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Preface

Arguably the largest existential threat to our civilization right now is climate change. The European heat
wave of this year was unusual, but is expected to become the norm by the middle of this century as global
temperatures are steadily increasing. Meanwhile, coastal cities are under threat of being inundated due to
melting ice sheets. I hope this thesis contributes towards the technology that can solve the crisis.

Over the course of this MSc thesis, however, I have come to realize that climate change is no longer prin-
cipally a technological problem, but rather a political problem intertwined with economics. The necessary
technology is already here and at a very low price. What remains to be done is for masses of society to over-
ride the interests of the few who stand to benefit from a slow transition to green energy, and to start investing
heavily in a renewable future.

Nevertheless, the product of this thesis, a fuel cell drone for measuring soil carbon, could be part of this
renewable future. As you’ll see in one of the chapters, it is important to maintain a healthy level of soil carbon,
the first step of which would be monitoring. In addition, I have learned quite a lot working on this thesis, as
it encompasses several topics: fuel cells, drone design, and LiDAR. I hope you will learn something as well
reading this thesis.

I’d like to acknowledge the support and guidance of my supervisors at various points during the project.
I thank the Technical University of Delft for providing high quality education at a low cost.
And last but certainly not least, I am deeply grateful to the working class of this world for keeping our

infrastructure running smoothly, without which modern society would not be possible. Their contributions
are worth much more than what they’re given credit for.

Louis Cheung
Delft, July 2019
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1
Summary

We have set out to develop a drone, based on the existing Delftacopter, capable of soil monitoring via LiDAR
remote sensing. The battery was to be replaced by a fuel cell system in order to extend the range threefold to
180 km. Unfortunately, the ultimate design is likely unfeasible.

Agriculture requires healthy soil and monitoring soil health is fundamental to its maintenance. Soil or-
ganic carbon in particular provides energy to the soil’s microorganisms, and is beneficial to water and nu-
trient retention. In addition, storing carbon in the soil is a form of carbon sequestration, which has become
interesting due to the rising levels of carbon dioxide in our atmosphere. Monitoring soil organic carbon is
therefore the goal of the drone design.

The fuel cell system is a 650 W hydrogen fuel cell by Intelligent Energy with a mass of 1290 g, which will be
replacing the battery in the base design. Fuel tanks that were considered suitable are the 450 g, 0.5 L, 500 bar
and 1350 g, 3 L, 300 bar fuel tanks by Meyer. It was found that one 1350 g and two 450 g fuel tanks were nec-
essary to achieve the desired range of 180 km. However, after more careful drag estimates, this configuration
turns out to be too heavy. 4 450 g fuel tanks remains feasible. Results below are based on this amount of fuel
tanks.

The incorporated LiDAR sensor is one by Velodyne, namely the Puck LITE, with a specified range of 100 m.
The LiDAR sensor has a firing cycle of 55.296µs, almost 20 kHz. Based on previous studies that used LiDAR
to measure soil organic carbon, it has been established that a density of 5 data points per square meter is
required.

From our LiDAR parameters it turns out that the optimal flight altitude is 27.5 m above the surface that is
to be measured, with a rotation rate of 10 Hz for the LiDAR sensor, when flying at a speed of 20 ms−1. With
a flight distance of roughly 116 km at 22.5 ms−1 (111 km at 20 ms−1), an area of 21.8 km2 per flight can be
scanned.

1





2
General Introduction

2.1. Climate Change
On 8 October 2018, the Intergovernmental Panel on Climate Change (IPCC) published another Special Report[23]
documenting the current and future status of climate change and its effects, and detailing policy proposals.
Global mean surface temperature (GMST) in the period 2006–2015 has increased 0.87± 0.12 ◦C relative to
1850–1900 due to anthropogenic CO2 emissions. The report compares the effects of a 1.5 ◦C and a 2 ◦C
warming in the GMST. As can be expected, the latter will have stronger repercussions on the climate than
the former, including:

• Higher mean temperature on most land and sea.

• Higher extreme temperatures in inhabited regions, especially in the tropics.

• More frequent and/or intense precipitation in some regions.

• More frequent and/or intense drought in other regions.

Further consequences of a 1.5 ◦C rise in GSMT are as follows (with consequences from a 2 ◦ rise between
brackets):

• Sea level rise of 0.26m to 0.77m (an additional 0.1m).

• Loss of biodiversity, and biodiversity-related risks such as forest fires and spread of invasive species.

• Negative impact on ecosystems (50% more ecosystems affected), including a 70–90% (>99%) decline of
coral reefs, ocean acidification affecting the livelihood of many species such as algae and fish.

• Decreased productivity of fisheries: 1.5 megatons (3 megatons) reduction in global annual catch.

Direct impacts on humans include:

• risks to food and water security.

• increased heat-related deaths.

• spread of diseases, such as malaria.

• hampered global economic growth due to all aforementioned impacts.

In order to achieve the 1.5 ◦C warming target, global CO2 emissions have to decrease 45% by 2030 from 2010
levels, and reach net zero emissions by 2050. The remaining carbon budget that corresponds to said reduction
is around 500 gigatons1 of CO2 or 136 gigatons of C.

A crisis of this scale can only be averted through a far-reaching transformation of all industries. According
to the IPCC, necessary technologies already exist and include: electrification, hydrogen technology, sustain-
able bio-based feedstocks, product substitution, and carbon capture, utilization and storage. Hydrogen fuel
cells and carbon storage in soil form the main topics of this thesis.

1One (metric) gigaton equals one petagram or 1 Pg
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4 2 General Introduction

2.2. Soil Carbon
Not to be overlooked is the fact that the IPCC calculations assume carbon dioxide removal of several hundred
gigatons over this century, but does not state the method for reaching this. One environmentally friendly
solution is to store carbon in the ground with the co-benefit of improving soil health.

The global amount of carbon in the soils has been estimated at around 2200 Pg in the upper 100cm of
soil[9]. 320 Pg of soil carbon has been lost due to agriculture since its advent[40], around 140 Pg of which was
lost after 1850[15]. To put this into perspective, global carbon emissions (in the form of CO2) from burning
fossil fuels was around 10 Pg of carbon per year in 2017.2 Carbon storage in soil, or carbon sequestration,
therefore has the potential to both improve soil health and mitigate climate change[28].

2.3. Soil Monitoring by Drone
Since their commercialization, drones have been used for monitoring other aspects of soil. For example,
photographic data can be taken from a drone in order to understand soil erosion[37][36]. Such information
is of interest to urban and land planners as eroded soil increases flood risks[37]. Another basic soil parameter
is humidity which can also be and have been measured by color images[25]. Irrigation is timed based on
this information. More information about soil health can be obtained by soil sampling, and even in this area
drones can be used to make the process more efficient[22].

In the Netherlands, agricultural projects are ongoing which employ drones supported by 5G.3 Such data
can help in optimizing soil usage. Healthier soil allows more crops to grow. A large agricultural field will
consist of areas with better or lower health, and seeds can be sown accordingly. Additionally, use of water and
pesticides can be reduced with more precise and detailed knowledge of local moisture and pesticide levels.

2.4. Soil Carbon Monitoring by LiDAR
In this thesis, the method of measuring soil health is via soil carbon, and this is to be done by Light Detection
and Ranging (LiDAR). LiDAR can determine distances to objects by bouncing light off the object and mea-
suring the time the light takes to return. In such an application LiDAR would be used to measure tree size
properties or reflectance of vegetation at the frequency of the laser. We will go into this in Chapter 5.

LiDAR equipment used to be quite bulky and so was equipped only on aircraft and helicopters. But the
size and weight have come down to the point that it is possible to mount a LiDAR sensor on a drone. Conve-
niently, costs have decreased as well.

2.5. Thesis Goal and Structure
This thesis’ objective is to design a drone which will be used to measure soil carbon and will be powered by a
fuel cell. The Delftacopter4 is used as a starting point. This drone is at the moment powered by batteries. The
expectation is that the range can be tripled by replacing the batteries with a hydrogen fuel cell and fuel tank.

By having a drone that can quickly measure large areas of soil, it is hoped we will manage these carbon
sinks properly and use them for carbon sequestration. The drone itself does not pollute the environment as
it only emits clean water as a waste product.

This project covers three main topics: the fuel cell, the Delftacopter, and the LiDAR system. One chapter
is dedicated to each topic. Chapter 3 describes the chemistry of a PEM fuel cell. In this chapter we will also
select the fuel cell and fuel tank. Chapter 4 introduces the Delftacopter and its performance and efficiencies.
Chapter 5 is about why and how we measure the soil. Chapter 6 goes into the performance of the LiDAR
system. These chapters culminate in the last chapter where all three components are integrated into a final
design.

A small but significant part of the thesis was written 6 months before the rest. The structure may therefore
not be ideal. Chapter 4 for example ends rather abruptly before continuing in the last chapter. The choice for
the fuel cell in Chapter 3 may not be clear until the end.

Lastly, a note on abbreviations and symbols: the first time an abbreviation is used, it is written in bold for
easy reference. Some of the symbols may overlap between chapters, as different fields of research may use
the same letter for their own designations. For example V can refer to the fuel cell voltage or the flight speed

2https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data Retrieved on 1 Dec 2018.
3https://www.kpn.com/zakelijk/internet-of-things/smart/farming/en.htm, Retrieved 7 August 2019
4http://www.delftacopter.nl/

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
https://www.kpn.com/zakelijk/internet-of-things/smart/farming/en.htm
http://www.delftacopter.nl/
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of the drone. This should not be a problem however, since these symbols are used in different chapters and
contexts.





3
Fuel Cell

3.1. Introduction
The purpose of a fuel cell is to generate electrical energy from chemical energy, most often of hydrogen. The
history of the hydrogen fuel cell began when Sir William Grove in 1839 described the first device capable of
producing electricity by combining hydrogen and oxygen. Due to competition with the energy dense fossil
fuels, first coal then oil, development of the fuel cell was sluggish and it took almost a century before the
technology reached maturity[5]. In 1959, Francis Thomas Bacon produced the first fuel cell that would be
adopted by NASA[43]. Nowadays, hydrogen fuel cells are gaining interest for their potential in providing
clean energy with high density, and are thus being implemented in transport vehicles, such as cars, trams,
and trains.123 The main competitor in the field of electricity storage and generation is the battery. When
considering mobile applications, some may favor fuel cells for their higher energy density and hence range,
while others will favor batteries for their higher efficiency and hence less waste heat. In terms of durability,
the fuel cell has a large advantage over batteries, as the latter suffers from a limited cycle lifetime, leakage and
corrosion[43].

For our purpose of taking measurements over large areas on the Delftacopter, it is economical to have a
long flight duration and hence range. Since hydrogen has a higher energy density than batteries, it makes
sense here to use a fuel cell, especially considering that the additional waste heat production, relative to a
battery-powered drone, is easily dissipated in the surrounding air.

Note that the original goal in this chapter was to dive into the operations of a fuel cell in order to modify
it for its implementation in our drone. In the end, no modifications to the fuel cell were made. The following
two sections have therefore lost some of their relevance, though may still serve as an introduction to the topic.

3.2. From Hydrogen to Electricity
When solving problems in a particular system, one has to first understand its underlying mechanisms. In this
section, the basic principles of a hydrogen fuel cell are explained, following the book [31].

Schematic diagrams of the well known proton exchange membrane (PEM) and alkaline fuel cells are shown
in Figure 3.14,5. In a PEM fuel cell, reactions at the anode and cathode are:

H2 −−→ 2H++2e− (3.1)

O2 +4e−+4H+ −−→ 2H2O (3.2)

The membrane carries protons towards the cathode where it reacts with oxygen to form water.

