference between the requested and the generated generalized forces

min
δ
J = ‖∆CF − Bδ‖, (17)

while other algorithms do so while optimizing a secondary parameter, like total effectors displacement, trim drag [7, 8],
or structural loads [20]. A detailed survey of CA methods is presented in [21].

As systematically demonstrated in [6], not all CA methods are capable of returning admissible control positions for
every generalized force in the interior or on the boundary of the GAMS. In other words, not all CA methods are capable
of mapping the GAMS in its entirety back to the ACS. If only a subset of the GAMS, hence simply called Attainable
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−1.7 1.7

−0.7

0.7

∆CMB

∆CZB

GAMS
AMS, DCA
AMS, PSINV

a) Lift force and pitch moment allocation

0.15 1.7

0.32

∆CLB ∆CMB

∆CNB GAMS

AMS, DCA

AMS, PSINV

b) "Three moment" allocation

Fig. 5 Comparison of GAMS with AMS of different CA methods in R2 (left) and R3 (right), for α = 0°, β = 0° and M∞ = 0.5 at
standard sea level conditions. The DCA method is able to attain the complete GAMS, while the PSINV only a subset of it.

Moment Set (AMS), is achievable by the chosen CA algorithm, potentially attainable trim conditions would appear
seemingly unattainable. This is of course undesired, as the calculation of trim conditions and of control authority would
be limited by the CA method, and not by the physical possibilities allowed by the flight mechanics model.

In the current work, the Linear Programming (LP) formulation of the DCA method presented in [22] is used, for it
yields several advantages over the original, geometry based formulation presented in [6]. Namely, the LP-DCA method
converts the classic, direction-preserving DCA problem

max
δ

J = ρ
subj. to ρ∆CF − Bδ = 0

δlb ≤ δ≤ δub

 with δ ← δ/ρ if ρ > 1 (18)

to the smallest equivalent LP problem. It is able to attain 100% of the generalized forces in the GAMS, and it can be
scaled to any number of controlled axes NF , mixing forces and moments, without loss of computational efficiency. In
Fig. 5, the AMS of the LP-DCAmethod is compared to the GAMS and to the AMS of the simple, analytic Pseudo-Inverse
(PSINV) CA method.

IV. Method and implementation
The trim problem is here formulated in a generic format that allows easily changing the number and type of trim controls
while allowing a fair comparison between the analyses. The parameters that must be explicitly supplied for the trim
problem to be initialized are the aircraft position in Earth Axes {XE,YE, ZE}tr, the ground track orientation w.r.t. to local
north ψtr

GT, the airspeed V tr, and the Euler angular rates
{ Ûψ, Ûθ, Ûφ}tr. Obviously, specifying the ground track orientation is

actually meaningful only in geo-referenced applications. In this application, using an abstract flat Earth model, such
parameter has no influence on the outcome of the trim problem.

A. Trim controls and bound constraints
The trim controls set χ is conceptually separated into three subsets:

• the pilot subset Π, composed by the normalized stick commands {δlat, δlon, δdir}, and the throttle lever δT;
• the attitudes subset Θ, comprising the flight path angle γ, the Euler angles {ψ, θ, φ}, and the side-slip angle β;
• the actions subset ∆CF , containing the generalized control forces that are going to be allocated to the effectors.
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In summary:
χ = {Π,Θ,∆CF } with Π = {δlat, δlon, δdir, δT}

Θ = {γ,ψ, θ, φ, β}
∆CF = {∆CX,∆CY ,∆CZ,∆CL,∆CM,∆CN}.

(19)

The subsets {δlat, δlon, δdir} ⊂ Π and ∆CF are redundant and therefore mutually exclusive, as they share the purpose of
generating control forces and moments. As the current work focuses on a trim problem formulation based on ∆CF , the
effective pilot subset of interest reduces to

Π = {δT}. (20)

The throttle lever is a normalized variable ranging from -1 to 1, where the minimum value supplies engine idle thrust
and the maximum value corresponds to supplying the total available engine thrust at the current flight condition.

