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Abstract

This thesis gathers, develops and evaluates several characterizations of multivariate tail depen-
dence. It is established that the stable tail dependence function (STDF) is a suitable copula-based
dependence function that fully captures the multivariate extremal dependence structure in all
dimensions d ≥ 2 and can be used to visualize the tail dependence structure for bivariate and
trivariate problems. Based on the STDF, we propose a multivariate tail dependence coefficient
(TDC) as an extension of the well-known bivariate TDC. Importantly, we show that the proposed
measure can identify tail independence in all dimensions d ≥ 2, similar to its bivariate variant. The
performance of nonparametric estimators for the STDF and, inherently, the multivariate TDC, is
assessed with an extensive simulation study, including smoothed and bias-corrected versions of the
empirical STDF. Based on the estimators for the STDF and the multivariate TDC, test statistics
under the null hypothesis of tail independence are developed and evaluated in another simula-
tion study. The STDF-based estimation and testing procedures are applied to foreign exchange
(FX) data to characterize the tail dependence structure between three European FX rates and five
worldwide FX rates.

Keywords: extreme value copula, stable tail dependence function, tail dependence coefficient,
tail dependence testing

v



vi



Contents

1 Introduction 1
1.1 The impact of tail dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Copulas 7
2.1 The joint distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Copula characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Elliptical copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Archimedean copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Vine copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Empirical copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Tail Dependence Structures 21
3.1 Extreme value distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 The univariate extreme value distribution . . . . . . . . . . . . . . . . . . . 21
3.1.2 The multivariate extreme value distribution . . . . . . . . . . . . . . . . . . 23

3.2 Characterizations of the MEVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Exponent measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Spectral measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Copula approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Extreme value copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Copula tail densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Dependence functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Stable tail dependence function . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Pickands dependence function . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Tail copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Tail Dependence Measures 55
4.1 Desirable properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Tail dependence coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 The TDC for bivariate data . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Tail copula extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Stable tail dependence function extension . . . . . . . . . . . . . . . . . . . 65

4.3 Second order measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Tail order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Asymptotic independence measure . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Inference for Multivariate Extremal Dependence 73
5.1 STDF estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.1 Empirical STDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 Smoothed versions of the empirical STDF . . . . . . . . . . . . . . . . . . . 77
5.1.3 Bias corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



viii Contents

5.1.4 Parametric estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Testing tail independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Multivariate tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Multiple pairwise testing problem . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Tail dependence in FX markets 105
6.1 Preliminary data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Tail dependence in European FX markets (3D) . . . . . . . . . . . . . . . . . . . . 109
6.3 Tail dependence in worldwide FX markets (5D) . . . . . . . . . . . . . . . . . . . . 113

7 Conclusion 119

A Multivariate regular variation 123

B Proofs 125
B.1 D-vine tail density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.2 Euler representation of the tail copula . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.3 TDC-based identification of tail independence . . . . . . . . . . . . . . . . . . . . . 131

B.3.1 Main Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.3.2 Main Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.4 Asymptotical behavior of STDF estimators . . . . . . . . . . . . . . . . . . . . . . 137
B.4.1 Asymptotics of the empirical STDF . . . . . . . . . . . . . . . . . . . . . . 137
B.4.2 Asymptotics of the adjusted empirical STDF . . . . . . . . . . . . . . . . . 139
B.4.3 Asymptotics of the bias-corrected adjusted empirical STDF . . . . . . . . . 141

C Additional simulation results 145
C.1 Evaluating the global STDF estimator performance . . . . . . . . . . . . . . . . . . 145
C.2 Initial STDF simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.3 STDF estimator simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.4 Testing simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

D Additional FX results 167
D.1 Timeseries filtering process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
D.2 Test results for model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
D.3 Transformed observations worldwide FX rates . . . . . . . . . . . . . . . . . . . . . 170
D.4 Pairwise STDF estimation worldwide FX rates . . . . . . . . . . . . . . . . . . . . 171

E R Codes 175
E.1 STDF estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
E.2 Testing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



List of Figures

1.1.1 Simulated distributions for tail independent and tail dependent data. . . . . . . . 2

2.2.1 Scatterplot and contour plots for the Normal copula. . . . . . . . . . . . . . . . . 11
2.2.2 Scatterplot and contour plots for the t-copula. . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Scatterplot and contour plots for the Gumbel copula. . . . . . . . . . . . . . . . . 14
2.3.2 Scatterplot and contour plots for the Frank copula. . . . . . . . . . . . . . . . . . 15
2.4.1 D-vine model for 4 variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Trivariate contour plots for a 3-dimensional D-vine with Frank and Gumbel copulas. 18
2.4.3 Trivariate contour plots for a 3-dimensional D-vine with Normal and t-copulas. . . 18

3.2.1 Scaling extreme regions using the homogeneity property of the exponent measure. 28
3.2.2 Regions in R2

+ where the exponent measure ν is concentrated. . . . . . . . . . . . 29
3.2.3 Extreme regions for the spectral measure for different norms. . . . . . . . . . . . . 31
3.2.4 Spectral measure intuition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Generator functions for the Frank and Gumbel copula. . . . . . . . . . . . . . . . 36
3.3.2 Densities of the generating variable for the Normal and t-copula. . . . . . . . . . . 37
3.4.1 General range and bounds on the bivariate Pickands dependence function. . . . . 47
3.4.2 Bounds on the trivariate Pickands dependence function. . . . . . . . . . . . . . . . 48
3.4.3 Trivariate Pickands dependence function for the Gumbel copula. . . . . . . . . . . 48
3.4.4 Marginal bivariate Pickands dependence functions for a 3-dimensional Gumbel cop-

ula with varying dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.5 Trivariate Pickands dependence functions for the t-copula. . . . . . . . . . . . . . 49
3.4.6 Comparison between regions of the stable tail dependence function and the tail

copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Evaluation of the Pickands dependence function in 1/2. . . . . . . . . . . . . . . 58

5.1.1 The empirical STDF for data simulated from the bivariate Gumbel copula. . . . . 75
5.1.2 The beta-smoothed empirical STDF for data simulated from the bivariate Gumbel

copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.3 The kernel-smoothed empirical STDF for data simulated from the bivariate Gumbel

copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.4 The power kernel for different model parameters. . . . . . . . . . . . . . . . . . . 79
5.1.5 The empirical STDF for data simulated from the bivariate Normal copula. . . . . 80
5.1.6 First bias-corrected empirical STDF of Fougères et al. (2015) for data simulated

from the bivariate Normal copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.7 Second bias-corrected empirical STDF of Fougères et al. (2015) for data simulated

from the bivariate Normal copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.8 Third bias-corrected empirical STDF of Beirlant et al. (2016) for data simulated

from the bivariate Normal copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.1 Estimated adjusted empirical STDF of for data simulated from the bivariate Gum-

bel copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Estimated adjusted kernel-smoothed empirical STDF of for data simulated from

the bivariate Gumbel copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.3 Estimated adjusted bias-corrected empirical STDF of for data simulated from the

bivariate Normal copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.4 D-vine specifications for the testing simulations. . . . . . . . . . . . . . . . . . . . 99

ix



x List of Figures

6.1.1 Time series of the EURGBP FX rate and corresponding daily and monthly log
returns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.2 Autocorrelation for different lags for daily and monthly log returns of the EURGBP
rate before and after applying the ARMA(2,0)-GJR-GARCH(1,1) filter. . . . . . . 107

6.1.3 Scatterplots for the FX rates (left panels), monthly log returns (mid panels), and
ARMA-GJR-GARCH filtered monthly log returns (right panels) of the EURGBP
and EURUSD rates on the original scale (top) and the copula scale (bottom). . . 108

6.2.1 Time series of the considered EUR-exchange rates. . . . . . . . . . . . . . . . . . . 109
6.2.2 Pairwise copula plots for the standardized residuals of ARMA-GJR-GARCH fil-

tered daily log returns of three EUR-exchange rates. . . . . . . . . . . . . . . . . . 110
6.2.3 Pairwise Pareto plots for the residuals of ARMA-GJR-GARCH filtered daily log

returns of three EUR-exchange rates assuming a short EUR position. . . . . . . . 110
6.2.4 Estimated pairwise STDFs for EUR-exchange rates given a short EUR position

based on the beta-copula smoothed empirical STDF using k = 1% of tail observa-
tions of the standardized residuals of the filtered 3-month log returns. . . . . . . . 111

6.2.5 Estimated trivariate STDFs for EUR-exchange rates given a short EUR position
based on the beta-copula smoothed empirical STDF using k = 1% of tail obser-
vations of the standardized residuals of the filtered 3-month (left-hand-side) and
12-month (right-hand-side) log returns. . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.6 Estimated pairwise STDFs for EUR-exchange rates given a long EUR position
based on the beta-copula smoothed empirical STDF using k = 1% of tail observa-
tions of the standardized residuals of the filtered 1-month log returns. . . . . . . . 112

6.2.7 Estimated trivariate STDFs for EUR-exchange rates given a long EUR position
based on the beta-copula smoothed empirical STDF using k = 1% of tail obser-
vations of the standardized residuals of the filtered 1-month (left-hand-side) and
12-month (right-hand-side) log returns. . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1 Time series of the considered USD-exchange rates. . . . . . . . . . . . . . . . . . . 113
6.3.2 Selection of pairwise copula plots for the standardized residuals of ARMA-GJR-

GARCH filtered daily log returns of five USD-exchange rates. . . . . . . . . . . . 114
6.3.3 Selection of pairwise Pareto plots for the standardized residuals of ARMA-GJR-

GARCH filtered daily log returns of five USD-exchange rates assuming a short USD
position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.4 Selection of estimated pairwise STDFs for USD-exchange rates given a short USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail
observations of the standardized residuals of the filtered 1-month log returns. . . . 116

6.3.5 Selection of estimated trivariate STDFs for USD-exchange rates given a short USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail
observations of the standardized residuals of the filtered 1-month log returns. . . . 116

6.3.6 Selection of estimated pairwise STDFs for USD-exchange rates given a long USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail
observations of the standardized residuals of the filtered 1-month log returns. . . . 117

6.3.7 Selection of estimated trivariate STDFs for USD-exchange rates given a long USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail
observations of the standardized residuals of the filtered 1-month log returns. . . . 117

C.2.1 Initial STDF simulations to determine the sample size N and the threshold value k. 146

D.1.1 Timeseries filtering process for three European FX rates. . . . . . . . . . . . . . . 167
D.1.2 Timeseries filtering process for five worldwide FX rates. . . . . . . . . . . . . . . . 168
D.3.1 Pairwise copula plots for five worldwide FX rates. . . . . . . . . . . . . . . . . . . 171
D.3.2 Pairwise Pareto plots for five worldwide FX rates. . . . . . . . . . . . . . . . . . . 172
D.4.1 Estimated pairwise STDFs for USD-exchange rates given a short USD position

based on the beta-copula smoothed empirical STDF using k = 1% of tail observa-
tions of the standardized residuals of the filtered 1-month log returns. . . . . . . . 173

D.4.2 Estimated pairwise STDFs for USD-exchange rates given a long USD position based
on the beta-copula smoothed empirical STDF using k = 1% of tail observations of
the standardized residuals of the filtered 1-month log returns. . . . . . . . . . . . 174



List of Tables

1.1.1 Tail risk measures for tail independent and tail dependent data. . . . . . . . . . . 3

4.2.1 Selection of extreme value copulas, several copulas that belong to their maximum
domain of attraction and the corresponding tail dependence coefficients. . . . . . 60

4.2.2 Numerical evaluation of the unknown bivariate TDC in a 3-dimensional D-vine. . 62
4.2.3 Numerical evaluation of the tail copula-based multivariate TDC τ in a 3-dimensional

D-vine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.4 Numerical evaluation of the STDF-based multivariate TDC Λ in a 3-dimensional

D-vine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Overview of tail dependence measures and their properties. . . . . . . . . . . . . . 71

5.1.1 Running times to compute the STDF estimators. . . . . . . . . . . . . . . . . . . 86
5.1.2 Overview performance TDC-estimators for the Gumbel copula. . . . . . . . . . . . 88
5.1.3 Overview performance TDC-estimators for the t-copula. . . . . . . . . . . . . . . 88
5.1.4 Overview performance TDC-estimators for the Normal copula. . . . . . . . . . . . 88
5.1.5 Overview performance TDC-estimators for the Frank copula. . . . . . . . . . . . . 89
5.1.6 Overview of bias and standard error of TDC estimates. . . . . . . . . . . . . . . . 89
5.2.1 Hypothesis testing framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Simulated quantiles for the test statistics distributions. . . . . . . . . . . . . . . . 93
5.2.3 Example of methods to correct p-values in multiple testing problems. . . . . . . . 98
5.2.4 Running times to compute test statistics. . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.5 Rejection rates of test statistics for bivariate data. . . . . . . . . . . . . . . . . . . 100
5.2.6 Rejection rates of test statistics for 3-dimensional data. . . . . . . . . . . . . . . . 101
5.2.7 Rejection rates of test statistics for 5-dimensional data. . . . . . . . . . . . . . . . 102
5.2.8 Rejection rates of test statistics for N = 5000. . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Trivariate TDCs and test statistics with p-values for different return horizons of
EUR-exchange rates given a short EUR position. . . . . . . . . . . . . . . . . . . 110

6.2.2 Trivariate TDCs and test statistics with p-values for different return horizons of
EUR-exchange rates given a long EUR position. . . . . . . . . . . . . . . . . . . . 112

6.3.1 Rank correlations between the considered USD-exchange rates. . . . . . . . . . . . 114
6.3.2 Multivariate TDCs and test statistics with p-values for different return horizons of

USD-exchange rates given a short USD position. . . . . . . . . . . . . . . . . . . . 115
6.3.3 Multivariate TDCs and test statistics with p-values for different return horizons of

USD-exchange rates given a long USD position. . . . . . . . . . . . . . . . . . . . 116

C.3.1 Evaluation estimators in dimension d = 2 for tail dependent data with k = 1%. . 147
C.3.2 Evaluation estimators in dimension d = 2 for tail independent data with k = 1%. 148
C.3.3 Evaluation estimators in dimension d = 2 for tail dependent data with k = 5%. . . 149
C.3.4 Evaluation estimators in dimension d = 2 for tail independent data with k = 5%. 150
C.3.5 Evaluation estimators in dimension d = 3 for tail dependent data with k = 1%. . . 151
C.3.6 Evaluation estimators in dimension d = 3 for tail independent data with k = 1%. 152
C.3.7 Evaluation estimators in dimension d = 3 for tail dependent data with k = 5%. . . 153
C.3.8 Evaluation estimators in dimension d = 3 for tail independent data with k = 5%. 154
C.3.9 Evaluation estimators in dimension d = 5 for tail dependent data with k = 1%. . . 155
C.3.10 Evaluation estimators in dimension d = 5 for tail independent data with k = 1%. 156
C.3.11 Evaluation estimators in dimension d = 5 for tail dependent data with k = 1%. . . 157

xi



xii List of Tables

C.3.12 Evaluation estimators in dimension d = 5 for tail independent data with k = 5%. 158
C.4.1 Evaluation test statistics in dimension d = 2 for tail dependent data. . . . . . . . 159
C.4.2 Evaluation test statistics in dimension d = 2 for tail independent data. . . . . . . 160
C.4.3 Evaluation test statistics in dimension d = 3 for tail dependent data. . . . . . . . 161
C.4.4 Evaluation test statistics in dimension d = 5 for tail independent data. . . . . . . 162
C.4.5 Evaluation test statistics in dimension d = 3 for mixed dependencies. . . . . . . . 163
C.4.6 Evaluation test statistics in dimension d = 5 for tail dependent data. . . . . . . . 164
C.4.7 Evaluation test statistics in dimension d = 5 for tail independent data. . . . . . . 165

D.2.1 ADF-test p-values for stationarity in timeseries. . . . . . . . . . . . . . . . . . . . 169
D.2.2 Goodness-of-fit tests p-values for a t-distribution of the filtered residuals. . . . . . 169
D.2.3 Ljung-Box test p-values for autocorrelation in timeseries. . . . . . . . . . . . . . . 170



Chapter 1

Introduction

Extreme events are by definition very rare but have a substantial impact when they do occur,
especially if they occur together. The financial crisis of 2008 has become a textbook example of
such a doom scenario: financial markets all suffered massive losses, and major financial institutions
collapsed (or received financial aid to prevent such a collapse). Also during less apocalyptic times,
adverse shocks to financial asset returns tend to co-occur (Longin and Solnik, 2001). Increasing
globalization and regulation are both forces that contribute to such interlinkages amongst financial
institutions and financial markets, thus increasing the likelihood of joint downturns. Because these
joint tail events may have such a high impact on a company, an investor, or the economy as a whole,
the dependence of large values in a stochastic process is an essential topic in risk management, the
insurance industry, and general finance, and will be the topic of this thesis.

1.1 The impact of tail dependence
To understand the impact of tail dependence, we consider an example. Let X = (X1, . . . , Xd)
represent d ≥ 2 risk factors to which an entity is exposed. The specification of the risk factors can
vary by application. In credit risk, the risk factors can be represented by the yields on bonds that
may downgrade or default; a professional investor might consider them to be the return series for
the assets in his portfolio; and for a multinational company, the risk factors can be represented by
foreign exchange (FX) rates that affect its profit and loss statement. The aggregate loss associated
with the risk factors is given by the sum of its marginal components, Sd = X1 + · · · + Xd, and
is often used to determine the aggregate risk associated with the portfolio. An example where
this mathematical framework is applied is the so-called Internal Capital Adequacy Assessment
Process (ICAAP), in which banks are required to aggregate all relevant risk types in a top-level
joint portfolio of losses (BCBS, 2010). This assessment is, of course, also critical to consider for
companies or investors that do not have to comply with these regulations.

The distribution of the aggregate losses Sd depends on the margins of its components, denoted
by F1, . . . , Fd, and on the dependence structure between the components. The joint distribution
F of (X1, . . . , Xd) captures both of these factors fully and is defined as follows,

F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd) .

The typical situation is that banks or insurance companies possess information and models con-
cerning the standalone risks rather than the joint behavior of the risks (Puccetti et al., 2017).
It might, therefore, be desirable to model the marginal behavior and the dependence structure
separately, which is pre-eminently done with copulas. A copula is a dependence function on the
d-dimensional unit cube that fully specifies the dependence structure between the random vector
(X1, . . . , Xd). The seminal theorem of Sklar (1959) shows that the joint distribution F can be
decomposed into the copula function CF and the marginal distributions F1, . . . , Fd as follows,

F (x1, . . . , xd) = CF (F1(x1), . . . , Fd(xd)) .

More information on copulas can be found in Chapter 2. Different specifications of the dependence
structure between risk factors can lead to very different conclusions on the amount of risk that is
induced by the given risk factors. In particular, the strength of tail dependence affects the tail
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2 Chapter 1. Introduction

risk that is incurred. Tail dependence concerns the degree to which two or more random variables
move together in the tails of their distributions and captures the degree to which extreme values of
two or more random variables are likely to occur simultaneously. When two random variables are
tail dependent, extreme realizations can be observed together and are dependent on each other.
If two random variables are tail independent, it is nearly impossible to observe extreme values
simultaneously due to the unlikely nature of extreme values and their independent occurrences.
The tail dependence structure is not necessarily the same as the general dependence structure. It
can therefore be instructive to consider the tail dependence structure separately from the general
dependence structure.

The influence of tail dependence on tail risk is quantifiable by its impact on tail risk measures,
such as the Value-at-Risk (VaR) and the Expected Shortfall (ES) of the aggregate loss. The VaR
is defined as a quantile of the loss distribution over a given timeframe for a given significance level
α ∈ (0, 1),

VaRα(Sd) = inf {x ∈ R : P (Sd ≤ x) > α} ,

and the ES is defined as the conditional expected loss given that the loss is larger than the VaR,

ESα(Sd) =
1

1− α

∫ 1

α

VaRζ(Sd)dζ.

Usual values of the significance level include α = 0.95, 0.99, 0.995, 0.999. To illustrate the effect of
tail dependence on these tail risk measures, N = 2500 observations are simulated for two variables
with standard t-margins with 5 degrees of freedom, giving the margins heavy tails. Either strong
upper tail dependence with a Gumbel copula (θ = 1.54) or tail independence with a Frank copula
(θ = 3.45) is imposed. The parameters of both copulas are chosen as that they yield the same
correlation of ρ = 0.5, by which the comparison is between tail dependencies, not dependence in
general. The simulation results are shown in Figure 1.1.1. Positive values correspond to losses.

Figure 1.1.1: Simulation results for N = 2500 realizations from a distribution with standard student t
margins with 5 degrees of freedom and a Frank copula with parameter θ = 3.45 for the tail independent
case (top) and a Gumbel copula with parameter θ = 1.54 for the tail dependent case (bottom).
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From the simulated marginal observations, it is clear that in case of tail dependence, extremely
high values are more likely to occur simultaneously than in case of tail independence. For copula
observations this can be observed by the cluster of observations in the upper right corner for tail
dependence. The histograms presented in Figure 1.1.1 focus on the upper right tail of the distribu-
tion of the sums, i.e., S2 = X1 +X2 in this case. It is visible that the tail of the distribution of the
sum for tail dependence is fatter than for tail independence. That it, it contains more observations.
To quantify these findings, tail risk measures for these two distributions are determined based on
N = 100, 000 simulated observations; the number of simulations is increased in order to get a
more accurate estimate. The 99% VaR for the tail independent case equals 5.34 versus 6.24 for
the tail dependent case. The difference between the ES estimations is even more pronounced: the
99% ES is estimated to be 6.72 for tail independence versus 8.33 for tail dependence. Of course,
it depends on the scale of these numbers whether these differences are economically significant.
Since exposures for large financial institutions are substantial, the scale will typically be in millions
or even billions. The difference matters. This effect becomes even stronger when we repeat this
simulation experiment for higher dimensions, see Table 1.1.1.

Table 1.1.1: Tail risk measures for tail independent and tail dependent data.

d = 2 d = 3 d = 5 d = 7 d = 10

99% VaR Tail independent 5.34 7.33 11.15 15.00 20.72
Tail dependent 6.25 9.17 15.15 20.86 29.68

99% ES Tail independent 6.72 8.88 13.15 17.28 23.57
Tail dependent 8.33 12.23 20.11 27.85 39.73

The tail risk measures are computed based on N = 100, 000 simulated observations from
a distribution with standard student t margins with 5 degrees of freedom and a Gumbel
copula with parameter θ = 1.54 for the tail dependent case and a Frank copula with
parameter θ = 3.45 for the tail independent case for dimensions d ∈ {2, 3, 5, 7, 10}.

The fact that tail dependence between risk factors is essential to consider when an aggregate
risk exposure has to be assessed has been widely recognized since the past financial crisis. The
question arises how information on tail dependence should be incorporated in the aggregate risk
analysis.

1.2 Problem statement

Recently, it has been investigated how to take possible dependence structures between individual
risk factors into account when assessing tail risk. An approach introduced by Cont (2006) is
to consider the best- and worst-case scenarios over the set of all possible dependence structures
between the individual risk factors. Usually, this leads to bounds on risk measures that entail
too much uncertainty, making them unattractive to use, both for financial institutions as well as
regulators. See, e.g., Puccetti and Rüschendorf (2012). More information on the tail dependence is
required to improve the accuracy of the bounds. For example, information on whether particular
groups of risk factors are tail dependent or tail independent already strongly reduces the possible
dependence structures (Puccetti et al., 2017). Additional information on how strong the tail
dependence is, or, even better, information on the entire structure of the multivariate tails, might
be able to subsequently further reduce uncertainty.

The evaluation of the multivariate tail dependence structure can, however, be a daunting ex-
ercise. A scarcity of data in the tails and the need to extrapolate stochastic behavior beyond
historically observed extremes are factors that already complicate inference on the univariate tails
of a distribution. These complications become worse for bivariate tails and even more problematic
for higher dimensions d ≥ 3. Unfortunately, it was concluded that the importance of an accurate
characterization of the tail dependence structure grows in higher dimensions (see Table 1.1.1).
Therefore, this study focuses on gathering, comparing, and, when possible, extending characteri-
zations of high-dimensional tail dependencies. Consequently, the focus is on the following general
research question:

How can multivariate tail dependence be characterized?
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1.2.1 Main findings
To answer the above question, the aim is to collect, connect and complement theoretical charac-
terizations of multivariate tail dependence and to assess or, where necessary, develop statistical
methods to estimate those characterizations of multivariate tail dependence that are best suited for
practical use. Three types of characterizations of multivariate tail dependence are distinguished:
(1) the full tail dependence structure; (2) a summary measure of the strength of the tail depen-
dence; and (3) a classification into either tail dependence or tail independence. These three types
of characterizations contain a decreasing amount of information on the tail dependence structure
but can all be used to gain insights into the tail dependence structure of multivariate data and to
reduce uncertainty in the bounds of tail risk measures. It depends on the situation and type of
analysis to be conducted which characterization is most appropriate to use.

The literature on multivariate extremes presents a rich number of alternatives to fully char-
acterize multivariate tail dependence structures, including, for example, the multivariate extreme
value distribution, the spectral measure, and the tail copula. It is argued here that as a full
characterization of multivariate tail dependence, the stable tail dependence function (STDF) is
best suited to be used in multivariate extreme value analysis. Intuitively, the STDF captures the
probability that at least one of the risk factors is extreme. It is based on a limiting value of the
copula CF that describes the global dependence structure between d risk factors and is denoted
by `. The STDF can be estimated nonparametrically with the empirical STDF or with smoothed
and bias-corrected versions thereof. Based on the STDF a coefficient to summarize multivariate
tail dependence is proposed to characterize the strength of high dimensional tail dependence. The
coefficient of multivariate tail dependence is a rescaled version of the STDF evaluated in the point
(1, . . . , 1). Estimation procedures for the STDF can therefore be employed to estimate the multi-
variate TDC Λ(CF ). Finally, both the STDF and the multivariate TDC can be used to classify
(groups of) risk factors as either tail dependent or tail independent. The vector of risk factors is tail
independent if its copula CF belongs to the maximum domain of attraction of the independence
copula Π, which is denoted as CF ∈MDA(Π).

1.2.2 Main contributions
In analyzing the different ways to characterize multivariate tail dependence, both theoretically and
statistically, several contributions to the existing literature on multivariate tail dependence are
added in this thesis. In summary, the main contributions of this thesis are the following.

1. Multivariate tail dependence coefficient
In the bivariate case, the tail dependence coefficient λ(CF ) is often used as a summary
measure for the strength of tail dependence between two random variables. Based on its
relationship with the STDF, we propose a multivariate extension of the coefficient, denoted
by Λ(CF ), as follows,

λ(CF ) = 2− `(1, 1), Λ(CF ) =
d− `(1, . . . , 1)

d− 1
.

The multivariate tail dependence coefficient Λ satisfies most desirable properties of a tail
dependence measure. Most importantly, we show that the multivariate measure Λ can identify
tail independence,

Λ(CF ) = 0⇔ CF ∈MDA(Π).

2. Testing tail independence
New procedures to test whether multivariate data are tail dependent or independent are
introduced and evaluated. The tests are based on either the STDF or the multivariate TDC,
Λ(CF ), because both can identify tail independence. Since this issue has not been addressed
in the literature before for dimensions d ≥ 3, we consider it as one of the major contributions
to the existing body of knowledge on inference for multivariate extremes.

3. Estimation of the STDF
Since the STDF characterizes multivariate tail dependence fully and it is the corner stone of
both the multivariate TDC and the test statistics for testing tail independence, it is important
to have a good estimator for the `-function. Therefore, several nonparametric estimators are
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discussed and evaluated in an extensive simulation study that is currently lacking in the
literature, especially for higher dimensions d ≥ 3.

1.2.3 Thesis structure
The structure of the remainder of this thesis is as follows. Chapter 2 addresses several preliminaries
regarding copula theory. Chapter 3 presents the multivariate extreme value distribution along
with an overview of the most important characterizations of its dependence structure. Important
properties and results for several known copula distributions are also given. Several tail dependence
measures are presented in Chapter 4. Extensions of bivariate dependence measures to higher
dimensions are considered and compared. Chapter 5 deals with inference for multivariate extremal
dependence. Estimation procedures for the stable tail dependence function and tail dependence
summary measures are described and compared with an extensive simulation study. Furthermore,
several test statistics to test the null hypothesis of tail independence are developed and evaluated in
another simulation study. An application of the characterizations of multivariate tail dependence
measures to FX data is considered in Chapter 6. Finally, Chapter 7 presents conclusions and
provides directions for further research.
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Chapter 2

Copulas

The aim of this thesis is to characterize the multivariate tail dependence structure between d ≥ 2
random variables. Before introducing results for tail dependence, however, this chapter presents
several necessary preliminaries on copulas required later on in the thesis. In particular, the next
sections discuss several properties of copulas and introduce two main classes of copulas: elliptical
and Archimedean copulas. Although these copulas are defined for higher dimensions, the pair-
copula construction for multivariate vine models yields much more flexible models and is therefore
also introduced. The chapter concludes with the empirical copula, a nonparametric estimator of
the copula, and smoothed versions thereof.

2.1 The joint distribution function

Let the risk portfolio be represented by a vector of continuous random variables X = (X1, . . . , Xd)
on a standard non-atomic probability space (Ω,F ,P). Throughout this thesis, this setup will
be employed unless mentioned otherwise. The dependence structure between real-valued random
variables can be completely characterized by their joint distribution function, which is defined as
follows.

Definition 2.1. The joint distribution function F : Rd → [0, 1] of a d-dimensional vector of
random variables X = (X1, . . . , Xd) is given by

F (x1, . . . , xd) = P({X1 ≤ x1} ∩ · · · ∩ {Xn ≤ xd}), x1, . . . , xd ∈ R.

The one-dimensional distribution function Fj(x) = P(Xj ≤ x) of the component Xj , 1 ≤ j ≤ d,
is called a marginal or margin of the joint distribution function of the random vector (X1, . . . , Xd).
If the components of the random vector are distributed independently of each other, the vector is
said to be independent. In this case, the joint distribution function is the product of the marginals,
as shown by the following definition.

Definition 2.2. The d-dimensional random vector X = (X1, . . . , Xd) is independent if for any
intervals I1, . . . , Id ⊆ Rd,

P ({X1 ∈ I1} ∩ · · · ∩ {Xd ∈ Id}) =

d∏
j=1

P(Xj ∈ Ij).

If random variables are not independent, they are dependent. Intuitively, the dependence struc-
ture describes the extent to which two or more random variables move together. That is, positive
dependence indicates that two random variables move together in the same direction, whereas
negative dependence indicates that two random variables move together in opposite directions.

Although the dependence structure between two or more random variables can be described
entirely by their joint distribution function F , this joint distribution function also contains infor-
mation regarding the marginal distributions of the random variables. By the theorem of Sklar
(1959), copulas can be used to separate dependence structures from marginal behavior.

7
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Theorem 2.1. (Sklar, 1959). The d-dimensional continuous random vector X = (X1, . . . , Xd) is
joint by the unique copula function CF : [0, 1]d → [0, 1] if its joint distribution F can be written as

F (x1, . . . , xd) = CF (F1(x1), . . . , Fd(xd)), x1, . . . , xd ∈ R, (2.1.1)

where F1, . . . , Fd are the marginal distributions of X1, . . . , Xd.

Since it is often hard to estimate the joint distribution in practice, especially for high dimensions,
copulas can simplify the problem by disentangling marginal and joint behavior. Moreover, the
separation between margins and the dependence structure can be desirable if separate models on
individual risk factors have to be combined in order to get an aggregate risk model, as mentioned
before in Chapter 1.

2.1.1 Copula characteristics
As can be deduced from Theorem 2.1, a copula is a d-dimensional distribution function defined on
the unit hypercube, [0, 1]d, that describes the dependence between a d-dimensional random vector
X = (X1, . . . , Xd). The copula captures the entire dependence structure and is not influenced by
the behavior of the marginal distributions. Formally, the copula function is defined as follows.

Definition 2.3. A function CF : [0, 1]d → [0, 1] is called a copula if there is a random vector
(U1, . . . , Ud) such that each component Uj , 1 ≤ j ≤ d, has a uniform distribution on [0, 1] and

CF (u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud) , u1, . . . , ud ∈ [0, 1].

A comprehensive introduction to copulas can be found in, e.g., Nelsen (2006) and Kurowicka
and Cooke (2006). Expositions on using copulas in the context of financial modeling are presented
in Cherubini et al. (2004) and Mai and Scherer (2014). From these references, several essential
properties of copulas are taken to be discussed. First of all, a copula can also be characterized by
the following theorem.

Theorem 2.2. The function CF : [0, 1]d → [0, 1] is called a d-dimensional copula if and only if
the following properties hold:

1. CF is grounded: CF (u1, . . . , ud) = 0 if there exists an j ∈ {1, . . . , d} such that uj = 0.

2. CF has normalized margins: CF (1, . . . , 1, uj , 1, . . . , 1) = uj, for uj ∈ [0, 1], j ∈ {1, . . . , d}.

3. CF is d-increasing: for each d-dimensional rectangle [a1, b1] × · · · × [ad, bd] ⊆ [0, 1]d the
following holds:

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inCF (x1i1 , . . . , xnin) ≥ 0,

where xj1 = aj and xj2 = bj for all j ∈ {1, . . . , d}. This corresponds to the fact that the
probability of (U1, . . . , Ud) ∼ CF falling in the rectangle in question must be nonnegative.

By the definition of a copula, the joint density f of random variables X1, . . . , Xd can be written
in terms of the copula density c and the marginal densities as follows,

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd), (2.1.2)

given that the density exists. Here, F1, . . . , Fd denote the marginal distribution functions and
f1, . . . , fd the marginal densities. Consequently, the copula density can be formulated as follows,

c(F1(x1), . . . , Fd(xd)) =
f(x1, . . . , xd)

f1(x1) · · · fd(xd)
. (2.1.3)

Special cases of the copula function are presented by independence and perfect positive and
negative dependence. The independence copula is given by Π(u1, . . . , ud) = u1 · · ·ud and is also
called the product copula. It is clear to see that random variables are independent if and only if
they are joint by the independence copula,

F (x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) = P(X1 ≤ x1) · · ·P(Xd ≤ xd)
= F1(x1) · · ·Fd(xd) = Π(F1(x1), . . . , Fd(xd)).
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For the bivariate copula, the Fréchet-Hoeffding bounds provide a lower and upper bound for the
copula function. Specifically, for any bivariate copula CF , we have W ≤ CF ≤M with

W (u1, u2) = max(u1 + u2 − 1, 0),

M(u1, u2) = min(u1, u2).

The copulas M and W describe completely positive and negative dependence, respectively. The
upper bound copula is also called the comonotonicity copula and can be easily extended to the
multivariate case as Md(u1, . . . , ud) = min(u1, . . . , ud). This multivariate upper bound is itself
a copula which is also referred to as the comonotonicity copula. A random vector (U1, . . . , Ud)
has M as joint distribution function if and only if U1 = · · · = Ud almost surely. Although the
lower Fréchet-Hoeffding bound can be extended to Wd = max(u1 + · · ·+ ud− (d− 1), 0) for higher
dimensions, this is not a proper copula for dimensions d > 2. In the bivariate case the lower
bound is a proper copula which is referred to as the countermonotonicity copula. A random vector
(U1, U2) has W as copula if and only if U1 = 1− U2 holds with probability one.

Since the copula captures the dependence structure of random variables, it is connected to
several dependence measures. For example, the Spearman rank correlation ρ can be written in
terms of the bivariate copula CF as follows,

ρ(U1, U2) = 12

∫ 1

0

∫ 1

0

CF (u1, u2)du1du2 − 3. (2.1.4)

This relationship can be used to find copula parameters that correspond to a given Spearman
correlation.

Survival copulas

Usually, the focus is on the joint distribution function. However, sometimes the quantity of interest
is the survival function, i.e., F (x1, . . . , xd) = P(X1 > x1, . . . , Xd > xd). The copula of the joint
marginal survival functions is called the survival copula and is defined as

F (x1, . . . , xd) = ĈF
(
F 1(x1), . . . , F d(xd)

)
, x1, . . . , xd ∈ R, (2.1.5)

where F j denotes the survival function of Xj , 1 ≤ j ≤ d. Note that the survival copula is linked
to the joint survival function of the copula of the joint distribution function as follows:

ĈF (u1, . . . , ud) = P
(
F 1(x1) ≤ u1, . . . , F d(xd) ≤ ud

)
= P(1− F1(x1) ≤ u1, . . . , 1− Fd(xd) ≤ ud)
= P (F1(x1) > 1− u1, . . . , Fd(xd) > 1− ud)
= CF (1− u1, . . . , 1− ud).

A copula and its survival copula are related through the principle of inclusion and exclusion. That
is, the probability of a union of events A1, . . . , Ad ∈ F can be computed from probabilities involving
only intersections of the same events as

P

 d⋃
j=1

Aj

 =

d∑
j=1

(−1)j+1
∑

1≤i1≤···≤ij≤d

P

(
j⋂

k=1

Aik

)
. (2.1.6)

For the bivariate case this simplifies to P(A ∪ B) = P(A) + P(B) − P(A ∩ B). This principle can
be used to express the survival copula ĈF in terms of the general copula CF :

ĈF (u1, . . . , ud) = 1 +

d∑
j=1

(−1)j
∑

1≤i1<···<ij≤d

CF ;i1,...,ij (1− ui1 , . . . , 1− uij ),

where CF ;i1,...,uj is the j-dimensional marginal copula of CF which is obtained from CF by plugging
the components i1, . . . , ij of (u1, . . . , ud) ∈ [0, 1]d into the respective arguments of CF and setting
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all other arguments to one. This can be seen as follows.

1− ĈF (u1, . . . , ud) = 1− P (U1 > 1− u1, . . . , Ud > 1− ud) = P ({∃i ∈ {1, . . . , d} : Ui ≤ 1− ui})

= P

 d⋃
j=1

{Uj ≤ 1− uj}

 =

d∑
j=1

(−1)j+1
∑

1≤i1≤···≤ij≤d

P

(
j⋂

k=1

{Uik ≤ 1− uik}

)

=

d∑
j=1

(−1)j+1
∑

1≤i1≤···≤ij≤d

CF ;i1,...,ij (1− ui1 , . . . , 1− uij )

=
∑

∅6=S⊆{1,...,d}

(−1)|S|+1CF ;S(1− ui, i ∈ S).

If a copula is equal to its own survival copula, i.e., ĈF = CF , the copula is called radial symmetric.
This implies that the random vector (U1, . . . , Ud) ∼ CF has the same distribution as the random
vector (1− U1, . . . , 1− Ud) ∼ ĈF .

2.2 Elliptical copulas
The first class of copulas introduced here are elliptical copulas. Elliptical copulas are copulas of
elliptical distributions. Following the exposition of Fang et al. (1992) on the subject, we first define
spherical distributions, which are a special type of elliptical distributions.

Definition 2.4. Let X be a d-dimensional random vector. Then X is said to be spherically
distributed if

OX
d
= X

for every orthogonal matrix O ∈ Rd×d.

It can be shown that X belongs to the class of spherical distributions if and only if its charac-
teristic function ϕ : Rd → R, defined by ϕ(t) = E

(
eitX

)
, has the form

ϕ(t) = hϕ(t′t) = hϕ
(
t21 + · · ·+ t2n

)
,

for some function hϕ : R → R, called the characteristic generator. This implies that if X has
a density f(x) = f(x1, . . . , xd) then it is equivalent to f(x) = g(x′x) = g(x2

1 + · · · + x2
d) for

some function g : R+ → R+. Spherical distributions can therefore be interpreted as distributions
with density functions that are constant on spheres (Embrechts et al., 1999). The observation
that spherical distributions are induced by their characteristic generator hϕ leads to the stochastic
representation presented in Theorem 2.3 (Schoenberg, 1938). The proof can be found in Fang et al.
(1992).

Theorem 2.3. Suppose that X is spherically distributed with characteristic generator hϕ. Then
X has the representation

X
d
= RU,

where the random variable R ≥ 0 is independent of the d-dimensional random vector U which is
uniformly distributed on the unit sphere in Rd.

This representation will turn out to be very useful in the studying the tail behavior of spherical
distributions. The random variable R is also called the generating variable and its distribution
function is called the generating distribution. Note that this representation implies that spherical
distributions are a mixture of uniform distributions on spheres in Rd with varying radii. For
the standard multivariate Normal distribution, the generating variable is distributed as R ∼

√
χ2
d,

where χ2
d denotes the χ

2-distribution with d degrees of freedom. For the multivariate t-distribution
with ν degrees of freedom, the generating variable is defined by R2/d ∼ F (d, ν), where F (d, ν)
denotes the F -distribution with d and ν degrees of freedom (Embrechts et al., 1999).

