
Can PredNet predict time-series to
improve the generalization process?

Sjoerd Jousma

A thesis presented for the degree of

Master of Engineering

Robotics
Delft University of Technology

The Netherlands
July 12, 2022



ACKNOWLEDGEMENTS

I would like to thank my supervisors ir. C.A. van Hoof MBA and prof. dr. ir. M. Wisse for their
guidance, expertise and general help with the thesis process.
I would like to thank B. van der Meer, E. Veldhuis and M. Deken for the collaboration on the development
of the active inference velocity controller.
Finally, I would like to thank my girlfriend Kirsten for her support, motivation and faith.
Delft, University of Technology
July 12, 2022

2



ABSTRACT

This thesis is inspired by Active Inference to contribute to its improvement in the Robotics work field.
However, the results and applications of this thesis are useful in a broader perspective, namely in any
field that makes use of derivatives and the forecasting of a time-series signal. The goal of this study
is to determine a new approach for calculating the derivatives using the finite difference technique and
forecasting. The finite-difference technique is based on the Taylor expansion. The Taylor expansion uses
derivatives to calculate a future signal sample, while the finite difference technique uses signal samples
to estimate derivatives. The accuracy of the estimation can theoretically be increased using more signal
samples and choosing signal samples that are closer to the signal sample of interest. For these reasons,
the central method is interesting as it maximizes both of these properties. The central method uses future
signal samples for the sample of interest which are not available in an online setting. Future values can
be forecast through for example statistical models and predictive coding. Statistical models such as
the auto regression method are the golden standard but cannot learn in an online fashion. Predictive
coding can learn in an online fashion and research found a promising branch utilizing neural network
frameworks. PredNet came out as an interesting model due to its state-of-the-art results and flexibility.
The research question in this thesis is as follows: can predicting future data points by use of PredNet
help improve the accuracy of the generalized coordinates?

Two models of PredNet are trained on data obtained from random commands from a simulated
Jackal robot. One is trained in an online fashion and one in an offline fashion. Its predictions are
compared against two other forecasting methods: copying the input and the auto regression method.
The predictions are then used with the finite difference method to estimate derivatives. Four methods
are used: a method using as little past data as possible, a method using as much past data as possible,
a method using as little centralized data as possible and a method using as much centralized data as
possible. Derivatives are determined on the same simulated Jackal data and are compared against a
derivative obtained from a central method using as much data as possible that all come from the true
signal.

Results show no forecasting difference between the two types of PredNet models, but there are
differences in training speed: training in an online fashion is not fast enough to keep up with the data
stream. This suggests that the quality of neural networks is good enough for online applications, but
that more work needs to be done on optimizing neural networks for online learning to make it a practical
solution. However, the PredNet predictions are not as accurate as the auto regression method. This
means that neural networks can still learn from the auto regression method when used for forecasting time
series. An example of improving neural networks is making hybrid models. Using the PredNet forecasts
for estimating derivatives did not increase the accuracy of the derivatives meaning the predictions are not
accurate enough. Besides that, using more samples, either from the past or the future, did not increase
the derivative estimate either. Most of this outcome can be attributed to the choice of data set which
contained many transitions between commands which could not be predicted by the PredNet models
or be seen by the finite difference method. Suggestions for improvements are to focus the training of a
model on either the transition period or the period in between, using more modern models and/or using
different methods for estimating derivatives.

This work concludes that neural networks show promise for online applications, that training a model
requires a specific data set or a complex enough model to utilize a more general data set, and that using
more samples with the finite difference method is not guaranteed to provide more accurate estimates of
derivatives.
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Chapter 1

INTRODUCTION

It can be said that the brain is fundamental to our existence and one of the most complex and fascinating
subjects for study. Understanding how the brain works will help understand how humans work in general,
but also reproduce certain aspects in other areas such as robotics. Many theories exist about the various
aspects of the brain (, such as learning, motor skills, emotions, etc.), but most are limited to specific
functionality. The Free Energy Principle (FEP) [1] is an attempt at unifying several global theories.
The FEP is a form of Predictive Coding (PC) and was inspired by the implementation of Rao & Ballard
[2] who managed to optimize neuronal dynamics and connectivity using the same energy function [3]:
minimizing prediction error. The FEP called this energy function ”variational free energy” and extended
it to include precision weighting to represent the uncertainty of components within the model.

At the core of the theory stand precision weighting and generalized coordinates. Generalized coordi-
nates contain the state of the system. When used in the FEP it also includes derivatives of states, which
make it possible to predict future states given the current states. FEP has been put into practice [4], but
does not achieve state-of-the-art results yet. A common problem is obtaining accurate derivatives for
the generalized coordinates. This problem also occurred in a recent attempt at implementing an Active
Inference Velocity Controller for a Jackal Robot: a small four-wheeled skid-steering robot. The project
is explained in chapter 2. In the implementation the derivatives were estimated using the backwards
finite difference method, a mathematical model based on the Taylor expansion. However, the aim for
the project was not to obtain the most accurate derivatives, but simply to create a working controller.
As such, the finite difference implementation did not make use of its full potential.

The finite difference method uses data samples to estimate the derivative. The estimate becomes
more accurate by using more data samples and data samples that are closer to the sample of interest.
By predicting a signal through other means than the derivative it is possible to obtain an estimate for
future states. These future states can be used in conjunction with past states to have as many samples
as possible that are as close to the sample of interest as possible to obtain the optimal finite difference
method. More details about the finite difference methods are provided in chapter 3

There are a few options to produce estimates for the future states, for example, statistical models
(e.g. auto regression methods) and neural networks. Autoregressive models have been and are at the
forefront of predicting time series [5] due to their accuracy, reliability, and ease of use. However, recent
developments have shown that neural networks can be a strong competitor [6]. A further advantage of
neural networks is that they can learn in an online setting, in contrast to the AR models for example,
which need a complete and unchanging dataset to learn. In [7] various branches of PC are explored
where it was found that implementations that utilize frameworks for neural networks seem to be most
promising in terms of results and flexibility, in particular a model called PredNet. PredNet makes use
of LSTM units which [6] found to be the most efficient unit type to perform training on time series. An
overview of the workings of PredNet is given in chapter 4.

Combining the knowledge of the difficulties with obtaining generalized coordinates and the possibil-
ities that can still be used leads to the following research question: can predicting future data points by
use of PredNet help improve the accuracy of the generalized coordinates? This question can be further
divided into two sub questions:

1. Does PredNet predict accurate and useful future data?

8



CHAPTER 1. INTRODUCTION

2. Does using more data points in finite difference models improve accuracy?

Accuracy is defined as the prediction error, while usefulness is defined as how much the predictions
can improve the estimate of the derivatives.

This thesis is structured as follows. Firstly, in chapters 2 to 4 background information will be
provided. Chapter 2 describes the implementation of the active inference controller for the Jackal robot
with details how the generalized coordinates were estimated. In chapter 3 a detailed description of the
finite difference method is provided which shows how it works and how it can be used most effectively.
Chapter 4 explains on what the modern predictive coding models are based off and contains details
about the PredNet model that is used in this thesis. Secondly, the research questions are answered in
chapters 5 to 7. In chapter 5 an overview of the experiments is given. Chapter 6 shows the results
of those experiments and what conclusions they provide. In chapter 7 the results are discussed and
compared with related literature. Finally, an overview of the conclusions drawn in this thesis is provided
in chapter 8.

Sjoerd Jousma 9



Chapter 2

ACTIVE INFERENCE VELOCITY
CONTROLLER

This chapter provides an understanding of the processes which this thesis aims to improve. It provides
background information about the Jackal robot that is used in this thesis in section 2.1 and about
the active inference velocity controller that was created to track the velocity of the Jackal robot in
sections 2.2 and 2.3. It further shows where the generalized coordinates and derivatives come into play
when using active inference in a practical application in section 2.4, what method was used to estimate
the derivatives in section 2.5.

2.1 Jackal robot

The Jackal robot is an unmanned ground vehicle that uses differential steering to move around, a picture
is provided in fig. 2.1. This means that all wheels are fixed to the body of the robot and cannot rotate
relative to the robot. It steers through a difference in velocity between the left sided wheels and right
sided wheels. The velocity of the left sided wheels are coupled together and the same goes for the right
sided wheels. The robot can be controlled using ROS either through WiFi or a physical cable. On
its own it contains an onboard computer, battery, wheel velocity sensors, integrated GPS, gyroscope
and accelerometer. The gyroscope and accelerometer provide IMU data which is a time-series signal
containing state information about the robots position, orientation and velocity. It is possible to add a
wide variety of accessories to the robot to increase its capabilities, but these were not used in this thesis.

Figure 2.1: A picture of the Jackal robot: an unmanned ground vehicle using differential steering.
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CHAPTER 2. ACTIVE INFERENCE VELOCITY CONTROLLER

Figure 2.2: An overview of all components involved and through what ROS topics they communicate.
The ”Generalizer” block is the focus of this thesis: new methods for determining derivatives are explored.
The ”AIC” block contains the Active Inference calculations which uses a user-input and the generalized
coordinates to calculate ωL and ωR.

2.2 Overview of the active inference velocity controller

The controller for the Jackal robot was developed by a group of students consisting of Mitchel Deken,
Bob van der Meer, Erik Veldhuis and Sjoerd Jousma, who is the author of this thesis. The controller
needs to send and receive information to and from the sensors to and from the drivers, see fig. 2.2. This
communication is handled by ROS, which is inherently present on the Jackal robot. There are many
topics available, but for the controller only a few are needed. An overview is shown in fig. 2.2. Sensory
input from the wheel speeds are published on the topic /joint states, while the speed of the center of
mass µ is published on /imu/data, containing ẍ, ÿ and θ̇. The sensory data are read by a generalization
node that calculates the derivatives of the wheel speeds. These derivatives are then published on an
intermediate topic: /sensor generalized. These generalized measurements, combined with the desired
velocity of the center of mass that is published on /jackal aic/set point, are the actual input for the AIC.
The AIC calculates the action required to bring down the Free Energy and publishes drive commands
on /cmd drive when using the robot and /jackal left wheel/command and /jackal right wheel/command
when using Gazebo. These topics contain the velocities that the left- and right wheel of the Jackal
should have: ωL and ωR. The controller produces these ω’s which are then used by an internal lower-
level controller that transforms the drive commands to actuator voltages.

2.3 Choice of dynamic model

The dynamic model was mostly designed by Mitchel Deken. This section mostly serves as a basis for
the equations which will later be used in sections 2.4 and 2.5.

For the control of a differential steering mobile robot, often no dynamical model is used [8, 9, 10, 11,
12]. Instead, only a kinematic mapping between the body velocity and the wheel velocities is used. This
gives a steady-state solution of the body velocity resulting from the wheel velocities. In this way, using
inverse kinematics, the desired body velocity input by the user (linear and angular) can be converted by
the controller to give corresponding wheel speed inputs to the wheels. This method however, does not
contain any dynamics, and therefore cannot adjust well for any disturbances, like unknown slippage.