In the formal trim problem formulation presented in Sec. IV.E, the normalized pilot controls Π are bounded to the
interval [−1, 1], the attitude angles Θ are bounded to the interval [−π/2, π/2], while the other trim controls are left
unbounded.

B. Equality constraints
A certain number of equality constraints has to be prescribed to assure that the trim problem is well-posed. This is
generally requested to prevent the existence of explicit relations among trim controls that are state variables [1]. In the
proposed implementation, if the equality constraint assigns a numeric value directly to a trim control, that trim control is
considered as an explicitly initialized variable and the constraint is removed. In all of the presented application cases,
the flight path and side-slip angles are constrained in either one of the following ways:

γtr = 0 and βtr = 0 (21a)
γtr = 0 and βtr = VSW/V tr. (21b)

Both are representative of horizontal flight conditions, respectively with no side-slip and with maximum side-slip
required by regulations [23]. Since the ground track orientation ψGT is prescribed, Eq. 21b can be interpreted as a
horizontal flight with forward slip. Constraining β is not strictly necessary for posing the trim problem correctly, but
rather necessary to uniquely identify the desired flight condition. Forcing this extra initial value has to be complemented
by an additional condition on β in either the objective function or the non-linear constraints of the optimization problem.

The resulting effective trim controls are here collected:

χ = {δT,ψ, θ, φ,∆CF }. (22)

The engine throttle δT is mainly devoted to trimming for the prescribed airspeed. Given a fixed flight path angle γtr, the
nose attitude angle θ is mainly devoted to trimming for the necessary angle of attack. The remaining attitude angles are
devoted to accomplishing the prescribed side-slip and lateral-directional forces. Finally, the control actions are devoted
to the minor force adjustments, the equilibrium about the aircraft center of mass and, in the presented case, for achieving
desired control authority.

As ∆CF contains from one to six variables, depending on which generalized forces are to be allocated, the trim
controls set of Eq. 22 contains from five to ten variables, regardless of the aircraft configuration. An alternative
formulation including control effectors positions would result in a minimum of seven trim controls, assuming the
conventional three ganged control surfaces. For the presented PrP design, featuring twelve control surfaces including
rudders on the twin vertical tails and drag-rudders on the side wings, it would result in sixteen trim controls.

C. Inequality constraints
A set of linear inequality constraints, together with additional equality constraints, is enforced for the generalized control
forces ∆CF , as shown in Eq. 23.

Aineq
CH ∆CF ≤ bineq

CH (23a)
Aeq

CH ∆CF = beq
CH (23b)
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−2.2 2.2

−0.8

0.8

∆CMB

∆CZB

GAMS(α, β,M∞, δ)
Convex hull of all GAMSs

Fig. 6 Estimation of the convex hull of the most elongated GAMSs in R2. In this particular example, the convex hull corresponds to
16 inequality constraints for the generalized trim control forces.

These relations imply that each point ∆CF has to be in the interior or on the boundary of the GAMS. In particular, the A
matrices and b column arrays constitute the Linear Constraint Representation (LCR) of the convex hull containing the
most elongated GAMSs in all allocated directions:

LCRCH =
{

Aineq
CH , bineq

CH , Aeq
CH, beq

CH

}
(24)

and have been calculated using the vert2lcon algorithm in MATLAB [24]. The inequalities in Eq. 23 are always well
defined because the convex hull is, by definition, a convex set. The equalities are non-null if any of the edges, facets, or
(NF − 1)-dimensional elements constituting the boundary of the convex hull is parallel to any reference axis in Moment
Space. The most elongated GAMS in a given direction in Moment Space is found by varying flight parameters α, β and
M∞, and effectors positions δ to obtain the control effectiveness matrix B which results in the GAMS spanning the most
distance in that direction. Once the most elongated GAMS in every assigned direction is obtained, the convex hull
of these can easily be calculated, as shown in Fig. 6. This is not a GAMS itself, but rather is the smallest convex set
containing all the most elongated GAMSs. Hence serves a good purpose to establish the inequality constraints for the
trim problem.