Spherical distributions are a special class of the more general elliptical distributions. Elliptical
distributions can be seen as an extension of the multivariate spherical distribution with mean
vector µ and covariance matrix Σ. The definition is as follows.
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Definition 2.5. Let X be a d-dimensional random vector. Then X is called elliptically distributed
with parameters µ ∈ Rd and Σ ∈ Rd×d if

X
d
= µ+ A′Y,

where Y is an m-dimensional spherically distributed random vector, A ∈ Rm×d with A′A = Σ,
and rank(Σ) = m.

It can be shown that if Y has a density f(y) = g(y′y) then X = AY + µ has density

f(x) =
1√

det(Σ)
g
(
(x− µ)′Σ−1(x− µ)

)
.

Hence, the contours of equal density are now ellipsoids (Embrechts et al., 1999).

Both the Normal (Gaussian) copula and the t-copula are two examples of elliptical copulas
which are used frequently in financial modeling. Historically, the Gaussian copula has been the
standard for modeling purposes. The main difference between these two copulas is the fact that
the Gaussian copula has independent tails, whereas the t-copula does possess tail dependence.
These properties will be discussed extensively in later chapters. Scatterplots of random samples
and Normal contour plots of the copulas are shown in Figure 2.2.1 and Figure 2.2.2. One problem
of elliptical copulas is that laborious algebraic expressions complicate employment for some appli-
cations. Moreover, radial symmetry can present a problem when asymmetric dependence has to
be modeled.

Gaussian: Denoting by Φ the univariate standard Normal distribution function, the bivariate
Gaussian copula is given by

C(u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
dxdy, u1, u2 ∈ [0, 1],

with −1 < ρ < 1 the correlation coefficient. Perfect positive and negative dependence are achieved
as ρ → 1 and ρ → −1, respectively. Exact independence is given by ρ = 0. The multivariate
extension is given by

C(u1, . . . , ud) = ΦΣ

(
Φ−1(u1), . . . ,Φ−1(ud)

)
, u1, . . . , ud ∈ [0, 1],

where ΦΣ is the multivariate Normal distribution function with zero mean vector and d × d-
dimensional covariance matrix Σ. Figure 2.2.1 further illustrates the behavior of the Normal
copula.

Figure 2.2.1: Scatterplot of (N = 2500) random samples and Normal contour plots for the bivariate
and trivariate Normal copula. The parameters are chosen such that ρ = 0.5 for all bivariate margins.
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t: Denoting by Tν the univariate standard t-distribution function with ν degrees of freedom, the
bivariate t-copula is given by

C(u1, u2) =

∫ T−1
ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1

πν|Σ|1/2
Γ
(
ν
2 + 1

)
Γ
(
ν
2

) (
1 +

x′Σ−1x

ν

)−ν/2+1

dx, u1, u2 ∈ [0, 1],

where Σ is the 2× 2 covariance matrix. The multivariate extension is given by

C(u1, . . . , ud) = Tν,Σ
(
T−1
ν (u1), . . . , T−1

ν (ud)
)
, u1, . . . , ud ∈ [0, 1],

where Tν,Σ denotes the multivariate t-distribution function with ν degrees of freedom, zero mean
vector and d× d-dimensional covariance matrix Σ. Figure 2.2.2 further illustrates the behavior of
the t-copula. Relative to the Normal copula, the t-copula has a higher density for joint extreme
values.

Figure 2.2.2: Scatterplot of (N = 2500) random samples and Normal contour plots for the bivariate
and trivariate t-copula. The parameters are chosen such that ρ = 0.5 for all bivariate margins.

2.3 Archimedean copulas
Archimedean copulas are the most frequently used alternative to elliptical copulas. Advantages of
Archimedean copulas over the elliptical variant are their ability to model asymmetric dependence
and their analytic tractability. The class of Archimedean copulas was introduced by Genest and
Mackay (1986) and Schweizer and Sklar (1983) as follows.

Definition 2.6. The copula CF (u1, . . . , ud) is called a d-dimensional Archimedean copula with
generator ψ : [0,∞)→ [1, 0) if it can be represented as,

CF (u1, . . . , ud) = ψ
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
, u1, . . . , ud ∈ [0, 1], (2.3.1)

and if the generator ψ is a d-monotone, continuous and strictly decreasing function with ψ(0) = 1
and limt→∞ ψ(t) = 0.

If ψ(t) > 0 for all t ≥ 0 and if limt→∞ ψ(t) = 0, the generator is said to be strict. In this case,
the generalized inverse of the generator coincides with the inverse ψ−1. In this thesis, generators
are assumed to be strict generators, unless it is specified otherwise.

A convenient property of the Archimedean copula is that if (X1, . . . , Xd) are joint by a d-
dimensional Archimedean copula with generator ψ, then any subset of variables of (X1, . . . , Xd),
are joint by the Archimedean copula with the same generator ψ as the d-dimensional copula. For
example, the marginal copula for X1 and X2 can be retrieved as follows,

CF (u1, u2) = CF (u1, u2, 1, . . . , 1) = ψ
(
ψ−1(u1) + ψ−1(u2) + ψ−1(1) + · · ·+ ψ−1(1)

)
= ψ

(
ψ−1(u1) + ψ−1(u2) + 0 + · · ·+ 0

)
= ψ

(
ψ−1(u1) + ψ−1(u2)

)
.



2.3. Archimedean copulas 13

Note the fact that ψ is at least d-monotone implies that (−1)jψ(j) ≥ 0 for j ∈ {1, . . . , d}. This
asserts that the density function is nonzero on (0, 1]d, if it exists. A special case arises if ψ is
infinitely many times differentiable and (−1)jψ(j) ≥ 0 for every j ≥ 1. In this case ψ is said to
be completely monotone and can be represented as a Laplace transform (LT) of a positive random
variable,

ψ(t) =

∫ ∞
0

e−xtFX(dx),

where FX is the distribution function of a positive random variable X. Next to this Laplace-
based stochastic representation of the generator function, McNeil and Nešlehová (2009) derive a
stochastic representation for Archimedean copulas that resembles the one encountered for the class
of elliptical copulas. The result is captured by the following theorem.

Theorem 2.4. (McNeil and Nešlehová, 2009). Suppose that X = (X1, . . . , Xd) is distributed such
that its survival copula is Archimedean. Then X has the representation

X
d
= RS,

where the random variable R ≥ 0 is independent of the d-dimensional random vector S which is
uniformly distributed on the unit simplex ∆d = {x ∈ Rd+ : ||x||1 = 1}.

The random vector X is in this case said to follow a `1-norm symmetric distribution and the
random variable R is referred to as the radial part of X. Moreover, it can be shown that the
generator ψ of the Archimedean copula equals both the survival function of the components of X
and the Williamson d-transform of the distribution function of R,

ψ(t) = MdFR(x) =

∫ ∞
x

(
1− x

t

)d−1

dFR(t).

If ψ = MdFR, then for x ∈ [0,∞), FR(x) = M−1
d ψ(x), where the inverse Williamson d-transform

M−1
d can be written down explicitely. These results are formalized in the following theorem.

Theorem 2.5. (McNeil and Nešlehová, 2009). Let U be distributed according to the d-dimensional
Archimedean copula C with generator ψ. Then

(
ψ−1(U1), . . . , ψ−1(Ud)

)
has an `1-norm symmetric

distribution with survival copula C and radial distribution FR satisfying FR = M−1
d ψ. Conversely,

if X has a d-dimensional `1-norm symmetric distribution with radial distribution FR satisfying
FR(0) = 0, then X has an Archimedean survival copula with generator ψ = MdFR.

The section finishes with several examples of frequently used parametric Archimedean copulas or
copulas related to Archimedean copulas. Scatterplots of random samples and Normal contour plots
of a selection of the introduced copulas are shown in Figure 2.3.2 and Figure 2.3.1. Compared to
the behavior of the elliptical copulas illustrated in Figure 2.2.1 and 2.2.2, the Archimedean copulas
are more flexible in their ability to model asymmetric dependence.

Clayton: The Archimedean copula with generator function ψ(t) = (1 + θt)−1/θ and inverse
generator function ψ−1(t) = 1

θ (t−θ − 1) is called the Clayton copula. In the bivariate case, the
distribution function of this copula is given by

C(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
, u1, u2 ∈ [0, 1],

with θ ≥ −1 and θ 6= 0. The multivariate extension is given by

C(u1, . . . , ud) =

(
1 +

d∑
i=1

u−θi − d

)−1/θ

, u1, . . . , ud ∈ [0, 1]. (2.3.2)
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Gumbel: The Archimedean copula with generator function ψ(t) = exp(−t1/θ) and inverse genera-
tor function ψ−1(t) = (− log t)θ is called the Gumbel copula. In the bivariate case, the distribution
function of this copula is given by

C(u1, u2) = exp
(
−
(
(− log u1)θ + (− log u2)θ

)1/θ)
, u1, u2 ∈ [0, 1],

with θ > 1. Exact independence is given by θ = 1. Increasing θ increases dependence. Perfect
dependence is achieved as θ →∞. The multivariate extension is given by

C(u1, . . . , ud) = exp

−( d∑
i=1

(− log ui)
θ

)1/θ
 , u1, . . . , ud ∈ [0, 1].

Figure 2.3.1 further illustrates the behavior of the Gumbel copula.

Figure 2.3.1: Scatterplot of (N = 2500) random samples and Normal contour plots for the bivariate
and trivariate Gumbel copula. The parameters are chosen such that ρ = 0.5 for all bivariate margins.

Joe: The Archimedean copula with generator function ψ(t) = 1 − (1− exp(−t))1/θ and inverse
generator function ψ−1(t) = − log

(
1− (1− t)θ

)
is called the Joe copula. In the bivariate case, the

distribution function of this copula is given by

C(u1, u2) = 1−
(
(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

)1/θ
, u1, u2 ∈ [0, 1],

with θ ≥ 1. Exact independence is given by θ = 1. Increasing θ increases dependence. Perfect
dependence is achieved as θ → ∞. The distribution is a special case of BB6 (θ = 1), BB7 (as
θ → 1) and of BB8 (θ = 1) (Joe, 1997). The multivariate extension is given by

C(u1, . . . , ud) = 1−

(
1−

d∏
i=1

(
1− (1− ui)θ

))1/θ

, u1, . . . , ud ∈ [0, 1].

BB1: The bivariate two-parameter BB1-copula introduced by Joe and Hu (1996) is given by

C(u1, u2) =

(
1 +

[(
u−θ1 − 1

)δ
+
(
u−θ2 − 1

)δ]1/δ)−1/θ

, u1, u2 ∈ [0, 1],

with θ > 0 and δ ≥ 1. Dependence increases as δ and θ increase. The independence copula is
obtained as θ → 0 and δ → 1. The comononotic copula is obtained as θ → ∞ or δ → ∞. An
attractive property of the BB1-copula is that every tail dependence coefficient in (0, 1)2 can be
realized (Joe, 2015). It can be shown that the BB1-copula is an Archimedean copula with inverse
generator function ψ−1(t) =

(
1 + t1/δ

)−1/θ
. The generator is then given by ψ(t) =

(
t−θ − 1

)δ.
The multivariate extension is given by

C(u1, . . . , ud) =

1 +

[
d∑
i=1

(
u−θi − 1

)δ]1/δ
−1/θ

, u1, . . . , ud ∈ [0, 1].
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Frank: The Archimedean copula with generator function ψ(t) = − 1
θ log (1 + exp(−t) (exp(−θ)− 1))

and inverse generator function ψ−1(t) = − log
(

exp(−θt)−1
exp(−θ)−1

)
is called the Frank copula. Its bivariate

distribution function is given by

C(u1, u2) = −1

δ
log
({

1− e−δ −
(
1− eδu1

) (
1− e−δu2

)}
/
(
1− e−δ

))
, u1, u2 ∈ [0, 1],

with 0 ≤ δ ≤ ∞. Exact independence is achieved as δ → 0. Increasing δ increases dependence.
Perfect dependence is achieved when δ →∞ (Joe, 1997). The multivariate extension is given by

C(u1, . . . , ud) = −1

θ
log

(
1 +

(
e−θ − 1

)1−d d∏
i=1

(
e−θui − 1

))
, u1, . . . , ud ∈ [0, 1].

The Frank copula is the only radially symmetric copula in the Archimedean family. Figure 2.3.2
further illustrates the behavior of the Frank copula.

Figure 2.3.2: Scatterplot of (N = 2500) random samples and Normal contour plots for the bivariate
and trivariate Frank copula. The parameters are chosen such that ρ = 0.5 for all bivariate margins.

Although the final two copulas presented below are related to Archimedean copulas, they are not
Archimedean itself. In Section 3.3 it will be discussed that the Galambos copula is the extreme
value copula of the survival function of Archimedean copulas. The BB4-copula is an extension
hereof. The definitions are as follows.

Galambos: The bivariate Galambos copula is given by

C(u1, u2) = u1u2 exp
([

(− log u1)−δ + (− log u2)−δ
]−1/δ

)
, 0 ≤ δ <∞.

The dependence increases as δ increases. The independence copula is obtained for δ → 0, whereas
the comononotic copula is obtained as δ →∞ (Joe, 2015).

BB4: The bivariate BB4-copula introduced by Joe and Hu (1996) is given by

C(u1, u2) =

(
u−θ1 + u−θ2 − 1−

[(
u−θ1 − 1

)−δ
+
(
u−θ2 − 1

)−δ]−1/δ
)−1/θ

, θ ≥ 0, δ > 0.

It is a gamma power mixture of the Galambos copula. The dependence increases as δ and θ
increase. The comononotic copula is obtained as θ → ∞ or δ → ∞. The Galambos family is
obtained as θ → 0 (Joe, 2015).
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2.4 Vine copulas
The elliptical and Archimedean copulas introduced above present a wide range of different depen-
dence structures in the bivariate case. The multivariate extensions of the models, however, offer
less flexibility. For example, for the Archimedean copula, all pairwise dependencies are by defini-
tion the same. Elliptical copulas offer more flexibility since pairwise correlation parameters can
be specified, but still impose a similar symmetrical dependence structure between all pairs that
is either tail dependent (t-copula) or tail independent (Normal copula). A more flexible approach
that has gained a lot of popularity in the last decade is the vine copula construction that was intro-
duced in Bedford and Cooke (2001) and Bedford and Cooke (2002) and has been further developed
in Aas et al. (2009) and Czado (2010). In the vine copula modeling approach, bivariate copulas
are used to specify pairwise and conditional pairwise dependencies. This way, a d-dimensional
copula is specified in terms of d(d− 1)/2 pairwise copulas. The idea stems from a decomposition
of the copula density into pairwise densities and conditional densities following a dependence tree
structure. For example, consider the following decomposition for a 3-dimensional density f ,

f(x1, x2, x3) = f12|3(x1, x2|x3)f3(x3)

= c12|3
(
F1|3(x1|x3), F2|3(x2|x3);x3

)
f1|3(x1|x3)f2|3(x2|x3)f3(x3)

= c12|3
(
F1|3, F2|3;x3

) f13(x1, x3)

f3(x3)

f23(x2, x3)

f3(x3)
f3(x3)

= c12|3
(
F1|3, F2|3;x3

) c13 (F1, F3) f1f3

f3

c23 (F2, F3) f2f3

f3
f3

= c12|3
(
F1|3, F2|3;x3

)
c13 (F1, F3) c23 (F2, F3) f1f2f3,

where for subsets S1, S2 ⊂ {1, 2, 3}, FS1|S2
denotes the conditional distribution function, fS1|S2

the corresponding conditional density, cS1|S2
the corresponding copula density, and where Fj ,

j = 1, 2, 3 denotes the marginal distribution function. Note that by conditioning other variables,
different decompositions can be fashioned. In general, the conditional copulas (in the example:
c12|3) can vary for different values of the conditioning variables (in the examle: x3).

By assuming that conditional copulas are constant for different values of the conditioning vari-
ables, the model simplifies significantly. This assumption is called the simplifying assumption.
Although some distributions can be characterized with a simplified vine copula model, the simpli-
fying assumption is not always appropriate. A multivariate copula can be represented by a vine if
the bivariate linking copulas in level 2 to d − 1 are approximately constant over the conditioning
variables. Vine copulas include multivariate Gaussian and t-copula as special cases since these
have linking copulas that are constant over the conditioning variables.Stöber et al. (2013) discuss
classes of copulas where the simplifying assumption is satisfied. Discussions on the simplifying
assumption can be found in Hobæk Haff et al. (2010) and Killiches et al. (2017).

Given the simplifying assumption, the pairwise copula densities and the conditional pairwise
copula densities can be interpreted as a vine structure which leads to an attractive expression for
the joint density in terms of products of bivariate copula densities. Formally, a vine is defined as
follows.

Definition 2.7. V is a regular vine on d elements if

1. V = {T1, . . . , Td−1};

2. T1 is a tree with nodes N1 = {1, . . . , d}, and edges E1, and for 2 ≤ i ≤ d − 1, Ti is a tree
with nodes Ni = Ei−1;

3. If for 2 ≤ i ≤ d− 1, {a, b} ∈ Ei and a = {a1, a2}, b = {b1, b2}, then exactly one of the ai is
equal to one of the bi (regularity).

The general decomposition of the density of a copula vine is given by the following theorem.
The decomposition derived above can be seen as a special case.
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Theorem 2.6. Let V = {T1, . . . , Td−1} be a regular vine on d elements. For each edge e(j, k) ∈
Ti, 1 ≤ i ≤ d−1, with the conditioned set {j, k} and the conditioning set De we write the correspond-
ing copula Cjk|De and its density cjk|De . Furthermore, marginal distributions Fi with densities fi,
1 ≤ i ≤ n are specified. Then the unique vine dependent distribution has a density given by

f1...d = f1 . . . fd

n−1∏
i=1

∏
e(j,k)∈Ei

cjk|De
(
Fj|De , Fk|De

)
where fi > 0, 1 ≤ i ≤ d.

Depending on the types of the trees, various vine copulas can be constructed. Two boundary
cases are D-vines and C-vines. For the d-dimensional D-vine, the pairs at level 1 (also referred
to as the baseline level) are i, i + 1, for 1 ≤ i ≤ d − 1, and for the higher levels l, 2 ≤ l ≤ d, the
conditional pairs are i, i+ l|i+ 1, . . . , i+ l− 1 for 1 ≤ i ≤ d− l. That is, for the D-vine, conditional
copulas are specified for variables i and i + l given the variables indexed in between them. For
the d-dimensional C-vine, the pairs at level 1 are 1, i for 2 ≤ i ≤ d, and for level l, 2 ≤ l ≤ d,
the conditional pairs are l, i|1, . . . , l − 1 for l + 1 ≤ i ≤ d. For the C-vine, conditional copulas are
specified for variables l and i given those indexed as 1 to l− 1. Figure 2.4.1 shows the structure of
a 4-dimensional D-vine.

Figure 2.4.1: D-vine model for 4 variables.

In this thesis, we will consider several examples for the D-vine. As shown by Aas et al. (2009),
the density of a d-dimensional D-vine is given by

f(x1, . . . , xd) =

d∏
k=1

fk(xk)

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1),

Fi+j|i+1,...,i+j−1(xi+j |xi+1, . . . , xi+j−1)
)
,

where the index j denotes the level in the tree, while i runs over the edges in each level. Similarly,
the density of a d-dimensional C-vine copula is given

f(x1, . . . , xd) =

d∏
k=1

fk(xk)

d−1∏
j=1

d−j∏
i=1

cj,j+1|1,...,j−1

(
Fj|1,...,j−1(xj |x1, . . . , xj−1),

Fj+1|1,...,j−1(xj+i|x1, . . . , xj−1)
)
.

Vine copula models have lots of flexibility and members of the class should provide good ap-
proximations when trivariate and higher-order margins have conditional distributions with copulas
that do not vary much over different values of the conditioning variables (Joe, 2015). To illustrate
the flexibility of vines relative to the other parametric copula models, Figure 2.4.2 and Figure 2.4.3
show density contour plots for two 3-dimensional vines. Compared to the 3D-contour plots for the
elliptical and Archimedean copulas, the vine copulas exhibit quite exotic density shapes.
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Figure 2.4.2: Trivariate Normal contour plots for a D-vine with the first baseline linking copula equal
to a Gumbel copula (ρ = 0.2), the second baseline linking copula equal to a Frank copula (ρ = 0.5) and
the conditional copula equal to the Gumbel copula (ρ = 0.8).

Figure 2.4.3: Trivariate Normal contour plots for a D-vine with the first baseline linking copula equal
to a t-copula (ρ = 0.5) and both the second baseline linking copula and the conditional copula equal to
the Normal copula (ρ = 0.5).

2.5 Empirical copulas

As a final preliminary, this section briefly addresses the issue of estimating copulas based on empiri-
cal data. To estimate the copula function, it is necessary to estimate both the marginal distributions
as well as the copula distribution, since the margins are required to transform observations to the
copula unit scale:

F (x1, . . . , xd) = CF (F1(x1), . . . , Fd(xd)), x1, . . . , xd ∈ R.

The estimation problem can be approached entirely parametrically by assuming a parametric
model for both the marginals and the copula distribution. Maximum likelihood procedures can be
employed in this approach (see for example Oakes (1982)), taking either a two-step approach by
first fitting the margins and, next, the copula, or a one-step approach by estimating the parameters
of the margins and the copula simultaneously. Other parametric estimation methods such as the
method of moments or Bayesian techniques can be used as well. Alternatively, Genest et al.
(1995) have proposed a semiparametric estimation procedure where marginal distributions are
fitted nonparametrically but where a parametric model is specified for the copula. Obviously, the
fit of a parametric copula model is influenced heavily by observations that occur frequently and not
so much by the observations that are rarely observed. Since the aim of this thesis is to assess the
dependence structure between extreme events, parametric copula models are not appropriate. The
estimation problem can also be approached fully nonparametrically, where both the margins and
the copula function are estimated nonparametrically. This approach offers the greatest flexibility
and will be discussed below.
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The empirical distribution function

Assume that we have n independently and identically (iid) data observations from a d-dimensional
random vector X = (X1, . . . , Xd) with joint distribution F and copula CF . Data are denoted
by (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd). The univariate marginal distributions can be estimated
nonparametrically with the empirical distribution function. This estimator is defined as follows.

Definition 2.8. Let (X1j , . . . , Xnj) be iid observations of the random variable Xj with distribution
function Fj, 1 ≤ j ≤ d. The empirical distribution function is given by

F̂nj(xj) =
1

n+ 1

n∑
i=1

1{Xij ≤ xj}. (2.5.1)

Here 1A(x) is the indicator function which is equal to 1 if x ∈ A and equal to 0 otherwise. The
sum is divided by n+ 1 instead of n in order to avoid problems at the boundaries. The univariate
empirical distribution functions can be used to transform data to pseudo-copula observations of
the random vector (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)), as follows:(

Ũi1, . . . , Ũid

)
=
(
F̂n1(Xi1), . . . , F̂nd(Xid)

)
, i = 1, . . . , n. (2.5.2)

Related to the empirical distribution function is the empirical quantile function, which can be
interpreted as the generalized inverse of F̂nj :

F̂−1
nj (u) = inf{x ∈ R : F̂nj(x) ≥ u} =

{
Xk:n,j , if (k − 1)/n < u ≤ k/n,
−∞, if u = 0.

The multivariate empirical distribution function can be defined analogous to the univariate case
as follows.

Definition 2.9. Let (X11, . . . , Xn1), . . . , (X1d, . . . , Xnd) be iid observations of the random vector
X = (X1, . . . , Xd) with joint distribution function F . The empirical distribution function is given
by

F̂n(x1, . . . , xd) =
1

n+ 1

n∑
i=1

1{Xi1 ≤ x1, . . . , Xid ≤ xd}. (2.5.3)

The empirical copula

The empirical copula is the standard nonparametric estimator of the copula. The copula function,

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
, u1, . . . , ud ∈ [0, 1],

is in this case estimated by employing the empirical distributions for both the joint distribution F
and the marginal distributions F1, . . . , Fd. The definition is given as follows.

Definition 2.10. Let
(
Ũ11, . . . , Ũn1

)
, . . . ,

(
Ũ1d, . . . , Ũnd

)
be iid pseudo-copula observations (Equa-

tion 2.5.2) of the random vector X = (X1, . . . , Xd). The empirical copula function is given by

Ĉn(u1, . . . , ud) =
1

n

n∑
i=1

1{Ũi1 ≤ u1, . . . , Ũid ≤ ud}. (2.5.4)

The empirical copula depends only on the ranks of the observations (Xi1, . . . , Xid); not on
the specific values. The empirical copula process has been investigated by many authors in the
context of process convergence. See, e.g., Deheuvels (1979), Stute (1984), Van der Vaart and
Wellner (1996), Fermanian et al. (2004), and Segers (2012a). The last three references establish
weak convergence of the empirical copula process to a Gaussian process under independent and
dependent marginal distributions. Although the empirical copula is very flexible, converges to
the true copula distribution, and can accurately approximate the observed distribution of a given
sample, this nonparametric estimator is not a proper copula function because of discontinuities in
the estimated copula function.
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The kernel-smoothed empirical copula

A disadvantage of the empirical copula is that it is discontinuous and therefore not a proper
copula. Several smoothing procedures have been proposed in the literature in order to mitigate
this problem. Kernel smoothing methods are commonly employed in nonparametric statistics to
estimate distribution functions. A kernel K is a positive integrable function. It is usually taken
to be a symmetric unimodal probability density such that

∫∞
−∞K(u)du = 1. In order to smooth

standard nonparametric estimates, the kernel function can be employed as a weighing function for
data points. Specifically, the kernel-smoothed empirical distribution function is given by

F̂n(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
, (2.5.5)

The bandwidth h is the parameter that controls the smoothness of the estimate. Kernel smooth-
ing methods for the empirical copula have been discussed in Gijbels and Mielniczuk (1990) and
Fermanian and Scaillet (2003), for example. However, since the copula is defined on the compact
unit cube, [0, 1]d, kernel smoothing methods suffer from severe boundary bias. Chen and Huang
(2007) propose a kernel copula estimator based on local linear kernels and a simple mathemati-
cal correction that removes the boundary bias. However, their approach is not easily extended to
higher dimensions. Geenens (2014) and Wen and Wu (2018) discuss the idea of applying the kernel-
smoother to a transformed probit distribution that does not have a bounded support. However,
the implementation of this approach is not straightforward.

The empirical beta copula

Alternatively, Segers et al. (2017) have introduced the empirical beta copula as smoothed version
of the empirical copula. It is defined as follows,

Ĉβn(u) =
1

n

n∑
i=1

d∏
j=1

F
n,R

(n)
i,j

(uj), (2.5.6)

where, for u ∈ [0, 1] and r ∈ {1, . . . , d},

Fn,r(u) = P(Ur:n ≤ u) =

n∑
s=r

(
n

s

)
us(1− u)n−s (2.5.7)

is the cumulative distribution function of Beta(r, n + 1 − r), describing the distribution of the
r-th order statistic of an independent random sample of size n from the uniform distribution of
[0, 1]. Intuitively, the beta copula smooths empirical estimates by incorporating the probability of
observing the particular ranks into the estimate. The beta copula is a special case of the empirical
Bernstein copula which was introduced in Sancetta and Satchell (2004). In particular, Segers et al.
(2017) show that the empirical Bernstein copula is a copula if and only if all the polynomial degrees
m1, . . . ,md are divisors of the sample size n. If all polynomial degrees are equal to the sample
size n the beta copula is retrieved. Advantages of the empirical beta copula are that it is a proper
copula and that it does not require the choice of a smoothing parameter (Segers et al., 2017). The
asymptotic distribution of the empirical beta copula is the same as that of the empirical copula,
but in small samples, it performs better both in terms of bias and variance.
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Tail Dependence Structures

Whereas the previous chapter covered theory regarding copulas to describe the overall dependence
structure of a vector of random variables, this chapter focuses on the dependence between the
tails of these variables. A first full characterization of the multivariate tail dependence structure
is the multivariate extreme value distribution (MEVD) which can be seen as an extension to the
univariate extreme value distribution. The MEVD models both the marginal and joint behavior
of extreme values. The bivariate extreme value distribution, d = 2, has been known since the
contributions of De Oliviera (1958), Geffroy (1958) and Sibuya (1960). Similar results for the
multivariate case, d > 2, were obtained by De Haan and Resnick (1977) and Pickands (1981). The
MEVD and its properties are discussed in Section 3.1. Since the MEVD is usually quite cumber-
some to work with in practice, several alternative representations of the MEVD are discussed in
Section 3.2.

Although the MEVD or one of its equivalent characterizations can theoretically be used to
describe the entire multivariate tail dependence structure, this is usually not the best solution in
practice because the joint distribution also contains information on marginal behavior, making
it difficult to interpret dependence structures only. A copula-based dependence function that
only captures dependence in the tails of distributions can solve this problem. To this end, the
extreme value copula and several related dependence functions are introduced (Section 3.3-3.4).
The different characterizations are applied to several copula models to get a better sense of the
properties of the tail dependence characterizations and to assess the tail dependence structure
induced by several commonly used copula models.

3.1 Extreme value distributions

Extreme value theory is concerned with assessing the behavior of extreme events. To this end,
only the tails of a distribution have to be modeled because this is where extreme events occur
by definition. The theory of extremes started with the work of Fisher and Tippett (1928) and
Gnedenko (1943) who showed that the univariate extreme value distribution (EVD) can be divided
into three classes that are all characterized by the same parameter: the extreme value index γ. The
extension of the univariate EVD to higher dimensions is less straightforward to parametrize than
the univariate case, since there are infinitely many ways to couple the marginal EVDs to attain
an appropriate multivariate extreme value distribution. The univariate EVD and its multivariate
extension are discussed in the next sections.

3.1.1 The univariate extreme value distribution

Let X1, . . . , Xn be a sequence of identically and independently distributed (iid) observations of a
random variable X with distribution function F : R → [0, 1]. We are interested in the upper tail
of the distribution, i.e., we are interested in the distribution of extremely large values. Therefore,
define the maximum of these observations asMn = max(X1, . . . , Xn). It is sufficient to consider the
theory for maxima only, because minima and maxima are related through the following relationship:
min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn). In order to find the distribution function of this
maximum Mn, a normalizing sequence is needed to avoid the degenerate limiting distribution

21



22 Chapter 3. Tail Dependence Structures

function that occurs for the unnormalized maximum, i.e.,

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x) = Fn(x)→
{

0 if F (x) < 1
1 if F (x) = 1

x ∈ R,

as n → ∞. Hence, suppose there exist sequences of constants (an)n≥1 > 0 and (bn)n≥1 ∈ R such
that for a non-degenerate distribution function G the following convergence holds,

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim
n→∞

Fn(anx+ bn) = G(x), x ∈ R. (3.1.1)

The distribution function G : R → [0, 1] is called the extreme value distribution (EVD) and F
is said to be in the maximum domain of attraction of G (F ∈ MDA(G)). The EVD G takes
a specific parametric form, as identified by Fisher and Tippett (1928), depending only on one
parameter (Theorem 3.1).

Theorem 3.1. The class of extreme value distribution functions is G(c1x+c2) with c1 > 0, c2 ∈ R,
where

G(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, (3.1.2)

with γ ∈ R and where for γ = 0 the right hand side is read as exp(− exp(−x)).

The parameter γ is called the extreme value index. It is a key parameter in extreme value theory
and it characterizes the heaviness of the tail of a distribution. The scale-location family that is
retrieved by this extreme value distribution, is the so-called generalized extreme value distribution,
given by

G(x) = exp

(
−
(

1 + γ
x− µ
σ

)−1/γ
)
, 1 + γ(x− µ)/σ > 0, (3.1.3)

with µ, γ ∈ R and σ > 0. The parameters γ, µ, and σ are referred to as the shape, location,
and scale parameter, respectively. Based on the value of the extreme value index, three particular
forms of G can be distinguished:

• γ > 0: the Fréchet distribution (Φα). If F ∈ MDA(Φα) then it is characterized by a heavy
upper tail with an infinite endpoint. Only moments up to 1/γ exist due to the heaviness of
the tails. Examples are Cauchy, Pareto, and F distributions, and the Student t-distribution
with a small degrees of freedom.

• γ = 0: the Gumbel distribution (Λ). If F ∈ MDA(Λ) then it is characterized by a light
upper tail with either a finite or an infinite endpoint. All moments exist. Examples are the
Normal, Gamma, and Exponential distributions.

• γ < 0: the Weibull distribution (Ψα). If F ∈ MDA(Ψα) then it is characterized by a short
upper tail with a finite endpoint. All moments exist. An example is the uniform distribution.

The result that the normalized maximum converges to one of these three types of EVDs is
powerful to use in statistical analyses. However, the speed of convergence of a distribution F to its
extreme value distribution G depends on the particular form of F and can vary significantly. The
Normal distribution has a notoriously slow convergence rate, for example. Although the asymp-
totic result remains valid regardless of the convergence speed, statistical results for finite samples
might be impaired by slow rates of convergences, especially if the sample size is small.

A difficulty with this convergence result is that it can be quite challenging to find suitable
sequences of normalizing constants. The following Theorem 3.2 provides alternative conditions
that can sometimes be checked more easily to ascertain that a particular distribution belongs to
some maximum domain of attraction (MDA).
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Theorem 3.2. (Gnedenko, 1943). The real-valued variable X with distribution function F is in
the domain of attraction of

• a Fréchet distribution, hence γ > 0, if and only if its survival function F = 1−F is regularly
varying, i.e.,

lim
t→∞

1− F (tx)

1− F (t)
= x−1/γ .

• a Weibull distribution, hence γ < 0, if and only if

lim
t↓0

1− F (x∗ − tx)

1− F (x∗ − t)
= x−1/γ

for all x > 0, with a finite endpoint x∗ ∈ R.

• the Gumbel distribution, hence γ = 0, if and only if

lim
t→x∗

1− F (t+ xf(t))

1− F (t)
= e−x

for all x ∈ R, where f is a suitable positive function. The endpoint x∗ can be either finite or
infinite.

The first two conditions are based on the concept of regular variation, which is a key concept
in extreme value analysis. Intuitively, regular variation indicates that a function behaves as a
power function asymptotically. Some key results on regular variation can be found in Appendix
A. Besides these three conditions to identify the extreme value distribution of F , de Haan and
Ferreira (2006) present a range of alternative conditions that can be used.

3.1.2 The multivariate extreme value distribution
Following a similar approach as for the univariate extreme value distribution, the multivariate
extreme value distribution (MEVD) will now be derived. Let X1, . . . ,Xd be independent and
identically distributed (iid) random vectors in Rn with joint distribution function F : Rd → [0, 1],
marginal distribution functions F1, . . . , Fd : R → [0, 1], and copula CF : [0, 1]d → [0, 1]. The aim
is to assess the joint distribution of the vector of componentwise maxima of each of the variables
X1, . . . , Xd,

Mn = (Mn1, . . . ,Mnd), Mnj = max (X1j , . . . , Xnj) , j = 1, . . . , d. (3.1.4)

Note that also for the multivariate case, it is sufficient to consider the theory for maxima only
because of the relationship between maxima and minima. Similarly to the univariate case, the
componentwise maxima need to be normalized to find a non-degenerate joint distribution of the
vector of maxima Mn. If for some choice of vectors (an)n≥1 = {(an1, . . . , and)}n≥1 ∈ (0,∞)d and
(bn)n≥1 = {(bn1, . . . , bnd)}n≥1 ∈ Rd, the following convergence relationship holds,

lim
n→∞

P
(
Mn1 − bn1

an1
≤ x1, . . . ,

Mnd − bnd
adn

≤ xd
)

= lim
n→∞

Fn(an1x1 + bn1, . . . , andxd + bnd) = G(x1, . . . , xd), (x1, . . . , xd) ∈ Rd, (3.1.5)

where G : Rd → [0, 1] is a non-degenerate distribution function, we say that F belongs to the
maximum domain of attraction of the distribution function G (F ∈ MDA(G)). The distribu-
tion function G is in this case a multivariate extreme value distribution (MEVD). The marginal
distributions G1, . . . , Gd : R→ [0, 1], must be univariate extreme value distributions. That is,

Gj(x) = exp
(

(1 + γjx)−1/γj
)
,

for all j ∈ {1, . . . , d}, where this specific parametric form is implied by Theorem 3.1. The example
below illustrates how a bivariate extreme value distribution can be derived from the convergence
relationship (Equation 3.1.5).
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Example 3.1. We consider a standard bivariate exponential survival function F : R2
+ → [0, 1],

F (x1, x2) = (ex1 + ex2 − 1)
−1
, x1, x2 ∈ R,

following an example covered in Mardia (1970), Galambos (1978), and Marshall and Olkin (1983).
The corresponding bivariate distribution function F : Rd+ → [0, 1] is given by

F (x1, x2) = 1− F 1(x1)− F 2(x2) + F (x1, x2) = 1− e−x1 − e−x2 + (ex1 + ex2 − 1)
−1
,

where the inclusion-exclusion principle (Equation 2.1.6) was used. Note that the marginal distri-
butions are univariate standard exponential distributions, since

F1(x1) = F (x1,∞) = 1− e−x1 , F2(x2) = F (∞, x2) = 1− e−x2 .

The convergence relationship (Equation 3.1.5) implies that the bivariate extreme value distribution
G to which the distribution F converges can be identified as follows,

G(x1, x2) = lim
n→∞

Fn(an1x1 + bn1, an2x2 + bn2)

= lim
n→∞

(
1− e−(an1x1+bn1) − e−(an2x2+bn2) +

(
ean1x1+bn1 + ean2x2+bn2 − 1

)−1
)n

,

given that there exist sequences {(an1, an2)}n≥1 ∈ (0,∞)2 and {(bn1, bn2)}n≥1 ∈ R2 such that this
limit exists. Taking an1 = an2 = 1 and bn1 = bn2 = log n, we find that

lim
n→∞

Fn(an1x1 + bn1, an2x2 + bn2)

= lim
n→∞

(
1− e−(x1+logn) − e−(x2+logn) +

(
ex1+logn + ex2+logn − 1

)−1
)n

= lim
n→∞

(
1− e−x1

n
− e−x2

n
+ (nex1 + nex2 − 1)

−1

)n
= lim
n→∞

(
exp

(
−e
−x1

n
− e−x2

n
+

1

nex1 + nex2 − 1

))n
= exp

(
−
(
e−x1 + e−x2 − (ex1 + ex2)

−1
))

,

where we used e−x ∼ 1 − x for x → 0 (Taylor expansion). It follows that the bivariate extreme
value distribution G to which F converges is given by

G(x1, x2) = exp
(
−
(
e−x1 + e−x2 − (ex1 + ex2)

−1
))

.

The MEVD contains all information on the marginal behavior of the componentwise maxima
Mn and on the dependence structure between the componentwise maxima of X1, . . . ,Xd. The
stronger the dependence between the extreme values of X, the more likely it is to observe tail
events simultaneously. On the other hand, if the componentwise maxima of X are independent,
it is very improbable to observe tail events simultaneously. The concept of tail independence is
formally defined as follows.

Definition 3.1. Let G be a multivariate extreme value distribution with marginal distributions
exp(−(1 + γjx)−1/γj ) for j = 1, . . . , d. If G(x1, . . . , xd) =

∏d
j=1 exp(−(1 + γjxj)

−1/γj ), then the
random variables are said to be asymptotically independent or tail independent. Otherwise, the
random variables are said to be asymptotically dependent or tail dependent.

An interesting property of the MEVD is that it cannot contain negative dependence. That is,
all multivariate extreme value distributions are positive orthant dependent, hence

G(x1, . . . , xd) ≥
d∏
j=1

Gj(xj), (3.1.6)

as shown by De Oliviera (1962). This property is called positive quadrant dependence for d = 2
(Lehmann, 1966). The weakest dependence structure between multivariate extremes is therefore
independence. This will turn out to have important implications for dependence functions of the
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extreme value distribution that will be discussed in the next sections. In particular, the depen-
dence functions need to be bounded between independence and comonotonicity (perfect positive
dependence).

A defining property of the multivariate extreme value distribution is max-stability. Intuitively,
this means that taking maxima (i.e., multiplying the distribution function) only rescales the distri-
bution function, but leaves it unchanged otherwise. Hence, the distribution is stable under taking
maxima. Formally, this can be given as follows.