1https://www.hyundai.com/worldwide/en/eco/nexo/because-of-you Retrieved on 4 Dec 2018
2http://ballard.com/about-ballard/newsroom/market-updates/tangshan-railway-vehicle-company-commences-hydrogen-powered-tram-trial

Retrieved on 4 Dec 2018
3https://www.alstom.com/coradia-ilint-worlds-1st-hydrogen-powered-train Retrieved on 4 Dec 2018
4https://commons.wikimedia.org/wiki/File:PEM_fuel_cell.svg Retrieved on 6 Dec 2018
5https://www.researchgate.net/figure/Schematic-representation-of-an-alkaline-fuel-cell-AFC-2_fig2_
268811074 Retrieved on 6 Dec 2018

7
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Figure 3.1: Schematics of a standard PEM fuel cell (left) and alkaline fuel cell (right).

For an alkaline fuel cell, anode and cathode reactions are:

H2 +2OH− −−→ 2H2O+2e− (3.3)

O2 +4e−+2H2O −−→ 4OH− (3.4)

The fuel cell is called alkaline because the membrane carries hydroxyl ions. The overall reaction of both cells
comes down to:

2H2 +O2 −−→ H2O (3.5)

This reaction sets an upper limit for the output voltage via the difference in Gibbs free energy of formation of
the products and reactants, ∆gf:

E =−∆gf

2F
(3.6)

where F = 96485 C/mol is Faraday’s constant. Under standard ambient temperature and pressure, ∆gf =
−237.1 kJ/mol, which gives E = 1.23 V. Standard state is defined as T = 25◦C and P = 1bar. Changing the
pressure will change the Gibbs free energy, according to the Nernst equation:

∆gf =∆g 0
f −RT ln

( aH2 ·a1/2
O2

aH2O

)
(3.7)

⇒ E =−∆g 0
f

2F
+ RT

2F
ln

( aH2 ·a1/2
O2

aH2O

)
(3.8)

aH2 =
PH2

P 0
H2

(3.9)

where ai is the activity of species i, defined for gases as the partial pressure divided by standard pressure
P 0 = 0.1MPa, as in Eq. 3.9. For liquids the activity is approximately 1.

The current output of a fuel cell depends on its reaction rate. This rate is mainly limited by the activation
energy of the reaction, which is the energy required for the reaction to start. Even though the reaction is
exothermic, this energy still needs to be present. Under standard test conditions, the reaction rate may be
too low.

Luckily, there are ways to increase the reaction rate, and hence current output. The main three are:

• Increase the temperature. This will shift the energy of the molecules higher up, allowing more of them
to exceed the activation energy, hence increasing activity.
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• Use a catalyst. This will hopefully lower the activation energy itself.

• Increase the electrode surface. This will allow more fuel to flow to where the reaction takes place.

The product of the output voltage and current is the final power output, and this will depend on the overall
efficiency. Efficiency losses occurring in the fuel cell express themselves mainly in the output voltage, and
they will be discussed in the next section.

3.3. Efficiency
In the previous section, three ways of increasing the current output were mentioned. There is of course a
fourth way of influencing the current, namely by varying the fuel consumption. Fuel consumption, or uti-
lization, is the main control parameter of a fuel cell, and is therefore quite important for the control and
operation of a drone. In this section, we briefly go through the factors influencing the efficiency at different
current output rates, which is proportional to fuel consumption.

There are four loss mechanisms:

• Activation losses due to the activation energy as mentioned previously. Higher temperature leads to a
more active cell (higher exchange current), reducing the activation losses.

• Fuel crossover losses due to the crossover of fuel through the membrane. This effect is usually negligi-
ble.

• Ohmic losses due to electrical resistance of electrons in the wires and of ions in the electrolyte.

• Mass transport, or concentration, losses due to the limitations of fuel transport to the more distant parts
of the electrode. This leads to lower concentration and hence activity, thereby lowering the voltage via
Equation 3.7.

Putting them all in one formula gives:

V = E −∆Vact −∆Vfuel −∆Vohm −∆Vtrans (3.10)

= E − A ln
( i + in

i0

)
+m exp(ni ) (3.11)

where A = RT
2αF is a constant describing the slope of the voltage loss (overvoltage) versus current. α varies very

little among known materials. in is the current representing fuel crossover. m and n are empirical parameters
that describe the mass transport losses.

From the equation, you can already see that the voltage decreases for higher current outputs. The general
shape is like Figure 3.26.

3.4. Fuel Tank Selection
A small light-weight hydrogen fuel tank suitable for drones is the Meyer HDRX-005-500, which weighs only
450 grams.7 Its volume is 0.5L and can store hydrogen at 500 bar. We will see in Chapter 7 that the HDRX-030
will also be useful. This one weighs 1.3 kg and stores 3 L of hydrogen at 300 bar. These fuel tanks were chosen
as no other fuel tanks could be found that fitted our tight weight budget.

Hydrogen weighs 30.811 kg/m3 at 25 degrees Celsius and 500 bar, and 20.538 kg/m3 at 25 degrees Celsius
and 300 bar.8 The 0.5L fuel tank therefore contains 15.4g of hydrogen, and the 3L tank contains 61.7g, or 4
times as much. The Gibbs free energy of formation of (liquid) water is −237.14 kJ/mol[44], therefore the 0.5L
fuel tank can store 1.812 MJ or 503.3 Wh of energy.

6https://www.springer.com/cda/content/document/cda_downloaddocument/9783319255965-c2.pdf?SGWID=
0-0-45-1544891-p177747467 Retrieved on 9 Dec 2018

7http://meyer.cd/copv/, Retrieved 19 Jan 2019
8https://h2tools.org/hyarc/hydrogen-data/hydrogen-density-different-temperatures-and-pressures Retrieved on

16 Dec 2018.

https://www.springer.com/cda/content/document/cda_downloaddocument/9783319255965-c2.pdf?SGWID=0-0-45-1544891-p177747467
https://www.springer.com/cda/content/document/cda_downloaddocument/9783319255965-c2.pdf?SGWID=0-0-45-1544891-p177747467
https://h2tools.org/hyarc/hydrogen-data/hydrogen-density-different-temperatures-and-pressures
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Figure 3.2: Voltage versus current for a fuel cell operating at high temperature and low temperature, showing the main three loss mecha-
nisms and the current regimes in which they are the most significant. Activation losses affects the voltage mostly at low currents; Ohmic
losses at medium currents; and mass transport losses at high currents.
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Fuel Specific Energy Density
[Wh/L] [kWh/kg] [kg/m3]

Hydrogen (500 bar, 25 ◦C) 1006.8 32.68 30.811 (930.8)
Methanol 4690 5.922 792
Ethanol 6280 7.959 789

Formic Acid 2086 1.710 1220

Table 3.1: Density and specific energy of some substances used in fuel cells. For hydrogen, the lower value is hydrogen-only, and the
higher value between brackets includes the mass of the fuel tank from Section 3.4.

3.5. Other Types of Fuel Cells
In Section 3.2, we have already seen the working principles of two main types of fuel cells: PEM and alkaline.

Some fuel cells use charge carriers other than H+ or OH – . For example the charge carrier in a solid oxide
fuel cell is O2 – and in a molten carbonate fuel cell CO3

2 – . These fuel cells also operate at very high tempera-
tures of several hundred ◦C, which increases their chemical activity and thus efficiency. However, to maintain
such temperatures on a small drone is not feasible, due to weight restrictions.

Other types of fuel cells operate on less conventional fuels such as phosphoric acid, formic acid, methanol,
or ethanol. Their main advantage is high volumetric energy density owing to their high boiling point relative
to hydrogen. The disadvantage is low gravimetric density. In Table 3.1, some properties of these fuels are
shown. Even though the density of the fuel tank plus hydrogen is 930.8 kg/m3, which is higher than for some
of the other fuel. The energy density of hydrogen is far higher than the other fuels.

This advantage of hydrogen is slightly diminished when we take into account weight loss during flight as
fuel is consumed. The weight of the fuel tank is only around 450 grams. If this is instead entirely used for a
fuel which is expended during a mission, it would roughly amount to 10% reduction in the weight after a full
length mission. The difference in energy density (kWh/kg) between hydrogen and the other fuels is almost
one order of magnitude. Hence, even when taking weight loss into account, hydrogen remains the best choice
for the Delftacopter.

3.6. Fuel Cell System Selection
A fuel cell designed for drones is the 650 W fuel cell by Intelligent Energy9. Its mass without the emergency
battery is 1060 g, and 1290 g with battery. Its fuel is hydrogen, but the fuel cell efficiency is not given.

This fuel cell is a PEM fuel cell, which generally have a quick start-up time. This is of course necessary for
drone operations, as a drone needs to be able to throttle quickly during take off and landing. The efficiency
of a PEM fuel cell can be around 50%[7].

The fuel cell was chosen for its power to weight ratio. Other options were less attractive in this regard: the
Aerostak 500 W (1300 g), and Ballard 600 W (1800 g).

9https://www.intelligent-energy.com/uploads/product_docs/650W_datasheet_AwPJVHR.pdf

https://www.intelligent-energy.com/uploads/product_docs/650W_datasheet_AwPJVHR.pdf
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Delftacopter

4.1. Introduction
There are two main classes of aircraft. One is the airplane, which generates lift from its fixed wings, and is
therefore capable of long high speed cruise flight. As a disadvantage, however, they require a runway. Another
is the helicopter, which generates lift from rotors. Its advantage is the ability to hover, take off from and land
almost anywhere, and perform maneuvers within a small area, but it is not able to cover distances as long
as that of an airplane. A vehicle optimized for both modes of flight could be operated efficiently in places
without runways, such as ships, cities, and forests, with a range that is much improved over the helicopter. It
would open up new possibilities such as the delivery of goods or supplies to remote locations, the inspection
of roads, power grids or the quality of soil without runways in the vicinity.

Aircraft designs that seek to combine the advantages of airplanes and helicopters are called hybrid air-
craft, which include both manned and unmanned vehicles. Such designs typically involve large rotating
parts, such as movable rotors and engines or even movable wings, making them complex, heavy, and more
susceptible to mechanical failure.

One of the first hybrid unmanned aerial vehicles (UAV) is the tail-sitter, which was a notable improvement
in that regard. As the name suggests, the tail-sitter rests on its tail at the start and end of its operation. This
UAV rotates its entire body to switch between flight modes and thus requires fewer moving parts[39].

The Delftacopter is based on the tail-sitter concept. Originally, it used batteries as its energy source. When
the batteries are replaced by the hydrogen fuel cell from the previous chapter, its performance should im-
prove.

This chapter describes the original battery-powered Delftacopter and discusses the consequences of us-
ing the fuel cell and fuel tank selected in the previous chapter.

4.2. Design Challenge
The Delftacopter was designed in an attempt at the Outback Medical Express UAV Challenge 2016. The chal-
lenge took place in Australia and the objective was the retrieval of a blood vial over a distance of 30 km at a
location that is hypothetically surrounded by floodwater and thus not easily accesible by land.

During the challenge, all hardware was working properly. Unfortunately, the Delftacopter team was not
able to make a return flight. Some issues in software and ground control arose, which were a result of the
limited allowed preparation time on site. In any case, this accident should not impact the results of this
thesis.

4.3. Rotor and Motor Design
The Delftacopter design as was used during the medical express challenge and shown in Figure 4.1, consists
of two delta wings with two fins attached at the ends, which provide stability when resting on the ground,
while lowering sensitivity to lateral wind and minimizing conditions of stall[16]. Its wing span and wing area
are 1.5m and 0.496m2.

There is another complication when optimizing for the flight modes, cruise and hovering, apart from the
one described in the Introduction. This is related to the main rotor, namely that during hovering, a low pitch

13
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Figure 4.1: The Delftacopter during hovering.

Figure 4.2: Wind tunnel test of Delftacopter at 19 m/s.
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MTOW 4.5 kg
Wing area 0.496 m2

Wing loading 8 kg/m2

Span 1.54 m
Length 0.6 m
Height 0.4 m

Cruise speed 23.8 ms−1 at 450 W
Maximum speed 30 ms−1

Flight distance 60 km
Hover climb 660 W

Hover descent 550 W
Main battery 179.2 Wh

Battery weight 1.8 kg

Table 4.1: Overview of Delftacopter properties

angle and high rpm is desired, whereas during cruise, a high pitch angle and low rpm would be most efficient.
The Delftacopter design has therefore implemented variable pitch rotors. For optimal efficiency, a 10◦ pitch
angle at 1500 rpm is used during hovering, and 50◦ at 500 rpm during cruise. Different flying speeds can be
reached by changing the pitch, while keeping the rpm constant.