With this approach, the number of inequality constraints depends on the dimension of Moment Space NF , and
on the number of control effectors Nδ . For large problems, it can go up to the order of magnitudes of thousand. An
alternative approach to construct such constraints would consist in wrapping the convex hull of all GAMSs in its
bounding hyper-rectangle, i.e. the smallest hyper-rectangle that contains the convex hull. In this case, the inequality
constraints will only be 2NF , corresponding to the 2NF boundary elements of the hyper-rectangle (e.g. 4 edges of a
rectangle in R2, 6 faces of a parallelepiped in R3, etc.).

D. Objective function
Two objective functions are presented in the current work. In this section, it is shown how they are traced back to
the common trim minimization problem formulation presented in the following Sec. IV.E. This is easily achieved as
the calculation of both objective functions revolves around the same conceptual approach. Each objective function is
calculated through an optimization sub-problem, revolving around the calculation of a certain limit point in Moment
Space. The objective functions and their respective limit points are characterized in the following sub-sections.

1. Sub-Problem 1
It consists in maximizing control authority in a specified direction in Moment Space, A±F . Given such direction, the
limit point is found at the intersection of the GAMS with a half-line ` having the specified direction and the initial point
in ∆Cref

F , as already shown in Fig. 4. The limit point is then characterized by the following condition: it is the furthest
point from ∆Cref

F which simultaneously belongs to the half-line ` and the GAMS. In order to calculate it, the half-line `
is constructed geometrically and expressed in terms of its own LCR. The following optimization sub-problem results in
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the limit point ∆Clim
F and its distance w.r.t. the reference point ∆Cref

F :

∆Clim
F = arg


max
∆CF

J lim =
∆CF − ∆Cref

F


subj. to ∆CF ∈ {GAMS ∩ `}

 = arg



max
∆CF

J lim =
∆CF − ∆Cref

F


subj. to Aineq

CH ∆CF ≤ bineq
CH

Aeq
CH ∆CF ≤ beq

CH

Aineq
`
∆CF ≤ bineq

`

Aeq
`
∆CF ≤ beq

`


(25)

J lim
∗ = J lim

|∆C lim
F

=
∆Clim

F − ∆Cref
F

 = A±F (26)

Because the purpose of Sub-Problem 1 is to maximize A±F as a function of ∆Cref
F , the objective function to be

minimized in the actual trim optimization problem is

J tr = −J lim
∗

(
∆Cref

F

)
= −

∆Clim
F − ∆CF

 = −A±F . (27)

2. Sub-Problem 2
It consists in maximizing a balanced control authority in all directions in Moment Space, A. The maximum balanced
control authority is here conveniently defined through the characterization of its corresponding limit point ∆Clim

F . The
limit point with maximum A is the point in the interior of the GAMS which has the maximum sum and the minimum
variance of its distances to the GAMS vertices. Hence the chosen nomenclature: maximum balanced control authority.
Such limit point corresponds to the centroid of the GAMS and, in case all the control effectors saturation limits are
symmetric, with the origin of Moment Space. It is calculated with the following optimization sub-problem:

∆Clim
F = arg


max
∆CF

J lim =

∑n
i=1 di

1
n

∑n
i=1

���di − ∑n
i=1 di
n

���2
subj. to ∆CF ∈ GAMS


= arg



max
∆CF

J lim =

∑n
i=1 di

1
n

∑n
i=1

���di − ∑n
i=1 di
n

���2
subj. to Aineq

CH ∆CF ≤ bineq
CH

Aeq
CH ∆CF ≤ beq

CH


(28)

where di is the distance between the candidate point ∆CF and the i-th vertex of the GAMS, and n is the number of
vertices of the GAMS. Once the limit point has been found, the actual trim problem to maximize A can be formulated
in terms of minimizing the distance from the candidate trim point to the just found limit point. In other words, the
objective function to be minimized in the actual trim optimization problem, for Sub-Problem 2, is

J tr =
∆Clim

F − ∆CF

. (29)

E. Trim problem formulation
In summary, the trim approach corresponding to Sub-Problem 1 will maximize the distance from the trim point to
the limit point which lies on the boundary of the GAMS in the given direction in Moment Space. The trim approach
corresponding to Sub-Problem 2 will minimize the distance from the trim point to the centroid of the GAMS.