Definition 3.2. A d-dimensional distribution function G(x) is called max-stable if for j = 1, . . . , d
and every t > 0 there exist functions aj(t) > 0, bj(t) such that

Gt(x1, . . . , xd) = G(a1(t)x1 + b1(t), . . . , ad(t)xd + bd(t)). (3.1.7)

Proposition 3.1. (Resnick, 1987). The class of multivariate extreme value distributions is pre-
cisely the class of max-stable distribution functions with nondegenerate marginals.

Proof. Let G be a max-stable distribution. By the definition of max-stability, it is possible to write

lim
n→∞

Gn(a1(1/n)x1 + b1(1/n), . . . , ad(1/n)xd + bd(1/n)) = G(x1, . . . , xd)

for certain functions aj(t) > 0, bj(t) ∈ R, 1 ≤ j ≤ d. Therefore, it is clear that the class of max-
stable distribution functions with nondegenerate marginals belongs to the class of multivariate
extreme value distributions. Conversely, let G be a multivariate extreme value distribution. Then,

Gt(x1, . . . , xd) = lim
n→∞

Fnt(an1x1 + bn1, . . . , andxd + bnd)

= lim
m→∞

Fm(am1x1 + bm1, . . . , amdxd + bmd) = G(x1, . . . , xd),

where the normalizing sequences can be chosen in a way such that the convergences hold. Hence,
G is max-stable and belongs to its own maximum domain of attraction. �

Analogous to the univariate case, multivariate regular variation (MRV) can characterize a
large class of multivariate extreme value distributions. Specifically, Resnick (1987) showed that a
random vector X ≥ 0 with distribution function F belongs to the maximum domain of attraction
of a multivariate extreme value distribution G if and only if marginal convergences hold and the
following transformed distribution function of F ,

F∗(x) = F

(
F−1

1

(
1− 1

x1

)
, . . . , F−1

d

(
1− 1

xd

))
,

is multivariate regularly varying. The function U(x) = F−1 (1− 1/x) is known as the tail quantile
function in extreme value theory and zooms in on the high quantiles of a distribution function
(Beirlant et al., 2004). Multivariate regular variation can be defined in several equivalent ways,
but the following definition will be used throughout this thesis.

Definition 3.3. A random vector X ≥ 0 is multivariate regularly varying if there exist an index
α > 0 and a Radon probability measure µ (i.e., finite on compact sets) on S = {ω ∈ Rd : ||ω|| = 1},
the unit hypersphere with respect to norm || · ||, such that

lim
t→∞

P(||X|| ≥ tx,X/||X|| ∈ A)

P(||X|| ≥ t)
= x−αµ(A), (3.1.8)

for every x > 0 and Borel set A ⊆ S with µ(∂A) = 0.

If X is multivariate regularly varying with index α > 0, this is denoted by X ∈ MRVα. The
definition of multivariate regular variation is independent of the specification of the norm || · || since
all norms on Rd are equivalent (Hult and Lindskog, 2002). Alternative definitions of multivariate
regular variation and more information on this property can be found in Appendix A. Intuitively,
multivariate regular variation implies that the distribution of X can be decomposed into a radial
part and an angular part. The radial part corresponds to the conditional probability that the norm
of X is large. The distribution of the norm of the random vector X is assumed to be regularly
varying at infinity, which shows a clear parallel with Theorem 3.2 for the univariate case. The
angular part describes how the standardized components of the random vector X are distributed
given that the sum of the components of X is large. The angular part has a clear connection with
the spectral measure which will be introduced in Section 3.2.2.
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Tail densities

If the multivariate regular variation convergence condition in Equation 3.1.8 holds at the density
level, it gives rise to the so-called tail density. The tail density q(·) was introduced by De Haan and
Omey (1983) and De Haan and Resnick (1987) and can be seen as a density-based convergence
condition. Such a condition can be convenient to assess the extremal behavior of distributions
that are (most easily) defined by their density. Elliptical distributions and vine copula models
are examples of distributions that are defined based on their density and where the cumulative
distribution function cannot be determined explicitly. To introduce the tail density, we assume that
the marginals F1, . . . , Fd have equivalent tails. The margins of the random vector X = (X1, . . . , Xd)
are said to be right-tail equivalent if

1− Fj(x)

1− F1(x)
→ 1, x→∞, (3.1.9)

for all j = 1, . . . , d. Formally, the tail density is defined as follows.

Definition 3.4. Let X ≥ 0 be a right-tail equivalent multivariate regularly varying random vector
with index α > 0. Denote the joint distribution function by F and suppose that it has a continuous
and positive density f . If for some positive function q and some positive function V , regularly
varying at infinity with negative index −α, we have

lim
t→∞

f(tz)

t−dV (t)
= q(z), (3.1.10)

on Rd+\{0} and uniformly on {z > 0 : ||z|| = 1}, then q is said to be the tail density of X.

Note that the fact that the marginals are assumed to be right-tail equivalent is not a limitation,
since the marginal distributions can be transformed to the same scale in such a way that this
condition is satisfied. Since V is assumed to be regularly varying at infinity with negative index
−α, this function can be represented as V (t) = L (t)t−α, where L is a slowly varying function
(see Appendix A). Therefore, the tail density can also be represented as

lim
t→∞

f(tz)

t−α−dL (t)
= q(z).

In the opposite direction, it can be shown that if Equation 3.1.10 holds, then for any z ∈ Rd+\{0},

lim
t→∞

1− F (tz)

V (t)
=

∫
[0,z]c

q(y)dy, (3.1.11)

with homogeneous property that q(sz) = s−α−dq(z) for s > 0. Hence, if the tail density is
homogeneous of order −α−d, then F is multivariate regularly varying with index α. Furthermore,
it can be shown that given that Equation 3.1.10 converges uniformly on the unit sphere of Rd+,
then the regular variation of the density implies multivariate regular variation of its cumulative
distribution function (De Haan and Resnick, 1987). Specifically, if f ∈MRVα, then F ∈MRVα+d.
This can be seen as a multivariate extension of Karamata’s theorem (Theorem A.1) with an
additional condition. The next example illustrates how the tail density can be identified.

Example 3.2. Consider the bivariate Cauchy distribution with density f : R2 → R given by,

f(x, y) =
1

2π

(
1 + x2 + y2

)−3/2
, (x, y) ∈ R2.

The aim is to find the tail density q of this distribution. Taking V (t) = t−1, we find,

lim
t→∞

f(tx, ty)

t−2V (t)
= lim
t→∞

1

2π

(
1 + t2x2 + t2y2

)−3/2 1

t−3
= lim
t→∞

1

2π

t3

(1 + t2x2 + t2y2)
3/2

= lim
t→∞

1

2π

1

(t−2 + x2 + y2)
3/2

=
1

2π

(
x2 + y2

)−3/2
=: q(x, y).

Since

q(tx, ty) =
1

2π

(
t2
(
x2 + y2

))−3/2
= t−3q(x, y),

q is homogeneous of order 3 and, hence, F is multivariate regularly varying with index α = 1.
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3.2 Characterizations of the MEVD
Besides the joint distribution function, there are other ways to characterize the multivariate extreme
value distribution. These characterizations can be useful because the convergence-based definition
of the extreme value distribution (Equation 3.1.5) is cumbersome to use in practice, especially for
higher dimensions. In this section, the exponent measure and the spectral measure will be covered
following the exposition of Beirlant et al. (2004) on the subjects. Similar to the MEVD, these
characterizations fully describe the tail dependence structure but also contain information on the
marginal behavior of extremes.

3.2.1 Exponent measure
The construction of the exponent measure starts with the observation that the convergence relation
given in Equation 3.1.5,

lim
n→∞

Fn(a1nx1 + b1n, . . . , adnxd + bdn) = G(x1, . . . , xd),

is equivalent to,

lim
n→∞

n (1− F (a1nx1 + b1n, . . . , adnxd + bdn)) = − logG(x1, . . . , xd), (3.2.1)

since log(x) ∼ x− 1 for x → 1 (Taylor expansion). This implies that there exists a measure ν on
Rd+ such that

ν
(
[0,∞]d\[0,x]

)
= − logG(x), (3.2.2)

due to the fact that G is the distribution function of a probability measure (De Haan and Resnick,
1977). The measure ν is called the exponent measure and assigns finite values to Borel sets bounded
away from the origin. Since the measure ν is related to the MEVD G by the relationship,

G(x) = exp
(
−ν
(
[0,∞]d\[0,x]

))
, x ∈ Rd,

it is called the exponent measure. The definition of the exponent measure can also be formulated
in terms of vague convergence of measures on [0,∞]d\{0},

nP
(

X− bn
an

∈ ·
)
→ ν(·), (3.2.3)

(De Haan and Resnick, 1993). Vague convergence concerns the convergence of measures that are
finite on bounded sets and coincides with weak convergence in certain spaces (Basrak and Planinić,
2018). Alternatively, an equivalent definition of the exponent measure can be retrieved based on
the convergence of a sequence of point processes to a limiting Poisson process (De Haan, 1984).

An important property of the exponent measure is that it is homogeneous of order one, i.e.,
ν(s·) = s−1ν(·). In order to see that this is in fact the case, we use the max-stability property
of the extreme value distribution (Proposition 3.1). For rectangles bounded away from the origin
this implies that,

ν
(
[0,∞]d\[0, sx]

)
= − logG(sx) = − logG1/s(x) = −s−1 logG(x) = s−1ν

(
[0,∞]d\[0,x]

)
.

Since the homogeneity holds for all rectangles in Rd+\{0}, it can be shown that it holds for all
Borel subsets in Rd+\{0}. Hence, ν(s·) = s−1ν(·). Because of this property, the exponent measure
can be used to scale a region to another region where observations are available (Figure 3.2.1).
This is useful for estimating the probability of a set of rare events for which no or little observations
are available.
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Figure 3.2.1: Scaling extreme regions using the homogeneity property of the exponent measure ν in R2
+

for the bivariate case.

Other properties of the exponent measure are related to the bounds of the dependence structure
of the MEVD G. Recall from Section 3.1.2 that the MEVD is bounded between comonotonicity
and independence and in these boundary cases the exponent measure takes special forms. To show
these results, first note that by the relationship with the MEVD G, the marginal exponent measure
of a subset S ⊂ {1, . . . , d}, denoted by νS , can be retrieved by letting arguments of components
indexed by numbers not belonging to S go to infinity. For example, the marginal exponent measure
between the variables X1 and X2, ν12, can be retrieved from the exponent measure ν as follows:

ν12

(
[0,∞]2\[0, (x1, x2)]

)
= − logG12(x1, x2) = − logG(x1, x2,∞, . . . ,∞)

= ν
(
[0,∞]d\[0, (x1, x2,∞, . . . ,∞)]

)
.

Similarly, the univariate exponent measures can be defined as

νj ((xj ,∞]) = − logGj(xj) = (1 + γjxj)
−1/γj = − logG(∞, . . . ,∞, xj ,∞, . . . ,∞)

= ν
(
[0,∞]d\[0, (∞, . . . ,∞, xj ,∞, . . . ,∞)]

)
.

Now we can deduce that when the MEVD G is independent, the exponent measure is equal to the
sum of the univariate marginal contributions to the exponent measure,

ν
(
[0,∞]d\[0,x]

)
= − logG(x) = − logP (X1 ≤ x1, . . . , Xd ≤ xd) = − log

 d∏
j=1

P (Xj ≤ xj)


=

d∑
j=1

(− logP (Xj ≤ xj)) =

d∑
j=1

(− logGj(xj)) =

d∑
j=1

νj ([0,∞]\[0, xj ]) . (3.2.4)

Hence, in the case of tail independence, the exponent measure is concentrated on the axes in Rd+,
and, therefore, does not assign mass to regions that do not contain values on the axes:

ν ([x,∞]) = 0, (3.2.5)

with x = (x1, . . . , xd) ∈ Rd+ such that xj > 0 for all j = 1, . . . , d. In contrast, if the MEVD G is
tail comonotonic, the exponent measure is concentrated on the main diagonal,

ν
(
[0,∞]d\[0,x]

)
= − logG(x) = − logP (X1 ≤ x1, . . . , Xd ≤ xd) = − log min

1≤j≤d
P (Xj ≤ xj)

= max
1≤j≤d

(− logGj (xj)) = max
1≤j≤d

νj ((xj ,∞]) = ν

((
min

1≤j≤d
xj ,∞

])
, (3.2.6)

where for the last step it has to be assumed that the margins are right-tail equivalent. Figure 3.2.2
illustrates these regions for the bivariate case.

These observations can be employed to show the result that pairwise tail independence implies
multivariate tail independence. This is an important finding since this is not true for general
dependence structures. The result is captured by Theorem 3.3.
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Figure 3.2.2: Regions in R2
+ where the exponent measure ν is concentrated for the bivariate case in

general (left) in the independent case (middle) and in the comonotonic case (right).

Theorem 3.3. (Based on Theorem 6.2.3 in de Haan and Ferreira (2006)). Let (X1, . . . , Xd) be
a vector of d random variables. All pairs Xi and Xj, 1 ≤ i < j ≤ d, are tail independent if
and only if (X1, . . . , Xd) are tail independent. That is, pairwise asymptotic independence implies
multivariate asymptotic independence, and vice versa,

∀ 1 ≤ i < j ≤ d : (Xi, Xj) ∈MDA(Π)⇔ (X1, . . . , Xd) ∈MDA(Π).

Proof. (Based on the proof in de Haan and Ferreira (2006) and the original proof of Berman
(1961)). The proof hinges on the notion that the exponent measure equals the sum of univariate
marginal exponent measures for tail independent variables (Equation 3.2.4) and therefore assigns
zero mass to sets that do not contain values on the axes in Rd+ (Equation 3.2.5). If the vector
X = (X1, . . . , Xd) is tail independent it follows immediately that Equation 3.2.5 holds for all
bivariate pairs, and, therefore, that all bivariate pairs are tail independent. Conversely, if all pairs
are tail independent, marginal bivariate exponent measures are concentrated on the axes (Equation
3.2.4), and, hence, equal zero on regions bounded away from the axes (Equation 3.2.5). We will
show that this implies ν ([x,∞]) = 0 for all x ∈ Rd+ such that xj > 0 for all j = 1, . . . , d and,
therefore, multivariate tail independence.

Let x∗ ∈ Rd+ be such that x∗j > 0 for all j = 1, . . . , d. The exponent measure evaluated on the
set where all components of x∗ are large, i.e., [x∗,∞], is smaller than (or equal to) the exponent
measure evaluated on the set where at least one component of x∗ is large, [0,∞]d\[0,x∗], minus
the exponent measure evaluated on the axes included in this region:

ν ([x∗,∞]) ≤ ν
(
[0,∞]d\[0,x∗]

)
−

d∑
j=1

νj
(
(x∗j ,∞]

)
.

By the inclusion-exclusion principle (Equation 2.1.6), we may write

ν
(
[0,∞]d\[0,x∗]

)
= ν

 d⋃
j=1

[x∗j ,∞]× (0,∞]d−1


=

d∑
j=1

(−1)j+1
∑

1≤i1≤···≤ij≤d

ν

(
j⋂

k=1

[x∗ik ,∞]× (0,∞]d−1

)

=

d∑
j=1

ν
(
[x∗j ,∞]× (0,∞]d−1

)
−
∑
i6=j

ν
((

[x∗i ,∞]× (0,∞]d−1
)
∩
(
[x∗j ,∞]× (0,∞]d−1

))
− . . .

=

d∑
j=1

νj
(
(x∗j ,∞]

)
−
∑
i 6=j

ν
((

[x∗i ,∞]× (0,∞]d−1
)
∩
(
[x∗j ,∞]× (0,∞]d−1

))
− . . . .
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For all bivariate intersections, a similar argument can be used to find that for any 1 ≤ i < j ≤ d,

ν
((

[x∗i ,∞]× (0,∞]d−1
)
∩
(
[x∗j ,∞]× (0,∞]d−1

))
≤ ν

(
[0,∞]d\

(
[0, x∗i ]× [0, x∗j ]× [0,∞]d

))
− νi ((x∗i ,∞])− νj

(
(x∗j ,∞]

)
= νij

(
[0,∞]2\[0, (x∗i , x∗j )]

)
− νi ((x∗i ,∞])− νj

(
(x∗j ,∞]

)
= 0,

where the last equality holds by the assumption of independent bivariate margins and because
of Equation 3.2.4. Since this is true for all bivariate intersections and since all higher order
intersections are smaller than the maximum of the bivariate intersections, we can conclude that

ν
(
[0,∞]d\[0,x∗]

)
=

d∑
j=1

νj
(
(x∗j ,∞]

)
.

Hence, 0 ≤ ν ([x∗,∞]) ≤ 0, which remained to be shown. �

3.2.2 Spectral measure
Another characterization of the multivariate extreme value distribution can be found based on
the exponent measure by switching from the cartesian coordinate system to the polar coordinate
system. It is convenient to standardize the exponent measure to the so-called simple exponent
measure to derive this characterization. The simple exponent measure ν∗ is defined as the exponent
measure for the MEVD with standard Fréchet margins. Recalling that the marginal distributions
of the extreme value distribution are of the form Gj(x) = exp

(
−(1 + γjx)−1/γj

)
, 1 ≤ j ≤ d, and

that the standard Fréchet distribution is given by F (x) = exp(−1/x), it follows that the simple
MEVD, denoted by G∗, is given by

G∗(z) = G

(
zγ11 − 1

γ1
, . . . ,

zγdd − 1

γd

)
. (3.2.7)

The exponent measure for the simple extreme value distribution is therefore defined as

ν∗
(
[0,∞]d\[0, z]

)
= − logG∗(z) = − logG ((zγ − 1)/γ) . (3.2.8)

After deriving expressions based on the simple MEVD, the results can be transformed easily to
the case of a general MEVD. The polar coordinates are defined for a point z ∈ Rd as r = ||z||p and
ω = z/||z||q for any two norms || · ||p and || · ||q on Rd. They are obtained with a transformation
T : R→ (0,∞)× S, where S = {ω ∈ Rd : ||ω||q = 1} is the unit sphere with respect to norm || · ||q
and where T (z) = (r, ω). The spectral measure S is defined on Ξ = [0,∞)d ∩ S by

S(B) = ν∗({z ∈ [0,∞)d : ||z||p ≥ 1, z/||z||q ∈ B}), (3.2.9)

for Borel subsets B of Ξ. Hence, it measures the rescaled probability that joint observations
occur in a region B, given that the norm (or, more intuitively, the sum in case the L1-norm is
taken) of the observations if large. Note that the definition is based on the condition that ||z||p ≥ 1,
which does not necessarily correspond to a "large" norm. However, by the positive homogeneity
of the exponent measure, this condition can be adjusted to an appropriate large value as follows,

ν∗({z ∈ [0,∞)d : ||z||p ≥ r, z/||z||q ∈ B) = r−1S(B).

The simple exponent measure therefore only depends nontrivially on the spectral measure S.
Note that the specification of the norm determines which events are considered to be extreme (see
Figure 3.2.3). Selecting different norms will lead to different representations but theoretically it
does not matter what norms are chosen. However, when choosing a threshold in the process of
statistical inference, it turns out that selecting a specific norm for the radius influences the sample
that is selected which consequently influences the resulting estimates (Einmahl and Segers, 2009).
The norms should be selected based on the goal of the analysis.
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Figure 3.2.3: Extreme regions for the spectral measure for different norms.

Intuitively, the spectral measure considers the contribution of each of the d components to their
norm (z/||z||), conditionally on the norm being large (||z|| ≥ r) (Kiriliouk et al., 2014). An example
for the bivariate case is shown in Figure 3.2.4. The left-hand picture shows the points for which
the sum of the two variables X1 and X2 is large for the L1-norm. The middle panel shows the
relationship between the contribution of the variable X1 to the sum and the size of the sum. The
right-hand figure shows the distribution of the contribution of X1 to the sum S = X1 +X2. Strong
extremal dependence leads to the ratio X1/S being close to 0.5 whereas low extremal dependence
leads to the ratio being close to either 0 or 1. Hence, the distribution of the ratios of the components
to their sum, given that the sum is large, carries information about the dependence between large
values. This distribution is called the angular or spectral measure.

Figure 3.2.4: Spectral measure intuition.

The simple MEVD can be characterized in terms of the spectral measure as follows,

− logG∗(z) = ν∗([0,∞]d\[0, z])

=

∫
[0,∞)d\{0}

1{y ∈ [0,∞]d\[0, z]}ν∗(dy)

=

∫
[0,∞)d\{0}

1

{
max

j=1,...,d

yj
zj
> 1

}
ν∗(dy)

=

∫
Ξ

∫ ∞
0

1

{
max

j=1,...,d

(
ωj
||ω||p

r

zj

)
> 1

}
1

r2
drS(dω)

=

∫
Ξ

∫ ∞
0

1

{
r > 1/

(
max

j=1,...,d

(
ωj
||ω||p

1

zj

))}
1

r2
drS(dω)

=

∫
Ξ

[
−1

r

]∞
1/

(
maxj=1,...,d

(
ωj
||ω||p

1
zj

)) S(dω)

=

∫
Ξ

max
j=1,...,d

(
ωj
||ω||p

1

zj

)
S(dω),
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where 1A(x) is the indicator function which is equal to 1 if x ∈ A and equal to 0 otherwise. Hence,

G∗(z) = exp

(
−
∫

Ξ

max
j=1,...,d

(
ωj
||ω||p

1

zj

)
S(dω)

)
, (3.2.10)

and for the original multivariate extreme value distribution,

G(x) = exp

(∫
Ξ

min
j=1,...,d

(
ωj
||ω||p

logGj(xj)

)
S(dω)

)
. (3.2.11)

Note that in case the two norms || · ||p and || · ||q are equal, the formulas can be simplified slightly,
since ||ω||p = 1 for ω ∈ Ξ. Furthermore, since the margins of G∗ are unit Fréchet, i.e., G∗j(z) =
exp(−1/z), it follows that

− logG∗j(zj) = − logG∗(∞, . . . ,∞, zj ,∞, . . . ,∞) =

∫
Ξ

ωj
||ω||p

1

zj
S(dω) = 1/zj ,

which leads to the condition ∫
Ξ

ωj
||ω||p

S(dω) = 1 ∀j ∈ {1, . . . , d}. (3.2.12)

Conversely, any positive measure S on Ξ satisfying these conditions is the spectral measure of
the d-dimensional extreme value distribution G∗ = exp(−ν∗). The results are summarized in the
following theorem.

Theorem 3.4. G is a d-dimensional multivariate extreme value distribution if and only if there
exists a spectral measure S on Ξ such that,

G(x) = exp

(∫
Ξ

min
j=1,...,d

(
ωj
||ω||p

logGj(xj)

)
S(dω)

)
with constraints ∫

Ξ

ωj
||ω||p

S(dω) = 1 ∀j ∈ {1, . . . , d}.

As an example, the bivariate case with both norms equal to the Euclidean L2-norm is considered.
This leads to the classical polar coordinates situation and was considered by De Haan and Resnick
(1977), for example.

Example 3.3. Consider two random variables X and Y with bivariate extreme value distribution
function G to be evaluated in the point x = (x, y) ∈ R2. When both norms for the polar coordinates
transformation are taken to be the L2-norm, the polar coordinates are defined by

r =
√
x2 + y2, ω = (x/r, y/r) .

The spectral measure can be defined on Borel subsets of part of the unit circle,

B ⊆ Ξ = R2
+ ∩ S = {(x, y) ∈ R2

+ :
√
x2 + y2 = 1}

as,

S(B) = ν∗({(x, y) ∈ R2
+ : r ≥ 1, ω ∈ B}),

or, equivalently, for θ ∈ [0, π/2],

S(θ) = ν∗

({
(x, y) ∈ R :

√
x2 + y2 ≥ 1, y/x ≤ tan θ

})
.

Putting x = r cos θ and y = r sin θ, we find that ω = (cos θ, sin θ) and therefore,

G∗(z1, z2) = exp

(
−
∫

Ξ

max

(
ω1

z1
,
ω2

z2

)
S(dω)

)
= exp

(
−
∫ π/2

0

max

(
cos θ

z1
,

sin θ

z2

)
S(dθ)

)
,
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with, ∫ π/2

0

cos θS(dθ) =

∫ π/2

0

sin θS(dθ) = 1.

Note that X and Y are tail independent if and only if the spectral measure S is concentrated on
{0, π/2}. In that case, S({0}) = 1 = S({π/2}). Similarly, the variables X and Y are completely
tail dependent if S is concentrated on {π/4}. In that case, S({π/4}) = ||(1, 1)||.

3.3 Copula approach

So far, the considered characterizations of the tail dependence structure between d ≥ 2 random
variables contained information on both the marginal and the joint behavior of the tails of these
variables. The notion that the characterizations also reflect the marginal behavior is one of the
factors that make them quite cumbersome to work with, especially when the primary interest is
to evaluate tail dependence. In this section, we disentangle the tail dependence structure from the
marginal distributions employing a copula-based approach. The copula of the multivariate extreme
value distribution turns out to be a special type, being an extreme value copula. Generally, we
denote the copula of the distribution F that belongs to the domain of attraction of a MEVD by
CF and the extreme value copula of the MEVD by C. We present several results for extreme value
copulas and consider the asymptotic behavior of several commonly used copulas. See Gudendorf
and Segers (2009) for a comprehensive overview of results regarding extreme value copulas.

3.3.1 Extreme value copulas

In Chapter 2.1 it was discussed that for each joint distribution function F of a vector of continuous
random variables X1, . . . , Xd, there exists a copula function that both fully and solely captures the
dependence structure of the random vector. For the multivariate extreme value distribution G the
theorem of Sklar (1959) therefore asserts that G can be represented by a copula C as

G(x1, . . . , xd) = C (G1(x1), . . . , Gd(xd)) , (x1, . . . , xd) ∈ Rd. (3.3.1)

Since the joint and marginal distribution functions of Mn are given by Fn and Fn1 , . . . , Fnd respec-
tively, it follows that the copula Cn of the maxima Mn is related to the copula CF as

Cn(u1, . . . , ud) = CF (u
1/n
1 , . . . , u

1/n
d )n, (u1, . . . , ud) ∈ [0, 1]d. (3.3.2)

Note that copulas are invariant under monotone transformations and that the copula joining Mn

is therefore the same as the copula joining the normalized maxima. The limit of the copulas Cn
as n→∞ is given by C, an extreme value copula (Galambos, 1978).

Definition 3.5. A copula C is called an extreme value copula if there exists a copula CF such that

CF

(
u

1/n
1 , . . . , u

1/n
d

)n
→ C(u1, . . . , ud) (u1, . . . , ud) ∈ [0, 1]d (3.3.3)

as n→∞. The copula CF is said to be in the domain of attraction of C (CF ∈MDA(C)).

The maximum domain of attraction condition on the joint distribution function (Equation
3.1.5) implies the copula convergence (Equation 3.3.3), but is not reciprocal since the marginal
distributions also have to converge to univariate extreme value distributions. The copula con-
vergence condition together with the convergence of the margins to univariate EVDs implies the
convergence of a multivariate distribution to a multivariate extreme value distribution. Although
marginal convergences are required to achieve a proper MEVD, the extreme value copula C is
solely determined by the copula CF . The marginal distributions F1, . . . , Fd influence the marginal
distributions of the limiting MEVD but not the dependence structure.

Similar to the MEVD, another representation of the extreme value copula can be given with
the concept of max-stability (see Proposition 3.1). For copulas, the max-stability is defined as
follows (Leadbetter and Rootzén, 1988).
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Definition 3.6. A d-variate copula C is max-stable if it satisfies the relationship

C(u1, . . . , ud) = C
(
u

1/m
1 , . . . , u

1/m
d

)m
(3.3.4)

for every integer m ≥ 1 and all (u1, . . . , ud) ∈ [0, 1]d.

It follows immediately from this definition that an extreme value copula is max-stable and that
a max-stable copula is in its own domain of attraction and must, therefore, be an extreme value
copula. That is, a copula is an extreme value copula if and only if it is max-stable. The observation
that the class of multivariate extreme value distributions coincides with the class of max-stable
distributions is researched by De Haan and Resnick (1977). The fact that C is max-stable implies
that C1/k is a distribution function for any integer k, that is, C is max-infinitely divisible (Balkema
and Resnick, 1977).

The extreme value copula can be retrieved based on the MEVD but also based on the exponent
measure or the spectral measure since these characterizations describe the multivariate dependence
structure of the MEVD. Hence, the extreme value copula can be completely characterized by the
exponent measure, as shown by the following relationship,

C (G1(x1), . . . , Gd(xd)) = G(x) = exp (−ν ([0,x]c)) ,

or, setting Gj(xj) = uj for 1 ≤ j ≤ d,

C(u1, . . . , ud) = exp
(
−ν
([

0,
(
G−1

1 (u1), . . . , G−1
d (ud)

)]c))
.

The spectral measure representation can also be used to characterize extreme value copulas. Since

C(G1(x1), . . . , Gd(xd)) = G(x) = exp

(∫
Ξ

min
j=1,...,d

(
ωj
||ω||1

logGj(xj)

)
S(dω)

)
,

it follows that

C(u1, . . . , ud) = exp

(∫
Ξ

min
j=1,...,d

(
ωj
||ω||1

log uj

)
S(dω)

)
. (3.3.5)

Using the definition of the extreme value copula, it is now possible to investigate the maximum
domain of attraction to which several known copulas belong. First, using the copula convergence,
it is easy to see that the independence copula is in its own maximum domain of attraction.

Example 3.4. The independence copula is given by CF (u1, . . . , ud) = u1 · · ·ud. By the copula
convergence condition (Equation 3.3.3), it follows that

lim
n→∞

CF

(
u

1/n
1 , . . . , u

1/n
d

)n
= lim
n→∞

(
u

1/n
1 · · ·u1/n

d

)n
= u1 · · ·ud = C(u1, . . . , ud).

Hence, if two or more variables are joint by the independence copula, their maxima are also
independent. Similarly, it can be shown that the positive comonotonicity copula (i.e., the upper
Fréchet bound) is also in its own maximum domain of attraction.

Example 3.5. The comonotonicity copula is given by CF (u1, . . . , ud) = min(u1, . . . , ud). By the
copula convergence condition (Equation 3.3.3), it follows that

lim
n→∞

CF

(
u

1/n
1 , . . . , u

1/n
d

)n
= lim
n→∞

min
(
u

1/n
1 , . . . , u

1/n
d

)n
= min(u1, . . . , ud) = C(u1, . . . , ud).

Hence, if two or more variables are joint by the comonotonicity copula, then this is also the
case for their maxima. Furthermore, these results show that the independence copula and the
comonotonicity copula are both extreme value copulas. A somewhat more complicated example of
a copula that belongs to its own maximum domain of attraction is the Gumbel copula. In extreme
value theory, the Gumbel copula is also known as the Gumbel-Hougaard copula or the logistic
copula.
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Example 3.6. The Gumbel copula is the Archimedean copula defined by the generator ψ(t) =
exp(−t1/θ) (see Section 2.3). Its copula function is given by

CF (u1, . . . , ud) = exp

−[ d∑
i=1

(− log ui)
θ

]1/θ
 , (u1, . . . , ud) ∈ [0, 1]d,

with θ ≥ 1. By the copula convergence condition (Equation 3.3.3), it follows that

lim
n→∞

CF

(
u

1/n
1 , . . . , u

1/n
d

)n
= lim
n→∞

exp

(
−
[(
− log u

1/n
1

)θ
+ · · ·+

(
− log u

1/n
d

)θ]1/θ
)n

= lim
n→∞

exp

−n[(− 1

n
log u1

)θ
+ · · ·+

(
− 1

n
log ud

)θ]1/θ


= exp

(
−
[
(− log u1)

θ
+ · · ·+ (− log ud)

θ
]1/θ)

= C(u1, . . . , ud).

Again, this indicates that if two or more variables are joint by the Gumbel copula, their maxima
are also following the Gumbel copula. Furthermore, this example shows that the Gumbel copula is
an extreme value copula. It can be shown that the Gumbel copula is the only copula that is both an
Archimedean and an extreme value copula (Genest and Rivest, 1989). Moreover, for Archimedean
copulas in general, it can be shown that if the copula CF is Archimedean, it always belongs to the
maximum domain of attraction of either the Gumbel copula, the comonotonicity copula, or the
independence copula. For the lower tail a similar result holds with the Galambos copula instead
of the Gumbel copula. For copulas that are not extreme value copulas and, hence, convergence
to a different asymptotic distribution, the max-stability convergence definition (Equation 3.3.3) is
difficult to employ to identify the limiting copula distribution. Other methods have therefore been
developed. For Archimedean copulas, the behavior of the generator is usually analyzed to assess
the tail dependence structure. However, the stochastic representation also provides an intuitive
approach to interpret the tail dependence structure of Archimedean copulas. This is illustrated by
the following theorem.

Theorem 3.5. (Proposition 2 in Larsson and Nešlehová (2011)). Let X = (X1, . . . , Xd) be a d-
dimensional random vector joint by an Archimedean copula CF with d-monotone generator function
ψ. If 1−ψ(1/x) ∈ RV−α, for α ∈ (0, 1], then CF ∈MDA(CGu1/α), where CGuθ is the Gumbel copula
with parameter θ ≥ 1.

Proof. (Based on the proof shown in Larsson and Nešlehová (2011)). Since CF is a d-dimensional
Archimedean copula with generator ψ, the stochastic representation of McNeil and Nešlehová
(2009) implies that CF is the survival copula of a random vector X = (X1, . . . , Xd) that can be
stochastically represented as X = RS with S a random vector that is uniformly distributed on the
unit simplex ∆d and R a nonnegative random variable independent of S with distribution function
equal to inverse Williamson d-transform of ψ (see Section 2.3). Since the survival function of each
component of X is equal to ψ, the survival function of the random vector X is given by

P(X1 > x1, . . . , Xd > xd) = FX(x1, . . . , xd)

= CF
(
F 1(x1), . . . , F d(xd)

)
= CF (ψ(x1), . . . , ψ(xd)) = ψ(x1 + · · ·+ xd) = ψ(||x||1).

Now consider n iid replicates Xi = (Xi1, . . . , Xid) of X, 1 ≤ i ≤ n, and define Wn = (Wn1, . . . ,Wnd)
to be the vector of componentwise minima, i.e.,

Wnj = min(X1j , . . . , Xnj), 1 ≤ j ≤ d.

The survival function of W is given by

P (Wn1 > x1, . . . ,Wnd > xd) =

n∏
i=1

P (Xi1 > x1, . . . , Xid > xd) = ψn(||x||1).
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In order to retrieve the distribution of the maxima, we now consider −X with the componentwise
maxima given by −Wn. Note that the margins of −X are given by Fi(xi) = ψ(−xi), 1 ≤ i ≤ d
since P(−Xi ≤ xi) = P(Xi > −xi). Because it is assumed that 1 − ψ(1/x) ∈ RV−α, it follows
that the margins of −X belong to the Weibull domain of attraction, i.e., there exists a sequence
(bn) > 0 such that

lim
n→∞

P
(
−Wn1

bn
≤ x

)
= lim
n→∞

ψn(−bnx) = exp (−(−x)α) ,

for x < 0. This implies that ψn(−bn||x||1) converges to exp(−(−||x||1)α), which can be recognized
as the generator of the Gumbel copula with parameter 1/α. Hence, −Wn/bn converges weakly to
−W, where W is an `1-norm symmetric random vector with survival function ψGu1/α(−||x||1) and
survival copula CGu1/α. It follows that CF ∈MDA(CGu1/α). �

Larsson and Nešlehová (2011) show that the assumption of the Theorem 3.5 is satisfied if the
distribution of 1/R belongs to a maximum domain of attraction. See their paper for more details
and the proof of this result. The result can be used to show that the Archimedean Joe copula
belongs to the maximum domain of attraction of the Gumbel copula.

Example 3.7. The Joe copula is the Archimedean copula induced by the generator ψ(t) = 1− (1−
exp(−x))1/θ (see Section 2.3). Since

lim
t→∞

1− ψ((tx)−1)

1− ψ(x−1)
= lim
t→∞

(1− exp(−(tx)−1)1/θ

(1− exp(−t−1)1/θ
= lim
t→∞

(
(tx)−1

t−1

)1/θ

= x−1/θ

where we used that exp(−tx) ∼ 1 − tx for t → 0, Theorem 3.5 implies that the Joe copula with
parameter θ belongs to the maximum domain of attraction of the Gumbel copula with parameter θ.

The result can be used in a similar fashion to show that both the Frank and the Clayton copula
belong to the maximum domain of attraction of the independence copula. Several generators are
shown in Figure 3.3.1. The figure shows that the generator function of the Frank copula approaches
zero somewhat faster than the generator function of the Gumbel copula. This causes the Frank
copula to converge to Π, whereas the Gumbel copula is tail dependent.

Figure 3.3.1: Generators for the Frank (θ = 3.45) and Gumbel copula (θ = 1.54). The model
parameters lead to a bivariate rank correlation of ρ = 0.5 for both copulas.

For elliptical distributions, Schmidt (2002) and Hult and Lindskog (2002) show that the be-
havior of the tail of the generating variable determines the extremal dependence structure between
the random variables. This presents a clear parallel to the theory for Archimedean copulas. The
result is captured by the following theorem.

Theorem 3.6. (Theorem 2.4 in Schmidt (2002), Theorem 4.3 in Hult and Lindskog (2002)).
Let X = (X1, . . . , Xd) be a d-dimensional random vector following an elliptical distribution, with
stochastic representation X

d
= RU (see Section 2.2) and denote with FR the distribution function

of the generating variable R. If FR has a regularly varying tail, then all margins of the distribution
of X are tail dependent.
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Proof. (Hult and Lindskog, 2002). The proof is based on the characterization of tail dependence
based on multivariate regular variation (see Appendix A). We give an outline of the proof here.
Note that since the d-dimensional random vector U is uniformly distributed on the unit sphere in
Rd and since U is distributed independently of R (Section 2.2), the following equivalences hold,

P (|X| > tx,X/|X| ∈ ·)
P (|X| > t)

=
P (R > tx,AU ∈ ·)

P (R > t)
=

P (R > tx)P (AU ∈ ·)
P (R > t)

.

Furthermore, recall that if R is regularly varying, then by definition,

lim
t→∞

P (R > tx)

P (R > t)
= x−α,

with α > 0 (see Appendix A). Hence,

lim
t→∞

P (|X| > tx,X/|X| ∈ ·)
P (|X| > t)

= lim
t→∞

P(R > tx)P(AU ∈ ·)
P(R > t)

= x−αP (AU ∈ ·) ,

which implies that X is multivariate regularly varying with index α > 0. For more detailed
computations see Hult and Lindskog (2002). �

This result can be used to explore the maximum domain of attraction of both the t-copula and
the Gaussian copula. Recall from Section 2.2 that for the Normal copula, the distribution of the
generating variable is defined by R2 ∼ χ2

d, whereas the distribution of the generating variable for the
t-copula is defined by R2/d ∼ F (d, ν). The densities of both resulting distributions for R are shown
in Figure 3.3.2. For the t-copula, the density can be derived as follows: if Y := R2/d ∼ F (d, ν) =:
FY then R =

√
dY . Hence, FR(x) = P(R ≤ x) = P(

√
dY ≤ x) = P(Y ≤ 1

dx
2) = FY ( 1

dx
2).

Therefore, we find that fR(x) = d
dxFR(x) = d

dxFY ( 1
dx

2) = 2
dxfY ( 1

dx
2), where fY is the density

function of the F (d, ν) distribution. The density for the generating variable of the Normal copula
can be determined similarly: if fY is the density function of the χ2

d distribution, then the generating
variable of the Normal copula follows the following density, fR(x) = 2xfY (x2).

Figure 3.3.2: Densities of the generating variable for the Normal and t-copula, with the degrees of
freedom equal to d = 10 and ν = 4.

By Karamata’s theorem (see Appendix A), the distribution of the generating variable R has a
regularly varying tail if the density has a regularly varying tail. For the t-copula, we find that

lim
t→∞

fR(tx)

fR(t)
= lim
t→∞

2
d txfF (d,ν)(

1
d (tx)2)

2
d tfF (d,ν)(

1
d t

2)
= lim
t→∞

x
fF (d,ν)(

1
d (tx)2)

fF (d,ν)(
1
d t

2)
,

and since the F -distribution belongs to the domain of attraction of the Fréchet distribution, it
can be concluded that the t-copula has a generating variable with a regularly varying tail, and,
therefore, has bivariate margins that are tail dependent. In contrast, for the Normal copula,
the χ2 distribution belongs to the domain of attraction of the Gumbel distribution, hence the
generating variable does not have a regularly varying tail. This leads to the conclusion that the
Gaussian copula belongs to the MDA of the independence copula Π, a result that has actually
already been known since Sibuya (1960). Although the Normal distribution converges to Π, a
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better approximation to the extreme value copula can be given in the bivariate case when the
correlation parameter ρ is close to 1. This result is due to Hüsler and Reiss (1989) who show that
under the assumption that the correlation coefficient ρ can vary with the sample size n, ρ = ρn,
and does so in such a way that ρn → 1 as n→∞, the bivariate Gaussian copula converges to the
Hüsler-Reiss extreme value copula. This copula will be further assessed based on the dependence
functions introduced in the Section 3.4.