For the implementation of active inference, we are looking for a simple solution as we are focusing
on the implementation in the hardware, rather than on complex models. Therefore, we chose to opt out

Sjoerd Jousma 11
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of a traditional dynamic model, and use attractor dynamics instead. To make use of attractor dynamics
one needs a desired state and the current state. The desired state is called the attractor state and is
the velocity input by the user. The current state is given by the sensors. The technique is very simply:
it aims to bring the current state as close to the attractor as possible by comparing the two. Their
difference are multiplied by a gain. That outcome is then used to obtain a control signal that is send
to the drivers, see fig. 2.2. This technique is already used in a few active inference implementations [13,
14], where we will use the version with the time constant [14]. These attractor dynamics will encode a
preference of the states to be moving towards a prior (desired state), stated as follows:

f(µ) = (µd − µ)τ−1 (2.1)

where µ are the beliefs (states in active inference), µd is the prior belief (desired state) and τ is a
time constant.
While not using any dynamic model from literature, we still need a mapping from the states to observa-
tions (body velocities to wheel velocities) in order to compare with measured values. For this we opted
for the extended differential drive model (as used by [8]), because this is the most simple and most used
kinematic mapping available, while still giving sufficient performance:

µ =

ẋẏ
θ̇

 = rα


1

2

1

2
0 0

−1

b̂

1

b̂


[
ωL

ωR

]
(2.2)

rα


1

2

1

2
0 0

−1

b̂

1

b̂

 = G (2.3)

where α is a slip parameter and b̂ is the virtual width of the vehicle (as if it had two wheels). These are
both empirically determined. For the g(µ) of the generative model, we need the mapping from the states
to observations. And as we have access to the gyroscope, encoder and accelerometer measurements, it
will look as follows:

y =


θ̇
ωL

ωR

ẍ

ÿ

 =


0 0 1

G−1
11 G−1

12 G−1
13

G−1
21 G−1

22 G−1
23

0 0 0

0 0 0


ẋẏ
θ̇

 =



0 0 1

1

rα
0

−b̂

2rα

1

rα
0

b̂

2rα
0 0 0

0 0 0



ẋẏ
θ̇

 (2.4)

where G−1 is the pseudo-inverse of the kinematic mapping mentioned above.

2.4 Free energy formulation

This section will focus on the definition of the free energy formula for the active inference velocity
controller of the Jackal robot. It will show that the derivatives and the generalized coordinates are
central to active inference and why it is important to have the information as accurate as possible. The
formulas in this section were derived and implemented by all team members. In the previous paragraph
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the generative model of the sensory data and of the state dynamics are defined. Equation 2.5 displays
the general free energy formula as it was defined by Pezzato et al. [13]

F =
1

2

nd−1∑
i=0

[ε(i)(T )
o Σ−1

o(i)
ε(i)o + ε(i)(T )

µ Σ−1
µ(i)ε

(i)
µ ] (2.5)

Based on the models defined earlier the error terms, εo and εµ, can be computed. These can be
found in equations 2.6 and 2.7. Furthermore, to find the first generalized order these questions are
differentiated once to obtain equations 2.8 and 2.9. Note that in this example only the first derivative is
shown. However, in the actual application the derivatives can go up to the 5th order.

εo = o− g(µ) = o−Rµ

εo =


θ̇
ωL

ωR

ẍ

ÿ

−



0 0 1

1

rα
0

−b̂

2rα

1

rα
0

b̂

2rα
0 0 0

0 0 0



ẋẏ
θ̇

 (2.6)

εµ = µ′ − f(µ) (2.7)

εy = ỹ −Rµ

ε′y = ỹ′ −Rµ′

...

ε(5)y = ỹ(5) −Rµ(5)

(2.8)

εµ = µ′ − f(µ) = µ′ − (µd − µ)τ−1

ε′µ = µ′′ + µ′τ−1

...

ε(5)µ = µ(6) + µ(5)τ−1

(2.9)

For readability, equations 2.8 and 2.9 can be written in matrix form (equation 2.10). Furthermore,
the same can be done for the precision matrices, which is done in equation 2.11. Note that in this case
ε̃ and Π̃ consist of all generalized orders.

ε̃ =

[
ε̃o

ε̃µ

]
(2.10)

Π̃ =

Π̃o 0

0 Π̃µ

 (2.11)
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Combining equations 2.5, 2.10 and 2.11 equation 2.12 can be found. This is the free energy formula
for the active inference velocity controller for a jackal robot.

F =
1

2
ε̃T Π̃ε̃ (2.12)

From the free energy formula the belief update can be found, the belief update is defined in equation
2.13. In equation 2.14 this has been written out for 2 generalized orders.

˙̃µ = Dµ̃− kµ(
δε̃µ
δµ̃

δF

δε̃µ
+

δε̃y
δµ̃

T δF

δε̃y
) (2.13)

 µ̇

µ̇′

µ̇′′

 =

0 I 0

0 0 I

0 0 0


 µ

µ′

µ′′

− kµ(



I

τ
0 0

I
I

τ
0

0 I
I

τ


 Πµεµ

Πµ′εµ′

Πµ′′εµ′′

−

RT 0 0

0 RT 0

0 0 RT


 Πyεy

Πy′εy′

Πy′′εy′′

) (2.14)

Lastly the action update is defined in equation 2.15. This has been written out for 2 generalized

orders of motion in equation 2.17. Note that the term
δε̃o
δa

is replaced by the forward model (F) as

defined in equation 2.16.

ȧ = −κa
δε̃y
δa

δF

δε̃y
(2.15)

F =


−rα

b̂
1 0 0 0

rα

b̂
0 1 0 0

 (2.16)

ȧ = −κa

F 0 0

0 F 0

0 0 F


 Πyεy

Πy′εy′

Πy′′εy′′

 (2.17)

The actual belief and action values are calculated using the forward Euler method:

µk = µk−1 + µ̇k (2.18)

2.5 Generalization

The previous section showed the importance of the derivatives to active inference. This section will show
the method that was used to produce the derivatives as input for the active inference velocity controller.
Improving this method is the main goal of this thesis.

There is only a limited amount of derivatives real sensors can measure. For example, if we have
access to a position sensor, a velocity sensor and an acceleration sensor, then we have an embedding
order of 2 which comes from direct measurements. However, what if some of these type of sensors are
not available or what if the highest state is acceleration and we need derivatives of that? In that case
we need to synthesize the higher order derivatives from the available measurements.
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CHAPTER 2. ACTIVE INFERENCE VELOCITY CONTROLLER

To retrieve the higher order derivatives we made use of the Master’s thesis of I.L. Hijne [15]. A robot
receives measurement samples in discrete time. In that case a simple differentiating technique can be
used: finite differences. It is possible to extract higher order derivatives from a Taylor expansion, full
details of this process be provided in chapter 3. For the active inference velocity controller we made
use of a precomputed matrix containing the coefficients with which to multiply the signal to obtain the
derivatives, see eq. (2.19).
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(2.19)

This matrix solves the problem and we get the derivatives of the sensory input with a constant h. As
will be explained in chapter 3, it provides the minimum effort and accuracy for obtaining the derivatives.
It can be adapted to include more time samples for the lower derivatives or to include future signal
samples as well as past signal samples. Exploring the effectiveness of these options is the goal of this
thesis.

For the implementation in the Jackal robot the matrix was further optimized. Using eq. (2.19) it
is required to keep track of multiple old data samples, which causes the information to have overlap.
This equation can be rewritten to only contain data of the sample we are interested in and the previous
sample plus its derivatives. A special vector ˇ̃y can be constructed that contains the current sample and
the previous sample with higher order derivatives of the previous sample:

ỹ = Qˇ̃y, ˇ̃y = [yk,y
⊤
k−1]

⊤.

With these definitions, the new matrix becomes:
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(2.20)

This form is initialized with the higher order derivatives at zero. The derivatives will be filled in time
step per time step.

The form eq. (2.20) is used in the Jackal robot. The sensor measurements are synchronized so that h
is the same for all measurements during a time step. Their derivatives are computed based on eq. (2.20).
However instead of making one large matrix that matches the size of ˇ̃y, it is more efficient to split this
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ˇ̃y into several single vectors of a measurement y̌k,i = [yk,i, y
(0)
k−1,i, y

(1)
k−1,i, y

(2)
k−1,i, y

(3)
k−1,i, y

(4)
k−1,i], where each

y̌k,i is a unique sensor measurement denoted by i. Then use these smaller vectors and the 6× 6 matrix
Q to calculate its derivatives as:

ỹk,i = Qy̌k,i

y̌k,i = [yk,i, y
(0)
k−1,i, y

(1)
k−1,i, y

(2)
k−1,i, y

(3)
k−1,i, y

(4)
k−1,i]

This way Q only has to be calculated once and can be reused for every vector of y̌k,i.

2.6 Summary

The Jackal robot is an unmanned ground vehicle using differential steering. An active inference velocity
controller was created to control the velocity of the left- and right wheels. The left-and right wheel states
are coupled to the robot states by the dynamic model. The dynamic model is used in the free energy
formulation which shows a dependence on error and measurement derivatives. These derivatives are not
readily available and need to be estimated which is done with finite differences. The finite difference
method that was used can still be optimized which is further explored in this thesis.
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Chapter 3

FINITE DIFFERENCES

To understand how the finite difference method can be optimized, a thorough background of the method
and how it can be used will be provided in this chapter. A large part of this chapter was been derived
from [16].

3.1 Derivation of finite difference method

Finite difference method is used for discrete signals and is based on the Taylor expansion. The Taylor
expansion computes signal sample yk+h from sample yk and a weighted sum of the derivatives of yk and
is defined as:

yk+h =

imax∑
i=0

y
(i)
k

i!
(k + h− k)i =

imax∑
i=0

y
(i)
k

i!
hi. (3.1)

where (i) denotes the ith order derivative of yk and h is an interval step << 1. Note that imax goes to
infinity and that 00 = 1. Finally, the derivative of order zero of f is defined to be f itself and (x − a)0

and 0! are both defined to be 1.

In practice it is not possible to set imax to infinity as we have to deal with numerical and computational
limits as well as difficulties with obtaining the derivatives. Instead, imax can be chosen arbitrarily and
determines the number of derivatives to be taken into account. A non-infinite expansion becomes an
estimation of the true value, meaning that the expansion will now also include an error term. For
example, setting imax = 1, will give:

yk+h = yk + hy
(1)
k +O(h2). (3.2)

O(hn) denotes the order of magnitude of the error, also called the error order, and is equal to the highest
omitted derivative, which in the above example is the second derivative. There are two ways of increasing
the accuracy of the estimation: by reducing h and by increasing imax. A reduction of h will make the
time steps smaller which will make the prediction lie closer to yk, reducing the error as well. Increasing
imax will add an extra derivative term to the equation as well as an increase to the power of the error
order which, with h << 1, will significantly decrease the error. There are no rules for determining the
required number of derivatives as they are strongly dependent on the application and the availability of
derivatives.