With the objective function being defined by either Eq. 27 or Eq. 29, and the bounds and constraints introduced in
the previous sections, the trim problem can now be formulated in the following general format:

min
χ ={Π,Θ,∆CF }

J tr = J tr (χ)

subj. to −1 ≤ Π ≤ 1
−π/2 ≤ Θ ≤ π/2

f (χ0, χ) = 0

Aineq
CH ∆CF ≤ bineq

CH

Aeq
CH ∆CF ≤ beq

CH

(30)
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The problem is solved with the fmincon routine in MATLAB®, using the interior-point algorithm. Because the problem
is non-smooth, due to the sharp corners in the geometry of the GAMS, the termination criterion for the solver is based
on the step size and on the variation of the objective function. Constraints are respected with a tolerance of 10−6.

Due to the iterative nature of the algorithm, the solver finds local optima that, in general, depend on the first-guess
values of the trim controls. At each iteration, the control effectiveness matrix B is calculated using the current value
of α, β, M∞, and the value of δ from the previous trim iteration. Hence the GAMS geometry and the evaluation of
control authority evolve throughout the optimization, and are not frozen to the moment of the problem initialization.
The effectors positions δ are calculated as exaplained in Sec. III.C.

F. Examples
Three examples with Moment Space in R2 are presented in Fig. 7, to visualize how the trim method operates. The
cases cover a trim for maximum lift-up, maximum pitch-up and maximum balanced control authority. The control
effectiveness matrix is calculated in Aerodynamic Axes, so that lift L is the force component lying in the negative
direction of the ZA axis.

In the figure, it is noticeable how the three optimal trim points are lying approximately on the same horizontal
coordinate, i.e. in all three cases the effectors generate approximately the same control pitch moment necessary for
rotational equilibrium about the aircraft center of gravity. On the other hand, the control-dependent lift changes quite
significantly, together with the the angle of attack. This is explained by the possibility of the PrP wing to control lift
and pitch moment directly in two different ways: by altering the angle of attack α, or by deflecting the front and rear
control surfaces. The trim method capitalizes on this characteristic by distributing the required lift to α and δ in order to
optimize the assigned control authority.

V. Application and results
In a similar way as just done in the last section, the PrP model is trimmed in a prescribed flight condition while
maximizing control authority in different directions. For this application, the fully non-linear, 6-DoF flight mechanics
model is used. The set of allocated generalized forces is{

CL,CLA,CMA,CNA

}
(31)

in Aerodynamic Axes. This set constitutes the extension of the classic "three moment" CA problem, and it has been
chosen for it yields improved results with respect to it, as shown in previous studies [5]. Being the GAMS a subset of
R4, results cannot be shown in Moment Space for this application. Attention is focused on the resulting control surfaces
deflections at trim, as well as on the remaining trim controls.

Trim is performed at standard sea level conditions for a horizontal trajectory, γtr = 0, and an airspeed of
V tr = 170 m·s−1, corresponding to M∞ = 0.5. These conditions have been chosen to allow for sufficient control power
about all axes, in order not to contaminate the proposed method with any model-induced limitation. In one case, no
side-wind component is prescribed for the trim, and hence the aircraft is requested to fly straight and leveled. In the
other case, the aircraft is required to trim in forward-slip condition by prescribing the maximum side-slip angle required
by regulations for the given airspeed [23].

All of the twelve control surfaces available on the two main wings, the two side-wings and the two vertical tails are
used to trim the aircraft. At every optimizer iteration, all control surfaces are initially commanded by the CA method
shown in Sec. III.C. After the CA algorithm has converged, the deflection angles of the two rudders are averaged, and
such average is re-assigned to both of them. The same is done for the movables on the two vertical side-wings. This
partial ganging strategy has been necessary to prevent the appearance of opposite deflections, which would have resulted
in using such control surfaces as drag rudders.