3.3.2 Copula tail densities
Analogue to the tail density for the multivariate extreme value distribution introduced in Section
3.1.2, it is possible to consider the tail density of an extreme value copula. The copula tail density
can be an useful tool to analyse the extremal dependence structure of distributions that are (most
easily) defined by their density, such as the t-copula and vine copulas. The concept of copula tail
densities has been pioneered by Li (2013) and further developed in Li and Hua (2015). Defining
the partial differentiation operator as Dw = ∂d

∂w1...∂wd
, and recalling from Section 2.1 that

C(1− uwi, 1 ≤ i ≤ d) = 1−
∑

∅6=S⊆{1,...,d}

(−1)|S|−1CS(1− uwi, i ∈ S),

it follows that

DwC(1− uwi, 1 ≤ i ≤ d) = (−1)dDwC(1− uwi, 1 ≤ i ≤ d) = udc(1− uwi, 1 ≤ i ≤ d).

Li (2013) then defines the copula tail density as follows.

Definition 3.7. Let X be a d-dimensional random vector with joint distribution function F and
copula CF . Denoting by cF the copula density and by CF the survival function of CF , the copula
tail density Υ : Rd+ → R+ is defined as

Υ(w) = lim
u→0

ud−1cF (1− uwi, 1 ≤ i ≤ d) = lim
u→0

DwCF (1− uwi, 1 ≤ i ≤ d)

u
, (3.3.6)

if the limits exist.

To ensure that the limit in the definition holds, uniform convergence on Rd+\{0} of the partial
derivatives of the tail dependence functions as u→ 0 is required.

It is clear that if the copula density cF is independent and therefore equal to 1, the tail density
is zero on its entire domain. Unfortunately, the opposite is not true. That is, a tail density that
is zero everywhere on its domain does not imply tail independence. This can be seen from the
following example.

Example 3.8. Consider a trivariate D-vine copula, where c12 is independent, c23 is the density
of a bivariate t-copula with parameters ρ > 0 and ν <∞, and therefore tail dependent, and where
the conditional copula density c13|2 = 1, corresponding to independence (note that this results in a
so-called Markov tree). The density of the vine copula is given by

cF (u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2
(
C1|2(u1|u2), C3|2(u3|u2)

)
= c23(u2, u3).

Since the density of the vine model is equal to the density of the bivariate t-copula, the extreme
value copula of the vine is given by the bivariate t-EV copula. Hence, the vine copula exhibits tail
dependence. However, the tail density of the vine copula is equal to zero,

Υ(w1, w2, w3) = lim
u→0

u2c23(1− uw2, 1− uw3) = lim
u↓0

uΥ23(w2, w3) = 0,

where Υ23 is the tail density of the t-copula, defined in Proposition 3.2 below.

Marginal tail densities can be retrieved from the full tail density by integrating out the appro-
priate variables. This is illustrated by the following example.
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Example 3.9. Suppose Υ123 is the trivariate copula tail density of the random vector X =
(X1, X2, X3) with copula density c123. The marginal copula tail density with respect to the variables
X1 and X2, denoted by Υ12, can be retrieved from the full copula tail density Υ123 by integrating
out the third variable as follows,

Υ12 = lim
u→0

uc12(1− uw1, 1− uw2)

= lim
u→0

u

∫ 1

0

c123(1− uw1, 1− uw2, v3)dv3

= lim
u→0

u

∫ 0

1/u

−uc123(1− uw1, 1− uw2, 1− uw3)dw3

=

∫ ∞
0

lim
u→0

u2c123(1− uw1, 1− uw2, 1− uw3)dw3

=

∫ ∞
0

Υ123(w1, w2, w3)dw3,

where uniform convergence has to be assumed in order to be able to exchange limit and integral in
the fourth step. Obviously, the same procedure can be employed to retrieve marginal tail densities
for other subsets of variables and in higher dimensions.

The tail density for the t-copula is presented in Proposition 3.2.

Proposition 3.2. (Li and Wu, 2013). The tail density function Υ for the t-copula is given by

Υ(w) = |Σ|− 1
2 ν1−d Γ

(
ν+d

2

)
Γ
(
ν+1

2

)
π(d−1)/2

[(
w−

1
ν

)T
Σ−1w−

1
ν

]− ν+d2

∏d
i=1 w

ν+1
ν

i

, (3.3.7)

for w = (w1, . . . , wd) ∈ Rd\{0}. If wj = 0 for j ∈ {1, . . . , d}, then Υ(w) = 0.

Proof. (Li and Wu, 2013). Consider a d-dimensional symmetric t-distribution td (ν,Σ) with mean
0 and density function given by,

ft(x; ν,Σ) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(νπ)

d/2
|Σ|− 1

2

[
1 +

1

ν

(
xTΣ−1x

)]− ν+d2

,

where x = (x1, . . . , xd) ∈ Rd, ν > 0 is the degree of freedom, and Σ = (ρij) is a d × d symmetric
dispersion matrix. The one dimensional marginal t-distribution has the density

fi(xi) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)
(νπ)

1/2

(
1 +

x2
i

ν

)− ν+1
2

, xi ∈ R, 1 ≤ i ≤ d.

It can be shown that fi has regularly varying tails with index nu+1. This implies that the margin
Fi has a regulalry varying tail with 1− Fi(xi) ≈ ν−1x−νi L (xi, ν) as xi →∞, where

L (xi, ν) ≈
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπ

(
1

x2
i

+
1

ν

)− ν+1
2

→
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπ
ν
ν+1
2 =: `, as xi →∞.

The limiting constant ` > 0 is an explicit constant only dependending on ν. If we set Fi(xi) =
1 − uwi then we have ν−1x−νi ` ≈ uwi as u → 0. Thus, we obtain the following estimate for
sufficiently small u,

F−1
i (1− uwi) ≈ ν−

1
ν `

1
ν (uwi)

− 1
ν , 1 ≤ i ≤ d.

Plugging this estimate into the density of the t-copula c(1− uwi, 1 ≤ i ≤ d) gives that as u→ 0,

c(1− uwi, 1 ≤ i ≤ d) = ft
(
F−1

1 (1− uw1), . . . , F−1
d (1− uwd)

) d∏
i=1

[
fi
(
F−1
i (1− uwi)

)]−1

≈ u1−d|Σ|− 1
2 ν(1−d)( ν2 +1)`d−1 Γ

(
ν+d

2

)
Γd−1

(
ν
2

)
Γd
(
ν+1

2

)
[(

w−
1
ν

)T
Σ−1w−

1
ν

]− ν+d2

∏d
i=1 w

ν+1
ν

i

.

The result now follows immediately from the definition of the copula tail density. �
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The tail density of a D-vine copula is presented in Theorem 3.7 below. This theorem will turn
out to be very useful in analyzing the tail behavior of vines. For example, Proposition 3.3 illustrates
that a D-vine always exhibits tail dependence if all baseline linking copulas are tail dependent.

Theorem 3.7. (Li and Wu, 2013). Suppose CF is a d-dimensional D-vine copula and assume that
all bivariate linking copulas CF ;ij have continuous densities and satisfy the uniform convergence
properties. If the baseline linking copula CF ;i,i+1 are all upper tail dependent, then

Υ{1,...,d}(w)

Υ{2,...,d−1}(w{2,...,d−1})
=

Υ{1,...,d−1}(w{1,...,d−1})

Υ{2,...,d−1}(w{2,...,d−1}

Υ{2,...,d}(w{2,...,d})

Υ{2,...,d−1}(w{2,...,d−1})

· c1,d|2,...,d−1

(
1− t1|2,...,d−1

(
w1|w{2,...,d−1}

)
, 1− td|2,...,d−1

(
wd|w{2,...,d−1}

))
,

where for j ∈ {1, . . . , d}, and S ⊆ {1, . . . , d}\{j},

tj|S (wj |wS) = lim
u↓0

Cj|S (1− uwj |1− uwi, i ∈ S)

=

∫ wj

0

ΥS∪{j}(w̃j ,wS)

ΥS(wS)
dw̃j .

Proof. The proof is included in Appendix B.1. �

Proposition 3.3. Based on the representation of the copula tail density function for a D-vine
copula, the following results can be deduced:

1. If some baseline linking copulas Ci,i+1 are tail independent (i.e., Υi,i+1 = 0 for some 1 ≤
i ≤ d), then Υ(w) = 0 (Li and Wu, 2013).

2. If all baseline linking copulas Ci,i+1 are tail dependent (i.e., Υi,i+1 > 0 for some 1 ≤ i ≤ d)
and if all linking copulas C{i,j|i+1,...,j−1} have a non-zero density everywhere on [0, 1]2, then
the D-vine copula is tail dependent (i.e., Υ(w) > 0).

Proof. The proof is included in Appendix B.1. �

As an example, a 3-dimensional D-vine is considered. Theorem 3.7 implies that the tail density
of a trivariate D-vine can be written in terms of the bivariate tail densities of the linking copulas.
Specifically,

Υ123(x1, x2, x3) = Υ12(x1, x2)Υ23(x2, x3)c1,3|2
(
1− CF ;1|2(x1|x2), 1− CF ;3|2(x3|x2)

)
= Υ12(x1, x2)Υ23(x2, x3)c13|2

(
1−

∫ x1

0

Υ12(w1, x2)dw1, 1−
∫ x1

0

Υ23(x2, w3)dw3

)
.

3.4 Dependence functions
This section presents three dependence functions that originate from the extreme value copula.
Specifically, the stable tail dependence function, the Pickands dependence function, and the tail
copula are discussed. These functions are sometimes known by different names in literature, but
these are most commonly used. Given certain conditions, each of these functions can convey
the same amount of information on the dependence structure between multivariate extremes as
the extreme value copula. However, subtle differences in the properties, evaluation methods, and
interpretation of these dependence functions can provide advantages over the original extreme
value copula.
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3.4.1 Stable tail dependence function
Since the MDA-convergence-based definition of the extreme value copula (Equation 3.3.3) can be
difficult to employ for some copulas, another general expression that shows the connection between
the copula CF and the corresponding extreme value copula C is derived. Taking the logarithm on
both sides of Equation 3.3.3 and using that log(x) ∼ x− 1 for x→ 1, it can be derived that

lim
n→∞

logCF

(
u

1/n
1 , . . . , u

1/n
d

)n
= lim
n→∞

n log
(
CF

(
u

1/n
1 , . . . , u

1/n
d

))
= − lim

n→∞
n
(

1− CF
(
u

1/n
1 , . . . , u

1/n
d

))
= − lim

t↓0

1− CF (ut1, . . . , u
t
d)

t
= logC(u1 . . . , ud),

for all (u1, . . . , ud) ∈ [0, 1]d. By setting uj = exp(−xj), j = 1, . . . , d, and using the approximation
exp(−tx) ∼ 1−tx for t→ 0, the following useful reformulation of the copula convergence condition
is given,

lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

= − logC
(
e−x1 , . . . , e−xd

)
. (3.4.1)

Segers (2012b) notes that this way, the copula domain-of-attraction condition, originally involving
the vector of componentwise sample maxima, is replaced by a condition on the upper tail of a
single random vector. This is akin to switching from the block maxima approach to the peaks-
over-threshold approach. This relationship between the copula CF and its extreme value copula
C is the basis for the definition of the so-called stable tail dependence function (STDF). This
dependence function has its roots in the work of Huang (1992) and Drees and Huang (1998).
Originally, the STDF was defined based on the simple extreme value distribution G∗, i.e., the
multivariate extreme value distribution with margins transformed to unit Fréchet distributions.
We define the STDF based on the copula convergence in Equation 3.4.1.

Definition 3.8. Let X1, . . . , Xd be random variables with marginal distributions F1, . . . , Fd, joint
distribution function F , and copula CF . The stable tail dependence function ` : Rd+ → R+ is
defined for x = (x1, . . . , xd) ∈ Rd+ as

`(x1, . . . , xd) = lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

, (3.4.2)

if the limit exists.

Intuitively, the stable tail dependence function (STDF) concerns the event that at least one
among the d components X1, . . . , Xd exceeds a high percentile of its own distribution. By letting
this high threshold go to its limit, the extremal dependence structure is captured by the `-function.
The coefficients (x1, . . . , xd) can be interpreted as determining the direction from which the limit
is approached. The existence of the limit is equivalent to the statement that the joint distribution
function of the simple random vector X∗, i.e., the random vector X with marginals transformed
to unit Fréchets, is in the maximum domain of attraction of a d-variate extreme value distribution
with unit Fréchet margins (Kiriliouk et al., 2014). See Einmahl et al. (2006) for methods to test
this assumption. If the limit exists, the STDF of the extreme value copula is the same as the
STDF of the copula CF . This is captured by the following proposition.

Proposition 3.4. If the limit in Equation 3.4.2 exists and if CF ∈ MDA(C), then the STDF of
CF is equal to the STDF of its extreme value copula C.

Proof. This follows immediately by Equation 3.4.1 and the fact that an extreme value copula
belongs to its own domain of attraction. �

By this relationship, the extreme value copula can be characterized by the stable tail dependence
function as follows.

Proposition 3.5. The copula C is an extreme value copula if and only if it has the representation

C(u1, . . . , ud) = exp (−`(− log u1, . . . ,− log ud)) . (3.4.3)
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Proof. This relationship follows immediately from the definition of the stable tail dependence
function and its relationship with the extreme value copula given in Equation 3.4.1. �

Because of this representation, the STDF is sometimes also called the exponent function which
is usually denoted by an a. Relationships with the extreme value distribution, the exponent
measure, and the spectral measure are given by the following relationships,

`(x1, . . . , xd) = − logG∗(1/x1, . . . , 1/xd) = ν∗
(
[0,∞]d\[0,1/x]

)
=

∫
Ξ

max
j=1,...,d

(
ωi
||ω||a

xi

)
S(dω).

(3.4.4)

See Molchanov (2008) and Ressel (2013) for more information on the properties of the STDF.
Marginals can be easily retrieved by setting some components xj to zero, making it easy to retrieve
lower-dimensional margins of the extreme value copula. Each stable tail dependence function
satisfies four necessary properties.

Theorem 3.8. Each stable tail dependence function ` : Rd+ → R+ satisfies the following properties:

1. Homogeneity: `(cx1, . . . , cxd) = c`(x1, . . . , xd) for all c > 0;

2. `(ej) = 1 for ej the j-th unit vector in Rd, j = 1, . . . , d;

3. Bounds: max(x1, . . . , xd) ≤ `(x1, . . . , xd) ≤ x1 + · · ·+ xd;

4. Convexity: ` is a convex function.

Proof. (1) The homogeneity property follows from the definition of the stable tail dependence
function as,

`(cx1, . . . , cxd) = lim
t↓0

1− CF (1− ctx1, . . . , 1− ctxd)
t

= c lim
t↓0

1− CF (1− ctx1, . . . , 1− ctxd)
ct

= c lim
ω↓0

1− CF (1− ωx1, . . . , 1− ωxd)
ω

= c`(x1, . . . , xd).

(2) Suppose j = 1. The second property follows from the observation that C(u, 1, . . . , 1) = u for
any u ∈ [0, 1] and from the definition:

`(e1) = `(1, 0, . . . , 0) = − logC
(
e−1, 1, . . . , 1

)
= − log

(
e−1
)

= 1.

The argument is similar for all j ∈ {1, . . . , d}.
(3) The bounds from ` follow from the fact that the extreme value copula C is bounded between
independence and comonotonicity:

Πd = u1 · · ·ud ≤ C(u1, . . . , ud) ≤ min(u1, . . . , ud) = Md.

Hence,

exp (−(x1 + · · ·+ xd)) ≤ C
(
e−x1 , . . . , e−xd

)
≤ min

(
e−x1 , . . . , e−xd

)
,

and

max(x1, . . . , xd) = − log min
(
e−x1 , . . . , e−xd

)
≤ − logC

(
e−x1 , . . . , e−xd

)
≤ x1 + · · ·+ xd.

(4) The convexity of ` follows trivially from the fact that the logarithm is a concave function. �

In the bivariate case, these four properties are sufficient for a function ` to be a tail dependence
function. However, in higher dimensions, d > 2, these properties are necessary but not sufficient.
This is illustrated by the following example taken from Beirlant et al. (2004).

Example 3.10. Consider the trivariate function ` : [0,∞)3 → [0,∞) given by

`(x1, x2, x3) = max {(x1 + x2), (x2 + x3), (x1 + x3)} .

This function satisfies the four properties of the stable tail dependence function. However, it turns
out that it is not a tail dependence function. This can be established by the fact that `(1, 1, 0) =
`(1, 0, 1) = `(0, 1, 1) = 2, implying pairwise independence, implying full independence, `(1, 1, 1) = 3,
by Theorem 3.3. This is in contradiction with the fact that `(1, 1, 1) = 2, so ` cannot be a tail
dependence function.
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The stable tail dependence function of the Gumbel copula can be easily derived from the
relationship between the STDF and the extreme value copulas,

`(x1, . . . , xd) = − logC
(
e−x1 , . . . , e−xd

)
= − log

(
exp

(
−
[
(− log(e−x1))θ + · · ·+ (− log(e−xd))θ

]1/θ))
=
(
xθ1 + · · ·+ xθd

)1/θ
, (3.4.5)

with θ ≥ 1. Note that for any d ≥ 2, the tail independent STDF (`(x) = x1 + · · ·+xd) is retrieved
for θ = 1, while for θ → ∞ the STDF of the Gumbel copula converges to the comonotonic
case (`(x) = max(x1, . . . , xd)). Although Theorem 3.5 already offers the necessary tools to assess
whether a certain Archimedean copula belongs to the maximum domain of attraction of the Gumbel
copula, the following theorem of Charpentier and Segers (2009) can also be used to immediately
find the stable tail dependence function of an Archimedean copula. Contrary to the previous
results, Charpentier and Segers (2009) employ the inverse generator of the Archimedean copula
and investigate its behavior near 1. The result is presented below.

Theorem 3.9. (Based on Theorem 4.1 in Charpentier and Segers (2009)). Let X = (X1, . . . , Xd)
be a random vector with joint distribution function F and Archimedean copula CF with generator
ψ and inverse generator ψ−1. If the limit

lim
t↓0

t
(
ψ−1

)′
(1− t)

ψ−1(1− t)
= −θ, θ ≥ 1,

exists, then the stable tail dependence function ` of X is given by

`(x1, . . . , xd) =


x1 + · · ·+ xd if θ = 1(
xθ1 + · · ·+ xθd

)1/θ
if 1 < θ <∞

max(x1, . . . , xd) if θ =∞
, (x1, . . . , xd) ∈ Rd+.

Proof. (Based on the proof presented in Charpentier and Segers (2009)). First of all, note that
the function x 7→ ψ−1(1−x) is regularly varying at zero with index θ by Karamata’s theorem (see
Appendix A). Hence,

lim
t↓0

ψ−1(1− tx)

ψ−1(1− t)
= xθ, x ∈ R+.

This, in turn, implies that the function x 7→ 1/ψ−1(1− 1/x) is regularly varying at ∞ with index
1/θ and thus that the function 1−ψ is regularly varying at zero with index 1/θ. First, we consider
1 ≤ θ <∞. The STDF ` can in this case be written in terms of the generator as follows,

`(x1, . . . , xd) = lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

= lim
t↓0

1− ψ
(
ψ−1(1− tx1) + · · ·+ ψ−1(1− txd)

)
t

= lim
t↓0

1

1− ψ(ψ−1(1− t))

(
1− ψ

(
ψ−1(1− t)

(
ψ−1(1− tx1)

ψ−1(1− t)
+ · · ·+ ψ−1(1− txd)

ψ−1(1− t)

)))
.

By the uniform convergence theorem, the right-hand-side of the equation above converges to(
xθ1 + · · ·+ xθd

)1/θ, as required. If θ = 1, this simplifies to x1 + · · ·+ xd.
Now consider the case θ =∞. Let 1 < c <∞ be a constant. Since x 7→ ψ−1(1−x) is regularly

varying at zero with index ∞, we have

lim
t↓0

ψ−1(1− ct)
ψ−1(1− t)

=∞.

Therefore, it follows that

ψ−1 ((1− t ((max(x1, . . . , xd))) ≤ ψ−1(1− tx1) + · · ·+ ψ−1(1− txd)
≤ dψ−1 (1− t ((max(x1, . . . , xd)))

≤ ψ−1 ((1− ct ((max(x1, . . . , xd))) ,



44 Chapter 3. Tail Dependence Structures

for all t in a right neighbourhood of zero. By applying the function 1 − ψ to the various parts of
the inequalities and multiplying by t−1 we find

max(x1, . . . , xd) ≤
1− ψ

(
ψ−1(1− tx1) + · · ·+ ψ−1(1− txd)

)
t

≤ cmax(x1, . . . , xd).

By letting c decrease to one and by taking the limit t→ 0, this becomes

max(x1, . . . , xd) ≤ `(x1, . . . , xd) ≤ max(x1, . . . , xd),

finishing the proof in case θ =∞. �

Example 3.11. The inverse generator of the Joe copula is given by

ψ−1(t) = − log
(
1− (1− t)θ

)
, θ ≥ 1

with first derivative (
ψ−1

)′
(t) = − θ(1− t)

θ−1

1− (1− t)θ
.

Since

lim
t↓0
−
t
(
ψ−1

)′
(1− t)

ψ−1(1− t)
= lim

t↓0
− θtθ

(1− tθ) log (1− tθ)
= lim

t↓0

θtθ

(1− tθ)tθ
= θ,

where the relation log(x) = x − 1 for x → 1 is used again, it follows by Theorem 3.9 that the Joe
copula belongs to the maximum domain of attraction of the Gumbel copula with parameter θ.

For elliptical copulas and vine copulas it is less straightforward to derive the STDF since these
copulas are defined by their density while the STDF is defined based on the copula distribution
function. One approach to derive the STDF for these copulas employs the copula tail density (see
Section 3.3.2). It can be observed that the tail density is related to the derivative of the `-function.
This is shown in the following proposition.

Proposition 3.6. Let X = (X1, . . . , Xd) be a random vector with joint distribution function F
and copula CF with density cF . If CF converges to an extreme value copula C and if its tail density
Υ and stable tail dependence function ` exist, the tail density can be derived from the `-function as
follows,

Υ(x1, . . . , xd) = (−1)d−1 ∂d

∂x1 . . . ∂xd
`(x1, . . . , xd), (x1, . . . , xd) ∈ Rd+.

Proof. Assuming uniform convergence of the `-function such that the limit and partial derivatives
can be exchanged, the result is retrieved as follows,

∂d

∂x1 . . . ∂xd
`(x1, . . . , xd) =

∂d

∂x1 . . . ∂xd
lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

= lim
t↓0

(−t)d−1cF (1− tx1, . . . , 1− txd)

= (−1)d−1Υ(x1, . . . , xd).

�

This proposition can be used to find the tail density for Archimedean copulas. Note that it is
required to know the tail density for Archimdean copulas to assess the tail density of vines that
consist of one or more bivariate Archimedean linking copulas. The tail density of a d-dimensional
Archimedean copula with a regularly varying generator is presented in the following proposition.

Proposition 3.7. (Li and Wu, 2013). Let CF (u) = ψ
(∑d

i=1 ψ
−1(ui)

)
be an Archimedean copula

with generator ψ−1, where ψ is regularly varying at 1 with tail index β > 1. The upper tail density
of CF is given by

Υ(w) =

d∏
i=2

((i− 1)β − 1)

(
d∏
i=1

wi

)β−1( d∑
i=1

wβi

)−d+1/β

. (3.4.6)
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Proof. Since it is assumed that the generator is regularly varying at 1 with tail index β > 1,
Theorem 3.9 implies that the STDF of the Archimedean copula is given by the STDF of the Gumbel
copula with parameter β. By Proposition 3.6 it follows that the tail density of the Gumbel copula
can be determined by taking partial derivatives of its stable tail dependence function. Hence,

∂d

∂x1 . . . ∂xd
`(x1, . . . , xd) =

∂d

∂x1 . . . ∂xd

(
xθ1 + · · ·+ xθd

)1/θ
= θxθ−1

1

1

θ

∂d−1

∂x2 . . . ∂xd

(
xθ1 + · · ·+ xθd

)−1+1/θ

= θd (x1 · · ·xd)θ−1

(
d∏
i=1

(−i+ 1 + 1/θ)

)(
xθ1 + · · ·+ xθd

)−d+1/θ

=

d∏
i=1

(−(θ(i− 1)− 1))

(
d∏
i=1

xi

)θ−1( d∑
i=1

xθi

)−d+1/θ

= (−1)d−1
d∏
i=2

((i− 1)θ − 1)

(
d∏
i=1

xi

)θ−1( d∑
i=1

xθi

)−d+1/θ

.

�

The results above show that the copula tail density Υ can be retrieved from the stable tail
dependence function. In the opposite direction, we show that the STDF can be retrieved from the
copula tail density by integrating over an appropriate region in Rd+ (Proposition 3.8). In particular,
this leads to expressions for the STDF of the t-copula and of D-vine copulas. To our knowledge, an
expression for the STDF of a D-vine has not yet been given in the literature so far. Although Joe
et al. (2010), Li (2013), and Joe (2015) have explored the extremal behavior of D-vines, their focus
was on determining the bivariate tail dependence structure of variable pairs that are not directly
specified in the vine stucture. Since this can be done based on the tail copula, another dependence
function which will be introduced in Section 3.4.3, an explicit expression for the STDF of a D-vine
was not developed in their work.

Proposition 3.8. Let X = (X1, . . . , Xd) be a random vector with joint distribution function F
and copula CF with density cF . If CF admits a copula tail density function Υ and a stable tail
dependence function `, the STDF can be determined by integrating marginal tail densities as follows,

`(x1, . . . , xd) =
∑

∅6=S⊆{1,...,d}

(−1)|S|−1

∫ xi1

0

· · ·
∫ xi|S|

0

ΥS(vi1 , . . . , vi|S|)dvi1 . . . dvi|S| .

Here, ΥS denotes the marginal copula tail density concerning the variables Xi, i ∈ S, and |S|
denotes the number of elements in the set S.

Proof. The proof follows by the inclusion-exclusion formula and an appropriate substitution:

`(x1, . . . , xd) = lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

= lim
t↓0

t−1P

 d⋃
j=1

{Uj > 1− txj}


= lim

t↓0
t−1

 ∑
∅6=S⊆{1,...,d}

(−1)|S|−1P(Ui > 1− txi, i ∈ S)


= lim

t↓0

∑
∅6=S⊆{1,...,d}

t−1(−1)|S|−1

∫ 1

1−xi1
· · ·
∫ 1

1−txi|S|

c(wi1 , . . . , wi|S|)dwi1 . . . dwi|S|

= lim
t↓0

∑
∅6=S⊆{1,...,d}

(−1)|S|−1

∫ xi1

0

· · ·
∫ xi|S|

0

c(1− tvi1 , . . . , 1− tvi|S|)t
|S|−1dvi1 . . . dvi|S|

=
∑

∅6=S⊆{1,...,d}

(−1)|S|−1

∫ xi1

0

· · ·
∫ xi|S|

0

ΥS(vi1 , . . . , vi|S|)dvi1 . . . dvi|S| .
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In order to exchange limit and integral in the last step, uniform convergence of the tail density has
to be assumed. This is implied by the definition of the copula tail densiy. �

Using the expression for the copula tail density of a D-vine given in Theorem 3.7, the following
example illustrates how the STDF of a trivariate D-vine can be determined.

Example 3.12. For a 3-dimensional D-vine,

`(x1, x2, x3) = x1 + x2 + x3 −
∫ x1

0

∫ x2

0

Υ12(w1, w2)dw1dw2 −
∫ x1

0

∫ x3

0

Υ13(w1, w3)dw1dw3

−
∫ x2

0

∫ x3

0

Υ23(w2, w3)dw2dw3 +

∫ x1

0

∫ x2

0

∫ x3

0

Υ123(w1, w2, w3)dw1dw2dw3

= x1 + x2 + x3 −
∫ x1

0

∫ x2

0

Υ12(w1, w2)dw1dw2 −
∫ x1

0

∫ x3

0

Υ13(w1, w3)dw1dw3

−
∫ x2

0

∫ x3

0

Υ23(w2, w3)dw2dw3 +

∫ x1

0

∫ x2

0

∫ x3

0

Υ12(x1, x2)Υ23(x2, x3)

· c13|2

(
1−

∫ x1

0

Υ12(w1, x2)dw1, 1−
∫ x1

0

Υ23(x2, w3)dw3

)
dw1dw2dw3.

Recall from Section 3.3.2 that the marginal tail densities can be retrieved from the full tail
density by integrating out the appropriate variables. For example,∫ x1

0

∫ x2

0

Υ12(w1, w2)dw1dw2 =

∫ x1

0

∫ x2

0

∫ ∞
0

Υ123(w1, w2, w3)dw1dw2dw3.

Since the numerical integration for (semi-)infinite bounds can be troublesome, especially in higher
dimensions, the semi-infinite interval is rescaled to a bounded interval through application of the
substitution wi = − log(1− w̃i). To explore this substitution, consider the simple integral

∫∞
0
xdx.

After the substitution x = − log(1 − y) ⇔ y = 1 − e−x, the integral can be written with finite
bounds as

∫ 1

0
− log(1 − y)/(1 − y)dy. Using the adaptIntegrate function in R the multivariate

integrals can be evaluated.

3.4.2 Pickands dependence function

The homogeneity of the STDF implies that to determine the behavior of ` on its entire range it is
sufficient to know the behavior of ` on the unit simplex ∆d = {w ∈ Rd+ : w1 + · · ·+ wd = 1}. The
restriction of the STDF to the unit simplex is called the Pickands dependence function, denoted
with A. When the `-function is evaluated on the unit simplex, it is precisely the same as the
Pickands A-function. Hence, it can be defined as follows.

Definition 3.9. For x = (x1, . . . , xd) ∈ ∆d Pickands dependence function is defined as

A(x1, . . . , xd) = `(x1, . . . , xd) = lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

. (3.4.7)

Due to the restriction to the unit simplex, the dependence function actually becomes (d− 1)-
dimensional, since the last coordinate can be characterized in terms of the sum of the previous
coordinates. In reverse, the `-function can be retrieved from the A-function through a simple
scaling transformation based on its homogeneity: for x ∈ Rd+,

`(x1, . . . , xd) = (x1 + · · ·+ xd)A

(
x1

x1 + · · ·+ xd
, . . . ,

xd
x1 + · · ·+ xd

)
. (3.4.8)

Originally, Pickands (1981) defined the Pickands dependence function for the bivariate case
based on the spectral representation (Section 3.2.2) employing the L1-norm for both norms || · ||p
and || · ||q, i.e., for x ∈ [0, 1],

A(x) =

∫ 1

0

max(ω(1− x), (1− ω)x)dS(ω)
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with S the spectral measure defined on [0, 1] satisfying∫ 1

0

ωdS(ω) =

∫ 1

0

(1− ω)dS(ω) = 1.

For the multivariate case, this can be extended to

A(x1, . . . , xd) =

∫
∆d

max(ω1x1, . . . , ωdxd)dS(ω),

with S the spectral measure on the d-dimensional unit simplex. Because of the relationship be-
tween the STDF and the spectral measure (Equation 3.4.4), this definition of Pickands dependence
function is equivalent to the STDF-based definition presented above.

Similarly to the STDF, the Pickands dependence function can represent the extreme value
copula. This leads to the following Proposition 3.9. For the bivariate case, this representation
is known as Pickands representation (Pickands, 1981). This representation is used quite often in
literature and is sometimes employed to define the extreme value copula.

Proposition 3.9. The copula C is an extreme value copula if and only if it has the representation

C(u1, . . . , ud) = exp

A
(

log u1∑d
j=1 log uj

, . . . ,
log ud∑d
j=1 log uj

)
d∑
j=1

log uj

 .

Proof. The result follows immediately from Proposition 3.5 and the relationship between the STDF
and Pickands dependence function given in Equation 3.4.8. �

Because of its direct relationship with the stable tail dependence function (Equation 3.4.7), the
Pickands dependence function inherits the properties of the STDF. Hence, Theorem 3.8 also holds
for the restriction of the STDF to the unit simplex. That is, the A-function is homogeneous and
convex, is equal to one for unit vectors (A(ej) = 1 for ej ∈ Rd the j-th unit vector, j = 1, . . . , d)
and is bounded between comonotonicity and independence,

max(ω1, . . . , ωd) ≤ A(ω1, . . . , ωd) ≤ 1, ω ∈ ∆d. (3.4.9)

The properties of the Pickands dependence function allow for an intuitively attractive method to
visualize the tail dependence structure for bivariate and even trivariate dependence structures. For
example, Figure 3.4.1 shows the general range and bounds of the bivariate Pickands dependence
function. Due to the restriction to the unit simplex, the parametrization of the A-function is
one-dimensional for a bivariate dependence structure.

Figure 3.4.1: General range and bounds on the bivariate Pickands dependence function.

For a trivariate dependence structure, the parametrization of the A-function is two-dimensional,
which can be visualized in a 3D-plot. Figure 3.4.2 shows the bounds of the A-function for a
trivariate tail dependence structure.
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Figure 3.4.2: 3D visualizations of the bounds on the trivariate Pickands dependence function.
Left-hand panel: independence bound. Right-hand panel: comonotonicity bound.

Using this visualization method, the tail dependence structure of the Gumbel copula can be
further assessed. The STDF of the Gumbel copula was given in Equation 3.4.5. The 3D-plots
of the Pickands dependence function for a trivariate Gumbel copula with either light dependence
(θ = 2) or strong dependence (θ = 5) are shown in Figure 3.4.3. In addition, the pairwise marginal
bivariate dependence functions are shown in Figure 3.4.4. Note that although the Gumbel copula
can obtain a wide range of dependence strengths, it is not very flexible in dimensions d > 2 because
equivalent tail dependence structures are imposed on all pairs. Especially for high dimensions this
can become a large limitation of the model.

Figure 3.4.3: 3D visualizations of the Pickands dependence function for the trivariate Gumbel copula.
The left-hand figure shows the Gumbel Pickands dependence function for strong tail dependence (θ = 5),
while the right-hand figure shows the Gumbel A-function for light tail dependence (θ = 2).

Figure 3.4.4: Bivariate marginal Pickands dependence functions for the trivariate Gumbel copula with
parameters θ = 5 (dashed line), θ = 2 (solid line), and θ = 1.2 (dotted line).
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In order to visualize the dependence strucure of vines and elliptical copulas, the relationship
between the STDF and the marginal copula tail densities can be employed (Proposition 3.8). To
determine a trivariate `-function, this entails the evaluation of the following expression,

`(x1, x2, x3) = x1 + x2 + x3 −
∫ x1

0

∫ x2

0

Υ12(w1, w2)dw1dw2 −
∫ x1

0

∫ x3

0

Υ13(w1, w3)dw1dw3

−
∫ x2

0

∫ x3

0

Υ23(w2, w3)dw2dw3 +

∫ x1

0

∫ x2

0

∫ x3

0

Υ123(w1, w2, w3)dw1dw2dw3.

Although numerical integration of the marginal copula tail densities is possible, it is computation-
ally intensive to evaluate the Pickands dependence function on its entire range. Alternatively, an
expression for the Pickands dependence function of the t-EV copula was derived by Nikoloulopoulos
et al. (2009). Denoting by Td,ν the d-dimensional t-distribution function with ν degrees of freedom
and partial correlation matrix R, the t-EV copula is given by the following Pickands dependence
function,

A(w1, . . . , wd) =

d∑
j=1

wjTd−1,ν+1,Rj

 √ν + 1√
1− ρ2

ij

[(
wi
wj

)−1/ν

− ρij

]
, i 6= j; Rj

 , (3.4.10)

where Rj is equal to the partial correlation matrix R with the j-th column and j-th row removed.
That is, Rj = (ρk1,k2;j)k1,k2 6=j . For d = 2, R1 and R2 are equal to 1. In the bivariate case, this
simplifies to

A(w) = wTν+1

( √
ν + 1√
1− ρ2

[(
w

1− w

)−1/ν

− ρ

])
+ (1− w)Tν+1

( √
ν + 1√
1− ρ2

[(
1− w
w

)−1/ν

− ρ

])
.

Figure 3.4.5: 3D visualizations of the Pickands dependence function for the 3-dimensional t-copula.
The left-hand figure shows the t-EV Pickands dependence function for medium dependence (ρ = 0.5 for
all bivariate margins). The right-hand figure shows the t-EV A-function for mixed bivariate dependencies
(ρ = 0.2, 0.5, 0.8).

The maximum tail dependence strength that can be attained with the t-EV model is retrieved
for ν ↓ 0 and ρij → 1. In contrast, the minimum tail dependence strength that can be attained
with the t-EV model is retrieved for ν → ∞ and ρij → 0. Nikoloulopoulos et al. (2009) show
that as ν →∞ the t-EV copula converges to the Hüsler-Reiss model. As discussed in Section 3.3,
this is the model the Normal copula converges to if correlations become stronger as the number of
observations increases. The spatial analogue of the Hüsler-Reiss model is the well-known Brown-
Resnick model. In the bivariate case, Hüsler and Reiss (1989) showed that on condition that
(1 − ρn) log n → δ > 0 as n → ∞, the Normal copula belongs to the MDA of the extreme value
copula defined by the following Pickands dependence function,

A(w) = (1− w)Φ

(
δ−1 +

δ

2
log

1− w
w

)
+ wΦ

(
δ−1 +

δ

2
log

w

1− w

)
.

Properties of the bivariate Hüsler-Reiss dependence function are given in Falk et al. (2011) for
example. The multivariate case was addressed by Hüsler and Reiss (1989) and also by (Hashorva,
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2006), but the most appealing expression for the multivariate Hüsler-Reiss dependence function is
presented by Nikoloulopoulos et al. (2009). On condition that

lim
n→∞

(1− ρij(n)) log n =: δij ,

for positive parameters δij , i 6= j, with δij = δji, they show that the multivariate Normal copula
belongs to the MDA of the extreme value copula defined by the following Pickands dependence
function,

A(w1, . . . , wd) =

d∑
j=1

wjΦd−1,Rj

(
δ−1
ij +

δij
2

log
wj
wi
, i ∈ Ij

)
, (3.4.11)

where Rj is a dispersion matrix with entries

ρi,k;j =
δ−2
ij + δ−2

kj − δ
−2
ik

2δ−1
ij δ
−1
kj

,

for i ∈ I and k ∈ Ij and with δ−1
ii = 0. Since the previously mentioned expressions involve

multivariate integration and other computational complexities, this one is to be preferred. The
maximal tail dependence strength that can be attained with the Hüsler-Reiss model is achieved for
δij ↑ 1. In contrast, the minimum tail dependence strength is attained for δij ↓ 0 and corresponds
to tail independence.

For the bivariate case, several additional examples of parametric forms of A are presented in
Hutchinson and Lai (1990) and in Smith (1994). However, since the aim of this research is to
characterize multivariate tail dependence structures, we focus on dependence function that are
also defined for higher dimensions.

3.4.3 Tail copula

A final dependence function that is considered is the so-called tail copula. The concept of a tail
copula was introduced by Schmidt and Stadtmüller (2006) and again under a different name in
Joe et al. (2010). It can be defined as follows.

Definition 3.10. Let X1, . . . , Xd be random variables with marginal distributions F1, . . . , Fd,
joint distribution F , and copula CF . The tail copula function b : Rd+ → R+ is defined for
x = (x1, . . . , xd) ∈ Rd+ as

b(x1, . . . , xd) = lim
t↓0

CF (1− tx1, . . . , 1− txd)
t

, (3.4.12)

if the limit exists. Here, CF denotes the survival function of the copula CF .

The tail copula can be seen as an adaption from the STDF: the tail copula measures the
limiting probability that all variables are large given that one of them is large. In contrast, the
stable tail dependence function was concerned with the dependence in the region where at least
one variable is large, but not all variables have to be. Figure 3.4.6 illustrates the difference for
the 2-dimensional case. One may note that this difference is actually trivial for the bivariate case
because the marginals are known standard uniforms. This, however, is not the case for higher
dimensions. Just as for the stable tail dependence function, the coefficients (x1, . . . , xd) determine
the direction in which the limit goes to the upper right corner.