Equation (3.2) can now be rewritten so that the derivative can be calculated based on yk and yk+h:

yk+h = yk + hy
(1)
k +O(h2)

y
(1)
k =

1

h
(yk+h − yk) +O(h). (3.3)

Equation (3.3) is an example of a forwards finite difference derivative method as it makes use only
of data that lies in the future. A more common method is a backwards finite difference derivative which
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Figure 3.1: This figure shows what data points the three finite difference techniques make use of. Back-
wards uses past and present data, forwards uses present and future data and central uses past, present
and future data.

only makes use of data that lies in the past:

yk−h = yk − hy
(1)
k +O(h2)

y
(1)
k =

1

h
(yk − yk−h) +O(h).

The error order for the derivative is of a lower power than the error order for the predicted point in the
original equation. This shows a possible cause as to why estimating derivatives through this method
quickly becomes unstable and why improvements are important. There is a third common method called
the central method for which we will see an example shortly. An overview of the different methods is
shown in fig. 3.1.

If we would like to obtain a term for the second derivative, we would have to raise imax to 2. However,
that alone will leave us with more unknowns than equations. In order to add an extra equation an extra
data sample has to be added. The data samples can be collected in a stencil:

y = [y1, ..., yN ]

where N denotes the length of the stencil.

To solve for a second derivative we can use an example of the final common finite difference method:
a central difference derivative which makes use of a balanced number of past and future data points:
y̌ = [yk−1, yk, yk+1]. In eq. (3.3) the derivative was obtained by simply rewriting the eq. (3.2). Continuing
this approach we now need to solve

y
(2)
k ≈ c1yk−1 + c2yk + c3yk+1 +O(h) (3.4)

for the coefficients [c1, c2, c3]. If we expand all the terms using eq. (3.1) and then collect them we get:
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y
(2)
k ≈ c1

(−1h)0

0!
yk + c1

(−1h)1

1!
y
(1)
k + c1

(−1h)2

2!
y
(2)
k +

c2yk +

c3
(1h)0

0!
yk + c3

(1h)1

1!
y
(1)
k + c3

(1h)2

2!
y
(2)
k +O(h)

≈ (−10c1 + c2 + 10c3)yk +
h

1!
(−11c1 + 11c3)y

(1)
k h+

h2

2!
(−12c1 + 12c3)y

(2)
k +O(h3)

≈ (c1 + c2 + c3)yk +
h

1!
(−c1 + c3)y

(1)
k +

h2

2!
(c1 + c3)y

(2)
k +O(h).

This can easily be solved using linear algebra, especially when rewritten in matrices: 1 1 1

−1 0 1

1 0 1

c1c2
c3

 =
2!

h2

00
1

+O(h)

c1c2
c3

 =
1

h2

 1 1 1

−1 0 1

1 0 1

−1 00
2

+O(h) =
1

h2

 1

−2

1

+O(h) (3.5)

where we find the coefficients [1, −2, 1]. We can substitute these back into eq. (3.4):

y
(2)
k ≈ 1yk−1 − 2yk + 1yk+1, which gives us the option to estimate the 2nd order derivative based on
the stencil [−1, 0, 1] with an error order of h.

From expanding the finite difference technique to the second derivative we can learn a few things.
First, in order to solve for derivative d, we need to make sure that there are enough data samples in stencil
y̌ to solve the equations: N > d. Second, linear algebra is invaluable for calculating the coefficients of
the finite difference methods. Third, since it is possible to add more data samples to the stencil to solve
for higher derivatives, it should also be possible to add more data samples while solving for the same
derivative. For example, if we use the same stencil and solve for the 1st derivative instead of the 2nd

derivative we get:

y
(1)
k ≈ c1

(−1h)0

0!
yk + c1

(−1h)1

1!
y
(1)
k + c1

(−1h)2

2!
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(2)
k + (3.6)

c2yk + (3.7)

c3
(1h)0

0!
yk + c3

(1h)1

1!
y
(1)
k + c3

(1h)2

2!
y
(2)
k +O(h2) (3.8)

≈ (−10c1 + c2 + 10c3)yk +
h

1!
(−11c1 + 11c3)y

(1)
k h+

h2

2!
(−12c1 + 12c3)y

(2)
k +O(h2) (3.9)

≈ (c1 + c2 + c3)yk +
h

1!
(−c1 + c3)y

(1)
k +

h2

2!
(c1 + c3)y

(2)
k +O(h2), (3.10)

 1 1 1

−1 0 1

1 0 1

c1c2
c3

 =
1!

h

01
0

+O(h2)

c1c2
c3

 =
1

h

 1 1 1

−1 0 1

1 0 1

−1 01
0

+O(h2) =
1

2h

−1

0

1

+O(h2). (3.11)

Equation (3.6) shows that if more data samples are added to the sample, the order of the error
term increases, similarly to how adding derivatives to the Taylor expansion increases the error order
for the Taylor equation. In fact, the error order for the finite difference technique follows from the
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desired derivative and the number of data samples: n = N − d. Furthermore, eqs. (3.5) and (3.11) show
similarities in how the linear algebra is solved. The equations can be written in a more general fashion.
Let c be the vector that contains the coefficients c, S be the stencil that contains the signal samples s
and d be the vector containing the desired derivative d:

c =


c01
...
cN

 S =


s01 · · · s0N
...

. . .
...

sN−1
1 · · · sN−1

N

 d =



0

...

d!

...

0


.

We then get the general equation and matrix calculation:

sn1c1 + . . .+ sncccN =
d!

hd
δ(n− d) for 0 ≤ n ≤ N − 1 (3.12)


c01
...
cN

 =
1

hd


s01 · · · s0N
...

. . .
...

sN−1
1 · · · sN−1

N


−1



0

...

d!

...

0


(3.13)

c =
1

hd
S−1d. (3.14)

Now, for any stencil, we have a formulation to calculate the coefficients, so long as N > d. This
means that the stencil can contain any data sample, including values that are extremely far away from
the current data sample. However, in practice values that are far away will have to be memorized for
a long time, which is inefficient. Furthermore, stencils that are not centered around the current data
samples will be less reliable due to artifacts. This is visible in a comparison of the backwards, central
and forwards methods, see [15]. On close inspection of the backwards method it can be seen that that
estimate of the derivative lags behind the true derivative. This causes an underestimation in increasing
derivatives and an overestimate in decreasing derivatives. The forwards method on the other hand, has
the opposite effect by leading the true derivative. The central method cancels both effects which has no
lag or lead at all. This means that the central method is theoretically more accurate, even when the
error order is the same as for the other methods.

3.2 Stencil choice

There are two more consequences of choosing a stencil. The first being that a stencil for the central
method always increases with steps of 2: one extra sample from the past and one from the future. This
is different from how the stencils of the backwards and forwards methods increase, which can increase
in steps of 1. The consequence of this is that a fully central method cannot achieve every error order
desirable, and, dependent on the height of the derivative, will always be an even error order, or uneven.
The second consequence of stencil choice is how soon and with how much lag or lead a derivative can be
calculated. The earliest derivative estimate that can be made is dependent on the data sample in the
stencil that is the furthest in the past. This means that at the start of the signal, it might be necessary
to wait a few time steps before all derivatives can be calculated as accurately as designed. Conversely,
using the forwards method means having to wait for all future signals to have come in, creating a delay
dependent on the data sample in the stencil that lies the furthest in the future. Also, given a finite
signal, it is not possible to calculate the final derivatives as the signal will no longer have future values.
The central method naturally inherits the downside of both the backwards and forwards method. The
ideal method is therefore dependent on the circumstances, as sometimes a signal is fully available, called
the offline setting, while at other times the signal comes in live, this will be called an online setting.
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Since all data samples are available in an offline setting, all methods can be used without downsides.
This means that the central method is preferable as there will be no lag. In an online setting, future
samples are not available, meaning that the backwards method is the only method available. Finally, in
any setting, it is advised to use data samples as close to the current data point as possible.

3.3 Summary

The finite difference technique is a direct derivation from the Taylor expansion. It is possible to estimate
any derivative, provided there are more signal samples available than the order of the derivative. The
accuracy of the derivative is dependent on the difference in number of used signal samples and derivative
order and how close the signal samples are to the sample of interest which is dependent on choice and
the time step between samples. For these reasons, the best estimate would in theory come from a central
method utilizing as many samples as possible around the sample of interest.
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Chapter 4

PREDNET

This chapter contains a background for predictive coding (PC) and for the PredNet model used in this
thesis. It shows why predictive coding is an interesting method for forecasting time-series and why
PredNet is chosen. PC is a broad term with different meanings between different fields of study. In
neuroscience the term conveys a theory that the brain contains a model of the outside world that is
constantly being generated and updated. The model itself generates predictions about future states or
inputs which are compared with the true values to create a prediction error. The prediction errors are
then used to update the internal model. The aim of the model is to make these prediction errors as small
as possible. PC provides biologically plausible statistical models that aim to find the most likely causes
that can explain the states it attempts to predict. However, the description for PC is broad and there
exist many different implementations and hypotheses about PC [17]. Practically all modern versions of
PC are based on the work of Rao & Ballard [2]. It was an influential paper that also inspired Active
Inference [3], the theory that was used to create a velocity controller (chapter 2). The model of Rao &
Ballard will be described and discussed in section 4.1. The different implementations are discussed in
[7] where it was found that PredNet was a very promising model. PredNet will be used throughout this
thesis and how it works, how it can be installed and used is described and discussed in section 4.2.

4.1 Predictive Coding

Rao & Ballard [2] poured the PC theory into practice by connecting several building blocks called
”Predictive Estimator” in a hierarchical fashion. An overview of how these blocks were connected and
what they contained is shown in fig. 4.1. Each PE sends a prediction downwards and receives an error
signal from the bottom. If there is another block above in the hierarchy, then a prediction is received
from above and the error is send back upwards. The main component of each block is the representation
matrix r which holds a model of the state below. This means that the blocks attempt to predict the
models of the blocks below, which reoccurs until the lowest block which tries to predict an input. This
hierarchy makes it that higher blocks have more abstract views of the input. The predictions p are
calculated mathematically:

p = f(Ur) + ε = f(
k∑

j=1

Ujrj) (4.1)

where p predicts either the input I or the r of the layer below. U is a weight matrix containing basis
vectors that transforms the representation to the prediction and ϵ is stochastic noise or the difference
between p and f(Ur), in other words the error of the prediction. Finally, f is typically a sigmoidal
function, for Rao & Ballard tanh was used.

The predictions are compared with the input to create the error r − rtd = ε in what we will call
the ”error calculation” which is used to update the representation units. Updating is done similarly to
modern neural networks by performing gradient descent on an optimization function which is directly
derived from eq. (4.1):

dr

dt
= −k1

2

∂E

∂r
=

k1
σ2

UT∂f
T

∂x
(I− f(Ur)) +

k1
σ2
td

(
rtd − r

)
− k1

2
g′(r). (4.2)
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Figure 4.1: An overview of the design of Rao & Ballard [2]. a) An overview of all the components. Error
signals are send upwards, predictions downwards. b) A look inside a Predictive Estimator (PE) showing
the components it holds and how they are connected. c) An example of how the model can be built
hierarchically. The input image is split into three regions; Receptive Fields, each with their own PE.
These three PE’s combine into a single PE in the layer above it.

