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Abstract—The development and widespread adoption of im-
mersive XR applications has led to a renewed interest in rep-
resentations that are capable of reproducing real-world objects
and scenes with high fidelity. Among such representations, point
clouds have attracted the interest of industry and academia alike,
and new compression solutions have been developed to facilitate
their adoption in mainstream applications. To ensure the best
quality of experience for the end-user in limited bandwidth
scenarios, new full-reference objective quality metrics have been
proposed, promoting features designed specifically for point cloud
contents. However, the performance of such features to predict
the quality of point cloud contents when the reference is not
available is largely unexplored. In this paper, we evaluate the
performance of features commonly used to model point cloud
distortions in a no-reference framework. The obtained features
are integrated into a quality value through a support vector
regression model. Results demonstrate the potential of full-
reference features for no-reference assessment.

Index Terms—3D model quality assessment, colored point
cloud, no-reference quality assessment

2023 15th International Conference on Quality of Multimedia Experience (QoMEX)

I. INTRODUCTION

Recent years have witnessed the rise of eXtended Reality
(XR) technologies, fuelled by developments in devices for
capturing, delivering and rendering, as well as the demand for
applications to use XR for use cases such as education, re-
mote communication, gaming, and cultural heritage [1]. Such
applications need to be populated with volumetric contents
in order to enable 6 degrees of freedom navigation. Among
others, point clouds have received significant interest from
industry and academia as a relevant format for volumetric
representation. A point cloud is a collection of points, de-
fined by their coordinates in 3D space, as well as additional
attributes that define certain properties of each point, such as
texture or normal vector. In order to deliver a high-fidelity
representation, millions of points might be needed for a given
object; thus, significant effort has been spent in crafting
efficient compression solutions to alleviate the storage and
transmission requirements [2]–[4]. Such compression solutions

This work was supported through the European Commission Horizon
Europe program, under the grant agreement 101070109, TRANSMIXR https:
//transmixr.eu/. Funded by the European Union. Views and opinions expressed
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Networks, Content and Technology. Neither the European Union nor the
granting authority can be held responsible for them.

need objective quality metrics to automatically predict the
visual quality of the point cloud against encoding degradations.

A way to split visual quality metrics in approach and
application is whether the metric requires undistorted refer-
ence content to provide a measure of visual quality. Full-
reference (FR) quality metrics compare distorted content with
its original, while no-reference (NR) or blind metrics estimate
the distortion from a single content. Using some information
on the original content is referred to as reduced reference
(RR). RR and NR metrics are fundamental to assess distortions
when the pristine content is not available (for example at the
receiver side of a transmission pipeline), or when it is not
known in the first place (for example, to assess acquisition
noise or enhancement processing such as super-resolution).
However, most of the objective quality metrics that have been
proposed to estimate and model visual distortions in point
cloud contents, have been in the realm of FR assessment.
Whereas early approaches for FR metrics focused on directly
measuring the distance between attributes on a point basis and
aggregating them into a global score, more recently, methods
have been proposed to compute features based on point
neighborhoods, which would describe certain properties of the
point cloud content. Such features are generally defined and
compared locally between the distorted and reference point
clouds. The intuition behind this paper is to try to understand
whether such locally defined features can be generalized and
used for NR point cloud assessment.

In this paper, we investigate the effectiveness of adapting
multiple types of features that have been defined for FR point
cloud quality assessment in NR point cloud quality assessment
methods. To do so, we transform known local descriptors to
global descriptors, using different kinds of statistical distri-
bution models, and we test their correlation with the point
cloud subjective visual quality, using the framework defined
in [5]. A set of hand-crafted local features are calculated per
point or neighborhood. For each feature, descriptors based on
the distribution of the values are extracted to create global
properties of the point cloud. These properties are tested in a
quality value prediction model to assess their potential to use
in a NR point cloud quality metric.