Although the STDF and the tail copula are non-trivially different for higher dimensions, the
inclusion-exclusion formula can be used to find the following relationship between the two depen-
dence functions,

`(x1, . . . , xd) =
∑

S⊆I,S 6=∅

(−1)|S|−1b(xi, i ∈ S). (3.4.13)

This shows that the STDF contains the same information that is contained in the tail copulas of
all possible subsets of a group of variables under consideration. Hence, the stable tail dependence
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Figure 3.4.6: Left: region where at least one variable is large. The stable tail dependence function is
concerned with this region. Right: region where all variables are large. The tail copula is concerned with
this region.

function provides far more information than the tail copula evaluated in one point. On the other
hand, both functions contain exactly the same information when the functions are known entirely.

It can be shown that the upper tail copula exists on Rd+ and b 6= 0 if the associated distribu-
tion function F lies in the maximum domain of attraction of an extreme value distribution with
dependent margins (Resnick, 1987). On the other hand, if b = 0 everywhere on Rd+, this does
not necessarily imply that the corresponding copula CF belongs to the MDA of the independence
copula Π. Only if the tail copula of all marginal subsets ∅ 6= S ⊆ {1, . . . , d} with |S| ≥ 2 is equal
to zero everywhere, can it be concluded that CF ∈ MDA(Π). However, note that because of
Theorem 3.3, it is sufficient to check all bivariate subsets only.

Since the b-function can be used to describe the dependence structure of the extreme-value dis-
tribution, the function is called a tail copula, even though it does not possess all copula properties.
To avoid confusion, Joe et al. (2010) call the b-function "the tail dependence function" but since
this label was already used in the previous section, we do not adopt their terminology. Although
the tail copula is not a copula, Schmidt and Stadtmüller (2006) show that the bivariate tail copula
satisfies most copula properties. The following theorem asserts some essential properties of the
tail copula for higher dimensions. See Schmidt and Stadtmüller (2006) for more properties of the
bivariate tail copula.

Theorem 3.10. Each tail copula function b : Rd+ → R+ satisfies the following properties:

1. Homogeneity: b(cx1, . . . , cxd) = cb(x1, . . . , xd) for all c > 0;

2. Groundedness: if there exists an xj , 1 ≤ j ≤ d, such that xj = 0 then b(x1, . . . , xd) = 0;

3. Bounds: 0 ≤ b(x1, . . . , xd) ≤ min(x1, . . . , xd);

Proof. (1) The homogeneity property follows from the definition of the tail copula as,

b(cx1, . . . , cxd) = lim
t↓0

CF (1− ctx1, . . . , 1− ctxd)
t

= c lim
t↓0

CF (1− ctx1, . . . , 1− ctxd)
ct

= c lim
ω↓0

lim
t↓0

CF (1− ωx1, . . . , 1− ωxd)
ω

= cb(x1, . . . , xd).

(2) W.l.o.g., suppose x1 = 0.

b(0, x2, . . . , xd) = lim
t↓0

CF (1, 1− tx2, . . . , 1− txd)
t

= lim
t↓0

P(U1 > 1, U2 > 1− tx2, . . . , Ud > 1− txd)
t

= 0,

since U1 ∈ [0, 1] and therefore P(U1 > 1) = 0.
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(3) Defining the uniform random vector V = (V1, . . . , Vd) as V = (1 − U1, . . . , 1 − Ud) it is clear
that

CF (1− tx1, . . . , 1− txd) = P(U1 > 1− tx1, . . . , Ud > 1− txd)
= P(V1 ≤ tx1, . . . , Vd ≤ txd) = CF∗(tx1, . . . , txd)

for some copula CF∗ . Using the Frechet-Hoeffding bounds for copulas, it follows that

max(tx1 + · · ·+ txd − (d− 1), 0) ≤ CF∗(tx1, . . . , txd) ≤ min(tx1, . . . , txd).

With t ↓ 0 it follows that 0 ≤ CF∗(tx1, . . . , txd) ≤ tmin(x1, . . . , xd). Hence,

0 ≤ lim
t↓0

CF (1− tx1, . . . , 1− txd)
t

≤ min(x1, . . . , xd).

�

Similarly to the STDF, the tail copula is related to the tail density. This is shown in the
following proposition.

Proposition 3.10. (Li and Wu, 2013). Let Υ be the d-dimensional tail density of variables
X1, . . . , Xd joint by a copula CF ∈MDA(C). The tail copula of (X1, . . . , Xd) is given by

b(x) =

∫ x1

0

· · ·
∫ xd

0

Υ(w)dw1 . . . dwd.

Proof. The proof follows straightforwardly by employing an appropriate substitution:

b(x) = lim
t↓0

t−1CF (1− tx1, . . . , 1− txd) = lim
t↓0

t−1P (U1 > 1− tx1, . . . , Ud > 1− txd)

= lim
t↓0

t−1

∫ 1

1−tx1

· · ·
∫ 1

1−txd
cF (w1, . . . , wd)dw1 . . . dwd

= lim
t↓0

t−1

∫ 0

x1

· · ·
∫ 0

xd

cF (1− tv1, . . . , 1− tvd)(−t)ddv1 . . . dvd

= lim
t↓0

∫ x1

0

· · ·
∫ xd

0

td−1cF (1− tv1, . . . , 1− tvd)dv1 . . . dvd

=

∫ x1

0

· · ·
∫ xd

0

Υ(v)dv1 . . . dvd.

In order to exchange limit and integral in the last step, uniform convergence of the copula tail
density has to be assumed. This is implied by the definition of the copula tail density. �

Employing this relationship, the tail copula function b of a D-vine copula can be determined
based on the copula tail density derived in Theorem 3.7. The following example shows an expression
for the tail copula of a trivariate D-vine.

Example 3.13. For a 3-dimensional D-vine,

b(x1, x2, x3) =

∫ x1

0

∫ x2

0

∫ x3

0

Υ12(w1, w2)Υ23(w2, w3)

· c13|2

(
1−

∫ w1

0

Υ12(w̃1, w2)dw̃1, 1−
∫ w3

0

Υ23(w2, w̃3)dw̃3

)
dw1dw2dw3.

Using numerical integration procedures, it is possible to evaluate the multivariate tail copula
for a given D-vine. Alternatively, Joe et al. (2010) developed expressions for the lower tail copula of
a vine copula based on the Euler representation for homogeneous functions. We fashioned similar
results for the upper tail copula, since this is the dependence function of interest (see Appendix
B.2). However, when taking the limit, the final formulas presented in Joe et al. (2010) are equivalent
to the tail density expressions shown above and do not offer computational advantages.
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3.5 Summary
This chapter presented an extensive overview of full characterizations of the multivariate tail de-
pendence structure. Starting with the joint distribution function of a d-dimensional vector of
componentwise maxima, the multivariate extreme value distribution (MEVD) was identified as
asymptotic distribution. The marginal distributions of the MEVD are univariate extreme value
distributions which only depend on the tail index γ. There are infinitely many ways to couple
these univariate margins into a proper MEVD. The dependence structure between multivariate
extremes is, therefore, more complicated to assess than the marginal distributions of the extremes.
The convergence-based maximum domain of attraction condition that underpins the MEVD def-
inition can be challenging to assess, especially for higher dimensions. The exponent measure and
the spectral measure are two characterizations of the MEVD that can alternatively be employed
to assess the joint behavior of extremes. The exponent measure is a rescaled version of the MEVD
that is homogeneous and can, therefore, be used to rescale regions. Moreover, based on the expo-
nent measure, the critical result that pairwise tail independence is equivalent to multivariate tail
independence (Theorem 3.3) was shown. The spectral measure decomposes the exponent measure
into a radial part and a spectral part. An attractive property of the spectral measure is that it rep-
resents tail dependence as the distribution of the relative size of the contributions of the marginal
components to their sum, given that the vector is large (Kiriliouk et al., 2014).

Both statistically and intuitively, these first few characterizations of multivariate tail depen-
dence can be troublesome to work with. The main problem with the representations of the MEVD
is that they also contain information on the marginal behavior of the maxima of X1, . . . , Xd. A
copula-based approach that disentangles the marginal behavior from the dependence behavior mit-
igates this problem and leads to the definition of the extreme value copula which can be seen as
the copula inherent to the MEVD. After considering the extreme value copula of several commonly
used copula models, three dependence functions based on the extreme value copula are considered:
the stable tail dependence function (STDF), Pickands dependence function, and the tail copula.
The properties of these dependence functions make them more attractive to use some situations
than the original extreme value copula. Furthermore, Segers (2012b) note that max-stable models
such as the MEVD and the extreme value copula have the drawback that they are too coarse to
provide an accurate characterization of the tail dependence structure if variables are asymptotic
independent. Both the STDF and the tail copula can be extended easily to the scenario of tail
independence. These extensions are however beyond the scope of this thesis.

Intuitively, the STDF captures the conditional probability that one or more variables exceed a
high threshold, given that one of them does. Amongst several attractive properties, the STDF is
shown to be convex and homogeneous of order. It is therefore sufficient to evaluate the STDF on
the unit simplex to know its behavior everywhere. This restriction of the STDF yields the Pickands
dependence function, which can be employed to visualize the entire tail dependence structure for
bivariate and trivariate problems. Alternatively, the tail copula captures the conditional probability
that all variables exceed a high threshold, given that one of them is extreme. The tail copula,
therefore, captures only the most extreme part of the multivariate tail dependence in dimensions
d > 2, while the STDF completely describes it. Segers (2012b) summarizes the interpretation
of ` as "trouble in the air," whereas b only considers events extreme when "the sky is falling".
Especially for large dimensions d, the probability that all variables are extreme at the same time
will be negligible and therefore less relevant to consider. Moreover, a practical issue for large d is
that joint d-dimensional exceedances are rarely observed in finite samples. Unless a sample contains
an observation with all marginal being extreme, the tail copula indicates tail independence. On the
other hand, the STDF incorporates events in which a single component becomes extreme, and hence
finite samples provide more relevant observations. The STDF is furthermore convenient because
it immediately yields the joint tail of the distribution function and can be retrieved for almost
all commonly used copula models. In particular, an expression for the STDF of a d-dimensional
D-vine was derived that can be evaluated numerically.



54 Chapter 3. Tail Dependence Structures



Chapter 4

Tail Dependence Measures

Whereas the previous chapter focused on describing the tail dependence structure fully, this chap-
ter is concerned with statistics that can summarize to some extent the nature of the extremal
dependence structure. Similar to the correlation measure for general dependence, a tail depen-
dence summary measure can characterize the strength of the extremal dependence structure. In
most cases, these summary measures only provide a partial description of the extremal depen-
dence structure between random variables. Nevertheless, a tail dependence summary statistic can
be employed to get an overview of the tail dependence structure and is much more accessible to
interpret than an entire dependence function.

For the bivariate case, d = 2, the tail dependence coefficient (TDC) is the standard summary
statistic to assess the tail dependence strength between two random variables. For higher dimen-
sions, d > 2, however, multiple possible extensions of the bivariate TDC have been suggested in
the literature. Section 4.2 is concerned with an overview of these alternatives and their properties.
Most importantly, we prove that the multivariate extension of the TDC based on the stable tail
dependence function can identify tail independence (Main Theorem 2). Besides these tail depen-
dence coefficients, second order measures have been considered in the literature to further asses
the tail dependence structure for variables that are asymptotically independent. The tail order is
the topic of Section 4.3.

4.1 Desirable properties
Before introducing summary measures to describe bivariate and multivariate tail dependencies, it
is instructive to consider the ideal properties a tail dependence measure should satisfy such that it
can convey the maximum amount of information on the tail dependence structure. Initially, Rényi
(1959) introduced a set of axioms to which a general dependence measure should adhere. However,
although theoretically desirable, some of them are too strong and cannot be attained in practice.
Schweizer and Wolff (1981) and Embrechts (2002) have therefore contemplated the properties a
dependence measure for two continuous random variables should reasonably display. We extend
their work to identify desirable properties of a dependence measure for higher dimensions and to
tail dependence, specifically. The following properties are selected to be vital for a multivariate
tail dependence measure δ(X1, . . . , Xd).

(P1) Existence
δ(X1, . . . , Xd) is defined for any X1, . . . , Xd.

(P2) Exchangeability
δ(X1, . . . , Xd) = δ(Xπ(1), . . . , Xπ(d)), where π is an arbitrary bijection π : {1, . . . , d} → {1, . . . , d}
and represents a finite permutation of the indices {1, . . . , d}. Hence, the dependence measure
should yield the same result regardless of the order of the variables. For a dependence measure for
bivariate data this property is known as symmetry, δ(X1, X2) = δ(X2, X1).

(P3) Normalization
0 ≤ δ(X1, . . . , Xd) ≤ 1, with the lower bound corresponding to weak tail dependence and the
upper bound to strong tail dependence. Note that this is an appropriate normalization since the
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dependence structure of an extreme value distribution cannot contain negative dependence (see
Section 3.1.2). However, the exact bounds of the normalization are unimportant since any scaling
operation can be used to obtain the required bounds, as long as the range of δ is bounded.

(P4) Invariance under monotone transformations
If the variableX1 is transformed with a strictly monotone function f , then the dependence structure
between f(X1) andX2, . . . , Xd is the same as the dependence structure betweenX1 andX2, . . . , Xd.
Formally, if f : R→ R is strictly monotone almost surely, then

δ(f(X1), X2, . . . , Xd) = δ(X1, . . . , Xd).

Schweizer and Wolff (1981) show that if (X1, . . . , Xd) follow a joint distribution function that
is invariant under strictly increasing transformations, then any property of the joint distribution
function is solely a function of the copula. Therefore, for variables X1, . . . , Xd with marginal distri-
butions F1, . . . , Fd, joint by a copula CF , it is desirable for a tail dependence measure δ(X1, . . . , Xd)
to be a function solely of the copula CF :

δ(X1, . . . , Xd) = δ(CF ).

This implies that the tail dependence measure should not be influenced by the marginal behavior
of the variables X1, . . . , Xd.

(P5) Identification of independence
In order to be able to identify tail independence, the following must hold for random variables
X1, . . . , Xd with continuous marginal distributions F1, . . . , Fd, joint by a copula CF :

CF ∈MDA(Π)⇔ δ(X1, . . . , Xd) = 0.

Since it can be difficult to find a dependence measure that satisfies this property, Embrechts
(2002) proposes the weaker property that dependence measures should be equal to zero in case of
independence. For tail dependence measures this translates to the following:

CF ∈MDA(Π)⇒ δ(X1, . . . , Xd) = 0.

(P6) Identification of comonotonicity
In order to be able to identify asymptotic comonotonicity, the following must hold for random
variables X1, . . . , Xd with continuous marginal distributions F1, . . . , Fd, joint by a copula CF :

CF ∈MDA(Md)⇔ δ(X1, . . . , Xd) = 1,

with Md the d-dimensional comonotonicity copula. Again, the weaker property can be defined as

CF ∈MDA(Md)⇒ δ(X1, . . . , Xd) = 1.

One might argue that the identification of comonotonicity is less important than the identification
of independence, since asymptotic comonotonic variables are not very common in practice.

(P7) Relationship between δ(CF ) and δ(C)
For asymptotic tail dependence, it is desirable that the tail dependence measure yields the same
result for the extreme value copula C as for the copula CF . That is,

CF ∈MDA(C)⇒ δ(CF ) = δ(C).

Another desirable property would be the reverse relationship,

δ(CF ) = δ(C)⇒ CF ∈MDA(C),

since this would imply that the extreme value copula C of CF could be identified based on the tail
dependence measure δ(CF ). This is a more general case of identification properties (P5) and (P6)
mentioned above. However, since infinitely many tail dependent extreme value copulas exist, this
is in general infeasible for tail dependent cases.
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4.2 Tail dependence coefficients

4.2.1 The TDC for bivariate data

The concept of bivariate dependence between extremes was developed mainly by Geffroy (1958) and
Sibuya (1960), although not through the language of copulas. The tail dependence coefficient was
first introduced in Sibuya (1960) for two random variables X1 and X2 sharing the same marginal
distribution with right endpoint z∗ ∈ R as

χ = lim
z→z∗

P (X2 > z|X1 > z) .

It represents the conditional probability that X2 is extreme given that X1 is extreme. To evaluate
the tail dependence strength between two variables that do not share the same marginal distri-
bution, the marginal behavior of the variables has to be removed. Joe (1993) reformulate the
definition of the tail dependence coefficient (TDC) in terms of copulas as follows.

Definition 4.1. The tail dependence coefficient (TDC) for two random variables X1 and X2 with
marginal distributions F1 and F2, joint by a copula CF , is defined as

λ(CF ) = lim
u↑1

P (F2(X2) > u|F1(X1) > u) = lim
u↑1

CF (u, u)

1− u
, (4.2.1)

where CF denotes the survival function of CF .

Intuitively, the copula-based TDC represents the conditional probability that X2 is extreme
relative to its own distribution F2, given that X1 is extreme relative to its own distribution F1.
Since the definition of the TDC can be formulated in terms of the copula only, it can be concluded
that the TDC does not depend on the marginal distributions. Furthermore, it can be shown that
the TDC of a copula CF is the same as the TDC of its extreme value copula C. This is captured
by Theorem 4.1.

Theorem 4.1. Let CF be a bivariate copula with tail dependence coefficient λ(CF ). If CF ∈
MDA(C) for an extreme value copula C with tail dependence coefficient λ(C), then λ(CF ) = λ(C).
That is, the tail dependence coefficients of the copula CF and its extreme value copula C are the
same.

Proof. Using the inclusion-exclusion principle (Equation 2.1.6) and that log(x) ∼ x− 1 as x→ 1,
it can be derived that

λ(CF ) = lim
u↑1

CF (u, u)

1− u
= lim

u↑1

1− 2u+ CF (u, u)

1− u
= 2− lim

u↑1

1− CF (u, u)

1− u
= 2− lim

u↑1

logCF (u, u)

log u
.

Using this expression for the tail dependence coefficient and the definition of the extreme value
copula (Equation 3.3.3), the statement can be deduced as follows:

λ(C) = 2− lim
u↑1

logC(u, u)

log u
= 2− lim

u↑1
lim
n→∞

logCF
(
u1/n, u1/n

)n
log u

= 2− lim
u↑1

lim
n→∞

logCF
(
u1/n, u1/n

)
1/n log u

= 2− lim
u↑1

lim
n→∞

logCF
(
u1/n, u1/n

)
log u1/n

= 2− lim
u↑1

lim
t↓0

logCF (ut, ut)

log ut
= 2− lim

w↑1

logCF (w,w)

logw
= λ(CF ).

�

The result implies that in order to determine the TDC of a certain copula CF , it is sufficient
to know by which extreme value copula C the copula CF is attracted and what the TDC of the
extreme value copula is. Note that this does not imply that the extreme value copula of CF can
be identified based on the TDC of CF since the TDC of an extreme value copula is not necessarily
unique for that specific extreme value copula.
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Since the TDC summarizes the extremal dependence structure, it is not surprising that it is
related to the characterizations of the multivariate tail dependence structure considered in Chapter
3. For example, the TDC is equal to the bivariate tail copula b evaluated in the point (1, 1):

λ(CF ) = lim
u↑1

CF (u, u)

1− u
= lim

t↓0

CF (1− t, 1− t)
t

= b(1, 1). (4.2.2)

The TDC is also related to the bivariate stable tail dependence function and, consequently, the
bivariate Pickands dependence function as follows,

λ(CF ) = lim
u↑1

CF (u, u)

1− u
= 2− lim

u↑1

1− CF (u, u)

1− u
= 2− `(1, 1) = 2 (1−A(1/2)) . (4.2.3)

That is, the TDC is a rescaled version of the STDF evaluated in the point (1, 1) and a rescaled
version of the Pickands dependence function evaluated in the point 1/2. Due to this relationship
with the Pickands dependence function, the TDC can be seen as a point on the range of the
Pickands dependence function evaluated in the point 1/2 (see the left panel in Figure 4.2.1).

Figure 4.2.1: Evaluation of the Pickands dependence function in 1/2.

By the relationship of the TDC with the dependence functions, it follows that in the tail
independent case, the TDC is given by λ(Π) = 2(1− 1) = 0. Similarly, for the comonotonic case,
the TDC is equal to λ(M) = 2(1− 0.5) = 1. Both of these are desirable properties. The scenarios
are depicted in the middle and right-hand-side panels of Figure 4.2.1. Even better, it can be shown
that the bivariate TDC has the desirable property that it is equal to zero if and only if X1 and X2

are tail independent (Main Theorem 1). Intuitively, this can be seen from Figure 4.2.1 as follows:
since the Pickands dependence function is convex, it is only possible that A(1/2) = 1 (and hence
λ = 2(1 − A(1/2)) = 0) if A(t) = 1 for all t ∈ [0, 1], representing exactly the case of asymptotic
independence. The result is captured in the following main theorem.

Main Theorem 1. Let X1 and X2 be two continuous random variables joint with a copula CF
that belongs to the maximum domain of attraction of an extreme value copula. The variables X1

and X2 are asymptotically independent if and only if their tail dependence coefficient λ(CF ) is
equal to zero. That is,

CF ∈MDA(Π)⇔ λ(CF ) = 0.

Proof. Recall that the independence bound of the bivariate STDF equals `(x1, x2) = x1 + x2.
Hence, by the relationship between the TDC and the stable tail dependence function (Equation
4.2.3) it follows immediately that if CF ∈ MDA(Π), then λ(CF ) = 2 − `(1, 1) = 2 − (1 + 1) = 0.
Conversely, we have to show that if λ(CF ) = 0, then CF ∈ MDA(Π). By the relationship
between the extreme value copula and the STDF (Proposition 3.5), it is sufficient to show that if
λ(CF ) = 0, then `(x1, x2) = x1 + x2 for any x1, x2 ∈ R+. Alternatively, by using the restriction
of the `-function to the unit simplex ∆d, i.e., the Pickands dependence function A, it is sufficient
to show that if λ(CF ) = 0, then A(t) = A(t, 1 − t) = 1 for any t ∈ [0, 1]. Recall from Section
3.4.2 that the A-function is convex and is equal to 1 if it is evaluated in one of the unit vectors.
Hence, A(1, 0) = A(0, 1) = 1. Note that the unit vectors correspond to the bounds of the domain
of A. Since A(t) ≤ 1, t ∈ [0, 1], this implies that the Pickands dependence function attains maxima
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on the boundaries of its domain, which is a known property of convex functions. Moreover, the
maximum principle of convex functions states that if a convex function attains a global maximum
at an interior point of its domain, the function must be constant (see, e.g., Theorem 3.4.6 in
Niculescu and Persson (2004)). Since λ(CF ) = 0 implies that A(1/2) = 1, the maximum principle
yields that A is constant. We find that if λ(CF ) = 0, then A(t) = A(t, 1− t) = 1 for any t ∈ [0, 1],
which concludes the proof. �

It is also possible to prove the result without making use of the maximum principle for convex
functions. This (more tedious) approach is shown in Appendix B.3.1. Similarly, it can be shown
that the bivariate TDC is equal to 1 if and only if X1 and X2 are asymptotically comonotonic.
Intuitively, this can be seen from Figure 4.2.1 as follows: since the Pickands dependence function is
convex, the function values have to be smaller than or equal to the straight line joining the points
t = 0 and t = 0.5. However, because of the bounds on the A-function, the function values cannot
be below this straight line segment. Hence, the A-function is equal to the straight line segment.
A similar argument holds for the line segment joining the point t = 0.5 and t = 1. The result is
given by the theorem below.

Theorem 4.2. Let X1 and X2 be two continuous random variables joint with a copula CF that
belongs to the maximum domain of attraction of an extreme value copula. The variables X1 and
X2 are asymptotically comonotonic if and only if their tail dependence coefficient λ(CF ) is equal
to 1. That is,

CF ∈MDA(M)⇔ λ(CF ) = 1.

Proof. If CF ∈ MDA(M), the STDF is equal to `(x1, x2) = max(x1, x2). By the relationship
between the TDC and the STDF (Equation 4.2.3), it follows immediately that in this case λ(CF ) =
2 − `(1, 1) = 2 − 1 = 1. Conversely, we have to show that if λ(CF ) = 1, then CF ∈ MDA(M).
By the relationship between the extreme value copula and the STDF, it is sufficient to show that
if λ(CF ) = 1, then `(x1, x2) = max(x1, x2) for any x1, x2 ∈ R+. Alternatively, by using the
restriction of the `-function to the unit simplex ∆d, i.e., the Pickands dependence function A, it
is sufficient to show that if λ(CF ) = 1, then A(t) = A(t, 1 − t) = max(t, 1 − t) for any t ∈ [0, 1].
Using the properties of the A-function, this result is shown with the following steps.

• Because of the bounds max(t, 1− t) ≤ A(t) ≤ 1, t ∈ [0, 1], we establish that A(1) = A(0) = 1.
Since these bounds imply that A(t) ≥ max(t, 1 − t) for all t ∈ [0, 1], it is sufficient to show
that A(t) ≤ max(t, 1 − t) for all t ∈ [0, 1] in order to prove that A(t) = max(t, 1 − t) for all
t ∈ [0, 1].

• We assume that λ(CF ) = 1, which corresponds to A(1/2) = 1/2.

• The convexity of A implies that for all t1, t2 ∈ [0, 1] and α ∈ [0, 1], the following defining
relationship holds,

A (αt1 + (1− α)t2) ≤ αA(t1) + (1− α)A(t2).

• As a special case, consider specifying α such that αt1 + (1− α)t2 = t for any t ∈ [0, 1], with
t1 ∈ {0, 1} and t2 = 1/2.

– If t ∈ (0, 1/2), we find by putting t1 = 0 and α = 1− 2t ∈ (0, 1) that

A(t) ≤ αA(0) + (1− α)A(1/2) = (1− 2t) +
2t

2
= 1− t = max(t, 1− t).

– Similarly, if t ∈ (1/2, 1), we find by putting t1 = 1 and α = 2t− 1 ∈ (0, 1) that

A(t) ≤ αA(1) + (1− α)A(1/2) = (2t− 1) +
2− 2t

2
= t = max(t, 1− t).

• Hence, for any t ∈ [0, 1] we conclude that max(t, 1 − t) ≤ A(t) ≤ max(t, 1 − t), indicating
that A(t) = max(t, 1− t). This is what needed to be shown to finish the proof.

�
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In summary, the TDC for bivariate data is copula-based, can identify both independence and
comonotonicity and is bounded between zero and one. It satisfies all desirable properties intro-
duced in Section 4.1. Moreover, the TDC is directly connected to the characterizations of the
tail dependence structure that were discussed in Chapter 3 and therefore measures asymptotic
tail dependence. An overview of TDC values for a wide range of copulas is given by Heffernan
(2000) and Joe (2015) for example. For an overview of the upper and lower tail coefficients of more
Archimedean copulas, see Charpentier and Segers (2009). A sample of these values is shown in
Table 4.2.1.

Table 4.2.1: Selection of extreme value copulas, several copulas that belong to
their maximum domain of attraction and the corresponding tail dependence
coefficients.

Extreme value copula C Copula CF TDC λ

Comonotonicity M Comonotonicity 1

Independence Π Independence 0
Gaussian 0
Frank 0
Clayton 0

Gumbel Gumbel 2− 21/θ

Joe 2− 21/θ

BB1 2− 21/θ

Galambos Galambos 2−1/θ

BB4 2−1/δ

t-EV Student-t 2Tν+1

(
−
√

(ν+1)(1−ρ)
(1+ρ)

)
Hüsler-Reiss Gaussian (ρn → 1) 2− 2Φ(δ−1)

BB5 BB5 2−
(
2− 2−1/δ

)1/θ
Based on the connection with the STDF, it is straightforward to assess the TDC for several

bivariate copulas by evaluating the STDF in the point (1, 1) or the Pickands dependence function
in the point (1/2, 1/2). Alternatively, the TDC for the Gumbel copula can be easily derived
analytically as follows.

Example 4.1. For the bivariate Gumbel copula with parameter θ ≥ 1,

CGuθ (u1, u2) = exp
[
−
(
(− log(u1))θ + (− log(u2))θ

)1/θ]
,

it can be inferred that

λ(CGuθ ) = 2− lim
u↑1

logCGuθ (u, u)

log u
= 2− lim

u↑1

−
(
(− log(u))θ + (− log(u))θ

)1/θ
log u

= 2− lim
u↑1

−
(
2(− log(u))θ

)1/θ
log u

= 2− 21/θ.

Based on Theorem 4.2.1 it can be concluded that all copulas that belong to the maximum do-
main of attraction of the Gumbel copula have a TDC equal to 2− 21/θ. Theorem 3.5 or Theorem
3.9 can be used to verify whether a given Archimedean copula belongs to the maximum domain of
attraction of the Gumbel copula.

For elliptical copulas, Schmidt (2002) shows that the tail behavior of the copula is determined
by the tail behavior of the distribution function of the generating variable R. Specifically, let
X = (X1, . . . , Xd) be spherically distributed with stochastic representation X

d
= RU (see Section

2.2). Suppose that FR, the distribution function of R, has a regularly varying tail. Then all
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bivariate margins have the tail dependence property and the tail dependence coefficient λ for an
elliptically contoured random vector (X1, X2) with 2 × 2-dimensional positive definite covariance
matrix Σ, and with regular varying generating variable with index −α < 0, is given by

λ =

∫ h(ρ)

0
uα√
1−u2

du∫ 1

0
uα√
1−u2

du
,

where h(ρ) :=
(

1 + (1−ρ)2
1−ρ2

)−1/2

and where ρ denotes the correlation coefficient between the vari-
ables X1 and X2. Note that the TDC only depends on the correlation coefficient ρ and the regular
variation index α. Alternatively, the TDC for the t-EV extreme value copula can be found by
evaluating its Pickands dependence in the point (1/2, 1/2) and rescaling it (Nikoloulopoulos et al.,
2009). That is,

λ = 2(1−A(1/2, 1/2)) = 2

(
1− Tν+1

( √
ν + 1√
1− ρ2

(1− ρ)

))

= 2Tν+1

(
−

√
(ν + 1)(1− ρ)

(1 + ρ)

)
,

with Tν the univariate cumulative distribution function of the t-distribution with ν degrees of
freedom and ρ the correlation between the variables X1 and X2. The TDC for the Hüsler-Reiss
model can be determined similarly.

For vine copulas it can be of interest to assess the bivariate TDC for pairs of variables that
are not directly linked through a baseline example, consider a 3-dimensional D-vine with linking
copula (see Section 2.4). For two tail dependent Archimedean baseline linking copulas c12 and c23

with model parameters that are not necessarily the same. The conditional copula on the second
level c13|2 is chosen to be either a Gumbel copula or the independence copula in order to investigate
the possible dependence strengths for between the variables X1 and X3. For the two Archimedean
linking copulas, the bivariate TDCs are known. However, the bivariate TDC describing the tail
dependence strength between X1 and X3 is not directly observable. Based on Proposition 3.10
and the relationship between the TDC and the tail copula (Equation 4.2.2), the TDC λ13 can be
determined as follows,

λ13 = b13(1, 1) =

∫ 1

0

∫ 1

0

Υ13(w1, w3)dw1dw3 =

∫ 1

0

∫ ∞
0

∫ 1

0

Υ123(w1, w2, w3)dw1dw2dw3.

Hence, by plugging in the tail density for a trivariate D-vine copula (Theorem 3.7),

λ13 =

∫ 1

0

∫ ∞
0

∫ 1

0

Υ{1,2}(x1, x2)Υ{2,3}(x2, x3)

· c13|2

(
1−

∫ 1

0

Υ{1,2}(w1, x2)dw1, 1−
∫ 1

0

Υ{2,3}(x2, w3)dw3

)
dw1dw2dw3.

As explained in Section 3.4.1 these expressions can be numerically evaluated in R. Results are
shown in Table 4.2.2. Similar to findings of Joe et al. (2010), we find that vine copulas can have a
flexible range of tail dependence with different tail dependence strengths for each bivariate margin.
Moreover, the results show that in order for a vine copula to have tail dependence for all bivariate
margins, it is only necessary for the bivariate copulas in the baseline linking level to have tail
dependence and it is not necessary for the conditional bivariate copulas in level 2, . . . , d − 1 to
have tail dependence. For example, the D-vines with two tail dependent Archimedean copulas as
baseline linking copulas c12 and c23 also exhibits tail dependence for the bivariate margin of c13

even when the conditional copula c13|2 is specified to be tail independent.
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Table 4.2.2: Numerical evaluation of the unknown bivariate TDC in a 3-dimensional
D-vine.

c12 λ12 c23 λ23 c13|2 λ13

Gumbel, θ = 2.56 0.690 Gumbel, θ = 1.54 0.431 Gumbel, θ = 2.56 0.641
(Strong dep.) (Medium dep.) (Strong dep.)

Gumbel, θ = 2.56 0.690 Gumbel, θ = 1.54 0.431 Independence 0.369
(Strong dep.) (Medium dep.)

Gumbel, θ = 1.16 0.185 Gumbel, θ = 1.16 0.185 Gumbel, θ = 2.56 0.377
(Weak dep.) (Weak dep.) (Strong dep.)

Gumbel, θ = 1.16 0.185 Gumbel, θ = 1.16 0.185 Independence 0.052
(Weak dep.) (Weak dep.)

4.2.2 Tail copula extensions

A first multivariate extension of the bivariate tail dependence coefficient is based on the tail copula.
It is defined as follows.1

Definition 4.2. For a vector of random variables X = (X1, . . . , Xd) with marginal distributions
F1, . . . , Fd, joint distribution function F , and copula CF , the tail copula-based multivariate tail
dependence coefficient τ is given by

τ(CF ) = lim
u↑1

P (F1(X1) > u, . . . , Fd(Xd) > u|Fd(Xd) > u) = lim
u↑1

CF (u, . . . , u)

1− u
. (4.2.4)

The tail copula-based multivariate TDC τ measures the probability that all variablesX1, . . . , Xd

are extreme given that one of them is extreme. This extension of the TDC is therefore sometimes
called the upper orthant tail dependence coefficient. Similar as for the bivariate TDC, the multi-
variate TDC is equal to the tail copula evaluated in (1, . . . , 1):

τ(CF ) = lim
u↑1

CF (u, . . . , u)

1− u
= lim

t↓0

CF (1− t, 1− t)
t

= b(1, . . . , 1).

In the definition above, the conditioning variable is taken to be Xd, but it does not matter
on which variable the probability is conditioned since the transformed marginals are all uniforms.
It is questionable whether this irrelevance of the specific conditioning variable is reasonable for a
multivariate tail dependence measure. The following example illustrates the problem.

Example 4.2. Consider the theoretical example for three variables (U1, U2, U3) with copula CF
where U1 is independent of U2 and where U2 and U3 are comonotonic,

U1 ⊥ U2, U1 ⊥ U3, U2 = U3.

In this case, the variables are joint by the following copula,

CF (u1, u2, u3) = u1 min(u2, u3).

Using the inclusion-exclusion formula, we find that the multivariate tail dependence coefficient is

1The tail copula-based multivariate TDC τ should not be confused with Kendalls tau which is an often used
dependence measure for copulas.
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equal to zero,

τ(CF ) = lim
u↑1

CF (u, u, u)

1− u
= lim

u↑1

1−
∑
∅6=S⊆{1,2,3}(−1)|S|+1P (∩i∈S{Ui ≤ u})

1− u

= lim
u↑1

1−
(
CF (u, 1, 1) + CF (1, u, 1) + CF (1, 1, u)− CF (u, u, 1)

)
1− u

+

lim
u↑1

1−
(
− CF (u, 1, u)− CF (1, u, u) + CF (u, u, u)

)
1− u

= lim
u↑1

1−
(
3u− 2u2 − u+ u2

)
1− u

= lim
u↑1

1− 2u+ u2

1− u
= lim

u↑1

(1− u)2

1− u
= lim

u↑1
−(1− u) = 0.

The example shows that the multivariate TDC τ is equal to zero for the variables U1, U2 and
U3 regardless of the conditioning variable. However, the comonotonic variables U2 and U3 contain
more information than the independent variable U1. That is, conditional on knowing U2 the value
of U3 is also known (and vice versa) but conditional on knowing U1 we are not informed on the other
variables. It would be desirable for this additional information to be reflected in the multivariate
tail dependence coefficient.

Another problem with the multivariate TDC τ can be identified in Example 4.2. It turns out
that the copula CF (u1, u2, u3) = u1 min(u2, u3) from the example is in fact an extreme value copula
and lies in its own domain of attraction because it satisfies the max-stability condition (Equation
3.3.4):

lim
n→∞

CF

(
u

1/n
1 , u

1/n
2 , u

1/n
3

)n
= lim
n→∞

(
u

1/n
1 min

(
u

1/n
2 , u

1/n
3

))n
= u1 min(u2, u3) = CF (u1, u2, u3).

This illustrates that the multivariate TDC of a copula CF can be zero when this copula does not
belong to the domain of attraction of the independence copula, implying that

τ(CF ) = 0 6⇒ CF ∈MDA(Π).

That is, the identifying relationship no longer holds. In fact, it can be shown that if one pair of the
random variables (X1, . . . , Xd) is tail independent, then the TDC will be equal to zero, no matter
how strong the asymptotic dependencies between the other variables may be: assuming without
loss of generality that X1 and X2 are tail independent,

0 ≤ τ(CF ) = lim
u↑1

CF (u, . . . , u)

1− u
= lim

u↑1

P(F1(X1) > u,F2(X2) > u, . . . , Fd(Xd) > u)

1− u

≤ lim
u↑1

P(F1(X1) > u,F2(X2) > u)

1− u
= lim

u↑1

(1− u)2

1− u
= 0.

Hence, if one bivariate pair is tail independent, information on the tail dependence structure
between the other variables is lost. Especially for higher dimensions, this limits the utility of this
tail dependence measure. More generally, it can be seen that the weakest pairwise dependencies
have the highest impact on the tail copula. Consider for example again the 3-dimensional D-vine
with two tail dependent Archimedean baseline linking copulas c12 and c23 with model parameters
that are not necessarily the same. The conditional copula on the second level c13|2 is chosen to be
either a Gumbel copula or the independence copula. Using the integrating procedure described in
Section 3.4.1, τ is evaluated as follows,

τ(CF ) = b(1, 1, 1) =

∫ 1

0

∫ 1

0

∫ 1

0

Υ12(w1, w2)Υ23(w2, w3)

· c13|2

(
1−

∫ w1

0

Υ12(w̃1, w2)dw̃1, 1−
∫ w3

0

Υ23(w2, w̃3)dw̃3

)
dw1dw2dw3.

The results in Table 4.2.3 show that the multivariate TDC τ reflects the weakest bivariate tail
dependence of the multivariate vine copula. This is not very informative and might lead to under-
estimation of the tail dependence strength in dimensions d > 2.

A possible solution to the loss of information on the tail dependence structure if one or more
pairwise dependencies are weakly tail dependent or tail independent, is to assess the upper orthant
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Table 4.2.3: Numerical evaluation of the tail copula-based multivariate TDC τ in a 3-dimensional
D-vine.

c12 λ12 c23 λ23 c13|2 λ13 τ123

Gumbel, θ = 2.56 0.690 Gumbel, θ = 1.54 0.431 Gumbel, θ = 2.56 0.641 0.418
(Strong dep.) (Medium dep.) (Strong dep.)

Gumbel, θ = 2.56 0.690 Gumbel, θ = 1.54 0.431 Independence 0.369 0.333
(Strong dep.) (Medium dep.)

Gumbel, θ = 1.16 0.185 Gumbel, θ = 1.16 0.185 Gumbel, θ = 2.56 0.377 0.159
(Weak dep.) (Weak dep.) (Strong dep.)

Gumbel, θ = 1.16 0.185 Gumbel, θ = 1.16 0.185 Independence 0.052 0.044
(Weak dep.) (Weak dep.)

TDCs of several subsets S ⊆ {1, . . . , d} of the variables X1, . . . , Xd. For example, by first assessing
the upper orthant TDC τ for all bivariate pairs, which is effectively the same as determining the
bivariate TDC λ, it can be determined whether the variables (X1, . . . , Xd) are tail independent or
tail independent. Note that this follows from Theorem 3.3 in combination with Main Theorem 1.
Higher order tail dependencies can next be assessed by determining the multivariate TDC τ for
other subsets of the variables. Another idea is to vary the set of conditioning variables (Li, 2009).
This leads to a different orthant TDC, which we denote by τS , defined as

τS(CF ) = lim
u↑1

P (Fj(Xj) > u,∀j /∈ S|Fi(Xi) > u,∀i ∈ S) , (4.2.5)

for a subset ∅ 6= S ⊆ {1, . . . , d}. In terms of copulas, the definition of the upper orthant tail
dependence coefficient is given as

τS(CF ) = lim
u↑1

CF (u, . . . , u)

CF ;S(u, . . . , u)
, (4.2.6)

where CF denotes the survival function of CF and where CF ;S is the |S|-dimensional copula joining
the variables Xi : i ∈ S. In words, this orthant TDC τS is the conditional probability that all
variables in a certain subset of the variables under consideration are extreme given that all variables
not belonging to that set are in fact extreme. Consider for example a portfolio of 3 stocks, each
generating random losses captured by the random variables X1, X2 and X3. The orthant TDC
of subset S = {2, 3} describes the probability that the loss coming from the first stock X1 is
extreme, given that the losses generated by the second and third stock are extreme. We revisit
Example 4.2 to illustrate how the subset-based orthant TDC τS provides more information of the
tail dependence structure than the regular orthant TDC τ .

