
How kernelized Multi-Armed Bandit algorithms compare to other algorithms
with fixed kernelized reward and noisy observations

Marijn Herrebout

Supervisor(s): Julia Olkhovskaia

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Marijn Herrebout
Final project course: CSE3000 Research Project
Thesis committee: Julia Olkhovskaia, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The aim of this paper is to challenge and compare
several Multi-Armed Bandit algorithms in an en-
vironment with fixed kernelized reward and noisy
observations. Bandit algorithms are a class of
decision-making problems with the goal of opti-
mizing the trade-off between exploration and ex-
ploitation of all choices. Each decision yields some
reward, and the goal is to minimize the regret that
follows from a combination of decisions, that is to
say to minimize the difference between the set of
decisions made, and the set of optimal decisions.
In particular, these algorithms deal with the trade-
off between choosing the best-known option and
exploring new, possibly better options. These al-
gorithms are widely used in reinforcement learn-
ing, optimization and economics, where decisions
need to be made without all the information and
with some uncertainty. Each environment is dif-
ferent however, and some algorithms are better in
some environments than others.

1 Introduction
The class of Multi-Armed Bandits (henceforth referred to as
MAB) problems is large, including even problems that don’t
appear like they belong. They are used for A/B testing, adver-
tisement placement on a webpage, network routing, dynamic
pricing, waiting problems, resource allocation, tree search,
and many more different types of problems [1]. Most of these
problems are important for financial reasons, either by mini-
mizing cost or maximizing income, and others are about con-
venience. While the general concept of MABs can be applied
to all these problems, they have different environments, dif-
ferent algorithms, and different ways of solving them. That is
also the area in which this paper contributes to the literature;
by focusing on a select few algorithms and environments, we
can identify the (near-)optimal solution for this setting. In
this paper we look at four specific algorithms and compare
them in runtime, memory consumption, and regret. We will
formalize the notion of regret in a later chapter.

The problems we look at in this paper are stochastic bandits
(Upper Confidence Bound, UCB [1][2]), adverserial bandits
(Exp3 [3][2]), linear contextual bandits (LinUCB [4][2]), and
contextual kernelized bandits (KernelUCB [5][2]). We ex-
plore the influence the environment has on these different al-
gorithms in our final comparison of each algorithm, and also
explore different kernel functions for use in the KernelUCB
algorithm to find which function fits best with our environ-
ment.

In Chapter 2 the basic goal and methodology of MABs is
introduced, and Chapter 3 dives into each of the mathemati-
cal algorithms and functions that are used. Chapter 4 shows
the resuls of the comparisons. With a brief intermission on
responsible research and ethics in Chapter 5, the results and
future work is discussed in Chapter 6, to finally conclude the
paper in Chapter 7.

2 Methodology
To provide a fair comparison between the UCB, Exp3, Lin-
UCB and GP-UCB algorithms, it is important that we evalu-
ate them in the same setting with the same criteria. To that
end, we compare them using SMPyBandits, an open-source
Python library that provides a good structure through which
to implement, test, and compare different MAB problems.

One of the most important benchmarks with which we will
compare the algorithms is with regret relative to the optimal
solution. The definition of regret in the context of MABs is
very similar to its definition in the English language. The
measure of regret that a particular algorithm incurs is the dif-
ference of the reward achieved by that algorithm minus the
reward achieved by some optimal algorithm. In other words,
the value represents the regret for choosing the sub-optimal
algorithm over the optimal algorithm. This can be formalized
mathematically as shown in equation 1 below, where Rn is
the regret of the algorithm, n is the number of trials, A is the
set of all actions, and Xt is the reward observed at time t [1].

Rn = nmax
a∈A

µa − E

[
n∑

t=1

Xt

]
(1)

To put this into English, the optimal reward is found by
taking the highest mean µa of all the actions n times. The
difference between this optimal reward and the actually ob-
served reward then becomes Rn, which we aim to minimize
by finding Xt as close as possible to µa where a is optimal.
This definition of regret can be applied to every MAB algo-
rithm, and is therefore a good heuristic for comparing them.