Powering the Delftacopter is a 900 watt iPower MT8017, which weighs 385 grams and is fed by 18 lithium-
polymer cells. The motor and batteries are to be replaced by a hydrogen fuel cell and a fuel tank with higher
energy capacity.

Theoretical calculations concluded that the optimal cruise speed is around 19 m/s. Performance at this
speed were then measured in a wind tunnel test, Figure 4.2. Important conclusions were the following:

• An RPM of 700 is required to obtain a speed of 19 m/s.

• Efficiency drops below 900 RPM, at a speed of 19 m/s.

• Efficiency drops sharply above 22 m/s due to engine limitations. The practical maximum speed is thus
about 22 m/s.

In the end, it was decided that the Delftacopter should operate at an RPM above 1000 for cruise flight, since
this would enable faster adaptation between hover and cruise. The flight speed can still be controlled by
changing the pitch of the blades.

4.4. Flight Performance
In the subsections below, some flight characteristics of the Delftacopter are calculated, such as minimal and
maximal speed, and their theoretical power consumption. This will be crucial for determining the flight time
per filled tank and thus the area that can be scanned per flight. The most recent and realistic data on the
current Delftacopter that I have is provided in Table 4.1. In the following section we will use the MTOW of
4.5 kg as the mass of the drone. In Chapter 7 we will come back to this.

4.4.1 Minimal speed
The maximum lift at a certain speed V that a single wing can produce is

Lmax,s = 1

2
CL,maxρSV 2 (4.1)

with S the surface area of the wing, CL,max the maximum lift coefficient. For a biplane, the lift is slightly
reduced due to aerodynamic interference between airflows of the stacked wings[34].

Lmax,b = 0.9 ·2Lmax,s (4.2)

Without hovering capabilities, this maximum lift will determine the minimal speed, since, below a certain
speed, the wings will not produce enough lift to keep the drone in the air. Let’s call this speed, Vmin. At lower
speeds or even zero speed, the Delftacopter can use its hovering capability to stay in the air. This flight mode,
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Figure 4.3: PW51 Airfoil of the two wings on the Delftacopter.

however, requires significantly more power than cruise flight. Vmin importantly draws the line between the
two flight modes, and in the following paragraphs, we will try to estimate Vmin.

In steady level flight, the lift counterbalances the weight

L =W (4.3)

Putting the above three equations together

W = 0.9 ·2Lmax,s = 0.9CL,maxρSV 2 (4.4)

⇒Vmin =
√

W /S

0.9CL,maxρ
(4.5)

The minimal speed, Vmin, is a function of air density ρ and maximum lift coefficient CL,max. At higher alti-
tudes, ρ decreases and Vmin increases. In words, it is more difficult to stay in the air if the air becomes more
dilute.

CL is a function of the angle of attack α.1 At α= 0, CL = 0 for a symmetrical airfoil. However, some airfoils,
such as the one used in the Delftacopter (Figure 4.3), are not symmetrical, but cambered. This means that
the upper part is bent upwards, which accelerates the air leading to a lower pressure. The pressure difference
above and below the wing creates lift, even at α = 0. Another lift-creating mechanism is of course changing
the angle of attack. A larger angle of attack intuitively increases the lift, as more air pushes against the lower
part of the wing. At some angle of attack, airflow above the wing starts to separate, creating both an increase
in drag and a reduction in lift. This is called the critical angle of attack or stall angle.

Hence, by definition, the stall angle provides the maximal lift, which, as argued before, is directly related
to the minimal flight speed. But how do we find the stall angle?

1The angle of attack is the angle between the airflow and the airfoil’s chord. An airfoil is a cross section of the wing. Its chord line runs
straight from the leading edge to the trailing edge.
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Figure 4.4: XFoil data for the sectional lift coefficient Cl , and Q3D data for the total lift coefficient CL . The dotted line shows a linear fit to
the Q3D data. Lift coefficients increases linearly until it approaches αcrit, the angle of the maximum sectional lift coefficient. The wing
suffers from vortices at the tip, which the airfoil does not.

Calculating stall angles is not as straightforward and in fact requires complex modeling, whether in two or
three dimensions. In 2D models, the wing is considered to be infinite, such that the problem can be viewed
in a flat plane. Effectively, the characteristics of the airfoil are modeled in this way. In reality, the wing is of
course finite. An immediate consequence of this is that air can travel around the tip from the lower part of
the wing to the upper part. This creates vortices which lower the total lift coefficient.

The effects described above can be seen in Figure 4.4, where the (sectional) lift coefficient of the airfoil Cl

and the total lift coefficient CL of the wing are shown. The package, Xfoil[17], was used for the airfoil, while
the wing was analyzed with Q3Dsolver[33].

If we assume that the wing stalls at the same angle as the airfoil, then the maximum total lift coefficient is
1.0024 at an angle of α= 11.5°. Generally speaking, a wing stalls at a slightly higher angle of attack compared
to its airfoil. Hence, this lift coefficient is a lower estimate.

Now, with an estimate for the maximum total lift coefficient in our hands, we can go back to the formula
for the minimal speed in Eq. (4.5), and find that the minimal speed is:

Vmin =
√

W /S

0.9CL,maxρ
=

√
4.5 ·9.81/0.248

0.9 ·1 ·1.225
= 12.7ms−1 (4.6)

4.4.2 Power Consumption
In order to obtain the power consumption, we need to find the drag coefficient. According to basic aerody-
namics, the drag coefficient, CD , consists of two components: a constant term, CD,0, encompassing friction
or form drag, and a term which is a parabolic function of the lift coefficient, CL , known as induced drag:

CD =CD,0 +
C 2

L

πeAR
(4.7)
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Figure 4.5: Delftacopter model in XFLR5.

with e the Oswald efficiency factor, which is 1 for an elliptical wing and less than one otherwise. AR is the
wing aspect ratio. The total drag then is

D = 1

2
CDρSV 2 (4.8)

For a more detailed analysis, I have employed XFLR5, which is capable of 3D aerodynamic analyses. The
PW51 airfoil was used for the two main wings, and the symmetrical NACA9 airfoil for the winglets at the tip,
see Figure 4.5. The free flow speed was set at 23 ms−1, which leads to Reynolds numbers of around 200,000.

Unfortunately, I was not able to obtain any results when I included the fuselage. The following lift and
drag estimates are therefore optimistic.

The XFLR5 analysis gives the relation between the drag and lift coefficient, also known as the drag polar,
see Figure 4.6. The Reynolds number changes for different speeds, which mildly affects the drag polar. But
neglecting this small effect, we can now calculate the power consumption at any flight speed.

The minimal flight speed in Eq. (4.6) was achieved at a lift coefficient of 1, which corresponds to a drag
coefficient of 0.07. Drag, from Eq. (4.8), is then 3.43 N. To overcome this drag force, a power has to be supplied:

PminV = DVmin = 3.43N ·12.7ms−1 = 43.5W (4.9)

The same calculation of the power consumption can be made for different flight speeds. For a certain flight
speed, a specific lift coefficient is required according Eq. (4.4). This lift coefficient then corresponds to a drag
coefficient according to Figure 4.6. The drag force and (minimal) power consumption can then be calculated
from Eq. (4.8) and Eq. (4.9).

The result is in Figure 4.7. You can see the characteristic parabolic shape. Initially, increasing the speed
will lower the power consumption, since a lower lift coefficient and therefore drag coefficient is sufficient.
After around 16 ms−1, power consumption quickly increases due to the quadratic relation between speed
and drag.

4.4.3 Efficiencies
In order to calculate flight time we have to take into account the efficiency of converting the chemical energy
in the hydrogen tank into forward thrust. There are three main efficiencies to be taken into account:

1. the efficiency of the fuel cell in converting hydrogen into electricity,
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Figure 4.6: Lift and drag coefficients of the Delftacopter.

2. the efficiency of the engine in converting the electricity into shaft power, and

3. the efficiency of the propeller in converting that power into forward thrust.

The efficiency of an electric motor is nearly constant over a large operational range[47]. In the following, I
will simply assume a fuel cell efficiency of 50% and motor efficiency of 75%2. A fuel utilization factor of 0.95
was used.

As for the propeller, there are multiple theories which predict propeller efficiency. Following Chapter
6 in McCormick’s Aerodynamics, aeronautics, and flight mechanics, the propeller efficiency can be roughly
approximated with an actuator disc model, in which the propeller is modeled as a thin disc. Let us denote
the speed of the incoming air by u0,3 and of the outgoing or ejected air by ue . Then, the speed of air at the
disc, udisc, can be calculated using Bernoulli’s equations. The result is that udisc is the arithmatic average of
the incoming and outgoing velocities

udisc =
ue +u0

2
(4.10)

Thrust produced by the propeller disc is mass flow, ṁ, times velocity change, ∆u, at the disc:

T = ṁ∆u = ρAdisc
ue +u0

2
(ue −u0) (4.11)

= ρAdisc
u2

e −u2
0

2
(4.12)

⇒ u2
e

u2
0

= 2T

ρAdiscu2
0

+1 (4.13)

2https://www.energy.gov/sites/prod/files/2014/04/f15/10097517.pdf, Retrieved 4 July 2019
3In the rest frame of the air, u0 is the speed of the aircraft.

https://www.energy.gov/sites/prod/files/2014/04/f15/10097517.pdf
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Figure 4.7: Minimal power required for a range of cruise speeds, based on a drag polar from XFLR5.

The air speed at the disc can be rewritten as

udisc

u0
= ue +u0

2

1

u0
= 1

2

(ue

u0
+1

)
(4.14)

= 1

2

(√ 2T

ρAdiscu2
0

+1+1
)

(4.15)

Power delivered by the propeller is thrust times speed at the disc:

P = Tudisc = Tu0 · 1

2

(√ 2T

ρAdiscu2
0

+1+1
)

(4.16)

Since Tu0 is the useful power output, the efficiency is

ηprop = Tu0

P
(4.17)

= 2

1+
√

2T
Adiscu2

0ρ
+1

(4.18)

The end result is basically that the propeller efficiency drops due to the fact that the propeller is working on
air at a speed of udisc instead of u0. We see that if u0 → 0, then ηprop → 0, whereas if u0 →∞, then ηprop → 1.
In reality, the efficiency does increase with speed, but reaches a maximum then quickly goes to zero. A more
accurate theory, which can predict this result, is the blade element theory.

In the blade element theory, the propeller is no longer a simple flat disc, but its blades are modeled as
well. Vortices at the tip and circular motion of the airflow are not considered. In this method, the lift and drag
of each blade section are calculated, converted to thrust and power, and summed up. The calculations have
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Figure 4.8: Propeller efficiency as a function of flight speed and blade pitch at 1140 RPM.

to be done iteratively,4 since the effective angle of attack at the blade is a function of the induced air velocity
at the blade, but this velocity depends again on that angle of attack.

After summing up all thrust and power contributions, T = ∑
∆T and P = ∑

∆P , they are put into coeffi-
cients:

CT = T

ρn2D4 (4.19)

CP = P

ρn2D5 (4.20)

The efficiency becomes

ηprop = CT

CP
J (4.21)

with advance ratio

J = V

nD
(4.22)

The main conclusion from this is that propeller efficiency depends on the revolution per second n and the
diameter of the diameter D .

With Xfoil data for the lift and drag coefficients of the propeller airfoil,5 the efficiency can be calculated.
I have calculated the propeller efficiency for several blade pitches. This pitch is added as a constant on top
of the original propeller shape described in Table 1 in [16]. Results are shown in Figure 4.8, for a propeller
rotation rate of 1140 RPM.