This double use of eq. (4.1) is perhaps an even more important insight than the results obtained as it
shows that perception and learning are intricately linked [3]. Through various hierarchical constructions,
Rao & Ballard were able to reproduce several neurological phenomena, including the end-stopping effect,
which was not reproduced before.

4.2 PredNet

PredNet is a type of recurrent neural network designed by Lotter, Kreiman & Cox [18] to mimic the
Predictive Coding network from Rao & Ballard [2]. Lotter et al. took the same hierarchy and building
blocks, but replaced the internal matrices with components from modern neural network frameworks.
Besides interchanging the matrices, they also changed some of the connections and used a different
optimization function, so that the workings are slightly different. How PredNet works is discussed in
section 4.3 and how it is used in ..?

To use the PredNet model, some preparations need to be done. Firstly, the setup needs to work which
is discussed in section 4.4. Secondly, the dataset to be used needs to have the correct input format. This
format is described in section 4.5. Thirdly, to maximize the potential of the PredNet model, the hyper
parameters need to be tuned. How this was done is discussed in section 4.6.

4.3 PredNet inner workings

In fig. 4.2 the two networks are shown side by side. The components used by Lotter et al. offer
the same functionality as the matrices from Rao & Ballard. The representation matrix r is replaced
by a convolutional LSTM (Long-Short-Term-Memory) layer. The convolutional aspect can be seen as
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Figure 4.2: On the left an overview of PredNet, in the middle an overview of Rao & Ballard and on the
right an overview of PreCNet. It can be seen that PredNet not only has different building blocks taken
from DL, but also has different connections: E0 connects to E1, and R1 connects to r. PreCNet has the
same connections as Rao & Ballard and the same building blocks as PredNet.

analogous to the U matrix as they both have the aim to compress or expand a signal. The LSTM part
is extended to also include a mathematical convolution part that combines two functions into a third
function, while the LSTM part itself is able to hold the actual representation for a time-series. However,
the signals that are being used by each part differ between the two networks.

PredNet has swapped two connections between components in comparison with the Rao & Ballard
network. Firstly, the ε of a block connects to the error calculation of the block higher in the hierarchy,
instead of to the representation of the block itself. The result is that the lowest error calculation at
the input level is a comparison of a prediction with the input, while the error calculation at all other
instances are comparisons of predicted error and actual error. The different error connections cause the
error at the input level to be propagated through the entire hierarchy and each layer tries to predict
the error of the layer below. This is in essence, similar to a Taylor expansion and is a big difference
compared to the network from Rao & Ballard. The connections of Rao & Ballard are generally accepted
and not often deviated from because it causes higher levels to have higher levels of abstractness. Never-
theless, the definition of PC does not include how errors and predictions are connected, making PredNet
a viable and true PC network. Secondly, the representation connects to the representation of the block
lower in the hierarchy instead of the error calculation in the same block. This means that every repre-
sentation has some kind of idea of the representations higher up in the hierarchy, although this change
seems to have only a marginal effect [19] and might just exist as a result of the changed error connections.

PredNet also uses a different optimization algorithm. Instead of using local prediction and error
comparisons like Rao & Ballard, it uses one main optimization function that collects all the error terms
in the network. Each LSTM unit then takes the partial derivative to that LSTM unit to update its
model. In these frameworks it is possible to customize the optimization function and to choose which
error terms are included and with what weight. PredNet was tested with two different combinations of
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error terms: L0 and Lall. L0 only used the actual prediction error from the lowest layer at the input level
(λ0 = 1, λl>0 = 0), while Lall set the weight for the error predictions higher in the hierarchy to a small
fraction of the prediction error (λ0 = 1, λl>0 = 0.1). The paper showed that the L0 algorithm worked
best on most of the tests, which is not something the theory for PC would expect [20]. It is possible
that this is due to the errors of the higher layers to represent error predictions rather than abstractness,
but this has not been confirmed.

The results obtained by PredNet were state-of-the-art. The paper itself achieved this in video-frame
prediction and steering angle estimation, but several other fields were also able to obtain similar state-
of-the-art results [21], [22], [23]. It has also been shown to be able to reproduce several illusions and
extra-classical receptive field effects [24], [25], similar to the effects Rao & Ballard’s model was able to
replicate. Since the release of the paper several extensions and improvements have been created [26],
[27], [28].

4.4 Using PredNet (Python 3) with ROS Melodic/Kinetic

This thesis uses two components that need to be connected. Firstly, the Jackal simulation and its data
through ROS and Gazebo. Secondly, the PredNet model using the Keras framework that uses the soft-
ware language Python 3. Gazebo relies on Robotic Operating System (ROS) for all its communication.
Both system versions are connected. Each version of Gazebo has a corresponding version of ROS or vice
versa. Generally, ROS uses C++ for programming, although it also supports Python. However, older
versions of ROS, like ROS Melodic or Kinetic, only support Python 2.7 intrinsically. Therefore, use the
Keras framework, and thus PredNet, on these older versions of ROS, it is necessary to integrate Python
3 with those older versions. This integration is accomplished by using a catkin virtual environment. The
latest ROS version (ROS Noetic) intrinsically supports Python 3, making the connection between ROS
and the Keras framework much simpler.

The first step for integrating Python 3 with ROS is to make sure that all the programs are installed.
Python 3 can be downloaded from https://www.python.org/downloads/. Choose the version that fits
the dependencies of the packages you want to use. For example, PredNet made use of specific versions
of the packages Keras, TensorFlow and hickle which required Python version 3.6. Then, a copy of
ROS needs to be installed. Some operating systems have ROS preinstalled, for example Unix system
Ubuntu 18 comes with ROS Melodic. ROS installations can be obtained at https://www.ros.org/

blog/getting-started/. With ROS installed, the dependencies for the implementation need to be
downloaded. In the case of the Jackal robot the following packages need to be installed:

ros -melodic -jackal -simulator

ros -melodic -jackal -navigation

ros -melodic -jackal -desktop

ros -melodic -velocity -controllers

. An easy way to install these packages is through a package manager like apt-get or pip. Finally, the
catkin tools that will be used consists of the following packages and dependencies:

python -catkin -pkg

python -empy

python -nose

python -setuptools

libgtest -dev

build -essential

, which can be installed in the same way as the Jackal packages. More detailed instructions can be found
at https://wiki.ros.org/catkin#Installing_catkin.

With the programs installed the next step is set up a configuration that allows ROS to make use
of Python 3. It starts by building a standard catkin workspace using the following commands (http:
//wiki.ros.org/catkin/Tutorials/create_a_workspace):

$ source /opt/ros/melodic/setup.bash

$ mkdir -p ~/ catkin\_ws/src

$ cd ~/ catkin\_ws/
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CHAPTER 4. PREDNET

$ catkin\_make

This will create a standard ROS workspace with a build, devel and src folder. The src folder will
contain the packages of the project. Each project requires the CMakeLists.txt and package.xml files.
To make use of the catkin virtual environment, both files need to be modified. In package.xml a build
dependency needs to be added:

1 <build_depend >catkin_virtualenv </build_depend >

, along with python dependencies, for example the mathematical python package Numpy requires:

1 <build_depend >python -numpy </build_depend >

2 <exec_depend >python -numpy </exec_depend >

. The file CMakeLists.txt needs three additional sections:

1 find_package(catkin REQUIRED ... catkin\_virtualenv ...)

2

3 catkin_generate_virtualenv ()

4

5 catkin_install_python(

6 PROGRAMS

7 scripts/do_python_things

8 DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION })

. The python scripts should not be made executable. The website https://github.com/locusrobotics/
catkin_virtualenv provides more possibilities of the virtual environment under section ”Bundling vir-
tualenv”. It is then possible to add a folder ’scripts’ to the package that can contain all the Python
scripts. It should be noted that not every package needs to make use of a virtual environment. Packages
that do not require Python 3 for example, could simply use the traditional dependencies. The final
workspace should look like this:

Workspace

build

devel

src

package 1

include

launch

msg

scripts

src

CMakeLists.txt

package.xml

CMakeLists.txt

. Make sure that there is no file called setup.py present in the directories. That file can be part of a
different solution for integrating Python 3 with ROS, but it breaks this solution.

4.5 The structure of PredNet input

This section provides an overview of the data structure used by PredNet. If one would like to make use
of PredNet themselves this section could help with preparing the data necessary.

PredNet makes use of three data sets: a training set, a test set and a validation set. The purpose of
these sets is as follows. The training set is used by the model to learn its parameters. The training set is
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Dimension 5 4 3 2 1
Form n samples n columns n rows n channels Data
Type list numpy.ndarray numpy.ndarray numpy.ndarray numpy.uint8

Table 4.1: Table showing the data layout that PredNet depends upon for ’X’ - the raw data. This data
has 5 dimensions. Each dimension is related to something physical which is shown in ’Form’. Each
dimension is a specific object type in Python, shown in the column ’Type’.

Dimension 3 2 1
Form n samples sequence name number within sequence
Type list numpy.bytes int

Table 4.2: Table showing the data layout that PredNet depends upon for sources. This data has 3
dimensions. Each dimension is related to something physical which is shown in ’Form’. Each dimension
is a specific object type in Python, shown in the column ’Type’.

fed to the model and the errors that are created are then used to update the model. Normally, after the
entire training set has been fed through the model, one epoch has passed. After every epoch, the model
is validated with the validation set to make sure that the model does not overfit to the training data.
Because the model has seen data samples from both the training and the validation set during training,
neither of these sets can be used for experiments. For that reason there is a third set called the test set
with data that the model has never seen before.

Each set consists of two multidimensional files. One file called ’X’ contains the raw data. The raw
data consists of one 5-dimensional entry. The first dimension is related to the samples in the data set.
Each entry of the first dimension is a signal sample. The second dimension are the columns of each
sample. The third dimension are the rows of each column. The fourth dimension are the channels of
row and finally, the fifth dimension are the data samples within the channels. This fifth dimension was
originally an 8-bit integer, as PredNet was trained on RGB images. However, it is possible to change
the bit size to suit the needs of the data. For this thesis a 32-bit integer was used (see section 4.6).
The use of integers as input restricts the possible input types. Only input signals that are bounded are
possible. Each dimension is a specific object type in Python. An overview is given in table 4.1. Besides
the specific object types, the dimensions need to have a specific shape as well. Each layer of the PredNet
model reduces the size of the rows and columns by a factor of two. This means that the model input
must have a shape for which the number of rows and columns is divisible by 2l−1, where l is the number
of layers of PredNet. For example, if you have input data with 16 columns and 20 rows, you can use at
most 2 layers.