3 Algorithms
The algorithm to use in a problem setting where an MAB
may be applied depends on the nature of the problem. Some
algorithms are tailored to certain environments and as a re-
sult perform better in similar situations, whereas they may
perform much worse in other settings. Choosing the right
algorithm for a problem is important, and as such we need
to get to know the algorithms first. In this Chapter we will
briefly go over each algorithm, explain its foundation and
how it chooses arms.

3.1 Upper Confidence Bound
The Upper Confidence Bound algorithm, UCB, is a rather
simple algorithm that achieves sublinear regret. Based on the
sampled reward of an arm, it assigns that arm a certain upper
confidence bound value, which will in all likelihood be an
overestimate of the actual mean of the arm. Upon choosing
an arm, the observed mean of the arm is updated and the num-
ber of times the arm has been chosen is incremented by one.
These variables determine the weight of the upper confidence
bound. Equation 2 describes this process mathematically.

At = argmaxi

(
µ̂i(t− 1) +

√
2 log(t)

Ti(t− 1)

)
(2)

In this equation At is the arm that is chosen at time t by
testing the confidence bound for all arms and choosing the

1



one with the highest result. In the inner function, µ̂i(t − 1)
is the total observed mean as of time t − 1 for arm i, and
Ti(t − 1) is the number of times that we have visited arm i
since t − 1. Other implementations of the UCB algorithm
exist that include a confidence level variable δ, which allows
for more fine-tuned control of how quickly the upper confi-
dence bound scales with time. Choosing a good value for δ
is an optimization problem in its own right, as choosing it too
low will lead to excessive exploration of sub-optimal arms,
whereas choosing it too high will not lead to the optimal arm.
The algorithm that was used in this paper is the one described
in Equation 2.

3.2 Exp3
Adversarial bandits, the bandits we consider with the Exp3
algorithm, are similar to stochastic bandits, but with some
key differences [1][3]. For one, the reward function changes
over time by a certain weight. Furthermore, the way the arms
are chosen is drastically different from UCB. What makes
these bandits adversarial as opposed to other types of bandits,
is that these model a scenario that acts as though there is an
adversary influencing the rewards.

Pti =
exp(γŜt−1,i)∑k
j=1 exp(γŜt−1,j)

(3)

Ŝti = Ŝt−1,i + 1− I{At = i}(1−Xt)

Pti
(4)

At ∼ Pt

Equations 3 and 4 form the basis of the Exp3 algorithm
using exponential weighting [1][6]. Pti is the sampling dis-
tribution calculated at each time step, Ŝti is the cumulative
reward for arm i at time t, and γ is the learning rate of the
algorithm. If γ is small, the algorithm will do a lot of explo-
ration and relatively little exploitation, whereas higher values
lead to more exploitation than exploration.

3.3 LinUCB
The next class of bandits are contextual ones, where each arm
also has a vector associated with it known as the context of
that arm [4]. The features that make up the context vectors
are used to estimate the upper confidence bound in LinUCB.
This is similar to UCB, but with context features rather than
means.

pt,a = θ⊤t xt,a + α
√

x⊤
t,aM

−1
t xt,a (5)

At = argmaxa pt,a

Mt+1 = Mt + xt,at
x⊤
t,at

bt+1 = bt + xt,atrt

θt = M−1
t bt

In LinUCB shown in Equation 5, we have a weights vec-
tor θ that determines how much a context feature influences
the upper confidence bound, and α is the learning rate. The
algorithm starts with M equal to the identity matrix, and is
updated to become M = M + xt,at

x⊤
t,at

at the end of each
time step, along with b = b + xt,at

rt, where rt is the reward

obtained at time t. These two variables A and b are then used
at the beginning of each round to update the weights vector:
θt = A−1b.