From this we can conclude that an added pitch of 25° is the optimal configuration for a speed of 22.5 ms−1.

4It is also possible to solve the equations analytically using a simplification called momentum-blade element theory, see McCormick
Chapter 6 for more details.

5http://airfoiltools.com/airfoil/details?airfoil=ma409sm-il, Retrieved 17 March 2019

http://airfoiltools.com/airfoil/details?airfoil=ma409sm-il
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Figure 4.9: Power consumption including propeller and motor efficiency. The flight time is calculated by dividing the energy in the
hydrogen tank by the power consumption, now also including the fuel cell efficiency.

4.4.4 Maximal Flight Range
If we assume that it’s possible to change the pitch such that a propeller efficiency of 90% can be reached
between the minimal and maximal speed, then we can update Figure 4.7 to account for the efficiencies dis-
cussed above to get Figure 4.9. The maximal flight time can then be easily calculated from the energy in the
fuel tank (1.812 MJ, see Section 3.4). By multiplying the flight time with the flight speed, the maximal distance
can calculated, see Figure 4.10.

The flight speed with lowest power consumption is around 16 ms−1, but the longest distance is reached
at a speed of 21 ms−1.

Comparing these values for the power consumption with those in Table 4.1, these values are a factor four
too low. If the power consumption at 23.8 ms−1 is scaled up to 450 W, by a simple multiplication at every
speed, we get power consumptions and distances as shown in Figures 4.11 and 4.12. It turns out that one fuel
tank will not be enough to fly further than 50 km.

In Chapter 7, we’ll return to this and see what the effect is of adding more fuel tanks. First, we should
determine the weight of the other crucial component: the LiDAR system.
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Figure 4.10: Maximal flight distance, which is the simple multiplication of flight time and speed. The maximum distance is achieved at
around 21 ms−1, which is in fact higher the speed of lowest power consumption.

Figure 4.11: Same as Figure 4.9, but scaled to empirical values described in Table 4.1. The power consumption of the LiDAR system, see
Section 6.2, has been included. Empirical power consumption is around four times higher than my calculations predict.
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Figure 4.12: Distance achieved on one fuel tank based on power consumption in Figure 4.11. One fuel tank is sufficient only for a little
under 50 km.
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Soil Monitoring

5.1. Introduction
Soil is the basis of all life. Healthy soil produces healthy plants, which then feeds Earth’s animals, including
us. Soil health is determined by a variety factors, such as moisture retention, bulk density, pH, see Figure
5.1. The main indicator for soil health is the amount of soil organic carbon (SOC) stored in it[46]. A decrease
in SOC not only affects fertility, but also water infiltration rate, soil biota[41], and may even cause erosion
processes[11]. These processes degrade the soil which is self-reinforcing and releases carbon dioxide into the
air[30]. In order to prevent such soil degradation, SOC should be maintained at or above 1.5–2% in the root
zone[29].

Monitoring SOC levels is crucial for its maintenance and the optimal deployment of resources for replen-
ishment. SOC can be measured in several ways, which have their own pros and cons:

• Laboratory measurement of soil samples. This is the most costly and slow process of all[46], as it in-
volves the manual collection of samples from the field and sending them to a laboratory for analysis,
where the samples are combusted and the emitted CO2 measured. Equipment used in this method
however is not limited by any weight constraints, and its results are thus the most accurate.

• Satellite imaging spectroscopy, i.e. taking color images from space. This method is very cost efficient
as it can be employed over extremely large fields. However, this method can only measure proxies of
soil content by analyzing vegetation reflectance in the various frequency bands. Naturally, it does not
reach laboratory accuracy. Spatial resolution nowadays can be on the order of 10m (Landsat) down to
1m (WorldView-2). This is a lower resolution than what is possible using LiDAR.

• Airborne LiDAR. LiDAR is often employed for measuring distances, which is done by reflecting lasers
off of objects, and measuring the time it takes for a signal to return. This approach is less rapid and cost
efficient compared to satellite imagery, but more so compared to lab analysis. Advantages versus satel-
lites are that there’s no cloud interference, and the observation time and place are more flexible[27].
Although LiDAR systems are more costly than imaging sensors, their costs will likely come down1 as
they become more widely implemented2, for example in self-driving cars.

In the next sections, we’ll look at some methods and results from researchers who have employed satellite
imaging or airborne LiDAR to measure soil carbon, with the ultimate goal of setting requirements for our
own LiDAR drone.

5.2. Imagery and LiDAR
Measuring SOC using optical sensors from satellites or aircraft, also called remote sensing, is quite challeng-
ing compared to laboratory measurements. First, atmospheric absorption and the intrinsic solar spectrum

1https://arstechnica.com/cars/2018/01/driving-around-without-a-driver-lidar-technology-explained/Retrieved
on 3 Dec 2018

2https://www.grandviewresearch.com/industry-analysis/automotive-lidar-market?utm_source=abnewswire.com&
utm_medium=referral&utm_campaign=abnewswire_26Nov&utm_content=Content Retrieved on 3 Dec 2018.
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Figure 5.1: The plethora of soil parameters affecting its health. Taken from [29]
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have to be accounted for. Then, the raw image data has to be corrected for geometry[11], at least when the
landscape is not flat. After all this, there are still weather, climate and agriculture related processes such as
soil crusting, vegetation, and crop residue[8] affecting the spectral response of the soil. Nevertheless, re-
searchers all over the world are developing this method for its potential cost and time savings over laboratory
measurements, with some success as we’ll see below.

Broadly speaking, there are two ways to relate SOC to spectral response: by spectrometry/satellite im-
agery and by LiDAR. Some satellites can obtain data with spectral resolution of up to 10 nm, while other
simply take images from space through several filters, usually red, green, blue, and (near) infrared, roughly
approximating the spectrum of the landscape. LiDAR has the advantage of being able to measure elevation,
even through dense forests. This data can be helpful for determining SOC[32].

A small literature search was performed with two goals mind: 1) find out the accuracy of these methods
of estimating SOC, and 2) determine instrumental requirements of the sensors. All studies that I found use
their own strategy of analyzing optical data to estimate SOC content. The general idea, however, is that SOC
values of samples across an area are measured by taking the field samples to the laboratory. These values are
then correlated with parameters (a.k.a. predictor variables) that are derived from the optical data. The variety
of strategies is mainly due to the diversity of predictor variables. Resulting correlations vary and are shown in
Table 5.1. In order to make sense of these results, the method of each research group will be described briefly
in the following and in the same sequence as in the table. The first four of them uses satellite imagery, while
the other three use LiDAR.

1. This study used a portable spectrometer AgriSpec to obtain in situ the SOC of 146 soil samples from
their reflectance. A regression model was then fitted between this data and the spectral data from the
Hyperion satellite. Table 5.1 gives the R2 between the two sets of data.

2. This group first determined the regression equations between surface soil carbon concentration (SSCC)
for 35 out of 55 data points and reflectance data from the SPOT-4 satellite. The remaining points were
used to determine the accuracy. Afterwards, the correlation between SSCC and soil carbon stock (SCS)
was determined. The table contains the RMSE for the difference between estimated SCS and measured
SCS and the r value of the correlation between reflectance and SCS. I calculated this r value as the
product of the r values between reflectance and SSCC and between SSCC and SCS. This is shown for
volcanic ash in near infrared only, which had the highest correlation. The other soil types correlated
similarly well in the red wavelength range.

3. Two intermediate parameters were considered here: bare soil index (BSI) and normalized difference
vegetation index (NDVI). The BSI is an estimate of how bare the soil is and is a function of the red,
green, blue, and near infrared colors. The NDVI is a measure of the amount of vegetation. See [12]
for the formulae. Image data came from the LandSat satellite and the results in the table are for the
correlation between SOC and both BSI and NDVI.

4. This research group used the most elaborate model involving many predictor variables for SOC. These
are climate, lithology, relief, weathering and biota. Biota was remotely sensed using the LandSat satel-
lite. The results in the table are without including biota. When biota is included, the accuracy improves
by around 5%.

5. This group used an undisclosed LiDAR system to generate a digital elevation model (DEM). They in-
cluded many environmental variables to predict SOC, some of which were not measured by LiDAR.
The main influencers of SOC were precipitation, land use, soil type and terrain parameters, including
elevation, slope gradient, SAGA wetness index, and multi-resolution index of valley bottom flatness
(MrVBF).

6. The LiDAR system LiteMapper 5600[1] was employed in this study. Unfortunately for us, the authors
do not specify the flight conditions. The direct correlation between reflected intensity and soil organic
matter (SOM) is given in the table. SOM is the organic component in soil, which has SOC as the main
component[18]. The ratio SOC/SOM is generally around 50%[26].

7. LiDAR (Leica ALS-40) is used in this study to determine the dimensions of trees (height and diameter at
breast height). The aircraft flew at an altitude of 2.2km, and a speed of 80 knots. Using the LiDAR data
only, the above ground biomass (AGB) was estimated and from the AGB the SOC. The AGB from LiDAR
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was compared to laboratory measurements and this correlation is shown in the table. The largest SOC
variations followed AGB variations, see their Discussion in [38].

Although the results shown in Table 5.1 are not comprehensive, some important points can be made:

• The most intuitive result is that in general, the deeper the soil depth, the more difficult it becomes to
correlate the SOC with the optical data. In [2] specifically, the lowest R2 (0.23) is for the deepest layer of
soil at around 100cm, while the highest R2 (0.63) is for the top layer at 0–5cm.

• In [35], SOC responded strongly in the red and near-infrared (IR) wavelength ranges. This is similar to
the statement made by [32] (in their Introduction), that SOC correlates strongly with reflectance in the
NIR–SWIR (short wavelength infrared) range with R2 greater than 0.8.

• Comparing the two techniques of obtaining SOC estimates, satellite color images and LiDAR, the results
are not significantly different. It’s interesting that even though LiDAR does not contain color informa-
tion, it reaches more or less the same accuracy. However, we should keep in mind that soil organic
carbon is merely one component of soil organic matter, which is only one of the many soil proper-
ties that affect fertility. More complete spectral data is necessary to obtain information on those other
properties[27].

The main conclusion from Table 5.1 is that it is possible to predict SOC using either simple images or LiDAR,
and with an R2 of up to around 0.7, at least in the studies shown. High resolution spectra, as in [19], are not
necessary; simple color filters suffice as were used in [35], [12], and [46]. When it comes to LiDAR, the most
important thing is that the intensity should be retrievable, which is what allowed [32] to obtain their results.
The intensity or even pulse detection method is often not given, even though it may affect the accuracy of the
measurements[1], since this knowledge is considered proprietary.

5.3. General LiDAR Requirement
For an estimate of LiDAR requirements for the estimate of SOC, I will focus on the studies in the last two rows
in Table 5.1. As a reminder, the first uses reflected intensity (as a proxy for SOC), while the second uses the
spatial resolution (to determine tree height and diameter, and thus SOC).

According to the specifications sheet3 the LiteMapper-5600, which houses the RIEGL LMS-Q560 laser scan-
ner, used by [32] consumes 120W. The frequency used by [38] was 52.9kHz.