Example 4.3. Consider again the theoretical example for three variables (U1, U2, U3) with copula
CF , where U1 is independent of U2 and where U2 and U3 are comonotonic,

U1 ⊥ U2, U1 ⊥ U3, U2 = U3.

In this case, the variables are joint by the following copula,

CF (u1, u2, u3) = u1 min(u2, u3).

Since conditioning on one variable leads to the multivariate TDC measure of the previous section,
we already know that τ{1}(CF ) = τ{2}(CF ) = τ{3}(CF ) = 0. Using the inclusion-exclusion formula
and calculation results from Example 4.2, we find the values for the upper orthant TDC for the
remaining subsets as follows,

τ{1,2}(CF ) = lim
u↑1

CF (u, u, u)

CF ;{1,2}(u, u)
= lim

u↑1

(1− u)2

1− 2u+ CF (u, u, 1)
= lim

u↑1

(1− u)2

1− 2u+ u2
= lim

u↑1

(u− 1)2

(u− 1)2
= 1,

τ{1,3}(CF ) = lim
u↑1

CF (u, u, u)

CF ;{1,3}(u, u)
= lim

u↑1

(1− u)2

1− 2u+ CF (u, 1, u)
= lim

u↑1

(1− u)2

1− 2u+ u2
= lim

u↑1

(u− 1)2

(u− 1)2
= 1,

τ{2,3}(CF ) = lim
u↑1

CF (u, u, u)

CF ;{2,3}(u, u)
= lim

u↑1

(1− u)2

1− 2u+ CF (1, u, u)
= lim

u↑1

(1− u)2

1− 2u+ u
= lim

u↑1

(u− 1)2

1− u
= 0.
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Since there exist subsets S ⊂ {1, 2, 3} for which τS(CF ) 6= 0, the variables U1, U2, and U3 are said
to be upper-orthant tail dependent (Li, 2009).

Although the subset-based orthant TDC τS can convey more information than τ , a large draw-
back is presented by the fact that multiple measures have to be computed to capture the nature of
the extremal dependence structure. Especially for higher dimensions it becomes a tedious task to
assess the orthant TDC for all possible subsets and to draw conclusions from all of these individual
measures on the general structure of the tail dependence structure. For example, for dimension
d = 3 there are 6 TDC measures to evaluate; for dimension d = 5, this approach leads to 30 upper
orthant TDC measures to evaluate and interpret.

4.2.3 Stable tail dependence function extension

The previous section extended the bivariate TDC λ based on the relationship with the tail copula.
In this section, the extension of the TDC λ based on its relationship with the stable tail dependence
function is researched. Since the bivariate TDC λ is a rescaled version of the STDF evaluated in
(1, 1), a multivariate TDC Λ∗ could be based on the d-dimensional STDF evaluated in (1, . . . , 1),

Λ∗ = `(1, . . . , 1) = lim
u↑1

1− CF (u, . . . , u)

1− u
= − logC(e−1, . . . , e−1) = dA (1/d, . . . , 1/d) .

It turns out that this extension leads to the definition of the so-called extremal coefficients, discussed
by Schlather and Tawn (2003), for example. The STDF evaluated in the point (1, . . . , 1) can be
interpreted as the probability that one or more components are extreme, given that one component
is extreme. Kiriliouk (2016) shows that the resulting number can be interpreted as the effective
number of tail independent variables among X1, . . . , Xd.

Because of the bounds of the STDF, this quantity will be bounded as 1 ≤ Λ∗ ≤ d for the
comonotonic case and the independent case, respectively. By scaling the measure as follows,

Λ(CF ) =
Λ∗ − d
1− d

=
d− Λ∗

d− 1
,

the measure will now be bounded between 0 ≤ Λ ≤ 1 for the independent case and the comonotonic
case, respectively. We therefore define the STDF-based multivariate TDC as follows.

Definition 4.3. Let X = (X1, . . . , Xd) be a d-dimensional random vector with copula CF that
belongs to the domain of attraction of an extreme value copula and with stable tail dependence
function `. The multivariate STDF-based TDC Λ is then defined as

Λ(CF ) =
d− `(1, . . . , 1)

d− 1
. (4.2.7)

Note that for d = 2, we have Λ(CF ) = 2 − `(1, 1), which is exactly the definition for the
bivariate TDC. In order to explore how this multivariate tail dependence measure behaves, we
consider Example 4.2 one last time.

Example 4.4. Consider the theoretical example for three variables (U1, U2, U3) with copula CF ,
where U1 is independent of U2 and where U2 and U3 are comonotonic,

U1 ⊥ U2, U1 ⊥ U3, U2 = U3.

In this case, the variables are joint by the following copula,

CF (u1, u2, u3) = u1 min(u2, u3).

Since

Λ∗ = `(1, 1, 1) = lim
u↑1

1− CF (u, . . . , u)

1− u
= lim

u↑1

1− u2

1− u
= lim

u↑1

(1− u)(1 + u)

1− u
= 2,

the STDF-based TDC gives that Λ = (2−3)/(1−3) = 1/2, indicating that the dependence structure
is between independence (Λ = 0) and comonotonicity (Λ = 1).
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Since the STDF of a copula CF is the same as its extreme value copula C, if ` exists and
if CF ∈ MDA(C) (see Proposition 3.4), it is straightforward to establish that Λ(CF ) = Λ(C).
Formally, this is captured by the following proposition.

Proposition 4.1. Let CF be a d-dimensional copula with multivariate tail dependence coefficient
Λ(CF ). If CF ∈ MDA(C) for an extreme value copula C with multivariate tail dependence co-
efficient Λ(C), then Λ(CF ) = Λ(C). That is, the multivariate tail dependence coefficients of the
copula CF and its extreme value copula C are the same.

Proof. The result follows immediately from the STDF-based definition of the multivariate tail
dependence coefficient and the notion that the stable tail dependence function ` is the same for
CF and C if CF ∈MDA(C) (Proposition 3.4). �

Furthermore, it turns out that this multivariate TDC Λ has the ability to identify tail indepen-
dence, just as the bivariate TDC (Main Theorem 1). This is a crucial observation which has not
yet been made in literature to our knowledge. It is captured by Main Theorem 2.

Main Theorem 2. Let X1, . . . , Xd be continuous random variables joint with a copula CF that
belongs to the maximum domain of attraction of an extreme value copula. The variables X1, . . . , Xd

are asymptotically independent if and only if their STDF-based multivariate tail dependence coef-
ficient Λ(CF ) is equal to zero. That is,

CF ∈MDA(Πd)⇔ Λ(CF ) = 0.

Proof. If CF ∈MDA(Πd), the STDF is equal to `(x1, . . . , xd) = x1 + · · ·+xd. Hence, in that case
it follows immediately that

Λ(CF ) = (d− `(1, . . . , 1)/(d− 1) = (d− d)/(d− 1) = 0.

Conversely, we have to show that if Λ(CF ) = 0, then CF ∈ MDA(Πd). By the relationship
between the extreme value copula and the STDF (Proposition 3.5), it is sufficient to show that
if Λ(CF ) = 0, then `(x) = x1 + · · · + xd for any x = (x1, . . . , xd) ∈ Rd+. Alternatively, by using
the Pickands representation, it is sufficient to show that if Λ(CF ) = 0, then A(x) = 1 for any
x ∈ ∆d. Recall from Section 3.4.2 that the A-function is convex and is equal to 1 if it is evaluated
in one of the unit vectors: A(ej) = 1 for ej the j-th unit vector, 1 ≤ j ≤ d. Note that the unit
vectors correspond to the extreme points of the unit simplex.2 Since A(x) ≤ 1 for all x ∈ ∆d,
this implies that the Pickands dependence function attains maxima on the extreme points of its
domain. Similar as for one-dimensional convex functions, this is a known property: a multivariate
convex function attains its supremum at an extreme point of its convex domain (see, e.g., Theorem
A.4.3 in Niculescu and Persson (2004)). Since Λ(CF ) = 0 implies that A(1/d, . . . , 1/d) = 1, a
maximum is also attained in the point (1/d, . . . , 1/d). However, unlike the maximum principle for
one-dimensional convex functions, this does not immediately imply that the function is constant
if it also attains its maximum at non-extreme points. Therefore, to finish the proof, we employ a
strategy that does not make use of the maximum principle for convex functions. This approach is
shown in Appendix B.3.2. �

Since this multivariate TDC Λ is equivalent to a rescaled version of the STDF evaluated in
the point (1, . . . , 1), it is straightforward to find Λ for several known copula models based on the
expressions of the STDF that were derived in Section 3.4. For example, the Pickands dependence
function for the t-EV copula evaluated in the point (1/d, . . . , 1/d) is given by,

A(1/d, . . . , 1/d) =

d∑
j=1

1

d
Td−1,ν+1,Rj

 √ν + 1√
1− ρ2

ij

(1− ρij) , i 6= j

 ,

2Extreme points of a set U are those points that are not an interior point of any linear segment in U. That is, if
there do not exist x, y ∈ U such that z = λx + (1 − λ)y for λ ∈ (0, 1), then z is an extreme point of U (Niculescu
and Persson, 2004).
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where Rj is equal to the partial correlation matrix R with the j-th row and j-th column removed.
That is, Rj = (ρk1,k2;j)k1,k2 6=j . The multivariate TDC for the t-EV copula is therefore given by

Λ =
d− `(1, . . . , 1)

d− 1
=
d− dA(1/d, . . . , 1/d)

d− 1

=
1

d− 1

d− d∑
j=1

Td−1,ν+1,Rj

 √ν + 1√
1− ρ2

ij

(1− ρij), i 6= j

 .

Similarly, Λ can be determined for the Hüsler-Reiss model. For Archimedean copulas, the `-function
immediately yields that `(1, . . . , 1) = d1/θ, with θ ≥ 1 the model parameter of the asymptotic
Gumbel copula. Alternatively, a straightforward expression for Λ can be found for Archimedean
copulas based on the behavior of their generator. That is, consider the `-function evaluated in the
point (1, . . . , 1) for an Archimedean copula CF with generator function ψ,

`(1, . . . , 1) = lim
u↑1

1− CF (u, . . . , u)

1− u
= lim

u↑1

1− ψ
(
ψ−1(u) + · · ·+ ψ−1(u)

)
1− u

= lim
x↓0

1− ψ(dx)

1− ψ(x)
,

where it is used that ψ(0) = 1 and ψ(1) = 0. It is implied by this expression that the multivariate
extremal behavior of Archimedean copulas is determined by the regular variation of the function
1− ψ at 0. That is, if 1− ψ is regularly varying at 0 with index α, then

`(1, . . . , 1) = lim
x↓0

1− ψ(dx)

1− ψ(x)
= dα ⇒ Λ =

d− dα

d− 1
.

This, in turn, implies that for α = 1, the Archimedean copula is asymptotically independent, while
for α = 0, the Archimedean copula is asymptotically comonotonic. Theorem 3.9 also leads to this
conclusion (the results are comparable by taking θ = 1/α).

For vine copulas, the multivariate TDC Λ can be assessed based on the copula tail density of
the D-vine (Theorem 3.7). Similar to finding the STDF function for vines, Λ can be determined
as follows,

`(1, . . . , 1) =
∑

∅6=S⊆{1,...,d}

(−1)|S|−1

∫ 1

0

· · ·
∫ 1

0

ΥS(vi1 , . . . , vi|S|)dvi1 . . . dvi|S| .

(see Proposition 3.8). Table 4.2.2 and Table 4.2.3 already showed the bivariate TDC λ for the
unspecified bivariate margin c13 and the multivariate TDC τ . To further illustrate the tail depen-
dence behavior of a trivariate D-vine with Archimedean baseline linking copulas, the multivariate
TDC Λ is also assessed. For a 3-dimension D-vine with baseline linking copulas c12 and c23, with
corresponding copula tail densities Υ12 and Υ23, and first level conditional copula density c13|2,
the multivariate TDC Λ can be numerically evaluated based on the following expression,

`(1, 1, 1) = 3−
∫ 1

0

∫ 1

0

Υ12(w1, w2)dw1dw2 −
∫ 1

0

∫ 1

0

Υ23(w2, w3)dw2dw3

−
∫ 1

0

∫ 1

0

Υ13(w1, w3)dw1dw3 +

∫ 1

0

∫ 1

0

∫ 1

0

Υ123(w1, w2, w3)dw1dw2dw3

= 3−
∫ 1

0

∫ 1

0

Υ12(w1, w2)dw1dw2 −
∫ 1

0

∫ 1

0

Υ23(w2, w3)dw2dw3

−
∫ 1

0

∫ ∞
0

∫ 1

0

Υ123(w1, w2w3)dw1dw2dw3

+

∫ 1

0

∫ 1

0

∫ 1

0

Υ12(w1, w2)Υ23(w2, w3)

· c13|2

(
1−

∫ w1

0

Υ12(w̃1, w2)dw̃1, 1−
∫ w3

0

Υ23(w2, w̃3)dw̃3

)
dw1dw2dw3.

As discussed in Section 3.4.1, the semi-infinite bounds are transformed and the resulting integrals
can be evaluated in R with the adaptIntegrate function. The results in Table 4.2.4 indicate that
the multivariate TDC Λ provides an informative summary of the tail dependence strength in the
vine.
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Table 4.2.4: Numerical evaluation of the STDF-based multivariate TDC Λ in a 3-dimensional
D-vine.

c12 λ12 c23 λ23 c13|2 λ13 Λ123

Gumbel, θ = 2.56 0.690 Gumbel, θ = 1.54 0.431 Gumbel, θ = 2.56 0.641 0.672
(Strong dep.) (Medium dep.) (Strong dep.)

Gumbel, θ = 2.56 0.690 Gumbel, θ = 1.54 0.431 Independence 0.369 0.579
(Strong dep.) (Medium dep.)

Gumbel, θ = 1.16 0.185 Gumbel, θ = 1.16 0.185 Gumbel, θ = 2.56 0.377 0.293
(Weak dep.) (Weak dep.) (Strong dep.)

Gumbel, θ = 1.16 0.185 Gumbel, θ = 1.16 0.185 Independence 0.052 0.190
(Weak dep.) (Weak dep.)

4.3 Second order measures
The tail dependence coefficients are asymptotic dependence measures, and hence capture the limit-
ing dependence structure of the extreme value copula to which a certain copula converges. However,
depending on the copula CF , the speed of convergence can vary significantly. Especially in the tail
independent case, the TDC might not fully capture the strength of the extremal dependence for
finite samples. For example, if (X1, X2) ∼ CF are independent, then

λ(CF ) = lim
u↑1

CF (u, u)

1− u
= lim

u↑1

(1− u)2

1− u
= 0.

The tail dependence coefficient is also zero for any 1 < k ≤ 2

λ(CF ) = lim
u↑1

CF (u, u)

1− u
= lim

u↑1

(1− u)k

1− u
= 0,

but in these scenarios, the variables X1 and X2 are not independent. If the variables have not yet
converged to Π, extreme values stemming from finite samples of CF might still exhibit dependence.
In order to account for this phenomenon, we need a second measure quantifying the amount of
dependence that is left above high but finite thresholds. The second order measures introduced
in this section assess the speed of convergence of the copula CF to the independence copula Π for
variables that are tail independent.

4.3.1 Tail order
The tail order is a first way to measure the residual dependence for asymptotically tail independent
variables. This second order measure is based on the concept of regular variation (see Appendix
A). Originally, the concept behind the tail order was presented for the bivariate case by Tawn and
Ledford (1996) who introduced the so-called tail coefficient η for two random variables X1 and X2

with no right endpoint and joint distribution function F as follows,

P(X1 > z,X2 > z) ∼ L (z)z−1/η as z →∞.

The power term −1/η controls the speed of decay of the joint tail probability. Large values of η
lead to a slower decay rate of the joint probability than small values of η. Hence, η measures the
strength of dependence in the tails. After the initial work of Tawn and Ledford (1996), many others
have researched this measure under different names. For example, De Haan and Zhou (2011) and
Hashorva (2010) use the term residual dependence index. The tail order is defined by Hua and
Joe (2011) as the reciprocal of the tail coefficient η. Using copulas and the tail order notation,
κ = 1/η, the following multivariate definition of the tail order will be employed (Joe, 2015).

Definition 4.4. Let X1, . . . , Xd be random variables with marginal distributions F1, . . . , Fd, and
copula CF . If there exists a coefficient κ(CF ) > 0 such that, with a function L (u) ∈ RV0(0+),

lim
u↑1

P(F1(X1) > u, . . . , Fd(Xd) > u) = lim
u↑1

CF (u, . . . , u) ∼ (1− u)κ(CF )L (1− u), (4.3.1)

then we refer to κ(CF ) as the tail order of CF .
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It is customary to assume that the tail order is bounded between perfect dependence and
independence, i.e., 1 ≤ κ ≤ d, since the multivariate extreme value distribution cannot contain
negative dependence (see Section 3.1.2). However, since the tail order is concerned with the residual
dependence structure in finite samples that converge to Π, negative dependence cannot be ruled
out. If there is a negative association between variables at extreme but finite levels, the tail order
might be larger than d.

For any bivariate copula CF that can be written as Equation 4.3.1 with tail order κ > 1 and a
function L (u) slowly varying at zero, the following holds:

λ(CF ) = lim
u↑1

CF (u, u)

1− u
= lim

u↑1

(1− u)κL (1− u)

1− u
= 0.

Hence, a bivariate copula CF with tail order κ > 1 is tail independent and therefore belongs to
the maximum domain of attraction of the independence copula Π. For dimensions d > 2, the tail
copula-based TDC τ is equal to zero,

τ(CF ) = lim
u↑1

CF (u, . . . , u)

1− u
= lim

u↑1

(1− u)κL (1− u)

1− u
= 0,

but this does not necessarily imply that the copula CF is tail independent (see Section 3.4.3).
Hence, in contrast to the bivariate case, a d-dimensional copula CF with d > 2 with tail order
κ > 1 is not necessarily tail independent. On the other hand, for any dimension d ≥ 2 it can be
shown that a copula CF with tail order κ = 1 is tail dependent. The tail copula-based multivariate
TDC τ is in this case equal to τ(CF ) = limu↑1 L (1− u).

The tail order and the slowly varying function can be determined analytically for several known
copulas. For the d-dimensional independence copula it is easy to see that κ = d with L (t) = 1 since
CF (u, . . . , u) = (1−u)d. Similarly, for the comonotonicity copula it holds that κ = 1 with L (t) = 1,
since CF (u, . . . , u) = 1 − u. To determine the tail order for other copulas, the computations are
a bit more tedious. The following Example 4.5 shows that the d-dimensional Frank copula has a
tail order equal to κ = d with slowly varying function equal to L (u) = − 1

δ

(
e−δ − 1

)1−δ
(−δ)d.

Hence, the Frank copula has the same tail order as the independence copula and therefore does
not exhibit residual dependence.

Example 4.5. Recall that the d-dimensional Frank copula is given by

C(u1, . . . , ud) = −1

δ
log

(
1 +

(
e−δ − 1

)1−d d∏
i=1

(
e−δui − 1

))
,

for δ ≥ 0 (see Section 2.3). Because it is reflection symmetric,

lim
u↑1

CF (u, . . . , u) = lim
u↓0

CF (u, . . . , u).

Now, using that exp(−ux) ∼ 1− ux as u→ 0 and that log(x) ∼ x− 1 for x→ 1, it follows that

lim
u↓0

CF (u, . . . , u) = lim
u↓0
−1

δ
log
(

1 +
(
e−δ − 1

)1−d (
e−δu − 1

)d)
= lim

u↓0
−1

δ
log
(

1 +
(
e−δ − 1

)1−d
(−δu)

d
)

= lim
u↓0
−1

δ

(
e−δ − 1

)1−d
(−δu)d,

hence,

CF (u, . . . , u) ∼ −1

δ

(
e−δ − 1

)1−d
(−δ)d · ud =: L (u)uκ,

with κ = d and L (u) = − 1
δ

(
e−δ − 1

)1−d
(−δ)d. In the bivariate case (d = 2), this simplifies to

CF (u, u) ∼ δ

1− e−δ
u2.
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In contrast, the Normal copula does exhibit residual dependence. The following example shows
that the tail order of the d-dimensional Normal copula with correlation matrix Σ is equal to
κ = 1dΣ

−11Td . In the bivariate case, this simplifies to κ = ρ.

Example 4.6. (Joe, 2015). Consider a d-dimensional Gaussian copula CF with positive definite
correlation matrix Σ. Suppose that CF satisfies CF (u, . . . , u) ∼ uκL (u) = h∗uκ(− log u)ζ , as
u ↓ 0, where h∗ is a constant. Then, by the monotone density theorem, this is equivalent to
c(u, . . . , u) ∼ huκ−d(− log u)ζ , as u ↓ 0, where h is another constant. Denoting with φ and Φ the
Normal density and distribution function, we find that

1 = lim
u↓0

c(u, . . . , u)

huκ−d(− log u)ζ
= lim

u↓0

φΣ

(
Φ−1(u), . . . ,Φ−1(u)

)
hφd (Φ−1(u))uκ−d(− log u)ζ

= lim
z→−∞

φΣ (z, . . . , z)

hφd(z) (Φ(z))
κ−d

(− log(Φ(z))
ζ

= lim
z→−∞

φΣ(z, . . . , z)

hφκ(z)|z|d−κ (− log(φ(z)/|z|))ζ
.

In the above calculations it is used that Φ(z) ∼ φ(z)/|z| as z → −∞. Since the exponent terms
dominate the numerator and denominator, to cancel the exponent terms, a necessary condition is
that κ = 1dΣ

−11Td , which turns out to be the tail order of the copula C. Furthermore, to cancel
the term of |z|, we need that d− κ+ 2ζ = 0, so ζ = (κ− d)/2.

An overview of the tail order of several other copulas can be found in Joe (2015) and Hua and
Joe (2011). The issue of second order tail dependence structures in vines is still an unsolved issue
in literature.

4.3.2 Asymptotic independence measure
Linked to the tail order is the asymptotic independence measure introduced by Coles et al. (1999).
Just as the tail order, the asymptotic independence measure aims to capture the relative strength
of dependence between variables that are asymptotic independent. Originally defined for two
variables X1 and X2 sharing the same marginal distribution with right endpoint z∗ ∈ R as

χ = lim
z→z∗

2 logP(X1 > z)

logP(X1 > z,X2 > z)
− 1,

the asymptotic independence measure assesses the rate at which P(X2 > z|X1 > z) approaches
zero as z → z∗. This can be established as follows. Suppose that as z → ∞, the probabilities
behave as P(X1 > z) ∼ z−k1L (z) and P(X1 > z,X2 > z) ∼ z−k2L (z), with k1, k2 > 0. The
parameters k1 and k2 control the rate at which the probabilities decay to zero and share a close
resemblance to the tail order coefficient. Under these assumptions, it is implied that the conditional
probability behaves as P(X2 > z|X1 > z) ∼ zk1−k2L (z) and that the asymptotic independence
measure equals

χ = lim
z→z∗

2 log
(
z−k1L (z)

)
log (z−k2L (z))

− 1 ∼ 2k1

k2
− 1.

Note that since P(X1 > z) ≥ P(X1 > z,X2 > z) we must have that k1 ≤ k2. The degree to which
k2 is larger than k1 determines the tail dependence. The exact definition is based on a scaling
argument. Assuming that (X1, X2) ∼ CF , the definition can be reformulated in terms of copulas
as follows,

χ = lim
u↑1

2 log(1− u)

logCF (u, u)
− 1.

The connection with the tail order is given by Coles et al. (1999) and Heffernan (2000). Recalling
that

CF (u, u) ∼ (1− u)κL (1− u) ,

as u→ 1, it follows that

χ(u) ∼ 2 log(1− u)

κ log(1− u) + log L (1− u)
− 1→ 2

κ
− 1.

Because of the one-on-one relationship between the tail order and the asymptotic independence
measure, results for the asymptotic independence measure follow trivially from the tail order
results.
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4.4 Summary
This chapter was concerned with measures to summarize the multivariate tail dependence struc-
ture. In the bivariate case, the tail dependence coefficient (TDC) λ, is commonly used to capture
the strength of tail dependence between two random variables. Two extensions of the bivariate
tail dependence coefficient to higher dimensions d > 2 have been considered: one based on the tail
copula and another based on the stable tail dependence function. The tail copula-based multivari-
ate TDC, τ , captures the conditional probability that all variables are extreme, given that one of
them is. The measure is equal to the tail copula b evaluated in the point (1, . . . , 1). In contrast, the
STDF-based multivariate TDC, Λ, captures the conditional probability that one or more variables
are extreme given that one of them is. This measure is equal to a rescaled version of the stable
tail dependence function ` evaluated in the point (1, . . . , 1).

The value of the tail copula-based TDC τ reduces significantly when one marginal pair of vari-
ables exhibits weak tail dependence, regardless of the tail dependence strength between the other
variables. In particular, the measure τ is equal to zero when at least one marginal pair of variables
is tail independent. Hence, in case of varying marginal tail dependencies, the tail copula-based
multivariate TDC τ loses a significant amount of information. To mitigate this loss of information,
a subset-based measure, τS , can be employed. However, for high dimensions, this approach requires
a large number of subset-based TDCs to be evaluated in order to get a good picture of the tail
dependence strength. In contrast, the STDF-based multivariate TDC Λ conveys most important
information of the multivariate tail dependence structure. The ability of the multivariate TDC Λ
to identify tail independence in all dimensions d ≥ 2 (Main Theorem 2) is noteworthy and will be
used in the next chapter to develop a test statistic to test the null hypothesis of tail independence.

In case of asymptotic independence, the tail order κ provides further information on the residual
dependence that might be present in samples above high but finite thresholds. An overview of the
considered tail dependence summary measures is given in Table 4.4.1 below. It can be seen that the
considered tail dependence measures behave quite well and satisfy almost all desirable properties.
Note that this is not naturally true for tail dependence measures. For example, another tail
dependence that is sometimes considered in literature is the extreme correlation, which is defined
as the correlation above high threshold values. The extreme correlation, similar to the general
correlation measure, only exists if the variables to which it is applied have finite first and second
moments. Moreover, it is not copula-based and is neither able to identify tail independence nor
tail comonotonicity. We conclude that the multivariate TDC Λ is the best suited tail dependence
measure to employ. In case of asymptotic independence, the tail order can provide additional
information.

Table 4.4.1: Overview of tail dependence measures and their properties.

TDC (d = 2) TDC (d > 2) TDC (d > 2) Tail order
(STDF-based) (Tail copula-based)

λ Λ τ κ

(P1) Existence∗ 3 3 3 3

(P2) Exchangeability 3 3 3 3

(P3) Normalisation 3 3 3 3

(P4) Copula-based 3 3 3 3

(P5) ID independence 3 3 7 Only for d = 2

(P6) ID comonotonicity 3 ∗∗ ∗∗ 7

∗ All tail dependence measures exist on condition that the limit in their definition exists. For all considered parametric
copulas this is true.
∗∗ We conjecture that the STDF-based TDC Λ cannot identify asymptotic comonotonicity, whereas the tail copula-
based TDC can identify asymptotic comonotonicity. It is, however, not straightforward to prove this and since
asymptotic comonotonicity is not very relevant because it hardly ever occurs this problem is left unaddressed.
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Chapter 5

Inference for Multivariate Extremal
Dependence

After identifying appropriate characterizations for the multivariate tail dependence structure that
either fully capture the dependence structure or summarize the strength of the dependence struc-
ture, this chapter is concerned with statistical procedures required for inference on these character-
izations. The field of science concerned with statistical inference on multivariate extremal behavior
is still in rapid development, and a large body of research on this topic already exists, although
mostly for the bivariate case. There are many different approaches to tackle this problem: inference
methods can be non-parametric or parametric, and, in the latter case, they can be likelihood-based,
frequentist as well as Bayesian, or based on other techniques such as the method of moments or
minimum distance estimation (Segers, 2012b). Moreover, inferences can be made based on any of
the characterizations discussed in Chapter 3, presenting a wide range of possibilities to estimate
the dependence structure between multivariate extremes.

Historically, the focus has been on estimating the full bivariate extreme value distribution
through the exponent or spectral measure. See for example De Haan and Resnick (1993) for an
estimator of the exponent measure and Einmahl et al. (1997), Einmahl et al. (2001), and Einmahl
and Segers (2009), for a sequence of improving estimators of the spectral measure. Boldi and
Davison (2007) and Guillotte et al. (2011) introduced a Bayesian approach to estimating the
spectral measure, and Kiriliouk et al. (2014) presented an overview of nonparametric estimation
procedures for the spectral measure. The bivariate Pickands dependence function also received
quite some attention by researchers. See for example Pickands (1981) for a nonparametric approach
and Tawn (1988) for a parametric approach. Abdous and Ghoudi (2005) and Vettori et al. (2017)
both presented a comprehensive overview of nonparametric estimators of the Pickands dependence
function. Unfortunately, many bivariate methods cannot be readily extended to the multivariate
version of the Pickands dependence function. Nonparametric estimation of the tail copula was
considered by Schmidt and Stadtmüller (2006) and Bücher and Dette (2013). Moreover, the
relationships between the characterizations of the dependence structure imply that estimators for
one characterization can also be employed to estimate another characterization. For example,
an estimator for the Pickands dependence function can be defined based on an estimator for the
spectral measure (Capéraà and Fougères, 2000).

In this chapter, however, the primary focus is on estimating the STDF and, inherently, the
STDF-based multivariate TDC Λ. After discussing and evaluating several estimators, we elaborate
on how the STDF estimators can be used to fashion test statistics and test the hypothesis of tail
independence and, consequently, to classify variables as either tail dependent or tail independent.
The testing of multivariate tail (in)dependence is a statistical problem that has received little
attention in literature. We focus on these inference problems because they provide a comprehensive
set of tools that can be used to (1) fully assess the multivariate tail dependence structure, (2)
summarize the strength of multivariate extremal dependencies, and (3) classify data as either tail
dependent or tail independent.

73
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5.1 STDF estimators

This section introduces several estimators for the stable tail dependence function. Firstly, the
empirical STDF is introduced along with several adjusted versions that smooth this nonparametric
estimator or correct its bias. Thereafter, we briefly touch upon parametric methods to estimate
the STDF and finally evaluate several estimators in a simulation study. Throughout this section,
it is assumed that we have n independently and identically distributed (iid) data observations from
a d-dimensional random vector X = (X1, . . . , Xd) with joint distribution F , marginal distribution
functions F1, . . . , Fd, and a copula CF that belongs to the maximum domain of attraction of an
extreme value copula C and is therefore characterized by a stable tail dependence function `. Data
are denoted by (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd). The aim is to develop an estimator for the
`-function for x ∈ [0, 1]d. Due to the homogeneity of the STDF, this estimator can be employed to
retrieve estimates for all x ∈ Rd+. It would also be sufficient to restrict the domain of the estimator
to the unit simplex ∆d−1, where we would actually be considering the problem of estimating the
Pickands dependence function.

5.1.1 Empirical STDF

The empirical stable tail dependence function approximates the STDF nonparametrically in a
straightforward manner. It was first introduced for the bivariate case by Huang (1992) and later
by Drees and Huang (1998). Consider again the definition of the d-dimensional STDF,

`(x1, . . . , xd) = lim
t↓0

1− CF (1− tx1, . . . , 1− txd)
t

= lim
t↓0

1

t
P (F1(X1) > 1− tx1 or . . . or Fd(Xd) > 1− txd) .

Looking closely at the definition of the STDF, it can be noticed there are three components of the
`-function that have to be approximated to estimate the function nonparametrically. Firstly, the
limiting value t ↓ 0 has to be replaced by a finite number. It is customary in extreme value theory to
introduce an intermediate sequence k := kn ∈ {1, . . . , n} such that k →∞ and k/n→ 0 as n→ 0.
The limiting value t ↓ 0 is approximated by the finite value k/n (step 1). Note that n is implied by
the dataset, whereas k has to be chosen by the statistician. Secondly, the multivariate probability
P has to be approximated. The most straightforward way to do this is using the empirical copula
(step 2). Note that this is, in fact, the same problem as having to estimate copula as discussed in
Section 2.5. Thirdly, the marginal distributions of the variables, F1, . . . , Fd, have to be estimated
(step 3). This can be done employing the empirical distribution function, which is based on the
ranks of data. By plugging these approximations into the definition of the STDF step by step, the
empirical STDF is retrieved as follows,

`(x1, . . . , xd) = lim
t↓0

1

t
P (F1(X1) > 1− tx1 or . . . or Fd(Xd) > 1− txd)

≈ n

k
P
(
F1(X1) > 1− kx1

n
or . . . or Fd(Xd) > 1− kxd

n

)
(Step 1)

≈ n

k

1

n

n∑
i=1

1

{
F1(Xi1) > 1− kx1

n
or . . . or Fd(Xid) > 1− kxd

n

}
(Step 2)

≈ 1

k

n∑
i=1

1

{
F̂n1(Xi1) > 1− kx1

n
or . . . or F̂nd(Xid) > 1− kxd

n

}
(Step 3)

=
1

k

n∑
i=1

1

{
Xi1 > F̂−1

n1

(
1− kx1

n

)
or . . . or Xid > F̂−1

nd

(
1− kxd

n

)}

=
1

k

n∑
i=1

1 {Xi1 > Xn−kx1,n or . . . or Xid > Xn−kxd,n}

=
1

k

n∑
i=1

1 {Ri1,n > n− kx1 or . . . or Rid,n > n− kxd} ,
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where Rij,n, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, denotes the rank of Xij out of 1, . . . , n. Intuitively,
the number of vector observations where one or more of its components exceeds a high thresh-
old is counted and properly rescaled. The high thresholds depend on the marginal distributions
F1, . . . , Fd. If the marginal distributions are estimated with the empirical distribution function,
an observation exceeds a high quantile exactly when the rank of the observation is higher than
the rank of the threshold value. Einmahl et al. (2012) introduced an alternative estimator with
slightly better finite-sample properties:

ˆ̀
n,k(x) :=

1

k

n∑
i=1

1 {Ri1,n > n+ 1/2− kx1 or . . . or Rid,n > n+ 1/2− kxd} .

The variations of the estimator retrieved by specifying n − kxj , n + 1/2 − kxj , or n + 1 − kxj ,
are all asymptotically equivalent but the latter two often yield better finite sample performances.
Hence, we use the definition of Einmahl et al. (2012).

Definition 5.1. Let (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) be d-dimensional vector observations from
a copula CF . Let k := kn ∈ {1, . . . , n} be such that k →∞, and k/n→ 0 if n→∞. The empirical
stable tail dependence function is given by

ˆ̀
n,k(x) =

1

k

n∑
i=1

1 {Ri1,n > n+ 1/2− kx1 or . . . or Rid,n > n+ 1/2− kxd} , (5.1.1)

where Rij,n, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, denotes the rank of Xij out of 1, . . . , n.

To get a feeling of how the empirical STDF behaves in practice, data are simulated from the
bivariate Gumbel copula. The estimated ˆ̀

n,k-functions are shown below for different values of
the sample size (Figure 5.1.1). The multivariate empirical STDF can be estimated in R with the
stdfEmp function from the tailDepFun package. Alternatively, it is straightforward to implement
the estimator (see Appendix 5.1). The figures show that the empirical STDF approximates the
real `-function quite well, even for a relatively small sample size. The performance of the estimator
is further assessed in the simulation study presented in Section 5.1.5. A drawback of the empirical
STDF is that it usually does not satisfy the shape constraints of the stable tail dependence function
(see Theorem 3.8). Most notably, the empirical STDF is not continuous and not convex.

Figure 5.1.1: The empirical STDF for data simulated from the bivariate Gumbel copula with model
parameter θ = 2 using k = 5% of N ∈ {1000, 2500, 5000} observations.

Asymptotic behavior

It is essential to know the asymptotic behavior of the empirical STDF to construct a test statistic
that can be used for testing tail independence (Section 5.2). Furthermore, the asymptotic behavior
of the empirical STDF is a building stone for the derivation of the asymptotic behavior of most
other nonparametric and semi-parametric STDF estimators. Hence, in the following we address in
detail the asymptotic properties of the empirical STDF estimator. It is known that, under certain
regularity conditions, the empirical STDF converges to a zero-mean Wiener process with a variance
that is dependent on the true and usually unknown stable tail dependence function `. Recall that
the Wiener process is a Gaussian stochastic process that is defined as follows.
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Definition 5.2. A Wiener process (or Brownian motion) Wt is a stochastic process characterized
by the following properties: (1) W0 = 0 a.s.; (2) W has independent increments; (3) W has
Gaussian increments: Wt+s −Wt ∼ N(0, t− s); and (4) W has continuous paths.

In order to state and prove the asymptotic result, some notations and definitions are introduced
according to the exposition of Einmahl et al. (2012). Firstly, let Wν denote a zero-mean Gaussian
process indexed by a measure ν that works on Borel sets of [0,∞]d\{(∞, . . . ,∞)} and is related
to the STDF as

ν
({

u ∈ [0,∞]d : u1 ≤ x1 or . . . or ud ≤ xd
})

= `(x1, . . . , xd).

The covariance structure of Wν is given by

E (Wν(A1)Wν(A2)) = ν(A1 ∩A2) (5.1.2)

for any two Borel sets A1 and A2 in [0,∞]d\{(∞, . . . ,∞)}. Define

W`(x) = Wν

(
{u ∈ [0,∞]d\{(∞, . . . ,∞)} : u1 ≤ x2 or . . . or ud ≤ xd}

)
, (5.1.3)

and let W`,j , j = 1, . . . , d be the marginal processes,

W`,j(xj) = W`(0, . . . , 0, xj , 0, . . . , 0), xj ≥ 0. (5.1.4)

Define `j to be the right-hand partial derivative of ` with respect to xj , j = 1, . . . , d. Lastly, define
the zero-mean Gaussian process

B`(x) = W`(x)−
d∑
i=1

`j(x)W`,j(xj) (5.1.5)

with variance defined by

E
(
B`(x)2

)
= E

(
W`(x)2

)
− 2

d∑
j=1

`j(x)E (W`(x)W`,j(xj)) + E


 d∑
j=1

`j(x)W`,j(xj)

2


= `(x)− 2

d∑
j=1

`j(x)`(0, . . . , 0, xj , 0, . . . , 0) +

d∑
j=1

`2j (x)`(0, . . . , 0, xj , 0, . . . , 0).

Now we are ready to state the result.

Theorem 5.1. (Einmahl et al., 2012). Assuming that

1. limt↓0 t
−1 (1− CF (1− tx1, . . . , 1− txd)) exists and converges uniformly to `(x1, . . . , xd) on

[0, T ]d for T > 0 (first order condition);

2. t−1 (1− CF (1− tx1, . . . , 1− txd))− `(x) = O (tα), uniformly in x ∈ [0, 1]d as t ↓ 0, for some
α > 0 (second order condition);

3. k = O
(
n2α/(1+2α)

)
for the positive number α used in the assumption above, and k → ∞ as

n→∞;

4. for all j = 1, ..., d, the first-order partial derivative of ` with respect to xj exists and is
continuous on the set of points x such that xj > 0;

we have

sup
x∈[0,T ]d

∣∣∣√k (ˆ̀
n,k(x)− `(x)

)
−B`(x)

∣∣∣→ 0,

for T > 0 as n→∞. Here B`(x) is a zero-mean Gaussian process defined in Equation 5.1.5.

Proof. An outline of the proof is given in Appendix B.4.1. �
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5.1.2 Smoothed versions of the empirical STDF
As mentioned above, a drawback of the empirical STDF is that it usually does not satisfy the
shape constraints of the stable tail dependence function. Several corrective steps can be taken to
solve this problem. In this section, two smoothed versions of the empirical STDF are considered
that mitigate the discontinuities of the standard empirical STDF. The smoothed versions are more
intuitive to interpret visually since they are more similar to true dependence functions. Moreover,
the smoothing decreases the variance of the estimates, thereby potentially improving the finite
sample performance compared to the standard empirical STDF (on the condition that the bias does
not increase too much). Although both smoothed versions of the empirical STDF yield a continuous
estimator, they are generally not convex. Other estimators that do meet the shape constraints of the
STDF have been considered in literature, but mainly for the bivariate case. For example, Pickands
(1981) employef the greatest convex minorant for the bivariate Pickands dependence function, Hall
and Tajvidi (2000) suggested the use of constrained smoothed splines, and Fils-villetard et al.
(2008) and Gudendorf and Segers (2012) developed methods to project initial estimates onto a
set of proper dependence functions. Additionally, Marcon et al. (2017) explored the projection
of initial multivariate estimates on a set of Bernstein polynomials. However, this method does
not necessarily yield proper dependence functions either, and extensive computations are required,
especially for higher dimensions.