II. RELATED WORK

FR metrics for point cloud contents can be divided into
point-based or image-based, depending on whether the metric
computation is performed on the original 3D domain, or979-8-3503-1173-0/23 $31.00 ©IEEE
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if a projection to 2D surfaces is applied before computing
traditional image metrics [6], [7]. The latter have the advantage
of offering a global view of the point cloud content, implicitly
considering occlusions and visual masking in their compu-
tation; however, they are rendering-dependent, such that the
performance is affected by the rendering parameters and en-
vironment, as well as the camera distance. Conversely, point-
based metrics compute distortions by comparing attributes or
features locally, either on a point basis or using neighborhoods.
Notable exceptions are the histogram metrics proposed in [8]
and [9], which compute global measures of color and geometry
distortions without resorting to 2D projection.

Early work on point-based approaches focused on direct
measurements of geometric error on a point basis, either
by measuring the distance between matching points in ref-
erence and distorted contents (point-to-point [10]), by pro-
jecting the distance along the normal direction (point-to-
plane [11]) or with respect to a local point distribution (point-
to-distribution [12]), or by performing a comparison of nor-
mal vectors (plane-to-plane [13]). More recent methods have
integrated color distortions, along with descriptors and mea-
surements that better approximate the human visual system.
PCQM [14] defines 8 features based on comparing curvature
and luminance values between reference and distorted contents
to obtain a global measure of distortion. PointSSIM [15]
uses dispersion statistics of geometry, normal, curvature and
color attributes to produce a structural similarity score. Yang
et al. [16] define a measure of point cloud distortion based
on multiscale gravitational potential energy, whereas Xu et
al. [17] model the visual distortion of point cloud contents
as the difference in elastic potential energy for each point.
PointPCA [18] defines several geometric and textural descrip-
tors based on PCA decomposition and uses statistical features
to capture variations within neighborhoods. GraphSIM [19]
constructs a graph from a sampled version of reference and
distorted point clouds, and uses statistical moments defined on
the color gradient to compute a measure of similarity.

Outside of the domain of FR metrics, few methods have
been proposed in the realm of RR metrics [20], [21]. NR
metrics have recently attracted some attention. A set of hand-
crafted features is used in a deep-learning model [22] (ge-
ometric distance, mean curvature and luminance) and in a
machine learning framework [5](eigenvalue and color-based
features) to learn a mapping to the ground-truth mean opinion
score. PQA-net [23] maps the point cloud to 2D images using
a multi-view projection strategy to extract a 384-dimensional
feature vector, which is fed into two learning modules that
combined calculate the quality of the degraded point cloud.
Liu et al. [24] designed a sparse convolutional neural network
to extract the hierarchical features, and predict quality scores
with a regression module of a grand new dataset they created
for these learning-based approaches. Tliba et al. [25] employ
a shallow network to extract features from sparse patches of
data, using both supervised and unsupervised learning to reach
a global quality score.

TABLE I: Definition of FR features under use.
Feature Definition

Curvature λ3/(λ1 + λ2 + λ3)
Anisotropy (λ1 − λ3)/λ1

Linearity (λ3 − λ2)/λ1

Planarity (λ2 − λ3)/λ1

Sphericity λ3/λ1

Variation λ1/(λ1 + λ3 + λ3)
Omnivariance 3

√
λ1 + λ3 + λ3

Eigenentropy
∑

i∈{1,2,3} λi · ln(λi)

Sum of eigenvalues λ1 + λ2 + λ3

Density
∑|Pi|

n=1 ||xn − xi||22
CV-PED gpihpi

PED mpigpihpi
EPES-CO mpihpi

EPES 1/2(mpihpi )h
2
pi

CFGD mpi/hpi

III. PROPOSED GLOBAL FEATURES

To transform FR local features to global descriptors of point
clouds, we build upon the framework of Zhang et al. [5], where
the authors reviewed the transformation of 5 geometric and 3
color features to a global descriptor using different statistical
parameters. The proposed features were evaluated on their
combined performance in a regression model to predict the
quality score of a point cloud. Our extension to their models
involves including new features adapted from the literature
on FR point cloud quality metrics, as well as using a new
statistical parameter that can aid in modeling the distribution
of the features.

