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Abstract—We consider a model-based ultrasound imaging
scenario using a single transducer with a coding mask, and
assume that the pulse-echo model is erroneously estimated,
resulting in decreased imaging performance. Although the pulse-
echo Green’s function to each pixel has to be measured to obtain
a good model, typically only forward-field measurements are
obtained for better SNR, from which the pulse-echo Green’s
functions are estimated. However, if the transducer’s receive
transfer function is different from the transmit transfer function,
the forward-field measurements do not incorporate the receive
transfer function, resulting in an incorrect pulse-echo model. We
propose two calibration techniques that start with this erroneous
model, and update it using pulse-echo measurements. In the
first technique we assume the calibration phantom is known a
priori, whereas in the second technique we use multiple random
calibration phantoms of which only the second-order statistics
are assumed to be known beforehand. Both methods are able to
significantly improve the pulse-echo model, strongly improving
imaging performance. Our simulation results show that the
first technique works best, since there is no uncertainty about
the calibration image, whereas the blind calibration technique
requires no exact knowledge of the calibration phantom, making
it robust to positioning or manufacturing errors.

I. INTRODUCTION

Model-based image reconstruction from pulse-echo mea-
surements requires a well-calibrated pulse-echo model relating
the ultrasound image to the pulse-echo measurements. We
consider model calibration for ultrasound imaging with a
device consisting of only a single sensor with a coding
mask. In particular, we assume a linear measurement model,
where the Green’s functions are calibrated correctly for each
pixel, but the electro-mechanical transducer transfer function
is incorrectly estimated. Using only pulse-echo measurements,
we then want to update the model, in case the transmit and
receive transfer function of the transducer are not identical.

Model-based ultrasound imaging takes into account the
known physics of the ultrasound imaging problem. The wave-
form of the transmitted pulse, as well as the Green’s functions
and transducer transfer functions can be exploited when recon-
structing the ultrasound image from the measured pulse-echo
signals. Model-based imaging approaches have been applied
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to linear arrays [1]–[8], where typically the first-order Born
approximation is used to express pulse-echo measurements as
a linear function of the unknown image, although this relation
may be more complex for actual experimental measurements.

Exploiting all possible information in measurements is not
only useful for better imaging algorithms, but can also help to
enable image reconstruction in scenarios where measurements
are sampled below Nyquist rate (either spatially or temporally)
in order to reduce the amount of measurement data. Such
undersampling, or compression, is becoming increasingly
more important when there is an unmanageable amount of
measurement data (e.g. for large 2D arrays), or when we
can only use a limited amount of sensors (e.g. due to space
limitations in imaging probes for minimally invasive surgery).
This demand for compressing measurement data has led to
a number of studies ([9]–[15], among others) in the field of
medical ultrasound imaging using compressive sensing (CS)
techniques [16]–[18], some of them relying on an accurate
model of the pulse-echo field for reconstruction.

Recently, we proposed a measurement setup using only a
single ultrasound sensor with a coding mask [19], [20]. Due
to the large aperture size of the single sensor with respect to
the wavelength, spatial measurements are effectively encoded
into the temporal dimension of the output signals by the
coding mask placed in front of the transducer. Because of the
lack of spatial measurements, this imaging technique is more
dependent on accurate modeling of the temporal pulse-echo
signals.

To acquire an accurate model of the pulse-echo signal of
each pixel, one would have to place a small reflector in each
pixel position, and measure each pixel separately. This would
result in very low SNR, so instead we measure the transmit
field of the masked transducer in a plane, for each pixel in the
plane, after which we can virtually propagate this field to any
point in space (see [19] for more details). Subsequently, the
pulse-echo signal for each potential reflector can be estimated
from this measurement of the forward field.

Although we can assume that each Green’s function be-
tween a pixel and the transducer is reciprocal, and thus
can estimate the pulse-echo Green’s function from the for-
ward Green’s function, we may not assume that the electro-
mechanical transfer function is the same for transmit and
receive (depending on the transducer transmit and receive
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electrical matching networks and impedances [21], [22]). As a
result, we can correctly estimate the pulse-echo Green’s func-
tions from forward-only measurements, but not the transducer
transfer function. Hence, we will consider several calibration
techniques to correct for this model mismatch. We assume that
an incorrect measurement model is obtained from measuring
the forward field, and subsequently try to update this model
using conventional pulse-echo measurements.