Results are compared for maximum control authority in both directions of the lift and pitch axes (lift-up, lift-down,
pitch-up and pitch-down), and for maximum balanced control authority. Each trim problem, resulting from a given
combination of objective function and assigned input parameters, has been simulated multiple times, with randomly
generated initial values for the trim controls, until it converged successfully for five times. The convergence ratio is about
83% for the problems with β = 0°, with only one failed case before five were completed, while close to 50% for the
problems with β = 4.3°. The resulting control surface deflections and flight parameters show, in general, little variability
among different local optimal solutions of the same problem. A couple of extreme cases have been found, which
exploit extrapolation of the aerodynamic database (α = −6.1°) or unrealistic thrust levels (δT = −1) to find optimal trim
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∆CZA

GAMS(α, β,M∞, δ) Convex hull Limit point Candidate trim point Optimal trim point

a) Maximum lift-up control authority A+L = A−ZA

−2.2 2.2

−0.8

0.8

∆A+M

α = −1.9°

∆CMA

∆CZA

b) Maximum pitch-up control authority A+M

−2.2 2.2

−0.8

0.8

∆C tr
F

∆C lim
F

α = −1.7°

∆CMA

∆CZA

c) Maximum balanced control authority A

Fig. 7 Visualization in Moment Space of the trim optimization method presented in Sec. IV. Imposed trim conditions at sea level
altitude: V tr = 170 m·s−1, γtr = 0. Non-linear, 3-DoF longitudinal-symmetric flight simulations.

14

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
8,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

12
65

 



conditions with better values of the objective function. This behavior could be easily removed by implementing stricter
case-specific bounds and constraints in the optimization problem formulation. The extreme results have been filtered
out, and the trim condition with the minimum value of the objective function is reported in Fig. 8. Control surface
deflections on the main wings are positive if with trailing edge down, negative if with trailing edge up. The y-axis in the
figure has been inverted to reflect this convention. The rudders deflections are positive if they cause the aircraft nose to
point left of the flight path.

The symmetric flight condition allows to make the most interesting observations, as control surface deflections
on the front wing range from the positive to the negative saturation limit, depending on which control authority is
maximized. Maximum lift-up control authority is achieved with very negative deflections, both on the front and on
the rear wing, paired up with a significant positive angle of attack α = 5.1°. Maximum lift-down control authority is
achieved with mostly large positive deflections at a negative angle of attack of α = −4.5°. In both cases, it is evident
how the control deflections are chosen to maximize control authority in the given direction, while the angle of attack is
adjusted to guarantee vertical equilibrium. The maximum pitch-down control authority is achieved by exploiting the
pitch-down moment due to the propulsion system. The throttle level is much higher in this case: this requires drastic
positive deflections on the front wing and negative deflections on the rear wing to achieve equilibrium about the aircraft
center of gravity. This is not observed in the case of control authority in the lift axis, as the slightly higher throttle
setting is there justified by the higher magnitude of the angle of attack. On the other hand, the trim conditions for
maximum pitch-up control authority are overall very similar to the one for maximum balanced control authority: both
cases are characterized by the same throttle setting, and by small deflections on both the front and the rear wing. This
behavior indicates how optimizing control authority about the pitch axis is a stiffer problem than optimizing it about the
lift axis. As just observed, pitch control moment can be manipulated more significantly than control lift through the
alteration of thrust. This couples the rotational equilibrium with the objective function and the horizontal equilibrium.

For the asymmetric flight condition, all the curves appear to have a similar shape, slightly shifting or stretching
according to which control authority is maximized. The front inner surfaces are adjusted asymmetrically to provide
for the necessary roll moment, together with the two tail rudders correcting for the directional moment. The front
outer surfaces and all the rear ones are then adjusted for optimizing control authority. Trends in the remaining flight
parameters are overall less evident and the numerical values less extreme. This happens because more control power is
required to achieve trim, leaving less available control authority to the objective function.