A. Features

The set of geometric descriptors is based on Principal
Component Analysis to estimate the shape properties of a
point or area of the point cloud. The process of estimating
these features is explained in [5]: a neighborhood Pi of k
nearest points is defined for each point pi in point cloud P:

Pi = knnk(pi) (1)

The covariance matrix of this set is computed with :

Ci =
1

|Pi|

|Pi|∑
n=1

(pn − p̄i)(pn − p̄i)
T (2)

and three eigenvalues can be found through eigenvalue decom-
position, where λ1 > λ2 > λ3: Ci · vj = λj · vj , j ∈ 1, 2, 3.

With these eigenvalues, various geometry features can be
calculated. In [5], the set of curvature, anisotropy, linearity,
planarity, and sphericity is used. We extend it with addi-
tional features, which have been successfully used in FR
metrics [18], namely Variation, Omnivariance, Eigensum and
Eigenentropy. In addition to the PCA-based features, we
define a geometric measure describing the density of a given
neighborhood. We define it as the average Euclidean distance
among the neighbors of a point.

In terms of color features, the framework of Zhang et al. [5]
considers 3 color features l, a∗, b∗ based on the CIELAB
color space, and then aggregates them in a single color
measure. We additionally consider the RGB, XY Z, and

148
Authorized licensed use limited to: TU Delft Library. Downloaded on August 17,2023 at 12:55:45 UTC from IEEE Xplore.  Restrictions apply. 



HCL color spaces, and analyse the performance of each
color attribute separately. In addition, we consider features
that were proposed in the literature which combine both
geometric and color properties, namely the Potential Energy
Discrepancy (PED) [16], the Elastic Potential Energy Simi-
larity (EPES) [17], and the Color Fluctuation over Geometric
Distance (CFGD) [21]. We also test the geometry-only version
of PED, namely CV-PED, and the elastic coefficient defined
for EPES, namely EPES-CO. For all these features, three
main concepts are introduced, namely mass, spatial field, and
distance:

mpi
=

{∑3
j=1 wj |(ci)j − (c0)j |+ 1 if ci, c0 ̸= ϕ

1 otherwise
(3)

gpi
= (1 + e−

||xi−x0||22
σ2 )−1 (4)

hpi
= ||xi − x0||22, (5)

in which x and c are the position and color attributes
of the point pi under exam, and wj refers to the weight
associated with each color attribute j = {R,G,B} (wR =
wB = 1/4, wG = 1/2). For PED, the value is computed as
PEDpi

= mpi
gpi

hpi
; for CV-PED, we omit the color-based

m value (CV-PEDpi
= gpi

hpi
). The elastic coefficient for

EPES is computed as follows: EPES-COpi = mpihpi , and
the computation of EPES integrates elastic energy (EPESpi =
1/2(mpi

hpi
)(h2

pi
)). Finally, CFGD is defined as CFGDpi

=
mpi

/hpi
. A summary of all features under consideration can

be found in Table I.

B. Transforming local features to a global descriptor

The features we have extracted are computed on a point
or neighborhood basis, forming a high-dimensional vector. To
translate it to a global measure, the properties of the vector
need to be extracted to model the distortion with a smaller
number of features.

Zhang et al. [5] proposes extracting the mean µ, standard
deviation σ, entropy H , generalized Gaussian distribution
parameters (GGD), asymmetric generalized Gaussian distribu-
tion parameters (AGGD), and Gamma distribution parameters.
In particular, they found that for feature vectors where higher
or lower values are directly correlated with quality, mean and
standard deviation are sufficient to extract enough information,
whereas for features where the sparsity indicates quality, the
entropy can be used to represent information loss. The feature
can be described to fit a probability distribution when shown
in a histogram. If the distribution is Gaussian-like, symmetric
or asymmetric, the parameters of this distribution can be
estimated. Moreover, the estimated parameter of the gamma
distribution can be employed, which have been shown to be
useful descriptors in mesh quality estimation [26].