II. SIGNAL MODEL

Using the first-order Born approximation (no multiple scat-
tering between reflectors), we assume that any pulse-echo
measurement is a linear function of the ultrasound image.
More specifically, we use the following measurement equation:

y = Ax+ n, (1)

where y ∈ C
M is the complex vector of frequency samples of

the sampled pulse-echo signal, and A ∈ C
M×N is a complex

matrix containing Green’s functions between each pixel and
the transducer, thereby relating each measurement to the dis-
cretized image x ∈ R

N . The vector n ∈ C
M ∼ CN (0, σ2

nI)
contains i.i.d. white complex Gaussian measurement noise, N
is the number of pixels, and M is the number of measurement
samples. Since A is typically an ill-posed matrix, we will as-
sume that an ultrasound image is obtained using a regularized
estimate of x from y:

x̂ = argmin
x

‖y −Ax‖22 + λ‖x‖22, (2)

where λ is a regularization parameter, which we will set to
σ2
n for all imaging experiments. This corresponds to using the

Wiener estimate of x assuming that the covariance matrix of
x is the identity matrix. Although the identity matrix does not
accurately describe the structure in the true ultrasound image,
it will prevent large values in the solution x̂ without imposing
an explicit structure on x̂, instead relying on the data fidelity
term ‖y−Ax‖22 to obtain an estimate of the ultrasound image.

Next, we assume that an estimate of A, denoted by Â, is
obtained from a calibration procedure using experimental data
of the actual measurement setup. A straightforward approach
would be to put a small (approximately the same size as the
wavelength) scatterer in each pixel position, and measure its
pulse-echo response. The drawback of such an approach is the
relatively low SNR, since the small reflector would only reflect
a small fraction of the incident wavefield. Instead, we try to
infer the pulse-echo signals of all pixels by only measuring
the forward field using a hydrophone (a small calibrated
microphone membrane at the tip of a needle), then obtain a
rough estimate of A, and finally update A using pulse-echo
measurements from arbitrary objects with good SNR.

For a linear propagation and scattering model, the pressure
signal um(t) measured at pixel m can be described as a
convolution of the excitation pulse e(t), the transmit impulse
response gtx(t), and the Green’s function h(t,pm) [23]–[25]:

um(t) = e(t) ∗ gtx(t) ∗ h(t,pm), (3)

where pm ∈ R
3 is the position of pixel m, and * denotes the

temporal convolution operator. Using the reciprocity principle,
we then estimate the pulse-echo response am(t) of pixel m as
the auto-convolution âm(t) = um(t) ∗ um(t):

âm(t) = um(t) ∗ um(t) (4)
= e(t) ∗ gtx(t) ∗ h(t,pm) ∗ h(t,pm) ∗ gtx(t) ∗ e(t),

whereas the true pulse-echo signal is:

am(t) = e(t) ∗ gtx(t) ∗ h(t,pm) ∗ h(t,pm) ∗ grx(t). (5)

Equations (4) and (5) show that the error in the estimated
pulse-echo signal is caused by the term e(t) ∗ e(t), and by
the fact that generally gtx(t) �= grx(t). The first error can
be resolved by making sure that the pulse length of e(t) is
approximately one sample in time, such that e(t) ∗ e(t) ≈
δ(t) ∗ δ(t) = δ(t) = e(t). Resolving the second error will be
the focus of the remainder of this paper.

We will assume that there exists a signal c(t) that corrects
for this mismatch such that am(t) = c(t) ∗ âm(t). Besides the
mismatch between (4) and (5), c(t) can also correct for any
other un-modeled effects, or remove model errors introduced
by e.g. the hydrophone impulse response used for measuring
the forward field. Note that c(t) can only be used to update
the temporal frequencies in Â that are within the bandwidth
of âm(t). Since the impulse response mismatch is common
for all pixels, we can rewrite (1) as:

y = diag(c)Âx+ n, (6)

where c ∈ C
M is the DFT of c(t), and Â is an estimate

of the true matrix A, obtained using the auto-convolution
method described above. The calibration problem consists of
estimating c from the measurement y, having some prior
knowledge on x. In the remainder of this paper we study two
cases: one where x is fully known, and one where x is seen
as a random variable with known covariance matrix.

III. CALIBRATION WITH A KNOWN PHANTOM

We first consider the case of a single transducer with a cod-
ing mask, obtaining additional measurements by rotating the
mask in slow-time. We further assume that a static calibration
phantom xc is known. Denoting the measurement equation for
the pulse-echo measurement with the mask rotated at angle φ
by Aφ, the total measurement equation for Φ measurements
is:

⎡
⎢⎢⎢⎣

y1

y2

...
yΦ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

diag(c)Â1

diag(c)Â2

...
diag(c)ÂΦ

⎤
⎥⎥⎥⎦xc + n. (7)

Since we use the same measurement setup across all mea-
surements φ, the signal c should not change, and it appears
multiple times in (7). Consequently, (7) can be explicitly
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rewritten in terms of only c:
⎡
⎢⎢⎢⎣

y1

y2

...
yΦ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

diag(Â1xc)

diag(Â2xc)
...

diag(ÂΦxc)

⎤
⎥⎥⎥⎦ c+ n, (8)

From (8), it is straightforward to estimate c by minimizing

ĉ = argmin
c

‖ỹ − Ãc‖22 + λc1‖c‖22, (9)

where Ã = [diag(Â1xc) diag(Â2xc) . . . diag(ÂΦxc)]
T, and

ỹ = [yT
1 yT

2 . . . yT
Φ]

T. The term ‖c‖22 is used to regularize
the problem due to the presence of rows in Ã with entries
close to zero, and λc1 is the regularization parameter, which
we will set proportional to σ2

n.