In all cases, side-wing rudders are never used, due to their very small control effectiveness. Additionally, control
surfaces on the front wing show more complex combinations of deflections than the ones on the rear wing, which are
deflected by the same angle in all cases apart from one. This is justified by the fact that front control surfaces have a
smaller moment arm with respect to the center of gravity, hence they are able to modulate control lift while retaining a
small impact on control pitch.

VI. Conclusions
A definition of aerodynamic control authority has been given that is entirely based on generalized forces, and independent
of the aircraft configuration and/or number of control effectors. A general trim problem formulation has been presented,
in the form of an optimization problem, to trim a given aircraft model while maximizing control authority about one or
more motion axes. The geometry of the Attainable Moment Set is used both for defining the inequality constraints,
at the optimization problem set-up time, and for calculating the objective function of the problem itself. A Linear
Programming Direct Control Allocation method has been used to map the generalized forces in the Attainable Moment
Set to the control effectors positions. With application to an innovative box-wing aircraft called PrandtlPlane, the
method is used to compare trim conditions for maximum control authority in the pitch axis, in the lift axis, and for
maximum balanced control authority about all motion axes.

Results show that the method is able to capitalize on the angle of attack or the throttle setting to obtain the control
surfaces deflections which maximize control authority in the assigned direction.

Future efforts can be devoted to validating this method when strongly non-linear aerodynamics is involved. For
example, optimizing control authority about the drag axis could lead to a reformulation of the classic minimum trim drag
problem, as well as interesting applications for trim in steep descent conditions. Additionally, time domain simulations
to study the effect of the selected control authority are recommended. Given a specific maneuver to be performed after
trim is achieved, a criterion to find which control authority has to be optimized to obtain best maneuver performance
can be sought. Finally, the possibility to trim for specified lift-up/lift-down control force could effectively be used to
specify the nose attitude angle at trim, which may be useful in certain scenarios like in-air refueling.
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Name Abbr. Name Abbr. Name Abbr. Name Abbr.

Front Left Outer FLO Left Side Wing LSW Rear Left Outer RLO Left Tail Rudder LTR
Front Left Inner FLI Right Side Wing RSW Rear Left Inner RLI Right Tail Rudder RTR

Front Right Inner FRI Rear Right Inner RRI
Front Right Outer FRO Rear Right Outer RRO

a) Control surfaces naming scheme

FLO FLI FRI FRO LSW RSW RLO RLI RRI RRO LTR RTR

-30

-20

-10

0

10

20

30

Max A Max A−L MaxA+L Max A+M Max A−M

b) Control surface deflections in symmetric flight, with β = 0°. All trim conditions have wings leveled.

FLO FLI FRI FRO LSW RSW RLO RLI RRI RRO LTR RTR

-30

-20

-10

0

10

20

30

c) Control surface deflections in asymmetric flight, with β = 4.3° forward-slip. All trim conditions are banked
right with body heading slightly left of the ground track.

βtr = 0° βtr = 4.3°

αtr = θtr φtr ψtr δtr
T αtr = θtr φtr ψtr δtr

T

Max A −1.7° 0.1° 0.0° 0.18 2.9° 16.7° −3.6° 0.40
Max A−L −4.5° 0.2° 0.0° 0.56 1.4° 17.9° −4.1° 0.53
Max A+L 5.1° 0.0° 0.0° 0.43 4.1° 16.2° −3.3° 0.38
Max A+M −1.9° 0.1° 0.0° 0.19 0.9° 19.4° −4.2° −0.02
Max A−M −0.9° −0.5° 0.0° 0.78 0.9° 18.8° −4.2° −0.05

d) Summary of other flight parameter

Fig. 8 Control surfaces deflections and other trim controls for symmetric and asymmetric trimmed flight, maximizing control
authority about the pitch axis, the lift axis, and the balanced control authority. Imposed trim conditions at sea level altitude:
V tr = 170 m·s−1, γtr = 0. Non-linear, 6-DoF flight simulations.
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