We expand this set to include the estimated parameters of
a beta distribution. The beta distribution is a generalization of
the uniform distribution, and is bounded to a [0, 1] support. It
can be interpreted as a ratio of gamma distributions. As it is
bounded, the feature vector needs to be normalized in order

to estimate its parameters. The c and d parameters of the beta
distributions are estimated with µ = mean(f), σ2 = var(f)

c = µ2(
1− µ

σ2
)− µ, d = c(

1− µ

µ
). (6)

Moreover, we include some additional statistical measures
which were successfully used in RR point cloud assess-
ment [20], namely median Md, mode Mo, energy En, and
sparsity Sp. Thus, our global descriptor vector F comprises
17 values: µ, Md, Mo, σ, H , En, Sp, GGD (α, β2), AGGD
(η, ν, σ2

l , σ
2
r ), Gamma (a, b) and Beta(c, d).

IV. EXPERIMENT

The SJTU-PCQA database provides 378 public point cloud
objects with a subjective quality score [7]. It consists of 9
objects, each distorted with 7 types of distortion on 6 levels.
The 7 distortions are Octree-based compression (OT), Color
Noise (CN), Downscaling (DS), Downscaling and Color noise
(D+C), Downscaling and Geometry Gaussian noise (D+G),
Geometry Gaussian noise (GGN), and Color and Geometry
Gaussian noise (C+G).

For each point cloud, the local features are calculated per
point. After extensive testing, we found that a neighborhood
size of 20 gave the best performance; hence, unless specified,
we report results for k = 20. For each feature vector,
distribution statistics are calculated or estimated to describe
its behavior in the whole point cloud. For each feature under
inspection, we end up with 17 global descriptor values, as
described in the previous section.

To find the optimal version of a global description for each
feature, a support vector machine regressor is modeled to fit
the feature vector data to the desired quality value. We follow
the framework defined in [5]; to split the data in training and
testing sets, of the 9 point cloud objects, 7 in the training set
and 2 in the test set. All combinations of this split are scored
and averaged to a final performance score of the model.

We analyse the performance of each individual feature, as
well as the combination of all features, according to ITU-
T recommendation P.1401 [27]. In particular, we compute
the Spearman Rank Correlation Coefficient (SRCC), Pearson
Linear Correlation Coefficient (PLCC) and Root Mean Square
Error (RMSE) to account for monotonicity, linearity and
accuracy, respectively. We test our metric on the SJTU dataset,
and additionally report the performance for the M-PCCD [28]
and the ICIP2020 [29] datasets.

V. FEATURE AND DESCRIPTOR PERFORMANCE

A. PCA-based descriptors

Figure 1 depicts the SRCC obtained for each PCA-based
feature under consideration and for each global descriptor
value. We can see that the correlation value of each feature
varies depending on the global descriptor under use: in partic-
ular, the GGD α and AGGD η appear to have a consistently
low correlation for all the features, whereas the mode Mo has
correlation results that are consistently in the 0.2− 0.3 range.
In general, considering the features singularly leads to poor
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Fig. 1: SRCC values for each PCA-based feature and each global descriptor.

Fig. 2: SRCC values for each color-based feature and each global descriptor.

correlation, as the maximum absolute value we observe is 0.4.
As the features all capture different aspects of the data, it is to
be expected that no single feature would perform well. When
we combine all features and descriptors using a linear SVR,
we obtain a SRCC value of 0.84, demonstrating the predictive
power of the features and descriptors.

Nonetheless, to avoid overfitting with a large number of
features, we select a subset by considering feature/descriptor
combinations that have |SRCC| > 0.35 or |PLCC| > 0.3
(that is, absolute correlation is greater than a threshold).
To further analyse the predictive power of each feature
and descriptor, we compute the SRCC between the
feature/descriptors, to appropriately see whether they
capture the same distortions or are complementary. Due to
space limitations, we cannot show the full results of our
analysis; the plots will be made available along with the code.
We observe that certain features and descriptors exhibit high
correlations, thus providing the same information to the model.
In particular, Curvature {µ,Md}, Anisotropy{µ,Md}, and
Sphericity{µ,Md} have an SRCC above 0.99; similarly for
Eigensum{µ, σ2

l ,Md} and Eigentropy{µ,Md, σ2
r , b} Thus,

from each of the two sets, we only keep the feature/descriptor
pair that exhibit the highest correlation with MOS scores
(respectively, Anisotropy{µ} and Eigentropy{b}). The total
set of features that we consider for the final model comprises
14 values: Curvature{a,Mo}, Planarity{µ,Md,Mo, c},
Eigentropy{H, b, c}, Omnivariance{H}, Eigensum{c, d},
Anisotropy{µ}, Sphericity{d}.