3.4 KernelUCB
Kernelized bandit problems are part of a class of (possibly)
non-linear problems that algorithms like UCB, Exp3, and
even LinUCB may not provide an adequate solution to. A
good explanation of kernelized problems was given in the pa-
per introducing the specific algorithm used here:

”There are many situations in which an environment re-
peatedly provides an agent with a very large number of
actions together with some contextual information (Cesa-
Bianchi & Lugosi, 2006). These actions yield rewards when
chosen and the agent wants to continually choose actions that
yield high expected reward while not having enough time to
explore them all. Thus it is natural to learn a relationship be-
tween the context provided for each action and the expected
reward it produces. Kernel methods (Shawe-Taylor & Cris-
tianini, 2004) provide a way to extract from observations pos-
sibly non-linear relationships between the contexts and the re-
wards while only using similarity information between con-
texts.” [5, p. 1]

σt,a =
√

k(xt,a, xt,a)− k⊤x,tK
−1
t kx,t

ut,a = k⊤x,tK
−1
t yt +

η
√
γ
σt,a (6)

At = argmaxaut,a

Equation 6 offers a brief overview of the variables calcu-
lated directly for each arm, where k is the kernel function,
K−1 the kernel matrix inverse, η the exploration rate, and γ
the learning rate. A more detailed explanation of the precise
workings of the KernelUCB algorithm can be found in the
2022 paper that introduced it [5].

Kernel functions
Kernel functions are an invaluable tool for extracting pat-
terns and relations in non-linear settings. In machine learning
methods, decision boundaries are often used to distinguish
different classes based on their features. These boundaries are
often linear, but these do not provide optimal results for non-
linear problems [7]. This area is where kernel functions ex-
cel; they are linear classifiers for non-linear problems. Most
kernel functions described in this chapter have a parameter l
which represents the length scale. This can be either a scalar,
or a vector with the same number of dimensions as the inputs
[8]. The kernels covered in this Chapter work best in distinct
environments, sometimes performing worse than the rest and
other times better.

Radial Basis Function
The Radial Basis Function kernel, as shown in Equation 7,
is also known as the square exponential kernel, as it uses the
(Euclidean) distance squared between the two inputs. This
kernel is also known as RBF [8].

k(xi, xj) = exp

(
−d(xi, xj)

2

2l2

)
(7)

2



Rational Quadratic
The Rational Quadratic kernel in Equation 8 is similar to
RBF, the Radial Basis Function in that it can be seen as an in-
finite sum of RBF kernels with different length scales [9][10].

k(xi, xj) =

(
1 +

d(xi, xj)
2

2αl2

)−α

(8)

Matern
The Matern kernel function in Equation 9 is a generalization
of RBF with an extra parameter v that determines the smooth-
ness of the function, with the function being less smooth as
v gets smaller; as v increases, Matern will, in the limit, be
equivalent to RBF. In this equation, Kv is a modified Bessel
function, and Γ is the gamma function [11][10][12].

k(xi, xj) =
Kv

Γ(v)2v−1

(√
2v

l
d(xi, xj)

)v (√
2v

l
d(xi, xj)

)
(9)

ExpSineSquared
The ExpSineSquared kernel in Equation 10 is able to model
functions that repeat themselves exactly. In this equation, p is
the periodicity of the kernel [13].

k(xi, xj) = exp

(
−2sin2(πd(xi, xj)/p)

l2

)
(10)

4 Results
In order to establish how the results that are about to be intro-
duced were established, it is important to discuss the hyper-
parameters and environments first. All the results below were
produced using three 20-dimensional arms, with fixed arbi-
trary context vectors over 10 repetitions. These vectors are
shown below.

x1 = [0.3, 0.5, 0.2, 0.4, 0.6, 0.3, 0.5, 0.2, 0.4, 0.6, 0.3,
0.5, 0.2, 0.4, 0.6, 0.3, 0.5, 0.2, 0.4, 0.6]

x2 = [0.7, 0.3, 0.3, 0.2, 0.6, 0.7, 0.3, 0.3, 0.2, 0.6, 0.7,
0.3, 0.3, 0.2, 0.6, 0.7, 0.3, 0.3, 0.2, 0.6]

x3 = [0.4, 0.6, 0.1, 0.2, 0.7, 0.4, 0.6, 0.1, 0.2, 0.7, 0.4,
0.6, 0.1, 0.2, 0.7, 0.4, 0.6, 0.1, 0.2, 0.7]

Furthermore, these contexts have covariance matrices
equivalent to a 20-dimensional identity matrix multiplied by
0.5. The arms also have noise to simulate noisy observations.
This noise follows a normal distribution with a mean of 0 and
variance of 0.01.