The other file is called ’sources’. Table 4.2 shows the structure of this file. ’sources’ contains
sequence numbers which tell PredNet which data samples belong together in a single sequence. It
contains one 3-dimensional entry that is related to ’X’. The first dimension is similar to ’X’ and is also
related to the samples in the data set. The second dimension is an arbitrary sequence name. The third
dimension is the sequence number which is used to tell different sequences apart.

4.6 Tuning PredNet hyper parameters

Using neural networks requires choosing hyper parameters for the model. Hyper parameters can have a
large impact on the performance of a neural network. The process of finding good hyper parameters is
called tuning. Tuning was done for the following hyper parameters:

• Integer size

• Learning rate

. All tests concerning the hyper parameters have been performed on a sinusoidal signal containing
Gaussian noise.
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Bits Steps Stability
8 2.56e+02 Stable
16 6.55e+04 Stable

32 4.29e+09 Stable
64 1.84e+19 Unstable

Table 4.3: The relationship between bit size and the number of different values that are available is
shown here. An integer size of 32 is used for the remainder of this thesis as it provides the highest
precision of the stable options.

Setting Stability MSE

LR 0.01 - no schedule Stable 1.672× 10−5

LR 0.01 - with schedule Stable 1.727× 10−5

LR 0.1 - no schedule Unstable 7.117× 10−2

LR 0.1 - with schedule Unstable 1.545× 10−5

Table 4.4: Table showing the MSE obtained by the models trained with different learning rate settings
when predicting the next frame. The final model at epoch 10000 was used. The model with a learning
rate of 0.01 and no scheduler had the lowest MSE of the stable models.

The original PredNet model was trained on images, whose pixels generally have values represented
in 8-bit integers, or values from 0 to 255. However, in this thesis we are interested in float values
which require much more precision. Table 4.3 shows how the bit size of integers relate to precision that
is possible. Ideally, a 64-bit integer would be used to convey the signal as it provides the maximum
amount of precision. However, tests showed that the signal contained artifacts when 64-bit integers were
used. As such, 32-bit integers were chosen as they have the highest precision without sacrificing stability.

The learning rate is an important hyper parameter for neural networks. It is directly related to how
quickly a neural network changes its parameters. Setting it too high makes a model learn quickly, but it
also overwrites what is has learned previously much faster. It makes it difficult for a model to reach the
highest accuracy. A learning rate that is too slow will cause learning to take a very long time. To find
a good learning rate, four different methods were used. Two methods used a static learning rate of 0.1
and 0.01, and two methods used a learning rate schedule , also starting at 0.1 and 0.01. A learning rate
schedule allow the learning rate to be changed during training. The scheduler decreased the learning rate
after 5000 epochs by a factor of

√
10. All models were trained to 10000 epochs. The learning process of

the different method is shown in fig. 4.3. The figure shows that a learning rate of 0.1 can be unstable.
A learning rate of 0.01 is always stable. Table 4.4 shows that scheduling makes no significant impact on
how well the model learns. It is therefore decided to use a learning rate of 0.01 without scheduling to
keep the model simple.

4.7 Summary

In neuroscience, predictive coding is regarded as a biologically plausible and accurate method for fore-
casting time-series. The general scheme was made effective by Rao & Ballard which was shown to
mimic neurological phenomena and the creation of abstractness in the layers of the model. Inspired
by their work, branches in different directions were created to improve upon the work of Rao & Bal-
lard. From these branches, PredNet is a very promising one due to its utilization of the modern neural
network frameworks. It used a slightly different scheme than Rao & Ballard, but was able to produce
state-of-the-art results in the entire field of neural networks and predictive coding.
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Figure 4.3: This figure shows the training losses for various learning rate strategies when PredNet is
trained on a noisy sinusoid. The models with a learning rate of 0.1 show unstable behaviour, while the
models with a learning rate of 0.01 are stable.
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METHODS

With the theoretical background obtained it is now possible to set up the experiments that should help
in answering whether forecasts of PredNet can help improve the accuracy of estimated derivatives. The
experiments are aimed at answering the question whether predicting future data points by use of PredNet
help improve the accuracy of the generalized coordinates? First, the signal needs to be predicted and
then secondly, the predicted signal can be used to determine derivatives. To make the experiments
as realistic as possible, data from a simulated Jackal robot has been used, as described in section 5.1.
All tests are conducted with as much similarity between the models as possible. The specifics of these
are discussed in section 5.2. Testing of the signal prediction will be described in section 5.3, while the
method for derivative testing is described in section 5.4.

5.1 Description of data

All experiments described in this section have been performed on data obtained by simulating the Jackal
robot. Simulations were done through Gazebo 9.0 on an Ubuntu 18.04.6 operating system. It is possible
to interact with Gazebo through ROS (Robot Operating System). A tutorial on how to set up the
software is given in section 4.4. The Jackal robot which was used for the experiments in chapter 2 is
available for Gazebo through the website of ClearPathRobotics. The data from the robot and how it was
obtained will be described first. The data from the Jackal robot needs to suit the needs of PredNet which
are described in section 4.5. This section ends with a description about how the data was transformed
to PredNet input.

The Jackal robot has two main sources for positional data: ROS topics /imu/data and /joint states.
The sensors of the robot publish information at a rate of 50Hz. The topic /imu/data contains infor-
mation about the center of gravity of the robot; its orientation, angular velocity and covariance and
linear acceleration and covariance. The topic /joint states contains information about the joints of
the robot. In the case of the standard Jackal robot, the joints consist of its four wheels. The Jackal
controller (chapter 2) drives the wheel velocities. Therefore the wheel velocities from /joint states

were used in the experiments. Also, because PredNet input needs to be bounded (see section 4.5), the
position data can not be used. Since the robot uses differential steering, the two left wheels are connected
to each other, as well as the two right wheels, leaving only 2 unique joint states.

The data was obtained by commanding a Jackal robot in a Gazebo simulation. The
Jackal robot can be commanded through three different ROS topics: /jackal aic/set point,
/jackal left wheel/command and /jackal right wheel/command and /cmd drive. The topic
/jackal aic/set point is further processed by the self-made AIC node to drive the wheels. This
is explained in chapter 2. The other nodes can be used to directly drive the wheels of the robot. Further
details about the different topics can be found in section 2.2. The topic /jackal aic/set point was
used to command the robot as it is easiest to command and provides more realistic joint states that are
the result from the AIC node.

The topic /jackal aic set point consists of a horizontal velocity x, a vertical velocity y and a
rotational velocity ϕ. Since the Jackal robot always stays on the ground, y can remain 0, which means
that each command needs to contain an x value and a ϕ value. Both values were limited: −2 < x < 2
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Data set Time recorded [s] Data samples Commands

Training 300 15214 153
Test 240 11980 120
Validation 60 2985 30

Table 5.1: An overview of the data sets that were used. The number of samples are not perfectly related
to the recording time. This is because the time was measured with a stopwatch and the process of
starting and stopping the measurements was a manual process.

and −1 < ϕ < 1, which corresponded to a minimum and maximum wheel velocity of −23 rad/s and
23 rad/s if both values are at their minimum or maximum, respectively.

Each command chose random values for x and ϕ to obtain a diverse data set containing both the
settling mechanics of the controller as well as state transitions between commands. A new command
was given every 2 seconds, which was shorter than the settling time.

To make use of the PredNet models we need to have three sets of data: a training set, a test set
and a validation set, see section 4.5. For each of these sets the same routine was performed, but with
a different duration so as to produce different amounts of data samples for each of the sets. This was
done to make sure that each set also contained the start-up phase of the robot and to make continuity
within the sets easier. Time was recorded with a stopwatch, because accuracy is not crucial and it was
easier to use. An overview of the data sets is provided in table 5.1. After these routines, the topic data
was stored in an external file.

The data obtained from the Jackal robot needed to be transformed for PredNet to use it, see sec-
tion 4.5. This meant three things. First, the raw data needed to be put in the correct 5-dimensional
shape. Since only two unique values are available, PredNet could only be a single layer. This would
severely limit the power of PredNet as the strength of neural networks generally lies in having multiple
layers. However, by duplicating the values it was possible to create a 2×2 matrix, allowing two PredNet
layers. Second, the data needed to be discretized to 32-bit integers. Each signal sample was shifted,
divided by the wheel velocity range, and then multiplied by the number of possible values:

y =
xold − xmin

xmax − xmin
∗ s. (5.1)

with y the discretized data, xold the original data, xmin and xmax the minimum and maximum wheel
velocity respectively, and s the number of possible values. Thirdly, a source file had to be created,
linking the signal samples to sequences. The sequence number started at 0 and was increased by 1 with
every command given, starting from the first command. The transformed data and the sources were
both saved in external files to create the three data sets.

5.2 Model settings

After the data has been prepared, the model needs to be prepared. PredNet is a neural network which,
by design, contains many hyper parameters that can be tuned to alter the performance. Tuning was
done on two types of sinusoid: a clean version and a noisy version containing colored noise. In total 8
hyper parameters were tuned to prepare the models. Four of these parameters were determined by the
circumstances of the model and the goal of the thesis to design an online predictor, and four parameters
were determined by running various tests on the sinusoidal data, see section 4.6. An overview of all the
final hyper parameters is shown in table 5.2.

Table 5.2 shows the settings used to simulate offline learning. These settings were kept constant for
all experiments.

The model parameters are the number of epochs, the number of samples per epoch, the number of
samples per validation and the batch size. In normal circumstances, training a single epoch means that
a neural network has ”seen” and trained on all available training data once. This means that the number
of samples per epoch is simply equal to the number of samples in the training data set. Normally the
same is true for the number of samples per validation, that is usually equal to the number of samples in
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Table 5.2: Table showing the settings of the PredNet models.

Model parameters Online Offline

NO. Epochs 10000 20
NO. Samples per Epoch 1 500
NO. Samples per validation 1 100
Batch size 1 1

(a) Overview of the online and offline PredNet settings.
These settings were not changed for any experiment.

Optimized parameters

Integer size 32
Sample depth 2
NO. Frames 10
Learning rate 0.01

(b) Overview of the settings determined through opti-
mization. These settings are used for all experiments
following.

the validation data set. Furthermore, the batch size is a parameter that determines how many samples
the model enters before updating itself. Setting this higher than 1 means that the model will aggregate
results of several inputs before updating, resulting in some accuracy loss and a increase in training speed.
However, training in an online setting is not a normal circumstance and requires some bending of the
norm. To train and use a model in an online setting it was necessary to retrieve an outcome after every
new sensory input. To do so, it was necessary to save the model after every training sample which can
only be done after a validation step which is only done at the end of an epoch. This means that every
epoch can only consist of a single training and validation sample with a batch size of 1 to perform online
training. Finally, the number of epochs simply determines how long the model will keep training. Setting
this higher will allow more training cycles, potentially increasing the performance. This parameter was
set at 10000 for the online model as testing showed that training losses barely decreased anymore.