B. Color features

Figure 2 reports the SRCC values obtained for every color
attribute and every global descriptor under consideration.
Please note that to compute the correlation values, we only
consider contents in the dataset which have color distortions.
We can observe that, among the color attributes, chroma

attributes perform better than luminance attributes: the result
is surprising, considering that many metrics put an emphasis
on the luminance value as the carrier of the most important
information for the human visual system. The results might be
due to the fact that our descriptors are not really able to capture
the underlying distribution of the luminance data, thus leading
to subpar performance. Among all attributes, the a∗ and b∗ are
the most promising, followed by the Hue and Chroma values.
Considering all attributes together, we achieve a SRCC = 0.53
when considering only color distortions in the dataset, and
SRCC = 0.26 in the full dataset.

Similar to what we did for the PCA-based descriptors,
we only keep the feature/descriptor pairs whose |SRCC| >
0.5, and we compute the correlation between each fea-
ture/descriptor pair to further reduce our pool by only main-
taining feature/descriptors which are not highly correlated
with each other. Several sets exhibit high SRCC values, as
can be expected considering that color spaces are a linear
transformation of each other. We end up selecting the ones
that have the best correlation with MOS scores, resulting in 12
values: a∗{σ,H, σ2

l }, b∗{H,σ2
l , b, d}, Chroma{σ,H, ν,Md},

and Hue{H}.

C. Potential energy features

Figure 3 reports the results of using potential-energy-based
features with each global descriptor. We can observe that,
similarly to what we saw for other features, some descriptors
seem to have a better correlation with subjective scores with
respect to others; however, none of the feature/descriptor pairs
achieves a very high correlation. The best performance is
found for the d parameter of the beta distribution, which
achieves an SRCC of 0.48 for the CV-PED feature.

To further reduce the number of feature/descriptor pairs
to be used in our final model, the correlation analysis we
performed thus far is inconclusive, as there is no clear trend
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Fig. 3: SRCC values for each potential-based feature and each global descriptor.

Fig. 4: SRCC values for each density-based feature and each global descriptor.

that would allow us to remove feature/descriptor pairs. So,
we use recursive feature elimination to progressively remove
features that would not contribute to the performance. We thus
end up with the following set of 11 values: CV-PED{µ,H, d},
EPES{Md}, EPES-CO{µ}, CFGD{H, ν, a, c, d, Sp}.

D. Density

Figure 4 shows the SRCC values for the density feature,
for all descriptors under exam. We can observe that some
distribution parameters better correlate with the quality than
others; similarly to what we saw with PCA-based descriptors,
we can also see that none of the descriptors taken singu-
larly has high correlation values. When considering all the
descriptors in a linear SVR, we obtain a SRCC = 0.47, only
marginally better than single descriptor performance. Since
we only have a set of 17 features, we do recursive feature
elimination to only maintain a subset of descriptors that gives
the best performance. From the elimination, we are left with
4 features: Density{b,H, d, η}.

VI. OVERALL PERFORMANCE

Table II reports the performance of notable metrics in the
literature. In particular, we report results for some FR and NR
metrics, and we perform a comparison with our full model
considering all features and global descriptors, the subset
we selected following Section V, compared with the best-
performing descriptor in [5]. It can be observed that both our
full model and the subset we selected outperform the baseline
in terms of PLCC, SRCC and RMSE for all datasets under
test. We can also see that the full set generally performs
better with respect to the selected subset in terms of PLCC
and SRCC; however, in terms of RMSE, the performance is
worse for two out of three datasets, indicating that the full
set of features might lead to more error in estimating the true
quality, probably due to overfitting.