IV. BLIND CALIBRATION

As an alternative calibration method, we can consider es-
timating c if xc itself is not known, but assuming that we
have some prior statistical information about xc. Specifically,
we will assume that xc can be regarded as a random signal
with a known covariance matrix Cx. This is advantageous
compared to non-blind calibration, since xc does not have to
be known exactly. For example, the calibration phantom may
not be positioned correctly, causing y to be a measurement
corresponding to a rotated and/or translated version of xc.
Moreover, there could be manufacturing errors, so that the true
xc is not known, but only an approximation of it. Instead of
taking these errors into account explicitly, we will not directly
assume anything about the shape of the phantom, but view xc

as a realization of a random variable with covariance matrix
Cx.

For example, a water tank with a large amount of moving air
or micro bubbles ([26], [27]) could be utilized as calibration
phantom. Between each pulse-echo measurement the bubbles
will have moved and a new ‘realization’ of the random process
is observed. One could also create a solid phantom with
many small reflectors inside, generated according to a random
process with spatial covariance Cx. By rotating or translating
the transducer across the phantom over a sufficient distance,
multiple independent realizations are acquired.

More formally, suppose we collect K pulse-echo measure-
ments {yk}Kk=1, where each yk is measured from a different
realization of xc based on the same true model A, and
corresponding estimated model Â. Furthermore, assuming that
xc and n are uncorrelated variables, we have

E{yyH} = E{(Axc + n)H(Axc + n)} (10)

= E{diag(c)Âxcx
H
c Â

Hdiag(c)H}+ E{nnH} (11)

= diag(c)ÂCxÂ
Hdiag(c)H + σ2

nI. (12)

After obtaining an estimate of E{yyH} using:

Ĉy =
1

K

K∑
k=1

yyH, (13)

we want to estimate c from Ĉy . This is a problem that can
be solved using ‘covariance matching’ techniques [28], and
has been applied in the context of model calibration for radio
astronomy arrays, where the problem structure is very similar
to ours [29]. Instead of minimizing the maximum likelihood
cost function for c, which is non-convex, the covariance
matching approach instead minimizes

‖Ĉy − diag(c)ÂCxÂ
Hdiag(c)H − σ2

nI‖2F (14)

with respect to c.
In this paper, we will use the recently proposed method in

[30] to minimize (14). It is based on the observation that

diag(c)ÂCxÂ
Hdiag(c)H = (ÂCxÂ

H) ◦ (ccH) (15)

= (ÂCxÂ
H) ◦Cc (16)

if rank(Cc) = 1. By relaxing this non-convex rank constraint
to a positive semi-definite constraint, we obtain a convex
relaxation to estimate ccH:

Ĉc = argmin
Cc

‖Ĉy − (ÂCxÂ
H) ◦Cc − σ2

nI‖2F , (17)

s.t. Cc 	 0,

where Cc 	 0 means Cc is a positive semi-definite matrix,
and ◦ is the element-wise matrix product. If rank(Ĉc) = 1,
we have obtained the minimizer of (14). If not, we obtain
the closest rank-1 approximation to Ĉc using the eigenvector
corresponding to the largest eigenvalue of Ĉc.

V. SIMULATION RESULTS

As a simulation example, we consider a 3.6 mm diameter
circular transducer with a coding mask, and a maximum mask
thickness of 0.65 mm. As imaging region we choose all pixels
on a Cartesian grid in a 3 by 3 mm square area in the (x,y)
plane parallel to the transducer surface, at a depth of 6 mm. We
assume that an initial estimate of A was obtained as described
in Section II. The transducer transmit and receive transfer
functions are slightly different, as shown in Fig. 1, where
the true total impulse response gtx(t) ∗ grx(t) is shown, as
well as the estimated total impulse response gtx(t) ∗ gtx(t)
as obtained by autoconvolution. The right panel in Fig. 1
also shows the ideal correction function c(t) in the frequency
domain: c(ω) = grx(ω)/gtx(ω). The pulses are sampled at
a sampling rate of 12 MHz. For simulations with a fixed
calibration phantom, we generate an arbitrary xc ∼ N (0, I).
For blind calibration simulations, we also generate each xc

from a Gaussian distribution: xc ∼ N (0,Cx), and we use
Cx = I.