The reward functions that were tested take an input x which
is defined as the dot product between the context of the arm
and a context weights vector. This is shown in Equation 11.
x, the input of the reward function, is not to be confused with−→xi , which is the context of arm i. To make this distinction
clearer, the latter is shown with an overhead arrow to explic-
itly indicate it is a vector. The context weight vector

−→
θ∗ is a

20-dimensional vector filled with 0.5.

x =
−→
θ∗ · −→xi (11)

Figure 1: Cumulative regret with different γ values with Exp3

Figure 2: Cumulative regret with different α values with LinUCB

4.1 Hyper-parameters
As Exp3, LinUCB, and the kernel functions used in Ker-
nelUCB all have hyper-parameters, these were all individ-
ually plotted with different values. These hyper-parameters
were tuned using the reward function r = sin(x) + cos(x).
A silent extra term ϵ in this and all future reward function
could be imagined to represent the noise value drawn from a
normal distribution with a mean of 0 and variance of 0.01, but
this is omitted for simplicity. The difference the reward func-
tion makes on the cumulative regret will be explored later in
this Chapter.

Figure 1 shows the cumulative regret of the Exp3 algorithm
with different γ learning rate values, ranging from 0.01 to 1.0.
The figure shows that the value of γ does not have any signif-
icant influence on the cumulative regret. The best performing
algorithm has a value of γ = 0.01, so that value will be used
to represent Exp3 in future comparisons.

For the LinUCB algorithm we have a learning rate hyper-
parameter α, but as seen in Figure 2, this has negligible im-
pact on the performance (cumulative regret) of the algorithm.
Nonetheless, a value of α = 0.01 will be used in future algo-
rithm comparisons.

The KernelUCB algorithm could be seen as having the ker-
nel itself being a hyper-parameter. However, as the results
later in this Chapter will show, the kernel plays a major role
in the performance of the algorithm, depending on the re-
ward function among other things. Since the kernel function

3



Figure 3: Cumulative regret with different η and γ values with Ker-
nelUCB with the Mátern kernel

changes the performance, different kernels are treated as dif-
ferent algorithms entirely. Therefore, all comparisons will list
all kernels considered in this paper.

KernelUCB does have two different hyper-parameters
though, the exploration rate η and the learning rate γ. A
crude comparison in cumulative regret, or simply regret, is
shown in Figure 3. These hyper-parameters were arbitrarily
compared with the Mátern kernel, as the kernel itself does not
influence the hyper-parameters. It is easy to see from this fig-
ure that these hyper-parameters have a significant impact on
the regret of the algorithm, with the best combination being
η = 0.5, γ = 0.1. These are also used for future comparisons
in this paper.

4.2 Reward functions
Having established good hyper-parameter values for all the
algorithms to be considered, the next variable in the perfor-
mance of the algorithms is the reward function. Together with
the contexts and the arms, these form the environments that
can model concrete problems. We specifically turn our at-
tention to non-linear reward functions, as that is the domain
in which kernelized methods traditionally excel over linear
algorithms like UCB and Exp3.

UCB and Exp3 used the observed means as the deciding
factor in what arm to choose, but this turns out to be a bad
decision in non-linear settings where the context plays an im-
portant role. This is one possible explanation as to why you
will never see these two algorithms converge, and why they
will never be the best algorithm to use in the settings we ex-
plore.

A new algorithm ϵ-Greedy that has not been mentioned be-
fore is introduced here with a γ exploration value of 1.0. This
means the algorithm will make a random decision with prob-
ably 1.0. This algorithm displays the regret we would achieve
if we made a completely random decision.

Figure 4 shows the difference in regret for the reward func-
tion r = sin(x)+cos(x). This figure immediately stands out
in that all applications of KernelUCB converge, and that they
are all very close to optimal regret. On the other hand, ran-
dom choice, UCB, Exp3 and LinUCB all struggle to converge
with this periodic reward function. This is easy to explain;
the linear algorithms are intended to be used for linear reward

Figure 4: Cumulative regret with r = sin(x) + cos(x)

Figure 5: Cumulative regret with r =
√
x

functions that grow linearly with time. However, with this
particular function, regret changes over time due to the na-
ture of sin and cos. During the peak of this reward function,
these algorithms think this is a good choice, but once it goes
negative it incurs a large amount of regret. This repeats with
every period of the reward function, and is therefore never
able to converge.