With respect to FR metrics, we can see that the proposed
features reach quite a good performance. In particular, in the
SJTU-PCQA dataset, the NR features are able to achieve simi-
lar performance with respect to FR metrics such as PointSSIM
and PCQM, and outperform the RR metric; in fact, they are
only outperformed by PointPCA. For the M-PCCD dataset,
similarly, good performance is observed, comparable to most
of the FR and RR metrics. In the case of the ICIP2020 dataset,

we also observe a good performance, that however does not
reach the same heights as the FR and RR metrics under
consideration.

For the sake of completeness, we also report the SRCC and
PLCC values achieved by PQA-net [23] and GQI-VGG [22],
in both variants. Please note that we did not run the metrics
ourselves, instead opting to report the values as they are stated
in the relative papers. We can see that with respect to PQA-
Net, we achieve a slightly better performance in the SJTU
dataset (Proposed: PLCC = 0.879, SRCC = 0.866, PQA-Net:
PLCC = 0.85, SRCC = 0.82), while in the M-PCCD dataset,
we are considerably better (Proposed: PLCC = 0.849, SRCC =
0.861, PQA-Net: PLCC = 0.60, SRCC = 0.65). These results
indicate the potential of point-based features in predicting the
quality of point cloud contents, especially with respect to
projection-based approaches. However, we can also observe
that deep learning approaches still outperform our combination
of features. This might be due to a combination of the features
that are extracted from the point cloud, and the machine
learning method that is used to form a prediction score. In
future work, we aim at considering several machine learning
algorithms and different feature combinations to see whether
better performance can be achieved.

VII. CONCLUSION

In this paper, we analyse how features commonly employed
in full-reference quality assessment of point cloud contents
can be used for no-reference quality assessment. We select a
wide range of features, and we employ 17 global descriptors to
model their distribution, using an SVR to combine the features
into a single quality score. Results show that full reference
features can achieve quite a good performance in predicting
the quality of point clouds even in the absence of a reference,
encouraging knowledge transfer and informing future work in
the field. Future work will focus on testing other features and
other machine learning methods to combine them in a single
quality score.
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R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li et al., “Emerging MPEG
Standards for Point Cloud Compression,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148,
March 2019.

[4] ISO/IEC DIS 23090-5, “Visual volumetric video-based coding (V3C)
and video-based point cloud compression (V-PCC),” International Orga-
nization for Standardization, Jun. 2021.

[5] Z. Zhang, W. Sun, X. Min, T. Wang, W. Lu, and G. Zhai, “No-reference
quality assessment for 3d colored point cloud and mesh models,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 32,
no. 11, pp. 7618–7631, 2022.

[6] E. M. Torlig, E. Alexiou, T. A. Fonseca, R. L. de Queiroz, and
T. Ebrahimi, “A novel methodology for quality assessment of voxelized
point clouds,” in Applications of Digital Image Processing XLI, vol.
10752. International Society for Optics and Photonics, 2018, p.
107520I.

[7] Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang, and J. Sun, “Predicting
the perceptual quality of point cloud: A 3d-to-2d projection-based
exploration,” IEEE Transactions on Multimedia, vol. 23, pp. 3877–3891,
2020.

[8] I. Viola, S. Subramanyam, and P. Cesar, “A color-based objective
quality metric for point cloud contents,” in 2020 Twelfth International
Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6,
ISSN: 2472-7814.

[9] R. Diniz, P. G. Freitas, and M. C. Q. Farias, “Color and geometry texture
descriptors for point-cloud quality assessment,” vol. 28, pp. 1150–1154,
conference Name: IEEE Signal Processing Letters.

[10] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault, “Change
detection on points cloud data acquired with a ground laser scanner,”
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 36, no. part 3, p. W19, 2005.

[11] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in 2017 IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 3460–3464, ISSN:
2381-8549.

[12] A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Mahalanobis based
point to distribution metric for point cloud geometry quality evaluation,”
vol. 27, pp. 1350–1354, conference Name: IEEE Signal Processing
Letters.

[13] E. Alexiou and T. Ebrahimi, “Point cloud quality assessment metric
based on angular similarity,” in 2018 IEEE International Conference on
Multimedia and Expo (ICME), pp. 1–6, ISSN: 1945-788X.
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