To keep the online and offline models on the same playing field, the parameters of the offline model
also do not follow the norm and are instead designed to make sure that both models see an equal amount
of training samples. The number of samples per epoch was chosen rather arbitrarily, it was simply made
sure to be much larger than for the online setting and that the total number of training samples of the
online model was divisible by this number. The number of samples per validation were then determined
by using the ratio of number of data samples that both data sets have, see table 5.1. The batch size
was kept the same to prevent accuracy loss and to keep both models similar. The parameters that have
been optimized were the integer size and the learning rate, see section 4.6.

5.3 Predictions of PredNet

To get a sense of the accuracy of the PredNet models they have been compared with two other prediction
methods: a very naive method of simply copying the input (I-C) and an auto regressive (AR) model. All
models made use of the ’training’ data set discussed in section 5.1. The PredNet models also made use of
the ’validation’ set and ’test’ set. The validation set is used after every epoch as an interim performance
test. For testing, only the left wheel velocities have been used, see fig. 5.1.

The parameters of the PredNet model have been discussed in section 5.2. With these settings and the
data each PredNet model was trained 15 times as the training of a neural network is stochastic. After
every 500 training samples the model parameters were stored to gain insight in the training process.
This meant every 500th epoch for the online model and every epoch for the offline model.

The AR model was given a lag of 10, to give it the same reach as the PredNet models. No moving
average (MA) was used. Creating an AR model is, in contrast to a neural network, not stochastic, which
meant that creating a single model was enough.

Copying the input is a very simple process and similar to the AR model has no variability.

Each model was used to predict up to 5 frames ahead. For every prediction level the MSE of each
model was calculated by comparing the predictions with the true signal. In the case of the PredNet
models this was done for every saving point, which gave 15 different MSEs per prediction level per
saving point. The results of the intermediate saving points were used to show the progress of the
PredNet models. The online PredNet models from all saving points were compared with each other,
like the offline models. All results were checked for normality which was not always the case, meaning a
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Figure 5.1: This figure shows the front left wheel velocities of the Jackal robot (ωL); the training data
for the PredNet models. Every two seconds the signal changes due to a new command being given to
the robot. The changes can be steep due to the random choices of the commands.

non-parametric test had to be used. The results had a small population and results from different saving
points were assumed to come from different distributions. This meant that Wilcoxon Rank-Sum test
(or Mann-Whitney test) had to be used. The final saving points after 10000 training samples from both
PredNet models were compared with the AR and copy-input models. All models were again checked
on normality, which was sometimes violated. This meant a non-parametric test needed to be used for
a small population of results that came from different distributions. These comparisons were also done
using the Wilcoxon Rank-Sum test. However, when the AR model or copy-input model was involved, the
comparison was adapted to a one-sample Wilcoxon Rank-Sum test, as the AR and copy-input models
have no variance.

5.4 Derivatives of finite difference methods

5.4.1 Obtaining the derivatives

To get a sense of the usefulness of PredNet predictions and to determine whether the original method
of the velocity controller can be improved, derivatives were calculated using the predictions from Pred-
Net. Four variants of the finite difference method were used and compared against each other. Two
variants used the backwards method and two variants used the central method. In both cases one of
the variants used as few data points as possible, keeping the error order as low as possible, while the
other variant attempted to have an error order as high as possible. Forwards methods were not tested
because they only use predicted data which will never be more accurate than the true data, making it
strictly worse than the backwards method. An overview of the variants is shown in table 5.3. There
were 30 outcomes for the central derivatives due to 15 outcomes per PredNet model. The input-copy
model was not evaluated as the derivatives would always be zero and thus meaningless. The AR model
was not evaluated, because that model can not be updated once it has been established. Since the back-
wards methods make no use of the predictions, the outcomes are always the same and contain no variance.
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Method Explanation

B-1
Backwards method with minimum amount of data points.
All error terms equal to O(h).

B-F
Backwards method utilising the maximum number of data points.
Error order starts at O(h5) and decreases by 1 with each derivative.

C-1
Central method with minimum amount of data points.
Error order starts at O(h2) and increases by 1 with each derivative .

C-F
Central method utilising the maximum number of data points.
Error order starts at O(h10) and decreases by 1 with each derivative.

Table 5.3: Explanations for the finite difference methods used in the experiments for determining the
derivatives of the signal.

All obtained derivatives were compared against a ”true” derivative to obtain an MSE. The ”true”
derivative was determined by a C-F method used on the true signal, as there was no measured accelera-
tion. Then, comparisons were made between the different variants and between the PredNet models. For
each variant the PredNet models were compared separately. Not all outcomes were normally distributed,
so non-parametric tests were used. Wilcoxon tests have been used because the outcomes are from differ-
ent distributions and have a small population. Because the backwards methods contain no variance, a
one-sampled Wilcoxon Signed-rank test was used when the backwards methods were compared. In other
cases the Wilcoxon Rank-sum test was used. Comparison between the PredNet models was only done
for the central methods as there is no difference between the outcomes of B-1 from online and offline
PredNet, nor between the outcomes of B-F. These comparisons also used the Wilcoxon Rank-sum test.

5.4.2 Analysis of error contribution

In the case of the central methods, the MSE of the derivatives can be related mathematically to the
error from the predictions. Equation (4.1) shows that the value of a future data point consists of a
predicted value and a prediction error. This prediction error is propagated through the finite difference
methods, separate from the error terms of the finite difference methods themselves. Table 5.4 shows
how much each data point in the stencil contributes to determining the derivatives. By combining the
weights corresponding to the predicted values with the MSE of the frame predictions from table 6.1 the
propagated error can be calculated. For difference method C 1 and model P-ON this becomes:
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Another analysis was performed to evaluate the contribution of the command transitions in the
signal. The transition periods were found for the first derivative by inspecting the true derivative. Each
transition period was found to have a duration of 6 frames for the first derivative. A transition occurred
every 100 samples, meaning that transitions take up around 6% of the total signal. The transition
periods found for the first derivative were used for all derivatives and the same samples were used for
both the true derivative and the model derivatives as this is how the original MSE is also calculated. For
the transition periods the MSE was calculated separately and compared with the MSE over the whole
signal by compensating for the difference in the number of samples.
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(c) The finite difference matrix corresponding to method C 1
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1529

120h4
−1669

180h4
4369

1260h4
−541

840h4
1261

15120h4
−41

7560h4

−13

288h5
19

36h5
−87

32h5
13

2h5
−323

48h5
0

323

48h5
−13

2h5
87

32h5
−19

36h5
13

288h5

(d) The finite difference matrix corresponding to method C F

Table 5.4: An overview of the finite difference matrices used. An explanation for each method is given
in table 5.3.
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CHAPTER 5. METHODS

5.5 Summary

To answer the research question several experiments will be performed on a wheel velocity time series
from a simulated Jackal robot. Two types of PredNet models are trained on that data: one model is
trained in an online setting and the other is trained in an offline setting. Furthermore, an auto regressive
model is trained on the same data. The first experiment is concerned with the accuracy of the forecasts
from the PredNet models and tests this accuracy by comparing the predictions from the PredNet models
with the predictions from the autoregressive model as well as a naive method that predicts its own input.
To test the usefulness of the forecasts as well as the accuracy of different finite different methods a second
experiment is set up. Four finite difference methods are used: a backwards method using as few past
samples as possible, a backwards method using as many past samples as possible, a central method using
as few past samples and samples predicted by the PredNet models as possible and a central method using
as many past samples and samples predicted by the PredNet models as possible. The derivatives are
compared against a derivative obtained from a central method using as many samples as possible that
all come from the true signal.
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Chapter 6

RESULTS

This chapter will provide the results of the experiments described in chapter 5. The results will be linked
to the research questions to draw conclusions.

6.1 Predictions of PredNet

For online PredNet, significant differences have been found between models with consecutive training
sample intervals for the models trained with 500 and 1000, 1000 and 1500 and 1500 and 2000 samples.
Offline PredNet only showed significant differences between models trained with 500 and 1000 and 1000
and 1500 samples. More significant differences were found when looking at non-consecutive intervals.
However, after 5000 training samples, there were almost no significant differences to be found anymore
with models trained with more samples. This is where the training did not improve much anymore as can
be seen in fig. 6.1. Online PredNet showed exceptions for the model trained with 9500 samples, which
was an unusually strong model. It had significant differences between the models trained with 5000,
5500, 6000, 6500, 8000 and 9000 samples. Offline PredNet showed exceptions for the model trained with
8000 samples, which was significantly different from the models trained with 9000 and 9500 samples.

When comparing online and offline PredNet, significant differences were found between the models
trained with 4500, 7000, 8500 and 9500 samples.

Predictions from the final models are shown in table 6.1. It is clear that the AR model produces the
most accurate predictions, regardless of how many frames ahead the predictions are. When increasing
the number of frames the MSE of the I-C and AR models both increase with a factor between 1.5 and
3, while PredNet does not have such a constant factor and instead has more variability in how well it
performs.

6.2 Derivatives of finite difference methods

To get a sense of the usefulness of PredNet predictions and to determine whether the original method
of the velocity controller can be improved.

When comparing the different finite difference methods within the same model, almost all compar-
isons are statistically significant. For both PredNet versions there was no significant difference between
B-1 and B-F and C-1 and C-F for derivative 5, as the results obtained from these methods were exactly
the same (the stencil used to create the Taylor matrix is the same for this derivative). Furthermore,
offline PredNet had no significant difference for C-1 vs C-F on derivative 1 and 2 and no significant
difference between B-F and C-F for derivative 3.

No significant differences between the differently trained models were found.
Higher order derivatives had such a high error that they are not useful in practice (> 103).
The results of the contribution analysis are shown in table 6.3 and section 6.2. The prediction errors

contribute less than 1% to the total derivative error for the first derivative, and less than 0.002% to the
error of the higher order derivatives. In contrast, the error accumulated during the transitions between
commands to the robot are able to explain up to 99% of the error in the derivatives.
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Frames Method MSE SD

1

P-ON 1.599× 10−07 8.357× 10−08

P-OFF 1.844× 10−07 1.224× 10−07

I-C 9.209× 10−07 0

AR 4.169× 10−08 0

2

P-ON 1.469× 10−06 4.925× 10−07

P-OFF 2.022× 10−06 1.270× 10−06

I-C 2.702× 10−06 0

AR 1.188× 10−07 0

3

P-ON 1.085× 10−06 4.355× 10−07

P-OFF 1.252× 10−06 6.363× 10−07

I-C 5.344× 10−06 0

AR 2.657× 10−07 0

4

P-ON 5.527× 10−06 1.550× 10−06

P-OFF 7.846× 10−06 4.562× 10−06

I-C 8.861× 10−06 0

AR 5.197× 10−07 0

5

P-ON 3.320× 10−06 1.444× 10−06

P-OFF 3.602× 10−06 1.468× 10−06

I-C 1.327× 10−05 0

AR 9.162× 10−07 0

Table 6.1: P-ON: online PredNet, P-OFF: offline PredNet, I-C: Input copy, AR: Auto regressive
Model. Table showing the mean MSE and standard deviation of multiple models for predictions from 1
to 5 frames ahead. Boxes in cyan denote the model with the lowest error per prediction level. Note that
”Input copy” and ”AR” do not have variation in their models and thus have no standard deviation.