With a reward function r =
√
x, we notice a different

trend. In Figure 5 we can still see the linear algorithms fail
to converge, but we also notice a difference between different
kernel functions in KernelUCB. In particular, ExpSine and
Mátern turn out not to be good fits for this reward function
as they are only slightly better than random, UCB, and Exp3.
RQ still does well, but it does not converge as well as RBF,
which is the best kernel function for this environment using
KernelUCB. The winner is LinUCB though, which is a cu-
rious result given the reward function is non-linear. It is not
clear how it performs so well, but KernelUCB with RBF is
in a close second place. One possible explanation is that Lin-
UCB is still a good option in non-linear environments as long
as they are not periodic, but this is put to the test in other
environments.

If we increase the horizon from 1000 to 2000 and focus
on RBF and LinUCB, we can get a better picture as to how
these two algorithms compare. As Figure 6 shows, RBF
takes longer to yield low regret, whereas LinUCB is consis-
tent from the beginning in its regret. Neither of them actually
converge, but from around t = 500 onward, they increase

4



Figure 6: Cumulative regret with r =
√
x for T = 2000

Figure 7: Cumulative regret with r = x3 + x2 + x

quite similarly in their regret, which means their difference in
performance comes mainly from the first few hundred itera-
tions.

With the polynomial reward function r = x3 + x2 + x we
notice a lot of variance in Figure 7. It also shows that ExpSine
is one of the worst options to choose, with it performing even
worse than pure random choice. RBF is still a decent option,
but LinUCB outperforms all of the other algorithms.

Figure 8 shows the strength of KernelUCB clearer than any
other plot with reward function r = sin(x)

x2 . All kernel func-
tions converge and yield very low regret, whereas random,

Figure 8: Cumulative regret with r = sin(x)

x2

Figure 9: Cumulative regret with r = sin(x)cos(x)

Figure 10: Cumulative regret with r =
√

sin(x)cos(x)

UCB, Exp3, and even LinUCB fail to converge and incur a
lot of regret. This plot also supports the hypothesis that Lin-
UCB is unable to converge in environments with a period to
them, being the sin(x) component of the reward function.

Figure 9 is once again a non-linear period reward function
r = sin(x)cos(x). While none of the algorithms converge,
KernelUCB does provide far better solutions than the alterna-
tives.

A different reward function r =
√

sin(x)cos(x) produces
interesting results in Figure 10. Although the reward function
is non-linear and periodic, none of the algorithms are a good
solution to this problem. None of the algorithms converge,
and they all have high regret. Despite the similarity with the
reward function r = sin(x)cos(x) that is shown in Figure
9, this figure looks quite different. One might expect RBF
to do better having seen its performance in Figures 5 and 9,
but we can evidently not draw any links between different
environments.

Finally, we consider r = ln(x) in Figure 11. This too
is a good example of the quality of KernelUCB, but it also
shows that LinUCB can be a good choice for some non-linear
functions.

4.3 Runtime and Memory Consumption
Although some algorithms are faster than others, the time it
takes for them to run and the amount of memory they use up
can also be important factors, especially in situations where
these resources can be limited such as in IoT devices, or if

5



Figure 11: Cumulative regret with r = ln(x)

Figure 12: Runtime in seconds of the algorithms

results need to be achieved quickly and sub-optimal perfor-
mance is acceptable.

Figure 12 illustrates quite a significant difference in how
fast each algorithm runs. The random choice and algorithms
tailored to linear problems like UCB, Exp3 and LinUCB take
significantly less time to run than KernelUCB, but we can also
see that some kernel functions like RBF are computationally
more expensive than others.

Although memory consumption is closely coupled with the
details of implementation, Figure 13 unmistakenly shows that
KernelUCB uses a lot more memory than the rest of the algo-
rithms.