The intensity required for a similar measurement, Ireq, changes for a different flight altitude R, when
neglecting atmospheric attenuation: the closer to the ground, the stronger the reflected signal. In the next
chapter we will go much further into detail. As for the pulse frequency, a slower speed will allow us to use a
lower frequency, when aiming for the same point density or spatial resolution. Using simple proportionalities
we get:

Ireq = I0

( R

R0

)2
(5.1)

fp,req = fp,0

( V

V0

)
= 52.9kHz

V

41.2m/s
(5.2)

Now, this calculation ignores noise. It’s more useful to find an Ireq that gives the same signal to noise. Flying
at half the altitude, assuming a similar sensor size, would increase background intensity from reflected solar
radiation by a factor of four, but the noise will increase only twice4, according to Poisson noise. Hence σI ∝
1/R, and:

Ireq

σI ,R
=

I0

(
R
R0

)2

σI ,R0

(5.3)

⇒ Ireq = I0

( R

R0

)2 σI ,R

σI ,R0

= I0

( R

R0

)2 R0

R
= I0

R

R0
= 120W

R

2.2km
(5.4)

3http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Q560_20-09-2010_01.pdf, Retrieved on 4 Dec 2018
4There are other noise factors, one in the LiDAR signal itself and another in the dark current. But these are not significant during daytime,

compared to the solar radiation background noise[21].

http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_Q560_20-09-2010_01.pdf
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Table 5.1: An overview of several studies on SOC measurements by remote sensing. The mentioned soil types are oversimplified, and the
respective papers should be consulted for more complete descriptions of the soil. The Spectral Range column describes either the full
range with resolution in brackets or the individual range of the bands. SR stands for Spatial Resolution, which is the spatial resolution of
the satellite. The Root Mean Square Error (RMSE) column contains the relative error, i.e. error divided by measured value, and in square
brackets the absolute value if this is mentioned in the source. The R2 values describe the correlation between the optical measurement
and SOC content, see also text for the interpretation of these values.

Spectroscopy
Location,
Country,
Year of
publica-
tion, Area
size

Soil or
Forest
Type or
vegetation

Soil Depth Spectral
Range
(Resolution)

SR RMSE R2 Source

[cm] [nm] [m] [Mg C/ha]
1 Narrabri,

Australia,
2008, –

Vertisol 0–10 400–
2500(10)

30 73% 0.51 [19]

2 Tokachi
District,
Japan,
2011,
240 km2

alluvial
deposits
and vol-
canic
ash

0–30 500–590,
610–680,
780–890,
1580-1750

20 <20%
[19.5]

0.76 [35]

3 Medinipur
Block, In-
dia, 2017,
323.6 km2

Laterite
soil

0–20 450–520,
520–600,
630–690,
760–900

30 1.11(?) 0.71 [12]

4 New
South
Wales,
Australia,
2018,
233877 km2

grasslands,
shrubs,
scattered
trees

0–30 same as 3 same as 3 [9.16] 0.44 [46]

LiDAR
Wavelength Pulse rate

and length
[nm] [kHz], [ns]

5 Denmark,
2014,
43000 km2

coarse
sandy to
heavy clay

0–100 0.23–0.63 [2]

6 Liangshui
National
Nature
Reserve,
China,
2016,
40 km2

Korean
pine forest

0–100 1556 150, 3.5 0.64 [32]

7 Chitwan,
Nepal,
2017,
6.6 km2

Sal forests,
mixed
forests

0–20 52.9 31% 0.69 [38]
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The altitude was not given by the authors, so I assumed 2.2 km, which was used in [38]. As an example, we
can use an altitude of 50m, and speed of 25m/s, then

Ireq = 2.73W, fp,req = 32kHz (5.5)

It’s possible to fly (s)lower to make these requirements easier to achieve.
These requirements can be regarded as upper limits, as they are based on the specifications of a real

LiDAR system that was employed, and so using a higher intensity or frequency should not be necessary. Note
that only one of the requirements has to be satisfied, since the two were used in two separate methods of
estimating SOC. It is difficult to find a small LiDAR system which allows the retrieval of intensity information,
so we will focus on the second requirement in the next sections. The second requirements is quite high for a
small LiDAR system, but we can find a lower requirement for the pulse frequency by determining what point
density is necessary for accurately determining tree height and diameter of individual trees. In the following,
we will focus on the LiDAR specifications required to perform a measurement similar to the study by [38] (row
7 in Table 5.1), which is based on tree height.

5.4. Point Density Requirement
With a point density of 4–14 per m2, [24] found a determination coefficient of R2 = 0.94, for mature forest
stands, between heights measured by LiDAR and data from the National Forest Inventory in Australia, though
for young forest stands this drops to R2 = 0.53, possibly due to the closer distances between young trees. [10]
obtained a lower coefficient R2 = 0.65, with a mean that’s 3.73m higher for LiDAR measurements compared
to field measurements. The author ascribed the errors to several causes, one of which was the difficulty to
identify individual trees. It should be noted that their LiDAR point density was 2.4 points/m2. There is one
study that uses a resolution of 1m [45], and found a high coefficient between LiDAR measured and manually
measured heights of R2=0.93. but gives no measurement errors. [4] obtained a mean error and standard
deviation of LiDAR based heights compared to field measurements of -0.73 ± 0.43m, using a density of 6
points/m2. They also gave an overview of previous measurements, which I have plotted in Figure 5.2.

In conclusion, when measuring tree height using LiDAR it’s crucial to be able to identify individual trees:
the distance between LiDAR measurements points should be small, while the distance between the trees
themselves should be large. From Figure 5.2, we can conclude that a point density of more than 5 points/m2

does not improve accuracy. Hence, for simplicity, we will use 5 points/m2 as a minimal requirement for
accurate soil carbon measurements (through tree heights) using the Delftacopter.

One last point to be made here is that all of the studies above use either LiDAR mounted on an aircraft or
on a helicopter. By mounting it on a drone, there may be additional measurements errors due to the smaller
total weight, and hence lower inertia of the vehicle.

Now, suppose we scan a rectangular area A, with length and width L and W , using a LiDAR system with F
as pulse frequency. Then the point density (per unit area) is given by[6]:

d = F nTs

A
(5.6)

with n the number of strips required to cover the area, which depends on the desired overlap and swath
width, see [6] for details. Ts = L/V is the flying time per strip, and this is where the flight speed, V , comes in.
A higher speed leads to a lower point density, all else remaining equal. In the following chapter, we will model
the point density for a selected LiDAR system.
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Figure 5.2: Point density of LiDAR measurements versus obtained accuracy of tree height. Trees were measured from the ground and
from the air using LiDAR. The difference between the two is on the y-axis. For some of the data points either the mean or the standard
deviation from the mean was not given.





6
LiDAR range

6.1. Introduction
In the previous chapter, we have discussed the requirements for the LiDAR system. In this chapter, we choose
and analyze one that fits those requirements. An attempt was made to estimate the range using radiative
transfer equations, including atmospheric absorption, scattering and reflection by vegetation. The data den-
sity that the system can achieve was modeled for different flight speeds and rotation rates, using the range
specified by the manufacturer.

6.2. LiDAR Selection
The LiDAR system that I chose is the Puck LITE from Velodyne1, which weighs 590 g and has a diameter of
103 mm. For it to function properly, the interface box needs to be added. I could not find its weight, so I
assumed a weight of 200 g, which is based on the size of the device and weight of circuit boards.

There are 16 lasers inside the device firing at a rate of 18 kHz. The total pulse frequency of 289 kHz sur-
passes the requirements set in the previous chapter. In the following two subsections, the performance of
this LiDAR system is estimated.

6.3. LiDAR Range Estimation
The practical range of the LiDAR system was estimated through radiative transfer calculations. The strategy
was to calculate the strength of the LiDAR signal and compare this with all noise sources.

A laser beam that is sent out by the LiDAR emitter will go through three events that diminishes its intensity.
First, the atmosphere partially extinguishes the light, while it spreads out geometrically across space. When
these photons touch an object, some will be lost in the material as a small amount of heat, while the remaining
photons are scattered back in random directions. Lastly, the returning portion of light will experience the
same dilution as in the first step, before returning via a filter to the detector.

As for the background radiation coming from the Sun, this has been obtained from SMARTS (Simple
Model of the Atmospheric Radiative Transfer of Sunshine). The background radiation hits an object and
goes through the same processes as described above. Calculations for these processes will be described in
the following subsections.

6.3.1 Background radiation
A beam of light at wavelength λ with an intensity I (λ) experiences extinction by absorption and scattering. If
we assume that the beam retains a constant diameter, then its intensity along a path x can be described by
the Lambert–Beer law:

dI (x,λ)

dx
=−b(x,λ)I (x,λ) (6.1)

1https://www.velodynelidar.com/vlp-16-lite.html

33
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Location Humidity Water vapor density Temperature
[%] [g/m3] [◦C]

Amazon rain forest (winter) 77% 13.32 20
Amazon rain forest (summer) 88% 33.59 34

Netherlands (winter) 86% 4.34 0.5
Netherlands (summer) 80% 15.76 22.1

Table 6.1: Water vapor density in two geographic locations and two seasons.

where b is the extinction coefficient, which is the sum of the absorption and scattering coefficients. The
intensity as a function of distance is therefore

I (x,λ) = I (0,λ) ·e−bx (6.2)

The absorption and scattering coefficients of air will be provided by literature. We will limit the analysis to
wavelengths close to the laser wavelength of 903 nm, namely 800–1000 nm. Light at other wavelengths will be
blocked to a large extent by the near-IR filter.

6.3.2 Absorption and scattering by air
According to figure 4.9 in [42], the most significant absorber in our wavelength range is water vapor. Since
the amount of water vapor can vary by geographic location and season, I have selected four extreme, yet real
conditions on Earth in order to capture the range of this variation2, see Table 6.1.

The water vapor density was calculated as the multiplication of humidity and saturated water vapor den-
sity at a given temperature, obtained from HyperPhysics3. You can see that the amount of water vapor can
vary by an order of magnitude.

The absorption cross section of water can be found on the HITRAN[20] website4. Cross sections be-
tween wavenumbers 9703.344294 – 12379.372242 cm−1 (807.8 – 1030.6 nm) and between 11376.529824 –
13034.654224 cm−1 (767.2 – 879 nm) were used, corresponding roughly to wavelengths of 800 – 1000 nm.
The data is plotted in Figure 6.1.

The transmittance and intensity can then be calculated as

T (x,λ) = exp
(
− σabs(λ)ρvap

MH2ONA
x
)

(6.3)

I (x,λ) = I0(λ)T (x,λ) (6.4)

with x the path length, σabs the aforementioned absorption cross section, ρvap is the water vapor density in
gcm−1, MH2O the molecular weight of water in gmol−1. The following scattering calculations were based on
[13], which incorporates the largest constituents of air, namely nitrogen and oxygen, but also conveniently
the CO2 concentration. Their formula for the scattering cross section is

σscat = 24π3(n2 −1)2

λ4N 2
s (n2 +2)2

F (air,CO2) (6.5)

with Ns the number density in molecules per cm3, λ the wavelength in cm, n = nCO2 the refractive index of air
at a certain CO2 concentration, and F (air,CO2) the depolarization factor. The refractive index is calculated
with the following equations[13]

n300 −1 ·108 = 8060.51+ 2480990

132.274−λ−2 + 17455.7

39.32957−λ−2 (6.6)

nCO2 −1

n300 −1
= 1+0.54(CO2 −0.0003) (6.7)

2Data from http://www.thesustainabilitycouncil.org/tropical-rainforest-biome.html, and https://www.
weather-atlas.com/en/netherlands/amsterdam-climate

3http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/watvap.html
4http://hitran.iao.ru/

http://www.thesustainabilitycouncil.org/tropical-rainforest-biome.html
https://www.weather-atlas.com/en/netherlands/amsterdam-climate
https://www.weather-atlas.com/en/netherlands/amsterdam-climate
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/watvap.html
http://hitran.iao.ru/
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Figure 6.1: Cross section of water vapor between 800 and 1000 nm

where n300 is the refractive index of air at 300 ppm CO2. λ is the wavelength in µm. The depolarization
factors[13] are

F (air,CO2) = 78.084FN2 +20.946FO2 +0.934+CO2 ·1.15

78.084+20.946+0.934+CO2
(6.8)

FN2 = 1.034+ 3.17 ·10−4

λ2 (6.9)

FO2 = 1.096+ 1.385 ·10−3

λ2 +1.448 ·10−3 ∗ (λ)4 ; (6.10)

where CO2 is now the amount of CO2 in volume percent, that is 0.036 for 360 ppm. In these formulas it is
assumed that the parts per volume of other constituents of air remain constant for an increased CO2 concen-
tration, which is mathematically false. But for our purposes, the resulting loss in accuracy is negligible.