First, we display some example reconstructions, with and
without calibration. We set the measurement SNR

SNR = trace(AAH)/(Nσ2
n) (18)

to 20 dB for both the imaging experiment, as well as the
calibration measurements. For the calibration with a known
phantom, Φ = 50 measurements were obtained by rotation,
where a randomly generated xc is fixed across all rotations. For
the blind calibration technique, K = 100 measurements were
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obtained, where each measurement is completely random and
independent from other measurements (as described above).
In Fig. 2, we show the true image compared to image recon-
structions using a perfectly calibrated system, the incorrectly
calibrated system, and the proposed calibration techniques.
The R-shaped test phantom was adjusted to make it zero mean
and unit variance. As can be seen, an un-calibrated model can
cause a significant imaging error, and this is easily corrected
by both calibration techniques.
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Fig. 1: Total electro-mechanical impulse responses: gtx(t) ∗ gtx(t)
(initial estimate in Â) and gtx(t)∗grx(t) (true total impulse response)
in the time domain (left), and the frequency domain (right). In the
right panel we also display the DFT of the ideal solution c(t).

Fig. 2: Example reconstructions, compared to the true image (top),
with a perfectly calibrated and uncalibrated model (middle rows),
and using the proposed calibration techniques (bottom). Here, the
calibration SNR is 20 dB, the imaging experiment SNR is 20 dB,
and Φ = 50, K = 100.

Finally, we perform a variety of calibration experiments
for various SNR values. After calibration, we do an imaging
experiment with the same R-shaped phantom, and compute the
absolute normalized correlation between the estimated and true
image as performance measure of the calibration technique.
The SNR for the imaging experiments is fixed to 20 dB.
For the blind calibration technique we consider a varying
number of measurements (K = 10, 50, 100), and for the non-
blind calibration technique we simulate for Φ = 10, 50. In
the case of non-blind calibration with a known phantom, we
perform 100 calibration experiments per SNR, and compute
the average absolute image reconstruction correlation using the
calibrated model. Each phantom is generated with a different
calibration random phantom (keeping the phantom fixed across
all Φ measurements). For the blind calibration simulations, we
perform 10 calibration experiments per SNR, and show the
average absolute correlation.

The results are shown in Fig. 3. The perfectly calibrated
model obtains a maximum correlation close to 0.9 (perfect
correlation is difficult due to the ill-posedness of the inverse
imaging problem). The calibration with a known phantom
performs the best, which is expected since it is assumed
the calibration phantom is known exactly, whereas the blind
calibration algorithms have to account for the uncertainty of
the calibration phantom.

When the SNR decreases, performance decreases for all
techniques. The first calibration technique will try to ‘fit’ the
estimate of c to the large measurement noise. For the second
technique, the estimated measurement covariance matrix Ĉy

may not be accurate enough, and will be dominated by the
error of the noise covariance matrix implicit in Cy . If Ĉy is not
close enough to the true covariance Cy , the blind calibration
algorithm may not be able to find a low-rank solution to
(14), and the resulting estimate of c will not necessarily be
a good calibration signal. Consequently, the updated model
may become less accurate, resulting in a decreased imaging
performance.

VI. CONCLUSIONS AND DISCUSSION

We considered the problem of correcting an erroneously
calibrated ultrasound pulse-echo model for a single sensor
with a coding mask. Due to a mismatch between the transmit
and receive impulse response of the single transducer, the
used model may contain modeling errors causing a decrease
of imaging quality. To obtain a better pulse-echo model, we
proposed two calibration methods. One uses multiple mea-
surements of the same, but known, calibration image, and the
other uses many different random calibration images, knowing
only the second order statistics of these images. We showed
that, with sufficient SNR, both techniques are able to improve
the pulse-echo model, resulting in better imaging performance.
The blind calibration algorithm performs worse, especially for
lower SNR, due to the uncertainty about the calibration image.

Our simulation results show that the models calibrated using
low SNR measurements cause a deteriorated imaging quality,
even compared to the uncalibrated model. Nevertheless, the
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Fig. 3: Average absolute normalized correlation between the true test
image and the estimated image using a (non)-calibrated pulse-echo
model, for various SNRs.

correlations shown in Fig. 3 give an overly pessimistic view on
the imaging performance. If one were to take into account the
uncertainty in Â, a better imaging performance could already
be obtained by increasing the regularization parameter λ in (2),
even though the measurement noise did not increase. Using a
more optimal estimate, taking the modeling noise into account,
will result in better performance for all calibration techniques
in this paper.
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