Figure 13: Memory consumption in kilobytes of the algorithms

5 Responsible Research
Multi-armed bandit problems are used in a wide variety of
fields as listed in the introduction. In particular, the exam-
ple of A/B testing is a good problem to explore the ethics of
MABs further. In A/B testing, the question is asked whether
to decide on option A or on option B. This could be finan-
cially motivated, like which advertisement is better to show
a user, but A/B testing is also used (though not widely) in
clinical trials to determine treatment plans, and could even be
used to determine whether a patient gets the real drug or the
placebo [1][14]. It is needless to say that choosing the wrong
algorithm for this type of problem has a more substantial im-
pact than if one were to choose the wrong algorithm for an
advertisement problem.

Beyond the use of MABs in clinical trials, where the ethical
considerations speak for themselves, even in situations where
finance plays a role MABs need to be reliable. If they are
used for dynamic pricing in an automated system, the retailer
can incur significant losses if the price goes too low for erro-
neous reasons, or lose out on income if the price skyrockets
unprompted.

The results produced for this paper will not be perfectly
reproducible, as there is a randomization aspect to them. As
the algorithms do not use real-world data but artificial dis-
tributions, it is impossible to achieve the exact same results.
Furthermore the running time and memory consumption re-
sults depend on the implementation of the algorithms and the
architecture that runs them.

6 Discussion and Future Work
The results produced for this paper were made with various
reward functions, but the number of arms was fixed, the con-
text vectors were fixed, as well as the number of dimensions
and the context weight vector. In real world settings, the odds
that these all match up to the values represented in this paper
are slim. More extensive research could be done to under-
stand the influence the number of dimensions has on the per-
formance of the algorithms, and more research on the impact
the number of arms has would also be greatly beneficial.

On top of that, the hyper-parameters were tuned rather gen-
erally on just one single environment. As there are a large
number of variables, it is impractical to optimize these all for
our very specific scenarios. If these comparisons are done
again with a concrete, real-world example, it would be ben-
eficial to give more attention, through grid search or other
thorough methods to optimizing the hyper-parameters of the
algorithms that are to be used.

Furthermore, if a real-world example is considered, the
goal presumably is still to minimize regret. This paper only
looks at a small selection from a very large pool of algo-
rithms that may be suitable for the job. Extending our vision
to other contextual MAB algorithms, or other kernel func-
tions for KernelUCB, may prove that even better algorithms
exist for a specific problem than the ones covered. One such
algorithm could be CGP-UCB, for instance [15].

As we briefly covered already, runtime and memory con-
sumption could also play an important role in the application
of MABs. Optimizing these algorithms to be faster through

6



vector operations or use less memory may be another chal-
lenging yet interesting topic of research.

Lastly, doing a deeper dive into one of the reward func-
tions covered with unexpected results may also yield a better
understanding of the algorithms. LinUCB converging faster
with less regret than KernelUCB on a non-linear problem
may speak to other strengths LinUCB has besides linear prob-
lems.

7 Conclusions
In conclusion, it is impossible to crown one particular al-
gorithm as the undeniable winner over any other. We have
looked at the definitions of UCB, Exp3, LinUCB and Ker-
nelUCB, and looked at several kernel functions for use with
KernelUCB. Having tuned the hyper-parameters for each of
the algorithms that have them, we compared the algorithms
with a wide variety of non-linear reward functions. A few pat-
terns emerged, including some unexpected like LinUCB do-
ing well on some non-linear, non-periodic reward functions.
Another rather common occurrence is KernelUCB doing very
well with period reward functions, but not every single one
that was tested. Having looked at only a few environments,
there is plenty of future work that could be done, especially
with real-world data. In the end though, we have shown that
KernelUCB is a good choice for a lot of non-linear reward
functions, especially if they have a periodic element.

Acknowledgements
I would like to extend my sincere thanks to Lilian Besson for
creating and open-sourcing SMPyBandits, without which a
lot more time a research would be spent creating a structure
and framework in which to create Multi-Armed Bandits and
implement the relevant algorithms [16]. I would like to thank
supervisor Julia Olkhovskaia for the project and her assis-
tance. I would be remiss if I did not also thank my colleagues
and teammates Cody Boon, Rafal Owczarski, Dragos Arsene,
and Weicheng Hu for their wisdom, shared code, and general
support throughout the project.