Finite method
Predictor

Online PredNet Offline PredNet

B-1 7.969× 10−03 ± 0.000× 10+00

B-F 9.461× 10−03 ± 1.735× 10−18

C-1 8.460× 10−03 ± 3.519× 10−04 8.829× 10−03 ± 8.290× 10−04

C-F 8.724× 10−03 ± 2.970× 10−04 8.838× 10−03 ± 4.600× 10−04

Table 6.2: This table shows the MSE obtained determining the 1st derivative for the different finite
difference methods. The standard backwards methods has the lowest MSE of all methods.

Difference method C 1 C F
Predictor P-ON P-OFF P-ON P-OFF
1st derivative 2.261× 10−5 3.283× 10−5 4.814× 10−5 8.829× 10−5

2nd derivative 1.432× 10−3 1.820× 10−3 4.937× 10−4 1.558× 10−3

3rd derivative 6.728× 10−1 1.139 1.300 2.232
4th derivative 7.794× 101 1.370× 102 1.022× 102 1.795× 102

5th derivative 1.281× 104 2.226× 104 1.281× 104 2.226× 104

Table 6.3: This table shows the absolute contribution of prediction error to derivative error. It shows
that the contribution of the prediction errors to the derivative errors are very small and have little
impact.
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Figure 6.1: This figure shows the error of the prednet model predictions after having trained on various
amounts of training data. The predictions of the models were 5 frames into the future. Due to the
logarithmic y-axis, the standard deviation sometimes goes to 0 when the standard deviation is larger
than the average.

Figure 6.2: This figure shows the full 5 frame prediction from a single PredNet output for a portion of
the signal. It shows that predict
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Figure 6.3: This figure shows the estimated first derivative of the finite difference methods as well as
the true derivative. It can be seen that the central methods generally overestimate the derivative. The
B F method shows instability in between transitions and none of the methods are able to estimate the
derivative around the transition periods accurately.

Method B 1 B F C 1 C F
P-ON P-OFF P-ON P-OFF

1st der.
7.792× 10−03 7.886× 10−03 7.729× 10−03 7.758× 10−03 7.385× 10−03 7.434× 10−03

97.78% 83.35% 91.36% 87.86% 84.65% 84.12%

2nd der.
9.361× 10+01 9.422× 10+01 9.432× 10+01 9.387× 10+01 9.455× 10+01 9.399× 10+01

98.86% 71.86% 92.17% 89.30% 90.06% 87.70%

3rd der.
3.125× 10+05 3.466× 10+05 3.118× 10+05 3.115× 10+05 3.163× 10+05 3.151× 10+05

98.63% 63.03% 82.98% 79.67% 63.96% 56.80%

4th der.
1.325× 10+10 1.346× 10+10 1.333× 10+10 1.329× 10+10 1.337× 10+10 1.332× 10+10

99.26% 97.62% 89.06% 88.58% 85.53% 84.76%

5th der.
1.943× 10+13 1.943× 10+13 1.979× 10+13 1.967× 10+13 1.979× 10+13 1.967× 10+13

95.90% 95.90% 56.97% 47.84% 56.97% 47.84%

Table 6.4: Absolute and relative contribution of the transition periods in the signal to the derivative
error. It can be seen that the transition periods are responsible for a large part of the derivative error.
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Chapter 7

DISCUSSION

Now that the experiments have been performed, the research questions can be answered. The aim of
this thesis was to discover whether predicted data from PredNet can help in improving the accuracy
of the generalized coordinates. This question was split up to learn more about the accuracy and the
usefulness of the predictions and whether more data points in the finite difference method could improve
its performance. In section 7.1 the accuracy is discussed, section 7.2 contains a discussion about usefulness
of PredNet predictions and the finite difference methods are discussed in section 7.3. Finally, the choice
of data set and its consequences will be discussed in section 7.4.

7.1 PredNet accuracy

The predictions from PredNet were found to be between 3 and 10 times less accurate than the AR model,
but between 1 and 5 times more accurate than copying the input. This agrees with literature [6] which
shows that statistical regression is only beat with well-adjusted neural networks. Given that PredNet is
not a cutting edge model anymore and that the models have not been trained in an optimal setting this
outcome supports that view. Improvements can be made by using neural networks that are better suited
for forecasting [29], by combining AR models with neural networks in a single model [30], by increasing
the duration of training samples, or by increasing the sample depth to have more information over time.

PredNet might not be the most optimal choice when it comes to maximizing prediction accuracy, but
it is capable of learning in an online fashion. Research has shown [31] that learning in an online fashion
is capable of performing similarly or better than offline learning. The results of this thesis support that
idea as the online and offline PredNet models overall showed little difference, except for some instances
where the online model performed slightly better than the offline model. This can be attributed to
the stochastic nature of the learning process, but also to the fact that the online version used more
validation samples during learning. In terms of prediction performance, it seems that the number of
samples that have been used is a larger contributor than the number of epochs or time spent learning.
However, a large difference was found in the learning speed. Because the online method could only learn
one sample per epoch and evaluation after every epoch is a slow process, the whole process of training
the network was much slower than the offline model. A solution to this problem could be to train the
network beforehand on a different set of data before using it in an online fashion.

7.2 PredNet usefulness

The usefulness of PredNet is mainly determined by the results of the derivatives. The results show little
difference between the different methods when looking at the full error, but suggest that the simplest
method (B 1) is the most accurate. Upon evaluating the errors, a majority of the error in derivative
estimation comes from the transition between robot commands. This is unsurprising as the changes in
command provide an immediate and non-smooth change in the velocity signal. It is therefore impossible
for the backwards methods to see this change, but the central methods are dependent on the predictions
from the PredNet models which are also unable to account for such a sudden change, meaning that
neither method is capable of obtaining accurate derivatives around the transition points.
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After subtracting the error due to the transitions, the left-over errors are several orders of magnitude
smaller. However, even in this case, the second derivative will not be accurate enough to be useful in a
practical setting as the error is already greater than 1. If we compare the left-over errors with the errors
due to the predictions we find that even now, the predictions are not a large contributor to the error in
the derivatives. Other sources for error are the lag due to using the backwards method and the general
error due to estimating a derivative with a finite number of samples.

Aside from the derivatives there was another aspect contributing to the usefulness of PredNet pre-
dictions, namely its practicality. Each learning step of the online PredNet model took longer than the
sampling time of the sensors. This means that if used in an online setting the model would start to lag
behind or that samples would have to be skipped. Skipping samples would not be a preferred solution
as it already takes much time for the model to reach accurate predictions and that would only increase
that time. A more preferable solution would be to optimize the learning process to go faster which can
be done in a few ways, depending on where the bottleneck lies. Firstly, the model itself can be optimized
for processing and evaluating single samples as currently many models are optimized for processing
large quantities of data. Many implementations of neural networks require large and intricate models
for which you need to have and process large amounts of data. Forecasting time-series however, is a
relatively small and simple task that does not have those requirements and could therefore be adapted
to better fit the purpose for online training. Secondly, the process of retrieving and transforming the
data to the right format could be optimized, as the implementation in this thesis used several steps to
get the raw Jackal data to PredNet input.

The results show that only the first derivative could be used, regardless of the finite difference method
used. Higher order derivatives are so inaccurate that they could not serve a purpose. Since predictions
from PredNet did not increase the accuracy of derivatives and that obtaining and using the predictions is
much more effort than simply using the backwards method which achieves similar results, the predictions
are not useful for the purpose of obtaining derivatives.

7.3 Finite difference technique

The second sub question concerned the finite difference technique itself and whether it could be optimized
using more samples to increase the error order. Comparing the B 1 and C 1 methods with B F and C F
respectively, showed that the full methods have a higher MSE than the single methods (table 6.2), which
is not in line with the theory. By evaluating the transition period in the signal it can be seen that the
absolute errors between the full and single methods are very similar. However, relatively speaking, the
full methods have less error in the transition period and thus more error between the transition periods.
This could perhaps also be explained by the larger reach of the full methods. By using more samples,
the sudden change of the transition is present for a longer period of time. This does show in the data,
but fig. 6.3) also shows that there are large errors in between the transition periods that could be the
cause for the higher MSE.

For the central methods the contribution of the transition periods to the error of the derivatives is
somewhat smaller. For these methods, there was also a much larger error in between transition periods.
The derivatives are clearly overestimated, especially for the C F methods. This is most likely due to the
PredNet predictions. As can be seen in fig. 6.2 the predictions overestimate the signal which will also
overestimate the derivatives. Table 6.3 shows that the contributions due to the predictions errors are
larger for the C F method than for the C 1 method, although neither of the contributions are shown
to contribute to the overall error significantly.

7.4 Training data

We have seen that the transitions in the data played a large role in several outcomes of this thesis. The
commands for the Jackal robot were given so frequently that most of the training data consists of the
rise from step responses. The data could have been created differently as to obtain less acute changes
and more realistic fluctuations. This could have been done by making sure that the robot reached close
to the set point or waiting until after the settling time. Furthermore, having parts of training data with
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varying length could improve robustness. Also, training could have been done between commands as
to avoid the state transitions. This would likely have improved performance, but might also make the
model less robust in situations where sudden state transitions would occur. Another possibility would
be to extend the model with long-term dependencies or a type of switch for different scenarios so the
model can deal with long-term effects or with different types of behaviour.

7.5 Related and future work

A focus of this work was forecasting values from a time-series using a neural network. The performance
was not better than the traditional statistical methods. The performance could be improved by using
components that are designed for forecasting of time-series, such as attention mechanisms or by using
different techniques such as data augmentation and transfer learning [32]. A different direction is to
combine neural networks with statistical models, which shows promise [33]. Furthermore, neural networks
still require a lot of manual work in order to implement them. This is another reason why neural
networks are not yet widely used for time-series forecasting. It would be worthwhile to set up a more
solid infrastructure around the neural networks that would help in data-transformation, estimating the
network architecture and the model hyper parameters, see for example a review from Torres et al. [34].
Finally, many neural networks are not designed with online learning in mind. Online learning can be
a powerful tool in various implementations and as such, a framework to adapt neural networks to an
online version would be beneficial. Alternatively, neural network development could be focused towards
online training which would help discover the difficulties of online learning and how to overcome them.

This work also focused on calculating derivatives due to the implementation for Active Inference. This
remains a difficult endeavour and the question arises whether higher-order derivatives are truly necessary
for a strong implementation of Active Inference [35]. There are many successful implementations of
Active Inference which only make use of the first derivative [4], [36]. Finding out exactly how much
higher order derivatives would contribute to Active Inference models could help determining whether
it is worth the effort of obtaining them. This could be done by comparing performance of an Active
Inference model with various levels of access to true derivatives.