The solar spectrum as obtained from SMARTS is plotted in Figure 6.2. The maximum altitude of the Sun
during summer and winter were taken from the Sun path chart program5 by the University of Oregon. In the
following sections, the amount of radiation is calculated as it is reflected, absorbed and scattered, and as it
enters in the detector.

6.3.3 Albedo
The reflectance of the vegetation determines what part of the background radiation and LiDAR signal comes
back, and varies by species. Figure 6.3 shows the albedo of a variety of plants and trees which were provided
by the SMARTS program. As can be expected, the spectra look very similar. They differ mostly on the average
albedo. For this reason, I have selected three based on their overall albedo: Green grass, Deciduous oak tree,
and Ponderosa pine tree. In Figure 6.4, you can see the effect of albedo on the reflected solar spectrum. The
LiDAR signal has been multiplied as well by the albedo value at its wavelength.

5http://solardat.uoregon.edu/SunChartProgram.html

http://solardat.uoregon.edu/SunChartProgram.html
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Figure 6.2: Solar spectrum for different humidities and locations. These are all corrected for the maximum altitude of the Sun. During
winter in the Netherlands, the Sun reaches at most an altitude of 15°
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Figure 6.3: Albedo of different grasses and trees. The black striped vertical line indicates the wavelength of the LiDAR laser.

6.3.4 Return path
After being reflected by vegetation, the radiation is again absorbed and scattered by the air. So we need
to calculate the radiative transfer as was outlined in Section 6.3. From my calculations based on formulae
outlined in Section 6.3.2, absorption and scattering are both only about 0.1% per 100 m.

6.3.5 IR filter
A near-IR filter is used to isolate the LiDAR signal from the background noise. Since it was difficult to find full
specifications of the Velodyne Puck-LITE system, I searched for a filter that would fulfill this purpose.

The 905 nm filter by Salvo Technologies6 seems to fit well. In Figure 6.5, the effect of this filter is shown.
Wavelengths outside of 800–100 nm range have been neglected.

Due to computational reasons7, the filter was applied immediately to the background radiation and also
the LiDAR signal. This should not be a problem, since the filter is a simple multiplication, which is a commu-
tative operation.

6.3.6 Geometry
Of course, vegetation does not act as a mirror. The light is scattered in random directions upon hitting the
surface of a leaf. I have assumed these leaves to be Lambertian scatterers, and that they are lying flat on the
ground, so that the angle of incidence is simply the angle at the ground.

The field of view (FOV) of the detector should be small so that, similar to the purpose of the filter, the
LiDAR signal is isolated from the background noise. The FOV is determined by the focal length of the lens and
the size of the photodiode. Avalanche photodiodes are designed for high sensitivity applications such as the

6https://opticalfiltershop.com/shop/bandpass-filter/nir-bandpass-filter-905nm-fwhm-50nm/
7My radiative transfer calculations were done for a large amount of angles between the drone and the ground, i.e. θ in Figure 6.6. In

order to save memory space, the background solar spectrum is integrated over wavelength for every angle, after which it is impossible
to apply the filter. Therefore the filter has to be applied before this process.

https://opticalfiltershop.com/shop/bandpass-filter/nir-bandpass-filter-905nm-fwhm-50nm/
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Figure 6.4: Reflected solar spectrum for different albedo profiles in the Amazon rain forest in the winter. The mentioned trees may or
may not actually grow in this climate.



6.3 LiDAR Range Estimation 39

Figure 6.5: Solar spectrum before and after applying the near-IR filter.

Figure 6.6: Sketch of a drone LiDAR measurement. The LiDAR signal is shot at some angle θ and hits the ground, and is partially reflected
back to the detector. The detector sees a larger area, indicated by the red surface, than the dot illuminated by the laser on the ground.
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Figure 6.7: Schematic drawing of field of view of the LiDAR detector.

detection of a LiDAR signal at large distances. I have chosen the S3884 avalanche photodiode by Hamamatsu8

which works in our wavelength range. This photodiode has a diameter of 1.5 mm. The focal point is assumed
to be 2 cm keeping in mind the dimensions of the LiDAR emitter. The size of the lens is assumed to be 3 cm
in diameter.

By constructing the light rays in a schematic drawing as in Figure 6.7, we can find the field of view as
simply twice the angle between the blue rays on the left of the lens with the horizontal axis:

FOV = 2 ·arctan
L

2 f
(6.11)

where L is the total length of the photodiode, and f the focal length. For the quantities given above, the FOV
is 4.3°, or about 1000 times the angular size of the laser beam.

The background radiation has to be multiplied by the area on the ground that the detector can see. For
simplicity I assumed this area to be a trapezoid on the ground, calculated as the multiplication of length and
width:

Ltrap = tan(FOV)
Alt

sin(θ)
(6.12)

Wtrap = Alt

tan(θ−FOV/2)
− Alt

tan(θ+FOV/2)
(6.13)

Strap = Ltrap ×Wtrap (6.14)

The part of the radiation that actually reaches the detector is proportional to the projection of the detector
surface onto the sphere with radius R, or S′ in Figure 6.6. This can be approximated as

S′ = S sin(θ) (6.15)

The fraction is then

S′

Ssphere
= S ∗ sin(θ)

2πR2 (6.16)

R = Alt

θ
(6.17)

6.3.7 LiDAR signal strength
The power consumption of the Velodyne Puck LITE is 8 W. The fraction that is converted from this power
to photons, ηP,phot is not given. From an exploration of literature[14][3], the efficiencies ranges from a few
percent to 58%. I assumed therefore an efficiency of 25%. The amount of photons per laser per second, Nphot

is then the laser power output, ηP,photP , divided by the energy per photon, Eλ, at λ= 905nm, divided over 16

8https://www.hamamatsu.com/eu/en/product/optical-sensors/apd/si-apd/index.html

https://www.hamamatsu.com/eu/en/product/optical-sensors/apd/si-apd/index.html
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Amazon min. Amazon max. Netherlands min. Netherlands max.
Deciduous oak tree leaves 1230.83 1230.83 1911.82 1325.05

Ponderosa pine tree 1149.19 1149.19 1721.06 1230.83
Green grass 1077.79 1077.79 1565.01 1149.19

Table 6.2: Range estimates in meters for the LiDAR system in different humidity levels and vegetation. min. refers to winter with minimal
humidity, while max. refers to summer with maximal humidity.

lasers:

Nphot =
ηP,photP

16 ·Eλ
= 0.25 ·P

16 · hc
λ

(6.18)

= 5.682×1017 s−1 (6.19)

with h the Planck constant, and c the speed of light.

6.3.8 Signal and Noise
In our setup, the signal is that of the LiDAR laser beam coming from the emitter, bouncing off of vegetation,
and into the detector. The noise source is the background solar spectrum reflected and scattered by vegeta-
tion into the detector. The noise source can be subtracted to a large extent, but noise will remain. Assuming
Poisson noise, the noise is the square root of the radiation. Other noise terms include dark current noise, and
Poisson noise in the LiDAR signal, but these are negligible.

I have considered the signal to be detectable, if the signal to noise ratio is larger than three. At a given
angle with the ground, the combination of radiative transfer and geometry will determine the signal to noise
as described in the previous sections.

6.3.9 Range results
Unfortunately, the range estimation I’ve obtained seem too large. They are summarized in Table 6.2. We
can however see that the environmental conditions can have a large impact on the range, if the numbers are
relatively correct. During the winter in the Netherlands (minimal humidity), the range is around 50% higher
than during summer (maximal humidity). This has to do with the fact that the Sun is not as bright during the
winter, which reduces the background radiation significantly. Humidity levels have a negligible effect on the
range (Section 6.3.4).

In Figure 6.8, you can see the radiation intensity as the LiDAR signal and background go through the
atmosphere. The largest reduction is due to the fact that the detector is very small compared to where the
radiation is scattered. We can conclude that scattering and absorption by air has a negligible effect on the
range, while albedo may have a small effect of around 10%.

6.4. Point Density Simulation
In the previous sections, an attempt was made to estimate the LiDAR range under various conditions. Since
that attempt was not fruitful, I will now continue with a range of 100 m as stated in the specifications.

As argued in Section 5.4, the minimal required point density is 5 points per square meter, or 5 m2. This reso-
lution, along with the maximum range of 100 meters, will limit the area coverage.

A simple way of analyzing the point density is to simulate the points. As a reminder, the LiDAR system
consists of 16 lasers, which simultaneously fire every 55.296µs. The LiDAR system is placed such that the
rotational axis is along the flight direction (y-direction), so that it scans along the perpendicular direction (x-
direction). A sizable part of the light bundles will simply be sent into the air as the drone flies over the ground.
In case the drone is sent below the tree canopy, it will of course collect more data points.

In Figure 6.9, you can see the simulated laser dots for one LiDAR system revolution on a flat surface for a
certain LiDAR rotation rate, flight speed, and altitude. The drone is positioned at x = 0. The angles between
the lasers create a flaring effect at x-positions further away from x = 0. For multiple revolutions, seen in Figure
6.10, quite an astonishing pattern emerges with areas of lower point density than others. In reality this pattern
will likely disappear due to the instabilities of the drone and errors in the inertial measurement unit.

The point density can now be obtained by simply counting the number of points in each square meter.
The result is shown in Figure 6.11. The horizontal range of the LiDAR system at these flight conditions is then
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Figure 6.8: Radiation intensity of LiDAR signal and background radiation after different events. The background radiation was obtained
from SMARTS, which gives you the solar spectrum as received on the ground. The LiDAR goes through atmospheric absorption, de-
scribed in Section 6.3.2. After hitting the vegetation on the ground, the light is reflected back. The filter in the detector allows only
wavelengths near the laser wavelength, and therefore only affects the background radiation. As the light travels from the vegetation to
the detector, it is again partially absorbed and scattered by the atmosphere. This only leads to a 0.1% drop in intensity per 100 meters, so
it is not noticeable in this plot. The detector at the end of the journey catches a very small fraction of all the light, see also Section 6.3.6.
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Figure 6.9: Simulated LiDAR measurement of one revolution at 6 Hz (top) and 10 Hz (bottom) rotation rate, an altitude of 27.5 m and
flight speed of 20 ms−1 in the y-direction. The simulation is done for a flat surface. Every dot represents a point which is illuminated by
the lasers. The dots are not to scale. For green dots, the point density in the x direction is less than 5 m2 but more than 2.5 m2. For red
dots, the point density in the x direction is less than 2.5 m2.
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calculated as the number of the 1x1 m bins in the x-direction which have a point density higher than 5 m2

plus half the bins with point density between 5 m and 2.5 m.
The figure was cut off at 10 points per square meter. However, the point density shoots up to 80 /m2 at the

x = 0m then rapidly drops off to around 25 /m2 at around x = 25m. If it were possible to redistribute these
points, the homogeneity of the data points could be improved or the range could be extended, at least when
only considering point density constraints. Redistributing these points is not very practical for a rotating
LiDAR system, as it would require continuous rapid accelerations. A solid state LiDAR sensor, which contains
no moving parts but changes its laser direction by wave interference, would be better suited for this purpose.

6.5. Area Coverage
Having obtained the horizontal range, the area per second covered with sufficient point density by the LiDAR
system is now simply the horizontal range multiplied by the velocity. The velocity was chosen to be 20 ms−1,
as this is the speed which can reach the longest distance, see Section 4.4.4. The analysis as shown in Section
6.4 was performed for a range of altitudes and rotation rates, and is shown in Figure 6.12.

The optimal configuration for maximum area coverage for a flight speed of 20 ms−1 is an altitude of 27.5 m
and rotation rate of 10 Hz, which is enables a coverage of around 3740 m2/s.