Beta copula smoothing

Kiriliouk et al. (2018) introduce a smoothed version of the empirical stable tail dependence function
based on the beta copula (see Section 2.5). By using this smoothed copula, the estimated STDF
becomes continuous and always satisfies the theoretical bounds of the STDF. The beta-smoothed
empirical STDF is defined as follows.

Definition 5.3. Let (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) be d-dimensional vector observations from
a copula CF . Let k : kn ∈ {1, . . . , n} be such that k → ∞, and k/n → 0 if n → ∞. The beta-
smoothed empirical stable tail dependence function is given by

ˆ̀β
n,k(x) =

n

k

(
1− Ĉβn

(
1− k

n
x

))
,

where Ĉβn is the empirical beta copula.

See Section 2.5 for more information on the beta copula. Kiriliouk et al. (2018) show that
the asymptotic distribution of the beta-smoothed empirical STDF estimator is the same as the
asymptotic distribution of the standard empirical STDF. Although these two estimators are asymp-
totically equivalent, the beta-smoothed estimator might yield better finite sample performance.

Figure 5.1.2: The beta-smoothed empirical STDF for data simulated from the bivariate Gumbel copula
with model parameter θ = 2 using k = 5% of N ∈ {1000, 2500, 5000} observations.

To get a feeling of how the beta-smoothed estimator behaves, data are simulated from the
bivariate Gumbel copula. The estimated ˆ̀β

n,k-functions are shown for different values of the sam-
ple size (Figure 5.1.2). To our knowledge, there currently is no standard implementation of this
estimator available in R. However, it is straightforward to estimate the beta-smoothed empirical
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STDF by using the C.n function from the copula package that provides the option to estimate a
beta-smoothed copula. The STDF estimator can be easily derived from this copula (see Appendix
E.1 for our implementation). The figures show that the beta-smoothed empirical STDF approxi-
mates the real `-function quite well for all considered sample sizes. Moreover, due to the continuity
of the estimated functions, they resemble the real STDF more closely than the standard empirical
STDF and can, therefore, be interpreted more readily.

Kernel smoothing

Another approach to retrieve a smoothed version of the STDF estimator is to smooth the empirical
STDF instead of the empirical copula. Since the STDF is not bounded on [0, 1]d, a kernel smoothing
approach can be taken without encountering boundary issues. Recall from Section 2.5 that a kernel
function is a positive integrable function that is often used in nonparametric statistics to smooth
estimators. We define the following kernel-smoothed STDF estimator.

Definition 5.4. Let (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) be d-dimensional vector observations from
a copula CF . Let k : kn ∈ {1, . . . , n} be such that k → ∞, and k/n → 0 if n → ∞. The kernel-
smoothed empirical stable tail dependence function is given by

ˆ̀K
n,k(x) =

1
k

∑k
j=1K(aj)a

−1
j

ˆ̀
n,k(ajx)

1
k

∑k
j=1K(aj)

(5.1.6)

where ˆ̀
n,k is the standard empirical STDF, aj = j

k+1 and K is a kernel function on (0, 1) such
that

∫ 1

0
K(u)du = 1.

This specific kernel-smoothed empirical STDF is inspired by the bias-corrected estimator in-
troduced by Beirlant et al. (2016), which will be discussed in the next section. In order to get
a feeling of the behavior of the kernel-smoothed estimator, the simulated data from the bivariate
Gumbel copula are used again to estimate the ˆ̀K

n,k-functions. The results are shown in Figure
5.1.3. The implementation of this kernel-smoothed estimator is our own (see Appendix E.1). The
figures show that the kernel-smoothed estimator yields very similar results to the beta-smoothed
estimator. The kernel-smoothed functions are slightly less smooth, but this can be adjusted by
specifying different parameters for the power kernel function.

Figure 5.1.3: The kernel-smoothed empirical STDF for data simulated from the bivariate Gumbel
copula with model parameter θ = 2 using k = 5% of N ∈ {1000, 2500, 5000} observations. The power
kernel with model parameter τ = 5 is used.

The asymptotic behavior of the kernel-smoothed estimator follows easily from Theorem 5.1 and
is stated in the following proposition.

Proposition 5.1. Under the conditions of Theorem 5.1, we have

√
k
{

ˆ̀K
n,k(x)− `(x)

}
→
(∫ 1

0

K(u)u−1/2du

)
B`(x), (5.1.7)

as n → ∞. Here B`(x) is a zero-mean Gaussian process defined in Equation 5.1.5, and K is a
kernel function on (0, 1) such that

∫ 1

0
K(u)du = 1.
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Proof. We start from the asymptotic behavior of the empirical STDF presented in Theorem 5.1,
i.e.,

√
k
{

ˆ̀
n,k(x)− `(x)

}
→ B`(x).

By the continuous mapping theorem and by the observation that
∑k
j=1K(aj) →

∫ 1

0
K(u)du = 1

as n→∞,

√
k

1

k

k∑
j=1

K(aj)ˆ̀
n,k(x)−

k∑
j=1

K(aj)`(x)

→
(∫ 1

0

K(u)du

)
B`(x) = B`(x).

By the homogeneity of ` and the fact that B`(ax) ∼
√
aB`(x) it next follows that

√
k

1

k

k∑
j=1

K(aj)a
−1
j

ˆ̀
n,k(a−1

j x)−
k∑
j=1

K(aj)`(x)

→
(∫ 1

0

K(u)u−1/2du

)
B`(x).

The result follows by dividing everything by
∑k
j=1K(aj). �

In a similar setting, Beirlant et al. (2016) propose to use the power kernel K(t) = (τ+1)tτ1{t ∈
(0, 1)}, τ > −1/2. By Theorem 5.1, the asymptotic behavior of the power kernel-smoothed empir-
ical STDF is given by

√
k
{

ˆ̀K
n,k(x)− `(x)

}
→ 2

1 + τ

1 + 2τ
B`(x), (5.1.8)

as n → ∞. For small values of τ the variance of the asymptotic distribution of ˆ̀K
n,k is inflated

relative to the asymptotic distribution of the standard empirical STDF but for large values of τ
this inflation factor stemming from the power kernel converges to one. Although asymptotically
the estimators are almost equivalent, the finite sample performance might be different.

Figure 5.1.4: The power kernel for different model parameters.

5.1.3 Bias corrections
Besides the fact that the empirical STDF does not satisfy the shape constraints of the theoretical
STDF, another possible drawback of the empirical STDF is that the bias increases quickly as
the number of tail observations k increases. This could ruin the finite sample performance of the
empirical STDF, especially if the trade-off between bias and variance is not optimally handled. To
illustrate the problem, data are simulated from a bivariate Normal copula with model parameter
ρ = 0.5. Recall that the Normal copula belongs to the maximum domain of attraction of Π.
However, for the relatively small sample size of N = 1000, the empirical STDF indicates that the
data are strongly tail dependent even though they are in fact tail independent. Also for the larger
sample sizes, a bias remains, albeit somewhat smaller.
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Figure 5.1.5: Estimated empirical `-functions based on simulation results for the Normal copula in
dimension d = 2 with model parameter ρ = 0.5 using k = 5% of the N ∈ {1000, 2500, 5000} observations.

To mitigate this problem, bias-correction methods for the empirical STDF have been intro-
duced in the literature by Fougères et al. (2015) and Beirlant et al. (2016). The bias-correction
methodology is derived in the context of a slightly different asymptotic setup than before. Whereas
it was first assumed that k = O

(
n2α/(1+2α)

)
(assumption 3 in Theorem 5.1) we now allow k to go

to ∞ at a slower rate and impose a third order condition in order to introduce a bias-term to the
estimator than can be removed from an initial nonparametric estimator. Formally, this is specified
in the following Theorem 5.2.

Theorem 5.2. (Fougères et al., 2015). Assuming that

1. limt↓0 t
−1 (1− CF (1− tx1, . . . , 1− txd)) exists and converges uniformly to `(x1, . . . , xd) on

[0, T ]d for T > 0 (first order condition);

2. there exists a positive function α, such that α(t) → 0 as t → ∞, and a nonzero function
M such that for all x ∈ Rd+, limt↓0

1
α(t)

(
t−1 (1− CF (1− tx1, . . . , 1− txd))− `(x)

)
= M(x),

uniformly on [0, T ]d for T > 0 (second order condition);

3. there exists a positive function β, such that β(t) → 0 as t → ∞, and a nonzero function N

such that for all x ∈ Rd+, limt↓0
1
β(t)

(
1
α(t)

(
t−1 (1− CF (1− tx1, . . . , 1− txd))− `(x)

)
−M(x)

)
= N(x), uniformly on [0, T ]d for T > 0 (third order condition);

4. the functions M and N are continuous and homogeneous of order 1−ρ and of order 1−ρ−ρ′
respectively, with ρ, ρ′ < 0, and the function M is differentiable;

5. k is such that
√
kα(n/k)→∞ and

√
kα(n/k)β(n/k)→ 0 as n→∞;

6. for all j = 1, ..., d, the first-order partial derivative of ` with respect to xj exists and is
continuous on the set of points x such that xj > 0;

we have
√
k
{

ˆ̀
n,k(x)− `(x)− α

(n
k

)
M(x)

}
→ B`(x) (5.1.9)

in D([0, T ]d) for every T > 0 as n → ∞. Here B`(x) is a zero-mean Gaussian process dependent
on the true tail dependence function defined in Equation 5.1.5.

Proof. The proof follows the same line of logic as the proof of Theorem 5.1. However, because the
intermediate sequence now satisfies

√
kα(n/k)→∞, the D2-term does not vanish but introduces

a positive bias term equal to α(n/k)M(x). That is,

sup
x∈[0,T ]d

∣∣∣√k (D2(x)− α
(n
k

)
M(x)

)∣∣∣→ 0 a.s.

See Fougères et al. (2015) for the detailed proof. �
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Note that if
√
kα(n/k) tends to zero, which is implied by the assumptions of Theorem 5.1, the

estimator is consistent and asymptotically Normal with convergence rate
√
k, conform Einmahl

et al. (2012). However, an asymptotic bias exists if
√
kα(n/k) converges to a nonzero constant, as

is implied by Theorem 5.2. The main idea is to estimate the bias αM that occurs and to remove
it from the initial STDF estimator. In order to do so, consider a rescaled version, ˆ̀

n,k,a(x) =

a−1 ˆ̀
n,k(ax) for a > 0, and define

∆̂k,a(x) = ˆ̀
n,k,a(ax)− ˆ̀

n,k(x). (5.1.10)

Recall that by the homogeneity of the true STDF, we have that `(ax) = a`(x) for a > 0 and
that by the homogeneity of the M -function (assumption 4 in Theorem 5.2) we have that M(ax) =
a1−ρM(x) for a > 0 and ρ < 0. Also note that for the Gaussian process B` (defined in Equation
5.1.5) it holds that B`(ax) =

√
aB`(x) for a > 0. Therefore, under the conditions of Theorem 5.2,

we find that
√
k
{

ˆ̀
n,k,a(x)− `(x)− α

(n
k

)
a−ρM(x)

}
→ a−1/2B`(x).

Based on this expression, Fougères et al. (2015) propose the following bias-corrected estimator for
the `-function:

ˆ̀BC1
n,k,k

(x) = ˆ̀
n,k,a(x)− ∆̂

k,
(
a
−ρ̂
k
(x∗)

+1
)−1/ρ̂

k
(x∗)(x), (5.1.11)

with

ρ̂k,a,r(x
∗) = min

{
1− 1

log r
log

∣∣∣∣∣∆̂k,a(rx∗)

∆̂k,a(x∗)

∣∣∣∣∣ , 0
}

(5.1.12)

the estimator of ρ based on another intermediate sequence k = kn such that k/k → 0 for a fixed
vector x∗ ∈ Rd and with r ∈ (0, 1). Alternatively, to avoid the estimation of ρ, Fougères et al.
(2015) propose a second bias-corrected estimator as follows,

ˆ̀BC2
n,k,k

(x) =
ˆ̀
n,k(x)∆̂k,a(ax)− ˆ̀

n,k(ax)∆̂k,a(x)

∆̂k,a(ax)− a∆̂k,a(x)
. (5.1.13)

To get an idea of the behavior of these bias-corrected estimators, the simulated data from
the bivariate Normal copula are now used to estimate the bias-corrected empirical `-functions.
The results are shown in Figure 5.1.6 and Figure 5.1.7 below. Since there are no ready-to-use
implementations of the estimators from Fougères et al. (2015) in R to our knowledge, we created
our own implementation (see Appendix E.1). Compared to the uncorrected empirical STDF shown
in Figure 5.1.5, the bias-corrected estimators are in fact closer to the true independence STDF
and therefore effectively reduce bias. However, the figures also illustrate that the bias-corrected
estimators of Fougères et al. (2015) are quite irregular and, as a consequence, will have a relatively
large variance.

Beirlant et al. (2016) propose a third bias-corrected estimator based on a kernel-smoothed
version of an initial nonparametric STDF estimator. The bias correction is done based on a
kernel-smoothed version of the rescaled STDF,

˜̀
n,k(x) =

1

k

k∑
j=1

K(aj)ˆ̀
n,k,aj (x), aj =

j

k + 1
, j ∈ {1, . . . , k}, (5.1.14)

where K is a kernel function on (0, 1) such that
∫ 1

0
K(u)du = 1. Defining the difference between

this kernel-smoothed rescaled STDF and the original kernel-smoothed STDF as

∆k,a(x) = a−1 ˜̀
n,k(ax)− ˜̀

n,k(x) (5.1.15)

the bias-corrected estimator of Beirlant et al. (2016) is defined as follows.

ˆ̀BC3
n,k,k

(x) =

˜̀
n,k(x)−

(
k
k

)ρ̂k(x∗)

α̃k(x) 1
k

∑k
j=1K(aj)a

−ρ̂k(x∗)
j

1
k

∑k
j=1K(aj)

(5.1.16)
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Figure 5.1.6: Estimated bias-corrected empirical ˆ̀BC1-function of Fougères et al. (2015) based on
simulation results for the bivariate Normal copula with model parameter ρ = 0.5 using k = 5% of the
N ∈ {1000, 2500, 5000} observations.

Figure 5.1.7: Estimated bias-corrected empirical ˆ̀BC2-function of Fougères et al. (2015) based on
simulation results for the bivariate Normal copula with model parameter ρ = 0.5 using k = 5% of the
N ∈ {1000, 2500, 5000} observations.

where ρ̂k is the estimator of ρ, defined in Equation 5.1.12, but now for the difference between the
kernel-smoothed estimators and where

α̃k(x) =

∑k
j=1

∑k
l=1

(
a
−ρ̂k(x)
j − a−ρ̂k(x)

l

)
ˆ̀
n,k,aj (x)∑k

j=1

∑k
l=1 a

−ρ̂k(x)
j

(
a
−ρ̂k(x)
j − a−ρ̂k(x)

l

) (5.1.17)

is the estimator of αM . Asymptotic normality holds with the limiting random vector equal in
distribution to

∫ 1

0
K(u)u−1/2du times the limiting distribution of ˆ̀

n,k. This is formalized in the
following proposition.

Proposition 5.2. Under the conditions of Theorem 5.2, we have

√
k
(

ˆ̀BC3
n,k,k

(x)− `(x)
)
→
(∫ 1

0

K(u)u−
1
2 du

)
B`(x), (5.1.18)

as n→∞, k →∞, k →∞, and k/k → 0. Here B`(x) is a zero-mean Gaussian process defined in
Equation 5.1.5, and K is a kernel on (0, 1) such that

∫ 1

0
K(u)du = 1.

Proof. See the proof in Beirlant et al. (2016). �

The limiting process is independent of the value of ρ and has the same asymptotic variance as
the uncorrected estimator. If the power kernel is taken, K(t) = (τ + 1)tτ1{t ∈ (0, 1)}, τ > −1/2,
(see Figure 5.1.4), the following expression can be found for the asymptotic distribution:

√
k
(

ˆ̀BC3
n,k,k

(x)− `(x)
)
→ 2

1 + τ

1 + 2τ
B`(x). (5.1.19)
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The bias-corrected STDF estimator from Beirlant et al. (2016) can be estimated in R using the
stdfEmpCorr function from the tailDepFun package. However, since an adaption of this estimator
is employed in the context of testing tail independence (Section 5.2), we also fashioned our own
implementation of this estimator (see Appendix E.1 for the code). To get an idea of the behavior
of this third bias-corrected estimator, the ˆ̀BC3-function is estimated for data simulated from the
bivariate Normal copula. The results are shown in Figure 5.1.8. For larger sample sizes, the
estimator effectively reduces the bias associated with the standard empirical STDF (see Figure
5.1.5). Compared to the first two bias-corrected estimators introduced by Fougères et al. (2015)
this estimator is more regular which will result in a lower variance of the estimator. The finite
sample performance of the bias-corrected estimators will be further assessed in the simulation study
presented in Section 5.1.5.

Figure 5.1.8: Estimated bias-corrected empirical ˆ̀BC3-function of Beirlant et al. (2016) based on
simulation results for the bivariate Normal copula with model parameter ρ = 0.5 using k = 5% of the
N ∈ {1000, 2500, 5000} observations.

5.1.4 Parametric estimation methods

Next to the nonparametric estimation of the STDF discussed in the previous sections, many para-
metric models have been introduced for modelling the stable tail dependence function. Although
finite-dimensional parametric models can never cover the full class of Pickands dependence func-
tions, parametric models can be attractive because of their analytic tractability and intuition. A
summary on parametric estimation for the extremal dependence structure can be found in, e.g.,
Kotz and Nadarajah (2000). A panoramic overview will be presented here to get a sense of alter-
native estimation methods.

Likelihood-based methods can be applied based on the multivariate extreme value distribution
(MEVD) or the extreme value copula. The maximum likelihood estimation (MLE) for bivariate
extremes has been the topic of many research efforts. See, for example, Smith (1994), Tawn and
Ledford (1996), Boldi and Davison (2007), Coles and Tawn (1991), and De Haan et al. (2008).
However, likelihood-based inference remains challenging, mostly due to the lack of simple forms
of the likelihood, especially in higher dimensions. The focus has therefore been on the relatively
simple Gumbel copula, although a likelihood-based estimator for the Hüsler-Reiss model has been
recently discussed in Engelke et al. (2015). Padoan et al. (2010) suggest maximizing a composite
pairwise likelihood that only considers dependence information between bivariate pairs to simplify
the likelihood. Also see Huser and Davison (2013) for this approach. However, by only considering
the tail dependence between bivariate margins, information on the true joint extremal dependence
structure might be lost. Another drawback of the MLE approach is that the STDF has to be
differentiable for the method to work. If the spectral measure underlying the STDF is discrete, or
if the STDF is based on a factor model, the STDF is not differentiable, causing the MLE method
to fail. A final drawback is that the asymptotic behavior of the MLE estimator is only known for
the bivariate case.

To overcome the disadvantages of the maximum likelihood methods, Einmahl et al. (2008)
and Einmahl et al. (2012) propose, respectively, bivariate and multivariate moment estimators
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(M-estimators) for the STDF. This estimator does not require the `-function to be differentiable
and asymptotic results for d dimensions are known. The approach is however ill-adapted to higher
dimensions. Therefore, akin to the composite likelihood methods, Einmahl et al. (2016b) develop a
pairwise approach. As an alternative to the M-estimator and the pairwise variant thereof, Einmahl
et al. (2017) propose a weighted least squares (WLS) estimator. Just as the M-estimator, it can
handle nondifferentiable tail dependence functions, but it does not involve the integration of func-
tions of many variables. The WLS estimator can, therefore, provide an attractive alternative for
high dimensional estimation problems. Einmahl et al. (2017) show that the WLS estimator out-
performs the pairwise M-estimator of Einmahl et al. (2016b), especially for weak tail dependence.
For strong dependence, the estimators perform similarly in terms of mean squared error. The WLS
estimator also turns out to be a strong competitor to likelihood-based methods. Furthermore, they
find that their WLS estimator has an almost constant MSE as the dimension increases. Huser and
Genton (2016) observe a similar pattern for the pairwise composite likelihood method. Both the
M-estimator and the WLS-estimator are in fact semiparametric methods because they depend on
either matching moments or minimizing the distance between a nonparametric initial estimate of
the STDF and a parametric function of the STDF. Both methods are currently only developed for
the Gumbel copula, which does not provide any flexibility to model asymmetric dependencies in
dimensions d > 2. The focus of this research on inference for multivariate extremes is therefore on
nonparametric estimation procedures for the STDF.

5.1.5 Simulation study

A simulation study is conducted to evaluate and compare estimation methods for the STDF. The
aim is to retrieve a comprehensive overview of the behavior of the different estimators by considering
a range of different dependence types, dependence strengths, and dimensions. Specifically, data
are simulated from the Gumbel, t-, Normal, and Frank copula in dimensions d ∈ {2, 3, 5}. Model
parameters are chosen in such a way that they correspond to bivariate Spearman correlations
equal to ρ = 0.2, ρ = 0.5 and ρ = 0.8 for weak, medium and strong dependence. Note that this
implies that all pairwise dependencies are equal. This should not affect the performance of the
nonparametric estimators. We focus on the nonparametric estimators since the parametric models
that are currently developed are not flexible enough to accurately model tail dependencies in higher
dimensions. Before reporting the simulation results, we briefly discuss the performance measures
used to evaluate the estimators, the simulations parameters, and the simulation running times.

Estimator performance measures

In line with common practice, estimates of the STDF and the TDC are evaluated based on the
squared bias, variance and mean squared error (MSE), or integrated versions thereof. To evaluate
the d-dimensional estimated ˆ̀-function in one point x ∈ [0, 1]d these quantities are defined as
follows,

Squared bias :
(
E
[
ˆ̀
n,k(x)− `(x)

])2

Variance : E
[(

ˆ̀
n,k(x)− E

[
ˆ̀
n,k(x)

])2
]

MSE : E
[(

ˆ̀
n,k(x)− `(x)

)2
]
.

Since the asymptotic distribution of all nonparametric estimators introduced above are Gaussian
with a covariance matrix that depends on the true ` and its partial derivatives in a complicated way,
it is not straightforward to retrieve the variance of the estimator with these expressions. Therefore,
as in e.g. Bücher and Dette (2013), we approximate the limiting distribution using resampling
methods. Following, e.g., Bücher and Dette (2013) and Einmahl et al. (2016b), we evaluate these
expected values with B = 500 replications. To evaluate the global behavior of the estimated ˆ̀-
function, integrated versions of the aforementioned performance measures are considered. These
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are defined as follows,

Integrated squared bias :

∫
[0,1]d

(
E
[
ˆ̀
n,k(x)

]
− `(x)

)2

dx

Integrated variance :

∫
[0,1]d

E
[(

ˆ̀
n,k(x)− E

[
ˆ̀
n,k(x)

])2
]

dx

Integrated MSE :

∫
[0,1]d

E
[(

ˆ̀
n,k(x)− `(x)

)2
]

dx.

Several approaches can be taken to compute these integrated performance measures, such as grid-
based or Monte Carlo-based numerical integration procedures. However, these procedures are
computationally expensive. Alternatively, Segers et al. (2017) describe a method based on Fu-
bini’s theorem to combine the integral with the expectation over the random sample into a single
expectation. Specifically,

Integrated squared bias : E
[(

ˆ̀(1)
n,k(U)− `(U)

)(
ˆ̀(2)
n,k(U)− `(U)

)]
Integrated variance : E

[
1

2

(
ˆ̀(1)
n,k(U)− ˆ̀(2)

n,k(U)
)2
]

Integrated MSE : E
[

1

2

((
ˆ̀(1)
n,k(U)− `(U)

)2

+
(

ˆ̀(2)
n,k(U)− `(U)

)2
)]

,

with ˆ̀(1)
n,k and ˆ̀(2)

n,k estimators based on two independent random samples drawn from the same dis-
tribution. A proof of the equivalence of these expectations to the integrated performance measures
is included in Appendix C.1. In accordance with, e.g., Segers et al. (2017) and Kiriliouk et al.
(2018) we employ this method with B = 20, 000 pseudo-random samples to evaluate the integrated
behavior of the nonparametric STDF estimators.

Simulation parameters

Several parameters have to be specified to perform the simulations. It has already been mentioned
that we simulate from four different copula distributions, being the Gumbel, t-, Normal, and Frank
copula. As discussed in Chapter 3, these copulas exhibit different tail dependence structures: the
Gumbel copula is tail dependent and belongs to its own domain of attraction; the t-copula con-
verges to the tail dependent t-EV copula; the Normal copula converges quite slowly to Π; the Frank
copula converges very quickly to Π. The model parameters of the copulas are chosen in such a way
that the pairwise dependencies are either strong (ρ = 0.8), medium (ρ = 0.5), or weak (ρ = 0.2).

The appropriate number of tail observations k from a dataset of size N to use for estimation
is determined by a trade-off between bias and variance. When using little tail observations, the
bias of the estimators is generally low, but the variance explodes. Conversely, using more tail
observations will result in a lower variance, but an increased bias. A common solution is to show
results for a range of k-values, but since we aim to present a wide range of simulation results, this
is not a suitable solution. Therefore, to determine the appropriate number of tail observations
k, initial simulations are conducted. Sample sizes of N ∈ {1000, 2500, 5000} are considered. For
financial data, these are in generally reasonable sample sizes, corresponding to respectively ca. 4,
10, and 20 years of daily trading day observations. Results for the nonparametric estimator based
on simulations from the Gumbel, t-, Normal and Frank copula with medium dependence (ρ = 0.5)
are shown in Appendix C.2. The simulations are repeated for several dimensions d ∈ {2, 3, 5, 7, 10}
and the integrated MSE is based on B = 20, 000 samples.

For the Gumbel copula, it seems optimal to use approximately 5% of the sample as tail obser-
vations for all considered dimensions. With a sample size of N = 2500 this corresponds to k = 125
tail observations. However, for the other copulas, the optimal percentage of tail observations equals
approximately 1% of the sample size. With a sample size of N = 2500 this corresponds to k = 25
tail observations. It should be noted that other dependence strengths, dependence types, or other
estimators for the STDF could lead to other optimal values for k and N . Especially for the bias-
corrected estimators, finite sample performances might be better for a lower threshold, thus using
more tail observations. Based on these initial results it is decided that subsequent simulations be
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conducted with a sample size of N = 2500 of which either k = 25 or k = 125 tail observations
are used. Furthermore, for the bias-corrected estimators and the kernel-smoothed estimator it is
necessary to specify additional parameters. Following Fougères et al. (2015), Beirlant et al. (2016)
and Kiriliouk et al. (2018) we employ the power kernel with parameter τ = 5 and set a = r = 0.4
for the bias-corrected estimators.

Running times

Before conducting all simulations, the running times of the different estimation procedures are
assessed for one sample (B = 1). The results are shown in Table 5.1.1. Since it would take
more than two full days to evaluate the global performance of the bias-corrected estimator of
Beirlant et al. (2016) for only one type of distribution to simulate from, we will only consider
this bias-corrected estimator for the TDC estimation, and not for the STDF estimation. The
kernel-smoothed estimator is also only considered for the TDC estimation because of long running
times.

Table 5.1.1: Running times to compute the STDF estimators for one sample (in seconds) and
hypothetically for B = 20, 000 samples (in hours, between brackets).

NP NP-BC1 NP-BC2 NP-BC3 NP-Beta NP-Kernel
(*) (**) (*) (*) (*) (**) (*) (*)

d = 2 0.002 0.001 0.031 0.024 37.089 0.536 0.002 0.069
(0.1h) (0.1h) (1.7h) (1.3h) (2060.5h) (29.8h) (0.1h) (3.8h)

d = 3 0.005 0.001 0.029 0.028 55.238 0.583 0.007 0.274
(0.3h) (0.1h) (1.6h) (1.6h) (3068.8h) (32.4h) (0.4h) (15.2h)

d = 5 0.007 0.002 0.041 0.04 74.079 0.709 0.004 0.168
(0.4h) (0.1h) (2.3h) (2.2h) (4115.5h) (39.4h) (0.2h) (9.3h)

(*) Own implementation of the estimator (see Appendix E.1). (**) Implementation of the estimator from the
TailDepFun package in R. The running times are retrieved from a Macbook Pro with 2,7 GHz Intel Core i5
processor using the statistical software program R. NP denotes the empirical STDF nonparametric estimator,
NP-Beta the beta-smoothed estimator of Kiriliouk et al. (2018), NP-Kernel the kernel-smoothed estimator, NP-
BC1 and NP-BC2 the bias-corrected estimators of Fougères et al. (2015) and NP-BC3 denotes the bias-corrected
estimator of Beirlant et al. (2016).

Note that we fashioned implementations of all estimation procedures in R ourselves (see Ap-
pendix E.1 for the codes). For the standard empirical STDF and the bias-corrected estimator of
Beirlant et al. (2016) the TailDepFun package offers functions, of which running times are also
shown for comparison. The implementation of the bias-corrected estimator of Beirlant et al. (2016)
in the TailDepFun package defers the lengthy computations involved for this estimator from R to
C++, making the running time of this implementation much shorter. Therefore, we employ the
bias-corrected estimator function from the TailDepFun package but otherwise rely on our own
implementations.

Simulation results

Results for all simulations can be found in Appendix C.3. The main findings are summarized here.

Gumbel. For the simulations from the Gumbel copula, the empirical STDF and smoothed ver-
sions thereof perform similarly. The beta-smoothed estimator tends to slightly outperform the
standard and kernel-smoothed nonparametric estimators based on the MSE measures. This is
mostly due to the decreased variance inherent to the smoothed version of the estimator. The
kernel-smoothed estimator also reduces the variance, but to a lesser extent. Moreover, the kernel-
smoothed estimator tends to increase the bias associated with the estimator, whereas the beta-
smoothed estimator decreases the bias in some occasions. The bias-corrected versions of the empir-
ical STDF do not offer significant improvements. The third bias-corrected version of Beirlant et al.
(2016) performs quite similar to the standard empirical STDF and the smoothed versions in terms
of the MSE for the TDC. Although this bias-corrected estimator tends to decrease the bias for the
TDC estimate, the increase in variance leads to similar MSE results. The other two bias-corrected
versions of Fougères et al. (2015) yield worse results than the standard and smoothed estimators.
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Notably, these two estimators do not tend to decrease the bias but do significantly increase the
variance. For all considered dimensions the estimators perform better for the higher threshold
k = 125. However, compared to the performance of the estimators for the data simulated from
other copulas, the performance of the estimators for the Gumbel copula with the lower threshold
of k = 25 is still by far superior. The performance of the estimators for the multivariate TDC Λ
based on data from the Gumbel copula with medium dependence are summarized in Table 5.1.2.

t. For the simulations from the t-copula, similar patterns as for the simulations from the Gum-
bel copula are noticeable although most values are higher than for the results of the Gumbel copula.
In all cases, the performance of either the beta-smoothed or the kernel-smoothed nonparametric
estimator is better than the performance of the standard nonparametric estimator regarding the
MSE. This is mostly due to a reduction in the variance, but the bias also tends to be reduced
for the smoothed versions of the estimator. For all considered dimensions the empirical STDF
and smoothed estimators perform better for the lower threshold k = 25. In the bivariate case,
bias-corrections only offer improvements if the higher threshold of k = 125 is employed. In this
case, the first bias-corrected version of Fougères et al. (2015) effectively reduces the bias associated
with the uncorrected estimators for light tail dependence, while the third bias-corrected version
yields results similar to the uncorrected estimators. For medium and strong dependence, the third
bias-corrected version of Beirlant et al. (2016) decreases bias more effectively. For higher dimen-
sions, the third-bias-corrected version of Beirlant et al. (2016) outperforms consistently and offers a
lower MSE for all dependence strengths but mostly for light tail dependence. Results based on the
higher threshold of k = 125 yield better results, but employing the lower threshold of k = 25 also
improves the MSE relative to the uncorrected estimators. The performance of the estimators for
the multivariate TDC Λ based on data from the t-copula with medium dependence are summarized
in Table 5.1.3.

Normal. For the Normal copula, extraordinarily high bias terms are observed. Differences
between dependence strengths seem to be the determining factor of estimator performance. For
simulations with strong dependence, the bias is exceptionally high, even for the bias-corrected
nonparametric estimator. Both the first and third bias-corrected estimators improve the MSE by
drastically decreasing the bias component: in most instances, the bias is more than halved. The
third bias-corrected estimator of Beirlant et al. (2016) tends to yield the best results in terms
of MSE for the TDC estimate in all dimensions. In some instances, the second bias-corrected
estimator of Fougères et al. (2015) yields the lowest bias, but it is not consistently able to do so.
For the smoothed estimators, similar patterns as for the tail dependent data can be observed: the
smoothed versions yield slightly better results. Notably, the kernel-smoothed estimator tends to
result in a slightly lower MSE compared to the beta-smoothed estimator. However, due to the
substantial bias term for the Normal copula data, the bias-corrected versions outperform by far.
Almost all results are better for the lower threshold k = 25, also for the bias-corrected versions.
The bias-corrected results provide an exception for light tail dependence in the bivariate case. The
performance of the estimators for the multivariate TDC Λ based on data from the Normal copula
with medium dependence are summarized in Table 5.1.4.

Frank. For the simulations from the Frank copula, MSE values are quite low overall, especially
for light tail dependence. The beta-copula version of the nonparametric estimator slightly outper-
forms the standard nonparametric estimator in terms of MSE, due to a decrease in variance, and,
in some instances, also to a decrease in bias. The kernel-smoothed estimator tends to yield an MSE
similar to the standard empirical STDF. Although it slightly reduces the variance in most cases,
the bias is sometimes increased. In most cases, the bias-corrected estimators offer improvements
relative to the empirical STDF and smoothed version thereof, especially for medium and light
tail dependence. Both the first bias-corrected estimator of Fougères et al. (2015) and the third
bias-corrected estimator of Beirlant et al. (2016) consistently offer an improved or similar MSE.
The second bias-corrected estimator of Fougères et al. (2015) offers the best bias correction is some
instances, but in other cases also shows extremely high MSE values. Therefore, we do not consider
this estimator to be reliable. Most results are better for the lower threshold k = 25, also for the
bias-corrected versions. The performance of the estimators for the multivariate TDC Λ based on
data from the Frank copula with medium dependence are summarized in Table 5.1.5.
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Table 5.1.2: Overview of performance measures (×1000) for multivariate TDC
Λ-estimators for data simulated from the Gumbel copula with medium dependence.

d = 2 d = 3 d = 5

Bias Var. MSE Bias Var. MSE Bias Var. MSE

NP 0.028 7.7 7.7 0.00011 5.3 5.3 0.021 3.4 3.4
NP-Beta 0.089 6 6 0.2 4.8 5 0.02 3.3 3.3
NP-Kernel 0.21 7.9 8.1 0.0066 5.7 5.7 0.064 4.5 4.5

NP-BC1 1 27 28 0.49 20 20 0.61 18 19
NP-BC2 0.069 40 40 0.84 31 32 0.51 40 40
NP-BC3 0.029 7.3 7.3 0.0058 5.8 5.8 0.12 4.5 4.6
Results are based on B = 500 samples of sample size N = 2500 of which k = 25 tail observations
are used. NP denotes the empirical STDF nonparametric estimator, NP-Beta the beta-smoothed
estimator of Kiriliouk et al. (2018), NP-Kernel the kernel-smoothed estimator, NP-BC1 and NP-
BC2 the bias-corrected estimators of Fougères et al. (2015) and NP-BC3 denotes the bias-corrected
estimator of Beirlant et al. (2016).

Table 5.1.3: Overview of performance measures (×1000) for multivariate TDC
Λ-estimators for data simulated from the t-copula with medium dependence.

d = 2 d = 3 d = 5

Bias Var. MSE Bias Var. MSE Bias Var. MSE

NP 2 6.4 8.4 5.4 4.4 9.8 11 2.8 14
NP-Beta 1.7 5.4 7 4.8 3.8 8.5 10 2.4 13
NP-Kernel 3.1 6.7 9.8 5.5 4.4 9.9 11 2.9 14

NP-BC1 0.056 22 22 0.83 17 18 1.7 12 14
NP-BC2 0.9 39 40 0.42 34 34 0.42 57 58
NP-BC3 2.5 7.5 10 1.8 4.8 6.6 0.32 6.5 6.8
Results are based on B = 500 samples of sample size N = 2500 of which k = 25 tail
observations are used. NP denotes the empirical STDF nonparametric estimator, NP-Beta the
beta-smoothed estimator of Kiriliouk et al. (2018), NP-Kernel the kernel-smoothed estimator,
NP-BC1 and NP-BC2 the bias-corrected estimators of Fougères et al. (2015) and NP-BC3
denotes the bias-corrected estimator of Beirlant et al. (2016).

Table 5.1.4: Overview of performance measures (×1000) for multivariate TDC
Λ-estimators for data simulated from the Normal copula with medium dependence.

d = 2 d = 3 d = 5

Bias Var. MSE Bias Var. MSE Bias Var. MSE

NP 17 3.9 20 30 2.9 33 59 1.8 61
NP-Beta 16 3.2 20 30 2.3 32 59 1.7 61
NP-Kernel 18 3.8 22 30 2.9 33 58 2.2 60

NP-BC1 6.3 7.8 14 8.5 7.3 16 21 6.3 27
NP-BC2 7.1 13 20 8 16 24 4.4 27 32
NP-BC3 9.6 4.5 14 5.1 3.7 8.8 0.26 2.7 3
Results are based on B = 500 samples of sample size N = 2500 of which k = 25 tail
observations are used. NP denotes the empirical STDF nonparametric estimator, NP-Beta the
beta-smoothed estimator of Kiriliouk et al. (2018), NP-Kernel the kernel-smoothed estimator,
NP-BC1 and NP-BC2 the bias-corrected estimators of Fougères et al. (2015) and NP-BC3
denotes the bias-corrected estimator of Beirlant et al. (2016).
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Table 5.1.5: Overview of performance measures (×1000) for multivariate TDC
Λ-estimators for data simulated from the Frank copula with medium dependence.

d = 2 d = 3 d = 5

Bias Var. MSE Bias Var. MSE Bias Var. MSE

NP 0.96 1.3 2.2 2.7 0.95 3.6 6.7 0.68 7.3
NP-Beta 1.1 0.92 2 2.7 0.65 3.3 6.5 0.64 7.1
NP-Kernel 2 1.2 3.3 2.8 0.73 3.5 6 0.6 6.5

NP-BC1 0.48 2 2.5 0.29 0.79 1.1 0.23 0.63 0.86
NP-BC2 0.82 5.7 6.5 0.92 6.4 7.3 86 182 267
NP-BC3 0.0015 0.086 0.087 0.17 0.68 0.85 5.3 0.67 6
Results are based on B = 500 samples of sample size N = 2500 of which k = 25 tail observations
are used. NP denotes the empirical STDF nonparametric estimator, NP-Beta the beta-smoothed
estimator of Kiriliouk et al. (2018), NP-Kernel the kernel-smoothed estimator, NP-BC1 and
NP-BC2 the bias-corrected estimators of Fougères et al. (2015) and NP-BC3 denotes the bias-
corrected estimator of Beirlant et al. (2016).

We conclude that the beta-smoothed version of the empirical STDF yields slightly superior
results compared to the standard empirical STDF in terms of (integrated) MSE. The bias-corrected
version of the empirical STDF of Beirlant et al. (2016) offers a vast improvement when the copula
convergence rate is slow. Furthermore, it has been observed that the estimators perform better for
data simulated from the Gumbel copula than from the other copula models. This can be explained
by the fact that the Gumbel copula belongs to its own maximum domain of attraction, whereas
the t-copula converges to the t-EV copula. Especially the integrated MSE for the simulations
from the Normal copula is much higher. Since the Normal copula converges relatively slow to the
independent extreme value copula, this explains the relatively large error terms in the estimator.
The Frank copula, on the other hand, converges relatively fast to the independent extreme value
copula, which explains why the errors for the Frank copula are smaller than for the Normal copula.