Still, derivatives are useful in many applications and while this thesis lay the focus on using the finite
difference method, this is not the only method. A different avenue for calculating derivatives is concerned
with using filters. One such filter is the recently developed RLPAD [37]: a recurrent low-pass algebraic
differentiator. Another interesting filter would be the Savitzy-Golay filter [38]. This filter needs future
values, so this might need to be combined with an accurate prediction method.
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Chapter 8

CONCLUSION

In this thesis we have explored the possibilities of the finite difference technique and the PredNet model
and their combination. It was found that what the PredNet model is capable of learning is heavily
dependent on the data it trains on and care should be taken to fit the model to the needs. Furthermore,
the potential between online and offline training of the PredNet model is similar, but online learning
takes much longer to train in real-time because the framework for neural networks is not optimized for it.
When attempting to predict both model behaviour and state transitions with PredNet, the predictions
are not accurate enough to warrant a change to the central finite difference method. Finally, using more
data samples with the finite difference method to calculate a derivative is not guaranteed to provide a
more accurate derivative as that result is also dependent on the quality of the data.

44



Bibliography

[1] Karl Friston, James Kilner, and Lee Harrison. “A free energy principle for the brain”. In: Journal
of physiology-Paris 100.1-3 (2006), pp. 70–87.

[2] “Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-
field effects”. In: Nature Neuroscience 2.1 (1999), pp. 79–87. issn: 10976256. doi: 10.1038/4580.

[3] Karl Friston. “Does predictive coding have a future?” In:Nature neuroscience 21.8 (2018), pp. 1019–
1021.

[4] Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández Corbato. “A novel adaptive controller
for robot manipulators based on active inference”. In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 2973–2980.

[5] Yasser Elfahham. “Estimation and prediction of construction cost index using neural networks,
time series, and regression”. In: Alexandria Engineering Journal 58.2 (2019), pp. 499–506.

[6] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. “Recurrent neural networks for
time series forecasting: Current status and future directions”. In: International Journal of Fore-
casting 37.1 (2021), pp. 388–427.

[7] S. Y. W. Jousma. “Hierarchies in Predictive Coding”. Apr. 2021.

[8] Anthony Mandow et al. “Experimental kinematics for wheeled skid-steer mobile robots”. In: 2007
IEEE/RSJ international conference on intelligent robots and systems. IEEE. 2007, pp. 1222–1227.

[9] Georgia Anousaki and Kostas J Kyriakopoulos. “A dead-reckoning scheme for skid-steered vehicles
in outdoor environments”. In: IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004. Vol. 1. IEEE. 2004, pp. 580–585.

[10] S Ali A Moosavian and Arash Kalantari. “Experimental slip estimation for exact kinematics mod-
eling and control of a tracked mobile robot”. In: 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2008, pp. 95–100.

[11] Tianmiao Wang et al. “Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot
Based on a Laser Scanner Sensor”. In: Sensors 15 (May 2015), pp. 9681–9702. doi: 10.3390/
s150509681.

[12] Neal Seegmiller. “Dynamic Model Formulation and Calibration for Wheeled Mobile Robots”. PhD
thesis. Pittsburgh, PA: Carnegie Mellon University, Oct. 2014.

[13] C. Pezzato, R. Ferrari, and C. H. Corbato. “A Novel Adaptive Controller for Robot Manipulators
Based on Active Inference”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 2973–2980.
doi: 10.1109/LRA.2020.2974451.

[14] Mohamed Baioumy et al. “Active Inference for Integrated State-Estimation, Control, and Learn-
ing”. In: IEEE International Conference on Robotics and Automation (ICRA) (May 2020), pp. 4665–
4671.

[15] I Hijne. “Generalised Motions in Active Inference by Finite Differences”. In: TU Delft repository
(Aug. 2020).

[16] Cameron R. Taylor. Finite Difference Coefficients Calculator. https://web.media.mit.edu/

~crtaylor/calculator.html. 2016.

45

https://doi.org/10.1038/4580
https://doi.org/10.3390/s150509681
https://doi.org/10.3390/s150509681
https://doi.org/10.1109/LRA.2020.2974451
https://web.media.mit.edu/~crtaylor/calculator.html
https://web.media.mit.edu/~crtaylor/calculator.html


BIBLIOGRAPHY

[17] Michael W. Spratling. “Distinguishing theory from implementation in predictive coding accounts
of brain function”. In: Behavioral and Brain Sciences 36.3 (2013), pp. 231–232. issn: 14691825.
doi: 10.1017/S0140525X12002178.

[18] William Lotter, Gabriel Kreiman, and David Cox. “Deep predictive coding networks for video pre-
diction and unsupervised learning”. In: 5th International Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings (2016), pp. 1–18. arXiv: 1605.08104.

[19] Matin Hosseini and Anthony Maida. “Hierarchical Predictive Coding Models in a Deep-Learning
Framework”. In: arXiv preprint arXiv:2005.03230 (2020). arXiv: 2005.03230. url: http://
arxiv.org/abs/2005.03230.

[20] Roshan Prakash Rane et al. “PredNet and Predictive Coding: A Critical Review”. In: Proceedings
of the 2020 International Conference on Multimedia Retrieval. New York, NY, USA: ACM, June
2020, pp. 233–241. isbn: 9781450370875. doi: 10.1145/3372278.3390694. arXiv: 1906.11902.
url: https://dl.acm.org/doi/10.1145/3372278.3390694.

[21] Xia Huang, Hossein Mousavi, and Gemma Roig. “Predictive Coding Networks Meet Action Recog-
nition”. In: arXiv preprint arXiv:1910.10056 (2019). arXiv: 1910.10056. url: http://arxiv.
org/abs/1910.10056.

[22] Marcio Fonseca. “Unsupervised predictive coding models may explain visual brain representation”.
In: arXiv preprint arXiv:1907.00441 (2019).

[23] Ardiansyah Fauzi and Norimi Mizutani. “Potential of deep predictive coding networks for spa-
tiotemporal tsunami wavefield prediction”. In: Geoscience Letters 7.1 (2020), pp. 1–13.

[24] Eiji Watanabe et al. “Illusory motion reproduced by deep neural networks trained for prediction”.
In: Frontiers in Psychology 9.MAR (2018), p. 345. issn: 16641078. doi: 10.3389/fpsyg.2018.
00345.

[25] William Lotter, Gabriel Kreiman, and David Cox. “A neural network trained to predict future
video frames mimics critical properties of biological neuronal responses and perception”. In: Arxiv
(2018), pp. 1–18. arXiv: 1805.10734. url: http://arxiv.org/abs/1805.10734.

[26] Nelly Elsayed, Anthony S. Maida, and Magdy Bayoumi. “Reduced-gate convolutional long short-
term memory using predictive coding for spatiotemporal prediction”. In: Computational Intelli-
gence (2020). issn: 14678640. doi: 10.1111/coin.12277.

[27] Junpei Zhong et al. “AFA-PredNet: The Action Modulation Within Predictive Coding”. In: Pro-
ceedings of the International Joint Conference on Neural Networks. Vol. 2018-July. IEEE. 2018,
pp. 1–8. isbn: 9781509060146. doi: 10.1109/IJCNN.2018.8489751. arXiv: 1804.03826.

[28] Zdenek Straka, Tomas Svoboda, and Matej Hoffmann. “PreCNet: Next Frame Video Prediction
Based on Predictive Coding”. In: arXiv preprint arXiv:2004.14878 (2020). arXiv: 2004.14878.
url: http://arxiv.org/abs/2004.14878.

[29] Oskar Triebe, Nikolay Laptev, and Ram Rajagopal. “Ar-net: A simple auto-regressive neural net-
work for time-series”. In: arXiv preprint arXiv:1911.12436 (2019).

[30] Yong Zhou, Lingyu Wang, and Junhao Qian. “Application of Combined Models Based on Empirical
Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for
Short-Term Heating Load Predictions”. In: Sustainability 14.12 (2022), p. 7349.

[31] Fitash Ul Haq et al. “Comparing offline and online testing of deep neural networks: An autonomous
car case study”. In: 2020 IEEE 13th International Conference on Software Testing, Validation and
Verification (ICST). IEEE. 2020, pp. 85–95.

[32] Hassan Ismail Fawaz et al. “Deep learning for time series classification: a review”. In: Data mining
and knowledge discovery 33.4 (2019), pp. 917–963.

[33] Bryan Lim and Stefan Zohren. “Time-series forecasting with deep learning: a survey”. In: Philo-
sophical Transactions of the Royal Society A 379.2194 (2021), p. 20200209.

[34] José F Torres et al. “Deep learning for time series forecasting: a survey”. In: Big Data 9.1 (2021),
pp. 3–21.

46 Sjoerd Jousma

https://doi.org/10.1017/S0140525X12002178
https://arxiv.org/abs/1605.08104
https://arxiv.org/abs/2005.03230
http://arxiv.org/abs/2005.03230
http://arxiv.org/abs/2005.03230
https://doi.org/10.1145/3372278.3390694
https://arxiv.org/abs/1906.11902
https://dl.acm.org/doi/10.1145/3372278.3390694
https://arxiv.org/abs/1910.10056
http://arxiv.org/abs/1910.10056
http://arxiv.org/abs/1910.10056
https://doi.org/10.3389/fpsyg.2018.00345
https://doi.org/10.3389/fpsyg.2018.00345
https://arxiv.org/abs/1805.10734
http://arxiv.org/abs/1805.10734
https://doi.org/10.1111/coin.12277
https://doi.org/10.1109/IJCNN.2018.8489751
https://arxiv.org/abs/1804.03826
https://arxiv.org/abs/2004.14878
http://arxiv.org/abs/2004.14878


BIBLIOGRAPHY

[35] Pablo Lanillos et al. “Active inference in robotics and artificial agents: Survey and challenges”. In:
arXiv preprint arXiv:2112.01871 (2021).

[36] Manuel Baltieri and Christopher L Buckley. “An active inference implementation of phototaxis”.
In: arXiv preprint arXiv:1707.01806 (2017).

[37] E.P. Veldhuis. “A new SIMO filter for the estimation of higher order derivatives”. Dec. 2021.

[38] Abraham Savitzky and Marcel JE Golay. “Smoothing and differentiation of data by simplified
least squares procedures.” In: Analytical chemistry 36.8 (1964), pp. 1627–1639.

Sjoerd Jousma 47


	INTRODUCTION 
	ACTIVE INFERENCE VELOCITY CONTROLLER
	Jackal robot
	Overview of the active inference velocity controller
	Choice of dynamic model
	Free energy formulation
	Generalization
	Summary

	FINITE DIFFERENCES
	Derivation of finite difference method
	Stencil choice
	Summary

	PREDNET
	Predictive Coding
	PredNet
	PredNet inner workings
	Using PredNet (Python 3) with ROS Melodic/Kinetic
	The structure of PredNet input
	Tuning PredNet hyper parameters
	Summary

	METHODS
	Description of data
	Model settings
	Predictions of PredNet
	Derivatives of finite difference methods 
	Obtaining the derivatives
	Analysis of error contribution

	Summary

	RESULTS
	Predictions of PredNet
	Derivatives of finite difference methods 

	DISCUSSION
	PredNet accuracy
	PredNet usefulness
	Finite difference technique
	Training data
	Related and future work

	CONCLUSION