In Figure 6.13, the results for higher flight speeds is shown, which are based on the exact same calcula-
tions. We will refer back to these two figures in the next chapter.
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Figure 6.10: As Figure 6.9, but for 30 revolutions.
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Figure 6.11: Histogram of the point density for 10 Hz rotation rate.
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Figure 6.12: The area coverage of the LiDAR system for different altitudes and rotation rates. A high rotation rate has a smaller horizontal
range due to a lower horizontal resolution, but has a higher vertical resolution, thus allowing for higher speeds. A low altitude creates
a highly peaked distribution in the point density, with very high density right under the drone and low density further away. On the
other hand, a high altitude will have a smaller horizontal range since this is limited by the total LiDAR range of 100 m. Hence there is an
optimum in the LiDAR rotation speed and altitude. For a flight speed of 20 ms−1, the optimal configuration is an altitude of 27.5 m and
a rotation rate of 10 Hz or 600 RPM.
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Figure 6.13: Figure 6.12, but for 23 ms−1 and 25 ms−1. The same calculations went into these plot as those for Figure 6.12. As expected,
the area coverage increases linearly with flight speed. 600 RPM remains the optimal rotations rates at these higher speeds.
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System integration

7.1. Introduction
In the previous chapters, the fuel cell, the drone, and the LiDAR system were discussed. Now we’ll put them
all together and finalize the design.

7.2. Weight and Power
One of the most important parameters of aerial vehicles is weight. Any increase in the designed weight of an
aircraft will necessitate a larger engine, fuel tank, wing and body, etc., which further adds to the weight.

At the end of Chapter 4, it was mentioned that according to empirical values of the power consumption,
the fuel tank does not contain enough hydrogen to fly more than 50 km. This is far from the objective of
tripling the current 60 km range of the Delftacopter. The most straightforward way to increase the range is to
add more fuel tanks, which will of course increase the total weight of the system.

Table 7.1 gives the total weight of the drone with one fuel tank. Adding another fuel tank increases the
weight by 550 g, but will be very beneficial for the range. Figure 7.1 shows the power consumption and flight
time for 1–6 fuel tanks. Note that they were calculated by scaling the theoretical power consumption as in
Figure 4.11. The efficiency factors used to calculate the flight time are stated in Section 4.4.3. For 6 fuel tanks,
the fuel cell cannot deliver enough (nominal) power at any flight speed, and is thus unfeasible. The extra
weight has an adverse effect on the flight performance via the drag polar. Larger weight requires higher lift
and drag coefficient. The necessary lift coefficient can be calculated from the balance between lift and weight
which is maintained during cruise:

L = 0.9CLρSV 2 (7.1)

L =W ⇒CL = W

0.9ρSV 2 (7.2)

Component Weight [g]
Fuel cell 810

System components 250
Fuel tank (1x) 450

System components 100
Battery 250
LiDAR 590

System components 200
Delftacopter 2200

Total 4900

Table 7.1: Weights of all components. The fuel tank weight is for one tank. The Delftacopter weight is total weight of the current Delf-
tacopter design without the batteries and payload. The "System components" for the fuel tank is an extra weight margin to include
mounting.
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Figure 7.1: Flight speed versus power consumption (solid line) and flight time (dashed line) for one to six fuel tanks. The black line is
nominal fuel cell power output. The gains per additional fuel tank goes down since the weight goes up, which then requires a higher lift
and drag coefficient. Flight times can be further extended by replacing three small fuel tanks by the larger fuel tank that is manufactured
by the same company. An estimated increase of 30% can be achieved. The design with 6 fuel tanks is not feasible as flying the drone will
require more power than the fuel cell can deliver nominally. See Chapter 8 for updated graph.

where ρ is the atmosphere density in kg/m3, S the area of a single wing. See Section 4.4.1 for an explanation
for the modified lift formula. The atmosphere density at sea level of 1.225kg/m3 was used in the calculations.
The higher CL required for larger W corresponds to a higher CD according to Figure 4.6, thus leading to higher
power consumption. This has a negative effect on the flight time and range, the latter of which is shown in
Figure 7.2. Nevertheless, adding extra fuel tanks significantly extend the range.

It should be noted that the weight of three small fuel tanks is 1350 g, and equals the weight of another fuel
tank by the same company, the HDRX-030. This larger fuel tank however can store a volume of 3 L at 300 bar.
The smaller fuel tanks can store 0.5 L at 500 bar, which contains the same amount of hydrogen as 0.75 L at
300 bar. The amount of hydrogen in the 3 L, 300 bar fuel tank is therefore 33% larger than for the three smaller
fuel tanks combined. The range could therefore be extended by an additional 33% when replacing three fuel
tanks for one, which amounts to 38 km. This replacement is important as it will also reduce the total volume
of the fuel tanks, leading to a smaller fuselage and thus drag.

An interesting feature in the two figures is that for a heavier weight, maximal flight time shifts to higher
speeds. Since flight time and distance are directly proportional, the maximal distance also moves to higher
cruise speeds. These distance-maximizing speeds are achievable as they require less than the nominal power
output of the fuel cell. However, the engine of the Delftacopter will have to be replaced as they exceed
22 ms−1, see also Section 4.3. This will lead to a slightly larger weight for the ’Delftacopter’ component in
Table 7.1. As a reminder, the current engine weight is 385 g.

The final weight of this design is 7.1 kg, with the fuel cell system weighing 4.1 kg, which includes 2.25 kg
of fuel tanks. This is far beyond the maximum takeoff weight of 4.5 kg of the original Delftacopter. In the next
chapter, a configuration with 4 fuel tanks is considered with more accurate drag estimates.

7.3. Volume
The significantly higher weight of the vehicle is not the only problem. The sizes of the fuel cell and LiDAR sys-
tems (Table 7.2) are relatively large compared to the fuselage of about 100 mm by 200 mm. These components
will therefore lead to additional air drag, see Chapter 8.
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Figure 7.2: Flight distance achieved for one to six fuel tanks. See Chapter 8 for updated graph.

Component dimensions
0.5 L fuel tank diameter: 80 mm, length: 190 mm
3 L fuel tank diameter: 116 mm, length: 444 mm

fuel cell 196×88×140mm
emergency battery 140×30×20mm

LiDAR sensor diameter: 103.3 mm, length: 71.7 mm

Table 7.2: Size parameters of the fuel cell and LiDAR systems.
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fuel tanks area covered [km2]
1 8.73
2 15.43
3 20.54
4 24.38
5 27.18
6 29.19

Table 7.3: More accurate values are given in Chapter 8. Area covered per flight by the LiDAR drone flying at 20 ms−1. Increasing the
flight speed is beneficial for the range of the drone, and therefore also the area coverage.

7.4. Area Coverage and Flight Capabilities
The area covered by the LiDAR system is displayed in Table 7.3 for 1 to 6 fuel tanks. These values are based on
the flight speed of 20 ms−1, which corresponds to area coverage of 3740 m2/s. Flying at 23 ms−1 and 25 ms−1

give area coverage of 4240 m2/s, and 4567 m2/s. As was shown in Figure 8.4, increasing the flight speed will
increase the area covered per second. Figures 7.2 and 8.4 also show that the range is increased at higher speed
for larger numbers of fuel tanks. For these reasons, it is beneficial to fly at higher speeds.

The second column in Table 5.1 includes the sizes of the study area, which range from small forests of sev-
eral square kilometers to larger geographical regions of hundreds of square kilometers, up to entire provinces
or small nations of tens of thousands of square kilometers. The drone as designed in this thesis should be
able to cover the larger geographical regions within the time span of a week.

7.5. Comparison of result
Analysis of fuel cell aerial vehicles was recently carried out in a MSc thesis by fellow student Yash Tambi.1

The resulting model calculates the mass of the fuel cell system for an arbitrary flight mission profile, based
on certain component weights and capacities. Its output is shown in Table 7.4.

Comparing this with Section 7.2, the model suggests a lighter system is possible. The mass difference is
a significant 0.6 kg. The discrepancy comes mostly from the difference in BOP, which is twice as small in the
model compared to those seen in Table 7.1. In addition, the battery is lighter, which is not surprising since
the battery in the design of this thesis can deliver 650 W for 2 min, which is more than necessary for the flight
mission.

Apart from that, the model seems to agree surprisingly well with our findings. Notably, the fuel cell and
fuel tank weights are practically identical despite our methods being unrelated.

1His thesis can be accessed on http://resolver.tudelft.nl/uuid:4ed8460c-d33c-44c3-a31e-e2bebc7df8d4. Note however
that it is under a five year embargo until May 2024

http://resolver.tudelft.nl/uuid:4ed8460c-d33c-44c3-a31e-e2bebc7df8d4
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INPUT
FC Power Density 802 Wkg−1

FC Nominal Efficiency 0.5
Fuel Utilization 0.94

FC BOP Weight Factor 0.236
Fuel Energy Density 32790 Whkg−1

Fuel Tank Storage Density 0.042 kgH2/kg
Battery Power Density 3250 Wkg−1

Battery Energy Density 108.3 Whkg−1

Battery BOP Weight Factor 0.15
FLIGHT MISSION

Hover/climb power 1.2 kW
climb time 1 min

Hover/descent power 1 kW
descent time 1 min

Cruise power kW 0.65 kW
Cruise time 145.8 min

OPTIMIZATION
Exit flag 2

Iterations 8771
FUEL CELL (exc. BOP)

FC weight 0.81 kg
Nominal power 0.65 kW (climb)

0.50 kW (descent)
0.65 kW (cruise)

Fuel weight 0.094 kg
Tank weight 2.25 kg
BOP weight 0.19 kg

BATTERY (cell only)
Weight 0.17 kg
Power 0.55 kW (climb)

0.50 kW (descent)
0 kW (cruise)

BOP weight 0.026 kW
Energy 0.019 kWh

OVERALL
Total usable energy 1.57 kWh

Total weight 3.54 kg

Table 7.4: Results from a model by a fellow student, Yash Tambi. Output values for the fuel cell and battery are without the BOP. The
overall values include BOP Weight, but exclude BOP Power. The weight of this fuel cell system is significantly lighter.
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Improved drag estimation

Previously, the effects of adding the extra components on the aerodynamics has not been taken into account.
In this appendix, a simple 3D model is made of the fuselage with the additional components, so that the
increased drag can be roughly estimated.

8.1. Configuration of components
Due to the size of the components and the limited volume behind the fuselage, it is not possible to attach the
entire fuel cell and LiDAR systems in that area. In particular, there is not enough space for the 3 L fuel tank,
which would thus have to be mounted on one of the sides of the fuselage. However, this would cause a shift
the center of gravity which has to be compensated for. A simple solution is to use only the 0.5 L fuel tanks. By
using four of these fuel tanks, it’s easy to find a symmetric configuration.

The goal is to find the configuration with the lowest drag. This is achieved when components are located
behind one another, thus decreasing frontal surface area. The configuration is shown in Figure 8.1. When
the Delftacopter is resting, there is around 200 mm between the back of the fuselage and the ground. This
is more or less the length of the fuselage itself. With around 200 mm in height, i.e. between the two wings,
there is almost enough space to fit the fuel cell and LiDAR sensor on top of each other. In this configuration,
the LiDAR sensor is slightly protruding under the lower wing by about 25 mm, taking into account the airfoil
thickness of 18.2 mm. This should not cause a significant drag increase. On the other hand, the fuel tanks
almost double the frontal surface which will double the drag caused by the body.

8.2. Double body drag
Drag caused by increasing model complexity of the drone are shown in Figure 8.2. The drag contribution
from the body was calculated as the difference between "XFLR5 wing" and "body". This was then multiplied
by two and added along with the similarly calculated drag contribution from the extra parts. This is the drag
polar of our configuration from the previous Section.

The higher drag will lead to a higher power consumption via P =V D . The power consumption was once
again calculated via scaling, and the scaling factor used now is the factor between the "body" drag coefficients
and "2x body" drag coefficients.

The results, Figure 8.3, indicate that the configuration with 5 fuel tanks is not feasible anymore. Therefore
the new 4 fuel tank configuration as was shown in Figure 8.1 is a better optimal, as it allows for a larger range
of speeds.

The removal of one fuel tank along with the more realistic drag estimates has reduced maximal flight
distance to 116.4 km (Figure 8.4) which is covered in 1.38 h at a speed of around 22.5 ms−1. Total area covered
per flight would be 21.78 km2. Total mass has been reduced to 6.55 kg.