References
[1] T. Lattimore and C. Szepesvári, Bandit algorithms.

Cambridge University Press, 2020.

[2] D. Arsene, C. M. Boon, M. Herrebout, W. Hu, and
R. Owczarski, “Contextual SMPyBandits,” Available
at https://gitHub.com/thatCbean/SMPyBandits, 2024.
[Online]. Available: https://github.com/thatCbean/
SMPyBandits/

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire,
“The nonstochastic multiarmed bandit problem,” SIAM
journal on computing, vol. 32, no. 1, pp. 48–77, 2002.

[4] W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contex-
tual bandits with linear payoff functions,” in Proceed-
ings of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 2011, pp. 208–214.

[5] M. Valko, N. Korda, R. Munos, I. Flaounas, and
N. Cristianini, “Finite-time analysis of kernelised con-
textual bandits,” in Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, ser.
UAI’13. Arlington, Virginia, USA: AUAI Press, 2013,
p. 654–663.

[6] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems,” in Foundations and Trends® in Machine Learn-
ing, January 2012, pp. 1–122.

[7] T. Afonja, “Kernel functions,” Available at https://
towardsdatascience.com/kernel-function-6f1d2be6091
(11/06/2024).

[8] Scikit Learn, “RBF,” Available at https://scikit-learn.
org/stable/modules/generated/sklearn.gaussian process.
kernels.RBF.html (11/06/2024).

[9] Scikit Learn, “RationalQuadratic,” Available at https:
//scikit-learn.org/stable/modules/generated/sklearn.
gaussian process.kernels.RationalQuadratic.html
(11/06/2024).

[10] M. Abramowitz and I. Stegun, Handbook of Mathemati-
cal Functions: With Formulas, Graphs, and Mathemat-
ical Tables, ser. Applied mathematics series. Dover
Publications, 1965.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian
Processes for Machine Learning. The MIT Press,
2005. [Online]. Available: https://doi.org/10.7551/
mitpress/3206.001.0001

[12] Scikit Learn, “Matern,” Available at https:
//scikit-learn.org/stable/modules/generated/sklearn.
gaussian process.kernels.Matern.html (11/06/2024).

[13] Scikit Learn, “ExpSineSquared,” Available at
https://scikit-learn.org/stable/modules/generated/
sklearn.gaussian process.kernels.ExpSineSquared.html
(11/06/2024).

[14] W. H. Press, “Bandit solutions provide unified
ethical models for randomized clinical trials and
comparative effectiveness research,” Proceedings of
the National Academy of Sciences, vol. 106, no. 52,
pp. 22 387–22 392, 2009. [Online]. Available: https:
//www.pnas.org/doi/abs/10.1073/pnas.0912378106

[15] A. Krause and C. Ong, “Contextual gaussian process
bandit optimization,” in Advances in Neural Informa-
tion Processing Systems, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24.
Curran Associates, Inc., 2011.

[16] SMPyBandits, “SMPyBandits,” Available at https://
github.com/SMPyBandits/SMPyBandits.

7

https://gitHub.com/thatCbean/SMPyBandits
https://github.com/thatCbean/SMPyBandits/
https://github.com/thatCbean/SMPyBandits/
https://towardsdatascience.com/kernel-function-6f1d2be6091
https://towardsdatascience.com/kernel-function-6f1d2be6091
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.html
https://www.pnas.org/doi/abs/10.1073/pnas.0912378106
https://www.pnas.org/doi/abs/10.1073/pnas.0912378106
https://github.com/SMPyBandits/SMPyBandits
https://github.com/SMPyBandits/SMPyBandits

	Introduction
	Methodology
	Algorithms
	Upper Confidence Bound
	Exp3
	LinUCB
	KernelUCB
	Kernel functions
	Radial Basis Function
	Rational Quadratic
	Matern
	ExpSineSquared


	Results
	Hyper-parameters
	Reward functions
	Runtime and Memory Consumption

	Responsible Research
	Discussion and Future Work
	Conclusions