8.3. MTOW bottleneck
The current Delftacopter design has a maximum takeoff weight of 4.5 kg. The limiting factor is the combi-
nation of the engine and propeller. Upgrading the engine, which has a mass of 385 g, should not lead to a
noticeable increase in weight. The propeller needs to be upgraded as well. From Figure 8 in [16], one can
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Figure 8.1: A drawing of the configuration for the four cylindrical fuel tanks (orange, two on either side), the fuel cell (blue) and the LiDAR
sensor (red), attached to the fuselage (white). The propeller is on the right side.

Figure 8.2: Drag polar contributions taken directly from [16], except for the "2x body" and "3x body" curve. The model for "XFLR5 wing"
consists of only the wings, leaving out the body or extra parts. "2x body" consists of everything with doubled contributions by the "body".
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Figure 8.3: (Same as Figure 7.1.) Power consumption with twice the fuselage frontal area coming from the hydrogen fuel tanks. Compared
to the previous estimate, the 5 fuel tank configuration has become unrealistic.
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Figure 8.4: Distance reached at constant speed before fuel tanks are empty.

fuel tanks area covered [km2]
1 7.27
2 12.99
3 17.44
4 20.87
5 23.48
6 25.41

Table 8.1: Area covered per flight at 20 ms−1 for different amounts of on board fuel tanks. The power output of the fuel cell limits the
maximum amount of fuel tanks to 4. At 4 fuel tanks, raising the speed from 20 to 22.5 ms−1 can increase the area from 20.87 to 21.78 km2.

see that the propeller cannot deliver 650 W. However, the propeller also does not contribute significantly
to the overall weight. In conclusion, this bottleneck can be overcome without further modifications to the
structure.



9
General Conclusion

We have set out to modify the Delftacopter, powered by batteries, to a design powered by a hydrogen fuel cell,
capable of flying at least 180 km, and of scanning forest tree heights with at least 5 points per square meter
for soil organic carbon measurements.

9.1. Results
The commercial fuel cell by Intelligent Energy, which can deliver 650 W, along with the 0.5 L 500 bar (HDRX-
005-500) hydrogen fuel tank by MEYER, were selected for their light weight and performance. The fuel cell
can deliver more power than the original design, but this extra power has been necessary to carry the fuel
tanks in order to surpass the original range of the drone. The LiDAR sensor is the Puck LITE by Velodyne and
was selected for its high pulse frequency, sufficient range and low weight.

Considering that the weight has increased by around %60, the Delftacopter would have to be redesigned
in order to accommodate the changes, since it cannot fly at the optimal lift to drag ratio and has surpassed
its maximal takeoff weight of 4.5 kg. The volume of the added components are quite significant relative to
the original Delftacopter fuselage. When taking into account additional drag due to protrusions, the feasible
configuration is one with 4 small fuel tanks. The weight in this case has been reduced to 6.55 kg.

With this configuration, a flight distance of 116 km can be achieved at 22.5 ms−1, covering 23 km2 per
flight of 1.5 h.

9.2. Further Research
• Not much analysis was performed for the fuel cell. Some thermodynamic analysis may be useful, as fuel

cells produce substantial amounts of heat. In order to perform such an analysis, it may be necessary
to have a model of the positioning of all components, including the fuel cell, fuel tank(s) and LiDAR
sensor.

• The range of the LiDAR system is stated as 100 m by the manufacturer. However, this may only be
achieved under ideal conditions. Further analysis or field testing is required to determine its practical
range under various conditions.

• In the configuration described in Chapter 8, the larger fuel tanks (3 L 300 bar (HDRX-030)) were not used
due to the 650 W power output limit. By implementing a more powerful fuel cell, along with a suitable
engine and propeller, the 4 small 80 mm diameter fuel tanks could be replaced by 2 large 116 mm tanks,
with minimal additional drag. The two large fuel tanks can store twice the hydrogen of 4 small fuel
tanks, thus range could be nearly doubled.

59





Bibliography

[1] C. Hug A, A. Ullrich B, and A. Grimm C. Litemapper-5600 – a waveform-digitizing lidar terrain and
vegetation mapping system.

[2] Kabindra Adhikari, Alfred E. Hartemink, Budiman Minasny, Rania Bou Kheir, Mette B. Greve, and Mo-
gens H. Greve. Digital mapping of soil organic carbon contents and stocks in denmark. PLOS ONE, 9(8):
1–13, 08 2014. doi: 10.1371/journal.pone.0105519. URL https://doi.org/10.1371/journal.pone.
0105519.

[3] G. Aka, E. Reino, D. Vivien, F. Balembois, P. Georges, and B. Ferrand. Laser emission of nd:asl at 900 nm. In
Advanced Solid-State Lasers, page TuC5. Optical Society of America, 2002. doi: 10.1364/ASSL.2002.TuC5.
URL http://www.osapublishing.org/abstract.cfm?URI=ASSL-2002-TuC5.

[4] Hans-Erik Andersen, Stephen E. Reutebuch, and Robert J. McGaughey. A rigorous assessment of tree
height measurements obtained using airborne lidar and conventional field methods. Canadian Journal
of Remote Sensing., 32(5):355–366, 2006.

[5] A.J. Appleby. From sir william grove to today: fuel cells and the future. Journal of Power Sources, 29
(1):3 – 11, 1990. ISSN 0378-7753. doi: https://doi.org/10.1016/0378-7753(90)80002-U. URL http:
//www.sciencedirect.com/science/article/pii/037877539080002U. Proceedings of the Grove
Anniversary Fuel Cell Symposium.

[6] E.P Baltsavias. Airborne laser scanning: basic relations and formulas. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 54(2):199 – 214, 1999. ISSN 0924-2716. doi: https://doi.org/
10.1016/S0924-2716(99)00015-5. URL http://www.sciencedirect.com/science/article/pii/
S0924271699000155.

[7] F. Barbir and T. Gómez. Efficiency and economics of proton exchange membrane (pem) fuel cells. Inter-
national Journal of Hydrogen Energy, 22(10):1027 – 1037, 1997. ISSN 0360-3199. doi: https://doi.org/
10.1016/S0360-3199(96)00175-9. URL http://www.sciencedirect.com/science/article/pii/
S0360319996001759.

[8] Edward Barnes, Kenneth Sudduth, John W. Hummel, Scott Lesch, Dennis Corwin, Chenghai Yang, Craig
Daughtry, and Walter C. Bausch. Remote and ground-based sensor techniques to map soil properties.
Photogrammetric Engineering & Remote Sensing, 69, 06 2003. doi: 10.14358/PERS.69.6.619.

[9] N.H. Batjes. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65:
10–21, 2014. doi: 10.1111/ejss.12114_2.

[10] Amado Alberto Lopez Bautista. Biomass carbon estimation and mapping in the subtropical forest of
chitwan, nepal: A comparison between vhr geo-eye satellite images and airborne lidar data. 2012.

[11] E. Ben-Dor, R.G. Taylor, J. Hill, J.A.M. Demattê, M.L. Whiting, S. Chabrillat, and S. Sommer. Imaging
spectrometry for soil applications. volume 97 of Advances in Agronomy, pages 321 – 392. Academic
Press, 2008. doi: https://doi.org/10.1016/S0065-2113(07)00008-9. URL http://www.sciencedirect.
com/science/article/pii/S0065211307000089.

[12] Gouri Sankar Bhunia, Pravat Kumar Shit, and Hamid Reza Pourghasemi. Soil organic carbon mapping
using remote sensing techniques and multivariate regression model. Geocarto International, 0(0):1–12,
2017. doi: 10.1080/10106049.2017.1381179.

[13] Barry A. Bodhaine, Norman B. Wood, Ellsworth G. Dutton, and James R. Slusser. On rayleigh
optical depth calculations. Journal of Atmospheric and Oceanic Technology, 16(11):1854–1861,
1999. doi: 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2. URL https://doi.org/10.1175/
1520-0426(1999)016<1854:ORODC>2.0.CO;2.

61

https://doi.org/10.1371/journal.pone.0105519
https://doi.org/10.1371/journal.pone.0105519
http://www.osapublishing.org/abstract.cfm?URI=ASSL-2002-TuC5
http://www.sciencedirect.com/science/article/pii/037877539080002U
http://www.sciencedirect.com/science/article/pii/037877539080002U
http://www.sciencedirect.com/science/article/pii/S0924271699000155
http://www.sciencedirect.com/science/article/pii/S0924271699000155
http://www.sciencedirect.com/science/article/pii/S0360319996001759
http://www.sciencedirect.com/science/article/pii/S0360319996001759
http://www.sciencedirect.com/science/article/pii/S0065211307000089
http://www.sciencedirect.com/science/article/pii/S0065211307000089
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2


62 Bibliography

[14] P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis. Efficient mid-
infrared laser using 1.9-µm-pumped ho:yag and zngep2 optical parametric oscillators. J. Opt. Soc. Am.
B, 17(5):723–728, May 2000. doi: 10.1364/JOSAB.17.000723. URL http://josab.osa.org/abstract.
cfm?URI=josab-17-5-723.

[15] Josep G Canadell, Diane E Pataki, Roger Gifford, Richard A Houghton, Yiqi Luo, Michael R Raupach, Pete
Smith, and Will Steffen. Saturation of the terrestrial carbon sink. In Terrestrial ecosystems in a changing
world, pages 59–78. Springer, 2007.

[16] Christophe De Wagter, Rick Ruijsink, Ewoud J. J. Smeur, Kevin G. van Hecke, Freek van Tienen, Erik
van der Horst, and Bart D. W. Remes. Design, control, and visual navigation of the delftacopter vtol
tail-sitter uav. Journal of Field Robotics, 0(0). doi: 10.1002/rob.21789. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/rob.21789.

[17] Mark Drela. Xfoil: An analysis and design system for low reynolds number airfoils. In Low Reynolds
number aerodynamics, pages 1–12. Springer, 1989.

[18] Food and Agriculture Organization of the United Nations. Soil organic carbon: the hidden potential,
2017. URL http://www.fao.org/3/a-i6937e.pdf%20.

[19] Cécile Gomez, Raphael A. Viscarra Rossel, and Alex B. McBratney. Soil organic carbon prediction by
hyperspectral remote sensing and field vis-nir spectroscopy: An australian case study. Geoderma, 146:
403–411, 2008. doi: 10.1016/j.geoderma.2008.06.01.

[20] I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campar-
gue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov,
A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G.
Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman,
I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi,
H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung,
E. Starikova, S.A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E.J. Zak.
The hitran2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radia-
tive Transfer, 203:3 – 69, 2017. ISSN 0022-4073. doi: https://doi.org/10.1016/j.jqsrt.2017.06.038. URL
http://www.sciencedirect.com/science/article/pii/S0022407317301073. HITRAN2016 Spe-
cial Issue.

[21] Wang Huan-Xue, Liu Jian-Guo, and Zhang Tian-Shu. Estimation of random errors for lidar based on
noise scale factor. Chinese Physics B, 24(8):084213, 2015. URL http://stacks.iop.org/1674-1056/
24/i=8/a=084213.

[22] Janna Huuskonen and Timo Oksanen. Soil sampling with drones and augmented reality in precision
agriculture. Computers and Electronics in Agriculture, 154:25 – 35, 2018. ISSN 0168-1699. doi: https://
doi.org/10.1016/j.compag.2018.08.039. URL http://www.sciencedirect.com/science/article/
pii/S0168169918301650.

[23] IPCC, V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-
Okia, R. Pidcock C. Péan, S. Connors, J. B. R. Matthews, X. Zhou Y. Chen, M. I. Gomis, E. Lonnoy, T. May-
cock, T. Waterfield (eds.) M. Tignor, and Switzerland World Meteorological Organization, Geneva. Sum-
mary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global
warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in
the context of strengthening the global response to the threat of climate change, sustainable develop-
ment, and efforts to eradicate poverty. page 32, 2018.
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