We have established the relative behavior of estimators for different dependence structures,
dependence strengths, and dimensions. A final note on the absolute performance of the estimators
is given here since it is important to be aware of the bias and variance that can be expected
for estimates regarding the STDF. Table 5.1.6 provides a quick overview of the bias and variance
regarding estimates for the multivariate TDC Λ. Considering that the multivariate TDC is bounded
as 0 ≤ Λ ≤ 1, most bias terms are quite satisfactory. When using the bias-corrected estimator
of Beirlant et al. (2016), the multivariate TDC Λ can be estimated with at least one decimal
place accuracy. The standard empirical STDF yields a higher expected bias in most cases, with a
maximum realized bias of 0.24 for the 5-dimensional Normal copula. The variance of the estimators
is similar and approximately equal to 0.05. For tail dependent data, variances are a bit higher than
for tail independent data.

Table 5.1.6: Overview of bias and standard error (between brackets) of multivariate TDC (Λ)
estimates for a selection of estimators and simulated data.

Gumbel t Normal Frank

NP NP-BC3 NP NP-BC3 NP NP-BC3 NP NP-BC3

d = 2 0.005 0.005 0.045 0.050 0.081 0.098 0.031 0.001
(0.088) (0.085) (0.080) (0.087) (0.062) (0.067) (0.036) (0.029)

d = 3 0.000 0.002 0.073 0.042 0.173 0.071 0.052 0.013
(0.073) (0.076) (0.066) (0.069) (0.054) (0.061) (0.031) (0.026)

d = 5 0.004 0.011 0.105 0.018 0.243 0.016 0.082 0.073
(0.058) (0.067) (0.053) (0.081) (0.052) (0.052) (0.026) (0.026)

Results are based on B = 500 samples of sample size N = 2500 of which k = 25 tail observations are
used. Data are simulated from the Gumbel, t-, Normal, and Frank copula with medium dependence (i.e.,
parameters are chosen such that ρ = 0.5 for all bivariate margins) in dimensions d = 2, 3, 5. NP denotes the
empirical STDF estimator. NP-BC3 denotes the bias-corrected estimator of Beirlant et al. (2016).
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5.2 Testing tail independence

To determine whether data are asymptotically independent or asymptotically dependent, a hy-
pothesis test can be conducted. It is instructive to test for tail independence before drawing any
conclusions from estimations to prevent incorrect inferences on the strength of tail dependence,
especially in the case of tail independence. Moreover, testing whether data are asymptotically inde-
pendent can also be a good starting point for analysis of multivariate extremes since the trouble of
determining the tail dependence structure can be saved when data turn out to be tail independent.
This section is therefore devoted to the problem of testing tail independence.

Hypothesis testing setup

Recall that in the hypothesis testing framework, a null hypothesisH0 is tested against an alternative
hypothesis H1. This is done by evaluating a test statistic for a given dataset and comparing
the observed value to the theoretical distribution of the test statistic under the null hypothesis.
The probability of observing the given or more extreme value of the test statistic under the null
hypothesis is known as the p-value. The null hypothesis is rejected if the p-value is below the
significance level α ≥ P(reject H0|H0). The significance level is chosen by the statistician to
control the probability of making a type I error, which corresponds to rejecting the null hypothesis
H0 while H0 is true. Conversely, a type II error corresponds to incorrectly retaining the null
hypothesis H0. The probability of making a type II error is measured by the power of the test,
1− β = P(reject H0|H1). Table 5.2.1 summarizes this hypothesis testing setup.

Table 5.2.1: Hypothesis testing framework.

H0 true H1 true

Retain H0 Correct Type II error
Size of the test: 1− α Probability: β

Reject H0 Type I error Correct
Significance level: α Power of the test: 1− β

Generally, the testing setup is designed such that the type I error is more "expensive" to make
than the type II error. Since it depends on the situation whether it is more appropriate to take
tail independence or tail dependence as the null hypothesis, one would like to be able to conduct
both versions of the testing problem.

Tail dependence testing literature

The hypothesis testing problem with tail dependence as null hypothesis has been addressed in
multiple instances in literature, but only for the bivariate case. See for example Tawn and Ledford
(1996), Coles et al. (1999), and Draisma et al. (2004). The tests are based on the tail order measure,
which is equal to κ = 2 under the null hypothesis of tail dependence in dimension d = 2 (see Section
4.3.1). The tail order κ can be estimated with estimation procedures for the univariate tail index,
e.g., the Hill estimator or the moment estimator, and test statistics are based on known asymptotic
distributions of these estimators. Since a tail order of κ = d does not uniquely correspond to tail
dependence for higher dimensions, these tests cannot be extended for the multivariate problem
under consideration.

The hypothesis testing problem with tail independence as null hypothesis, however, has re-
mained largely untouched in literature. This probably has to do with the degenerate distribution
of the empirical STDF under the null hypothesis of tail independence, which will be discussed in
Section 5.2.1. Hüsler and Li (2009) introduce a method to handle the bivariate variant of this
hypothesis testing problem by adjusting the empirical STDF estimator. The multivariate variant
of the hypothesis testing problem has not been addressed, however. An exception is given by the
testing method proposed in Falk and Michel (2006) who develop testing procedures for negative
random variables based on their radial component. Negative random variables do not fit ade-
quately into our framework and although they propose a testing procedure for higher dimensions,
these tests are not implemented or further researched in their work.
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In order to contribute to a solution of this gap in literature, we develop testing procedures
for the tail dependence structure of multivariate random vectors. Specifically, we investigate the
following problem,

H0 : (X1, . . . , Xd) ∼ CF : CF ∈MDA(Π) H1 : (X1, . . . , Xd) ∼ CF : CF /∈MDA(Π).

That is, the null hypothesis of tail independence is tested against the alternative hypothesis of
tail dependence. For this testing problem, a type I error corresponds to incorrectly assuming tail
dependence, and a type II error corresponds to incorrectly assuming tail independence. We propose
two methods to tackle the multivariate variant of the hypothesis testing problem: (1) conducting
a multivariate test based on an extension of the bivariate test (Section 5.2.1) or (2) conducting
multiple bivariate tests (Section 5.2.2). Most importantly, we propose a new test based on the
multivariate tail dependence coefficient Λ. The different approaches to the testing problem are
evaluated with a simulation study presented in Section 5.2.3.

5.2.1 Multivariate tests

In order to construct an hypothesis test for the testing problem, a test statistic with a known
distribution under the null hypothesis of tail independence has to be constructed. Since the stable
tail dependence function fully captures the extremal dependence structure of two or more random
variables, the STDF is a natural candidate to use. Recall that under the null hypothesis of tail
independence, the STDF is given by `(x1, . . . , xd) = x1 + · · ·+ xd and that

sup
x∈[0,1]d

∣∣∣√k (ˆ̀
n,k(x1, . . . , xd)− `(x1, . . . , xd)

)
−B`(x1, . . . , xd)

∣∣∣→ 0

(see Theorem 5.1), where the zero-mean Gaussian process B` defined in Equation 5.1.5, takes the
following form under the null hypothesis of tail independence,

B`(x1, . . . , xd) = W`(x1, . . . , xd)−
d∑
i=1

W`,j(xj),

since the first order partial derivatives of the independent `-function are all equal to 1. Conse-
quently, the asymptotic variance is given by

E
(
B`(x1, . . . , xd)

2
)

= `(x1, . . . , xd)− 2 (`(x1, 0, . . . , 0) + · · ·+ `(0, . . . , 0, xd))

+ (`(x1, 0, . . . , 0) + `(0, . . . , 0, xd))

= (x1 + · · ·+ xd)− 2(x1 + · · ·+ xd) + (x1 + · · ·+ xd) = 0.

Hence, based on the asymptotic properties of the nonparametric estimator of the stable tail de-
pendence function, it can be established that under H0,

sup
x∈[0,1]d

√
k
∣∣∣ˆ̀n,k(x1, . . . , xd)− (x1 + · · ·+ xd)

∣∣∣→ 0.

Apparently, the asymptotic distribution of the empirical STDF becomes degenerate under the null
hypothesis of tail independence, making it impossible to construct a test statistic based on this
STDF estimator. Hüsler and Li (2009) noted that the asymptotic variance vanishes because of the
dependence between high threshold levels and data that are used to assess whether these thresholds
are exceeded. This dependence stems from the notion that thresholds are based on ranks of the
same data used to determine whether thresholds are exceeded. It is obvious that when based on the
same data, high quantiles are dependent on the data observations. Hüsler and Li (2009) proposed
to use different estimators for the tail quantiles which are independent of data observations used to
estimate the empirical copula in order to prevent the asymptotic variance from vanishing. This can
be accomplished, for example, by dividing the sample into two equally-sized subsamples and using
one for estimating the quantiles and the other one for estimating the empirical copula. Since the
two subsamples are independent, the asymptotic variance does not vanish. Extending the argument
of Hüsler and Li (2009) to higher dimensions, this leads to the following adapted definition of the
estimator for the STDF which does not converge to a degenerate asymptotic distribution.
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Definition 5.5. Let (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd), (X̃11, . . . , X̃1d), . . . , (X̃m1, . . . , X̃md) be
iid observations from a d-dimensional copula CF such that m/n→ θ > 0 and m/n−θ = O(n−1/2).
Let k := kn ∈ {1, . . . , n} be such that k → ∞, and k/n → 0 if n → ∞. The adjusted empirical
STDF is given by

`n,k(x1, . . . , xd) =
m

k

1

n

n∑
i=1

1
{
Xi1 ≥ X̃m+1/2−dkx1e:m,1 or . . . or Xid ≥ X̃m+1/2−dkxde:m,d

}
,

(5.2.1)

where X̃m+1/2−dkxje:m,j are the order statistics of (X̃1,j , . . . , X̃m,j), j = 1, . . . , d, and dae denotes
the smallest integer larger than or equal to a.

To get a sense of the behavior of the adjusted estimator, the STDF is estimated for data
simulated from the bivariate Gumbel copula. The results are shown in Figure 5.2.1. Compared
to the original empirical STDF, shown in Figure 5.1.1, the adjusted estimator looks much worse.
Since data to determine ranks and data to determine threshold exceedances are no longer the same,
additional variance is introduced and the estimator deviates from the theoretical bounds on the
`-function. Moreover, due to the division of the sample into two parts, there is less data available
to estimate the dependence structure resulting in less accurate estimates.

Figure 5.2.1: Estimated adjusted empirical STDF `-function based on simulation results for the
bivariate Gumbel copula with model parameter θ = 2 using k = 5% of the N ∈ {1000, 2500, 5000}
observations.

It is clear that as an estimator for the STDF, the adjusted estimator is not an improvement
relative to the original empirical STDF. However, due to the additional variance, the asymptotic
distribution of this adjusted empirical STDF is no longer degenerate under the null hypothesis of
tail independence and can therefore be used to construct a test statistic. Formally, the asymptotic
behavior of this estimator is given by the following theorem.

Theorem 5.3. Under the null hypothesis of tail independence and with the conditions of Theorem
5.1, supplemented with the conditions that m/n→ θ > 0 and m/n− θ = O(n1/2), it holds that{√

k
(
`n,k(x1, . . . , xd)− (x1 + · · ·+ xd)

)
,x ∈ [0, 1]d

}
→

d∑
j=1

Wj ((1 + θ)xj) =: B(x) (5.2.2)

as n→∞, where Wj , j = 1, . . . , d, are d independent Brownian motions.

Proof. The proof is shown in Appendix B.4.2. Note that we fashioned our own proof based on
Theorem 5.3 and thereby employ a different approach to showing this result than Hüsler and Li
(2009) for their bivariate results. �

Based on this asymptotic result and inspired by the test statistics of Hüsler and Li (2009) for
the bivariate problem, we propose two test statistics in the same fashion as the Cramer-von-Mises
and Kolmogorov-Smirnov goodness-of-fit tests. The first one is based on the integrated squared
difference between the estimated `-function and the true independent `-function,

In =

∫
[0,1]d

k
(
`n,k(x1, . . . , xd)− (x1 + · · ·+ xd)

)2
dx1 . . . dxd, (5.2.3)
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and the second one is based on the maximum absolute difference between the estimated `-function
and the true independent `-function,

Sn = sup
x∈[0,1]d

√
k
∣∣`n,k(x1, . . . , xd)− (x1 + · · ·+ xd)

∣∣ . (5.2.4)

The asymptotic distributions of the test statistics In and Sn are given in the following proposition.

Proposition 5.3. Under the null hypothesis of tail independence,

{In} →
∫

[0,1]d

 d∑
j=1

Wj ((1 + θ)xj)

2

dx1 . . . dxd and {Sn} → sup
x∈[0,1]d

∣∣∣∣∣∣
d∑
j=1

Wj ((1 + θ)xj)

∣∣∣∣∣∣
as n→∞, where Wj , j = 1, . . . , d are d independent Brownian motions and θ = m/n denotes the
ratio between divided sample sizes.

Proof. Both convergences follow immediately from the continuous mapping theorem. �

Since the distributions of the test statistics In and Sn cannot be easily evaluated analytically, a
simulation procedure is employed to determine the quantiles of the distributions. Based on 100, 000
realizations of the Wiener process, critical values are determined (Table 5.2.2). The simulated
values for dimension d = 2 are very similar to the quantiles presented in Hüsler and Li (2009)
who use 200, 000 realizations of the Wiener process for the bivariate case, although not entirely
the same. A disadvantage of this approach is that the distributions of the test statistics cannot be
evaluated analytically and that simulations to determine distributions of the test statistics In and
Sn are quite computationally expensive, especially for higher dimensions. For example, it took
respectively 6.3, 14.7, and 29.6 hours to draw 100,000 samples from both the distribution of In
and Sn for dimensions d = 2, 3, 5 (employing the statistical software program R on a Macbook Pro
with 2,7 GHz Intel Core i5 processor).

Table 5.2.2: Simulated quantiles for the test statistics distributions in
dimensions d ∈ {2, 3, 5}.

10% 25% 50% 75% 90% 95% 97.5% 99%

d = 2 In 0.397 0.66 1.25 2.51 4.54 6.23 7.94 10.3
Sn 1.10 1.58 2.28 3.13 4.00 4.57 5.08 5.71

d = 3 In 0.685 1.07 1.91 3.72 6.64 9.08 11.6 15.3
Sn 1.45 2.08 2.97 4.05 5.11 5.82 6.45 7.18

d = 5 In 1.31 1.90 3.2 6.14 11.0 14.9 19.1 25.1
Sn 2.05 2.89 4.1 5.52 6.94 7.86 8.68 9.67

Based on 100, 000 realizations of the Brownian motion path. Samples are split into
two equally sized subsamples (θ = 1).

TDC-based testing

Since the STDF-based TDC measure Λ can be used to identify tail independence in all dimensions
d ≥ 2 (Main Theorem 2), this measure can also be used to test for tail independence. However, since
the measure is based on the stable tail dependence function, it suffers from the same problematic
characteristic of the asymptotic variance vanishing under the null hypothesis of tail independence.
In order to circumvent this problem, the same strategy as for the `-based tests is employed, which
comes down to evaluating the adapted STDF estimator in the point (1, . . . , 1). Hence, the test
statistic based on the multivariate TDC Λ is given by,

Tn =
√
k
(
`n,k(1, . . . , 1)− d

)
. (5.2.5)

The asymptotic distribution of Tn follows from Theorem 5.3 and is captured by the following
proposition.
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Proposition 5.4. Under the null hypothesis of tail independence and with the conditions of The-
orem 5.3, we have that

Tn → N (0, d(1 + θ)) , (5.2.6)

as n→∞, with θ = m/n the ratio between divided sample sizes.

Proof. Theorem 5.3 immediately implies that

Tn =
√
k
{
`n,k(1, . . . , 1)− d

}
→

{
d∑
i=1

Wi(1 + θ)

}
, (5.2.7)

as n→∞, where Wi, i = 1, . . . , d are d independent Brownian motions. The result follows by the
definition of a Brownian motion. �

Since `(1, . . . , 1) = d is the theoretical upper bound, a one-sided test based on the lower tail
of the asymptotic Normal distribution of Tn should be conducted. Note that this asymptotically
Normal distribution is much easier to evaluate than asymptotic distributions of the STDF-based
test statistic In and Sn.

Testing based on smoothed estimators

Since the simulation study on the performance of the nonparametric STDF estimators showed that
the standard nonparametric estimator was outperformed in many instances by the smoothed and
bias-corrected versions, a test statistic based on one of these improved versions of the nonparametric
estimator might also yield superior testing performance. This section covers an adjusted kernel
smoothed estimator. The next section covers an adjusted bias-corrected smoothed parameter.
Since the beta-smoothed STDF is by definition determined based on the ranks of observations, the
methodology cannot be easily split up in a similar way as proposed by Hüsler and Li (2009). The
kernel-smoothed STDF can be adapted as follows.

`
K

n,k(x) =
1
k

∑k
j=1K(aj)a

−1
j `n,k(ajx)

1
k

∑k
j=1K(aj)

, (5.2.8)

where aj = j
k+1 and K is a kernel on (0, 1) such that

∫ 1

0
K(u)du = 1.

The behavior of the adjusted kernel-smoothed empirical STDF is shown in Figure 5.2.2. Com-
pared to the estimates of the adjusted empirical STDF (see Figure 5.2.1), the kernel-smoothed
version seems to perform better. The estimates are closer to the true dependence function and
due to the smoothing, the estimates resemble the real STDF more closely. However, the estima-
tor does not honor the theoretical bounds of the `-function and requires a large sample size to
yield acceptable results. Similar as for the standard adjusted estimator, this adjustment is not an
improvement relative to the original kernel-smoothed estimator (see Figure 5.1.3).

The asymptotic behavior follows easily from Theorem 5.3 and is stated in the following propo-
sition.

Proposition 5.5. Under the null hypothesis of tail independence and with the assumptions of
Theorem 5.3,

√
k
{
`
K

n,k(x)− `(x)
}
→
(∫ 1

0

K(u)u−1/2du

)
B(x). (5.2.9)

in D([0, T ]d) for every T > 0 as n → ∞. Here B(x) is a zero-mean Gaussian process defined in
Equation 5.2.2.

Proof. We start from the asymptotic behavior of the adapted empirical STDF presented in Theo-
rem 5.3, i.e.,

√
k
(
`n,k(x)− `(x)

)
→ B(x).
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Figure 5.2.2: Estimated adjusted kernel-smoothed empirical STDF `
K
-function based on simulation

results for the bivariate Gumbel copula with model parameter θ = 2 using k = 5% of the
N ∈ {1000, 2500, 5000} observations.

By the continuous mapping theorem,

√
k

1

k

k∑
j=1

K(aj)`n,k(x)−
k∑
j=1

K(aj)`(x)

→ (∫ 1

0

K(u)du

)
B(x) = B(x).

By the homogeneity of ` and the fact that B(ax) ∼
√
aB(x) it next follows that

√
k

1

k

k∑
j=1

K(aj)a
−1
j `n,k(a−1

j x)−
k∑
j=1

K(aj)`(x)

→ (∫ 1

0

K(u)u−1/2du

)
B(x).

The result follows by dividing everything by
∑k
j=1K(aj). �

Recall that by taking the power kernel K(t) = (τ + 1)tτ1{t ∈ (0, 1)}, τ > −1/2, we get
√
k
(
`
K

n,k(x)− `(x)
)
→ 2

1 + τ

1 + 2τ
B(x),

which is convenient because the asymptotic distribution then becomes a rescaled version of the
asymptotic distribution of the non-bias-corrected estimator `n,k. The test statistics and their
asymptotic distributions can now be defined similarly as before. Firstly, the integral-based test
statistic is given by,

IKn =

∫
[0,1]d

k
(
`
K

n,k(x1, . . . , xd)− (x1 + · · ·+ xd)
)2

dx1 . . . dxd

→
(

2
1 + τ

1 + 2τ

)2 ∫
[0,1]d

B(x)2dx1 . . . dxd.

The supremum-based test statistic is defined as,

SKn = sup
x∈[0,1]d

√
k
∣∣∣`Kn,k(x1, . . . , xd)− (x1 + · · ·+ xd)

∣∣∣
→ 2

1 + τ

1 + 2τ
sup

x∈[0,1]d

∣∣B(x)
∣∣ .

Finally, the multivariate TDC-based test statistic is equal to the following,

TKn =
√
k
(
`
K

n,k(1, . . . , 1)− d
)

→ 2
1 + τ

1 + 2τ
B(1, . . . , 1) ∼ N

(
0,

(
2

1 + τ

1 + 2τ

)2

d(1 + θ)

)
.

Note that the quantiles in Table 5.2.2 just have to be multiplied with a factor dependent on τ to
retrieve the new quantiles of the asymptotic distribution of the test statistics.
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Testing based on bias-corrected estimators

Moreover, we also show that the bias-corrected STDF estimator of Beirlant et al. (2016) can be
adapted in a similar way to retrieve a bias-corrected estimator that does not become degenerate
under the null hypothesis of tail independence.

Proposition 5.6. Under the null hypothesis of tail independence and with the assumptions of
Theorem 5.2,

√
k
{
`n,k(x)− `(x)− α

(n
k

)
M(x)

}
→ B(x) (5.2.10)

in D([0, T ]d) for every T > 0 as n → ∞. Here B(x) is a zero-mean Gaussian process defined in
Equation 5.2.2.

Proof. The result follows by combining Theorem 5.2 and Theorem 5.3. �

In order to remove the bias term, we employ the methodology of Beirlant et al. (2016) and
arrive at the following adapted bias-corrected estimator.

`
BC3

n,k,k(x) =

˜̀
n,k(x)−

(
k
k

)ρ̃k(x∗)

α̃k(x) 1
k

∑k
j=1K(aj)a

−ρ̃k(x∗)
j

1
k

∑k
j=1K(aj)

. (5.2.11)

The behavior of the estimator is explored in Figure 5.2.3. The figures indicate quite irregular
behavior and show that a very large sample size is required to retrieve slightly reasonable results.
Compared to the original bias-corrected estimator of Beirlant et al. (2016), illustrated in Figure
5.1.8, the adjusted version perform much worse. Relative to the other adjusted estimators, the
bias-corrected version seems to suffer more heavily from the adjustment in the estimator.

Figure 5.2.3: Estimated adjusted bias-corrected empirical STDF `
BC3

-function based on simulation
results for the bivariate Normal copula with model parameter ρ = 0.5 using k = 5% of the
N ∈ {1000, 2500, 5000} observations.

Proposition 5.7. Under the null hypothesis of tail independence and with the conditions of The-
orem 5.2, satisfied for two intermediate sequences k and k such that k = O(k), we have

√
k
(
`
BC3

n,k,k(x)− `(x)
)
→
(∫ 1

0

K(u)u−1/2du

)
B(x) (5.2.12)

in D([0, T ]d) for every T > 0.

Proof. We reformulate the proof of Beirlant et al. (2016) regarding the asymptotic behavior of the
bias-corrected estimator ` using the adapted empirical STDF in Appendix B.4.3. Since the proof
only relies on the Gaussianity of the process B`, and not on its specific form, the reformulation
follows straightforwardly by replacing B` with B in the original proof. �
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Again, by taking the power kernel K(t) = (τ + 1)tτ1{t ∈ (0, 1)}, τ > −1/2, we get

√
k
(
`
BC3

n,k,k(x)− `(x)
)
→ 2

1 + τ

1 + 2τ
B(x)

which is convenient because the asymptotic distribution then becomes a rescaled version of
the asymptotic distribution of the non-bias-corrected estimator `. The test statistics and their
asymptotic distributions can now be defined similarly as before. The integral-based test statistic
is given by,

IBC3
n =

∫
[0,1]d

k
(
`
BC3

n,k,k(x1, . . . , xd)− (x1 + · · ·+ xd)
)2

dx1 . . . dxd

→
(

2
1 + τ

1 + 2τ

)2 ∫
[0,1]d

B(x)2dx1 . . . dxd.

The supremum-based test statistic is now equal to the following,

SBC3
n = sup

x∈[0,1]d

√
k
∣∣∣`BC3

n,k,k(x1, . . . , xd)− (x1 + · · ·+ xd)
∣∣∣

→ 2
1 + τ

1 + 2τ
sup

x∈[0,1]d

∣∣B(x)
∣∣ .

Finally, the multivariate TDC-based test statistic is defined as,

TBC3
n =

√
k
(
`
BC3

n,k,k(1, . . . , 1)− d
)

→ 2
1 + τ

1 + 2τ
B(1, . . . , 1) ∼ N

(
0,

(
2

1 + τ

1 + 2τ

)2

d(1 + θ)

)
.

Note that the quantiles in Table 5.2.2 just have to be multiplied with a factor dependent on τ to
retrieve the new quantiles of the asymptotic distribution of the test statistics.

5.2.2 Multiple pairwise testing problem
Another way to extend the bivariate test for tail independence of Hüsler and Li (2009) to address the
multivariate hypothesis testing problem is to conduct multiple bivariate tests. Recall that based
on Theorem 3.3, it is sufficient to establish tail independence for all pairs in order to conclude
joint tail independence. Therefore, the null hypothesis of multivariate tail independence can be
investigated by testing the null hypothesis of tail independence for all bivariate pairs. That is, we
propose to replace the original multivariate testing problem,

H0 : (X1, . . . , Xd) ∼ CF : CF ∈MDA(Π) H1 : (X1, . . . , Xd) ∼ CF : CF /∈MDA(Π),

with the following multiple hypothesis testing problem,

H0 : ∀i, j ∈ {1, . . . , d}, i 6= j : (Xi, Xj) ∼ CF : CF ∈MDA(Π)

H1 : ∃i, j ∈ {1, . . . , d}, i 6= j : (Xi, Xj) ∼ CF : CF /∈MDA(Π).

As can be seen, this introduces a multiple testing problem where multiple hypotheses have to
be evaluated simultaneously. When testing multiple hypotheses, the probability of rejecting the
null hypothesis increases with every hypothesis test that is conducted. Consider, for example, the
case where 2 independent hypotheses are to be tested together. If each test has a p-value of 0.1,
the multiple hypothesis test has a p-value of 0.01. Usually, the relatively large p-values of the
individual hypotheses would not be considered significant, while the relatively small p-value of the
combined test would be considered significant. Moreover, the combined p-value decreases for every
hypothesis test that is added to the multiple hypothesis testing problem, making it more likely to
reject the combined null hypothesis with every individual hypothesis that is added to the problem.
For our specific testing problem, this would imply that the probability of incorrectly rejecting tail
independence increases with the dimension of the testing problem. Hence, for high-dimensional
testing problems, tail dependence will almost always be concluded. This can be a costly mistake
to make.
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It is noteworthy that in literature, multivariate problems are almost always approached with
pairwise tests. For example, Kiriliouk et al. (2014) explore the asymptotic dependence between
returns of three large banks by considering pairwise tests. Due to the lack of multivariate testing
procedures, this approach makes sense. However, to our knowledge, nobody acknowledges the mul-
tiple testing issue nor considers an adjustment of the p-values to prevent data from being classified
as tail dependent too often.

In order to prevent the type I error to increase because of multiple hypotheses, the p-values (or
the significance levels) have to be corrected for the number of hypotheses that are to be evaluated
together. A common and straightforward method to adjust the p-values for a multiple testing
problem is the Bonferroni method. This method sets the p-value for each test equal to np if there
are n hypotheses to be tested. The Bonferroni procedure is known to be quite conservative and
causes loss of power in the testing procedure. That is, the type II error rate increases, making it
more likely to incorrectly assume tail independence.

A more powerful sequential version of the Bonferroni method has been proposed by Holm
(1979). In Holm’s sequential version, all pairwise tests need to be performed first in order to
obtain their p-values. The tests are then ordered from the one with the smallest p-value to the
one with the largest p-value. Denote these p-values by p1:n ≤ · · · ≤ pn:n. The test with the lowest
probability is tested first with a Bonferroni correction involving all tests. That is, the adjusted p-
value is set equal to padj.1 = np1:n. The second test is tested with a Bonferroni correction involving
one less test, after which the adjust p-value is set equal to the maximum of the previously adjusted
p-values and the newly adjusted p-value. That is, padj.2 = min

{
(n− 1)p2:n, p

adj.
1

}
. This procedure

is repeated until all original p-values have been corrected. Holm’s approach is more powerful than
the original Bonferroni approach but still keeps under control the increasing Type 1 error (Abdi,
2010). The Hochberg method is a reverse sequential version of the Bonferroni corrections. That
is, the adjustments begin with the largest p-value and sets subsequent p-values equal to minimum
of the appropriate Bonferroni correction for the step and the previously adjusted p-values. The
approaches are illustrated with an example in Table 5.2.3. Although the Bonferroni method and
to a lesser extent the Holm method are most frequently used, the Hochberg method tends to
outperform the other two correction methods according to Blakesley et al. (2009).

Table 5.2.3: Example of methods to correct p-values in multiple testing problems.

Uncorrected Bonferroni Holm Hochberg

p-value Reject p-value Reject p-value Reject p-value Reject

Test 1 0.01 TRUE 0.03 TRUE 0.03 TRUE 0.03 TRUE
Test 2 0.02 TRUE 0.06 FALSE 0.04 TRUE 0.03 TRUE
Test 3 0.03 TRUE 0.09 FALSE 0.04 TRUE 0.03 TRUE

Combined TRUE FALSE TRUE TRUE

The corrections for the p-values can be implemented in R with the p.adjust function from the
stats package. An advantage of the pairwise multiple testing problem is that if the null hypothesis
of tail independence is rejected, the testing results provide insights into which pairs contribute to
the tail dependence structure and which are tail independent.

5.2.3 Simulation study
The performance of the different procedures to test for tail independence is assessed with a sim-
ulation study in this section. The aim is to analyze the behavior of the testing procedures for
different dependence types, dependence strengths, and dimensions. In our opinion, this section
presents a potentially important contribution to literature, since a thorough simulation study on
the performance of tests for tail independence is to our knowledge lacking in the current literature.
Moreover, the introduced testing procedures are evaluated in this section.
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We start with the behavior of the STDF-based and TDC-based tests for the bivariate case and
next compare the behavior of the multiple testing approach with the multivariate test approach
for higher dimensions. The multivariate integrals inherent to the STDF-based test statistic In
are determined with the adaptIntegrate function from the cubature package in R. The suprema
inherent to the STDF-based test statistic Sn are determined with the bobyqa function from the
minqa package for optimization problems. Before the simulation results are presented, simulation
parameters and running times are briefly discussed.

Simulation parameters

Data are simulated from the Gumbel, t-, Normal, and Frank copula. First we consider the dis-
tributions in dimensions d ∈ {2, 3, 5} with model parameters specified such that all pairwise de-
pendencies equal ρ = 0.2 for weak dependence, ρ = 0.5 for medium dependence, and ρ = 0.8 for
strong dependence. However, since the performance of the testing procedures might be different
when the strength of pairwise dependencies vary, we also consider distributions with asymmetric
pairwise dependencies. This is achieved by specifying different correlation parameters for the Nor-
mal and t-copula and with several D-vine copula models (see Figure 5.2.4 for the specifications of
the trivariate D-vines).

Figure 5.2.4: D-vine specifications for the testing simulations.

For each testing problem that is to be evaluated, we simulate B = 500 samples to run the
test and report the rejection rate for significance levels of α = 5% and α = 1%. Note that the
number of samples considered here is significantly higher than in Hüsler and Li (2009) who only
use 6 samples to evaluate the behavior of their test for the bivariate case. Since the estimator
functions performed superior for a threshold value of k = 1% for most distributions, this threshold
value is also used for the testing functions. In accordance with Hüsler and Li (2009), we split
samples exactly in half to determine the test statistics (θ = 1). Furthermore, for the tests based on
the kernel-smoothed and bias-corrected estimators it is necessary to specify additional parameters.
Following Fougères et al. (2015), Beirlant et al. (2016) and Kiriliouk et al. (2018) we employ the
power kernel with parameter τ = 5 and set a = r = 0.4 for the bias-corrected estimators.

Running times

Before the simulations are conducted, the running times are assessed. Table 5.2.4 shows running
times for the different test statistics in dimensions d ∈ {2, 3, 5}. It is clear that the TDC-based
test is significantly less computationally intensive than the other two test statistics that are based
on the entire stable tail dependence function. Especially the integral-based test shows very long
running times, making it unattractive to use this particular test statistic for higher dimensions.
The supremum-based test can be evaluated faster than the integral-based test, but for the adjusted
estimators, i.e., the kernel smoothed estimator and the bias-corrected estimator, and for higher
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dimensions, this test statistic also shows quite long running times. The TDC-based tests for the
bias-corrected estimator are also quite computationally expensive. However, this probably has to
do with our implementation of the bias-corrected estimator. As mentioned in Section 5.1.5, the
computation of the bias-corrected estimates involve quite a lot computations and without deferring
the computations to C++ it will take a long time to evaluate this estimator. Based on these running
times, we decide to only assess the Sn and Tn test statistics for the tests based on the adjusted
kernel estimator and only assess the Tn test statistic for the bias-corrected test.

Table 5.2.4: Running times to compute test statistics for one sample (in seconds) and
hypothetically for B = 500 samples (in hours, between brackets).

NP NP-Kernel NP-BC

In Sn Tn In Sn Tn In Sn Tn

d = 2 0.194 0.22 0.004 11.626 4.038 0.079 748.607 478.245 8.504
(0h) (0h) (0h) (1.6h) (0.6h) (0h) (104h) (66.4h) (1.2h)

d = 3 4.207 0.108 0.001 17 7.142 0.112 > 3600 > 3600 12.956
(0.6h) (0h) (0h) (2.4h) (1h) (0h) (>500h) (>500h) (1.8h)

d = 5 6.543 0.106 0.004 382.666 14.345 0.198 > 3600 > 3600 20.645
(0.9h) (0h) (0h) (53.1h) (2h) (0h) (>500h) (>500h) (2.9h)

The running times are retrieved from a Macbook Pro with 2,7 GHz Intel Core i5 processor using the
statistical software program R. If computations of a test statistic for one sample took more than one hour,
computations were prematurely terminated. All implementations of the test statistics are our own (see
Appendix E.2).

Simulation results

All simulation results are reported in Appendix C.4. The main findings are discussed here. For the
bivariate data, the results show that all test statistics tend to lead to rejection rates that are close
to or lower than the significance level if the null hypothesis is true. The only notable exception is
provided by TDC-based test for data simulated from the Normal copula with strong dependence.
Here, the null hypothesis of tail independence is rejected 17% of the times based on a significance
level of α = 5%. Overall, the TDC-based test statistic Tn has a higher rejection rate than the
STDF-based test statistics In and Sn. The test statistics based on the kernel-smoothed estimator
result in similar but slightly lower rejection rates. The test statistics based on the bias-corrected
estimator lead to a zero-rejection rate. Overall, all test statistics behave very well in the bivariate
case if the null hypothesis is true. See Table 5.2.5 for a quick overview.

Table 5.2.5: Rejection rates of the test statistics with a significance level of α = 5%
for bivariate data simulated from copulas with medium dependence.

Tail dependent data Tail independent data

d = 2 Gumbel t Normal Frank

Empirical STDF-based In 0.076 0.044 0.046 0.022
(NP) Sn 0.07 0.024 0.032 0.028

Tn 0.19 0.1 0.068 0.03
Results are based on B = 500 samples with same size N = 2500. The sample is split into
two equally sized subsamples and k = 1% of the remaining 1250 observations are used as tail
observations.

However, if the null hypothesis is false, the rejection rates are still quite low. For example,
for the Gumbel copula with strong dependence, the null hypothesis of tail independence is only
rejected in 11% of the samples given a significance level of α = 5% when using the supremum-based
standard bivariate test of Hüsler and Li (2009). The rejection rates are even lower for tail depen-
dent data with medium or light dependence. This indicates that the tests are not very powerful.
Since the TDC-based test statistic Tn rejects more often than the STDF-based tests, this one is
to be preferred. However, also for the TDC-based tests the power of the test remains quite low.
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The kernel-smoothed tests and the bias-corrected test lead to lower rejection rates and therefore
do not improve results in this scenario. See Table 5.2.5 for a quick overview of rejection rates for
the bivariate copulas with medium dependence.

For the multivariate results (d > 2), both the multiple pairwise testing approach and the
multivariate testing approach have been evaluated. For the trivariate case, the multiple pairwise
testing approach has a much lower rejection rate than the multivariate testing approach in all
instances. Whereas this leads to rejection rates close to the significance level for the tail independent
simulations, the rejection rates are very low for the tail dependent simulations. A quick overview
of rejection rates for the trivariate copulas with medium dependence is presented in Table 5.2.6.
Similar to the bivariate results, the tests based on the adjusted kernel-smoothed estimator tend
to reject the null hypothesis slightly less than the tests based on the standard adjusted empirical
STDF, both for the STDF-based test and the TDC-based test, and both when the null hypothesis
is true and when the null hypothesis is false. The bias-corrected 3-dimensional multivariate tests
yield improved rejection rates relative to the uncorrected tests in some instances. For the tail
independent data, the bias-corrected tests lead to lower rejection rates almost everywhere. The
exception is presented by the trivariate Frank copula with strong dependence, where the rejection
rate increases from 6.8% for the standard test to 14% for the bias-corrected test. However, for
the tail dependent data, the bias-corrected tests also tend to lead to lower rejection rates, except
for the Gumbel and t-copula with strong dependence. For the copulas with mixed pairwise tail
dependencies, similar patterns are visible.

Table 5.2.6: Rejection rates of the test statistics with a significance level of α = 5% for
3-dimensional data simulated from copulas with medium dependence.

Tail dependent data Tail independent data

d = 3 Gumbel t Normal Frank

Multiple tests NP Tn 0.098 0.038 0.02 0.006
NP-Kernel Tn 0.084 0.022 0.024 0.01

Multivariate test NP Tn 0.39 0.2 0.12 0.034
NP-Kernel Tn 0.32 0.17 0.086 0.034
NP-BC Tn 0.09 0.014 0.002 0

Results are based on B = 500 samples with same size N = 2500. The sample is split into two equally
sized subsamples and k = 1% of the remaining 1250 observations are used as tail observations.

For higher dimensions (d = 5), the difference between the multiple testing and the multivariate
testing approach becomes even more pronounced. The multiple testing approach is much less
powerful compared to the multivariate tests. Even for data simulated from the Gumbel copula with
strong dependence, the multiple pairwise test only rejects the null hypothesis of tail independence
for 16% of the samples given a significance level of α = 5% for the TDC-based test, which is the
most powerful alternative. Again, the tests based on the adjusted kernel-smoothed estimator tend
to reject the null hypothesis slightly less than the tests based on the standard adjusted empirical
STDF. For example, for the simulations from the 5-dimensional Normal copula with equal medium
bivariate dependencies, the kernel-based tests reject the null hypothesis of tail independence for
18% of the samples, versus 28% for the standard test. However, for the tail dependent simulations
the rejection rate is also slightly lower, making this test less powerful. The multivariate TDC-
based test derived from the bias-corrected estimator tends to yield improved rejection rates for the
Normal copula, but not so much for the other copulas. It is questionable whether these modest
improvements outweigh the additional complexity and computation costs associated with the bias-
corrections. Table 5.2.7 shows an overview of rejection rates for the 5-dimensional copulas with
medium dependence.
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Table 5.2.7: Rejection rates of the test statistics with a significance level of α = 5% for
5-dimensional data simulated from copulas with medium dependence.

Tail dependent data Tail independent data

d = 5 Gumbel t Normal Frank

Multiple tests NP Tn 0.044 0.018 0.004 0.004
NP-Kernel Tn 0.036 0.008 0.006 0.006

Multivariate test NP Tn 0.85 0.62 0.28 0.082
NP-Kernel Tn 0.77 0.52 0.18 0.068
NP-BC Tn 0.74 0.29 0.27 0.83

Results are based on B = 500 samples with same size N = 2500. The sample is split into two equally
sized subsamples and k = 1% of the remaining 1250 observations are used as tail observations.

Overall, we conclude that the TDC-based test is a very viable alternative to the STDF-based
tests. It is more powerful when the null hypothesis is false and yields rejection rates close to the
significance level when the null hypothesis is true in most instances. Moreover, the TDC-based
test statistic is much easier and faster to evaluate for a given dataset, especially if dimensions in-
crease, and critical values stem from a known Normal distribution and do not have to be simulated.

Finally, we reran some of the simulations with a sample size of N = 5000 to investigate whether
a larger sample size might lead to more powerful results of the tests. The results are presented
in Table 5.2.8 below. An improvement in the rejection rate can be observed in all instances of
the tail dependent data. Although the multiple testing approach is more powerful for the larger
sample size, rejection rates are still significantly lower than those of the multivariate test. For the
tail independent data, rejection rates are comparable or slightly higher than for the smaller sample
size. The null hypothesis of tail independence is rejected too often for data simulated from the
Normal copula. Although the bias-corrected testing procedure was not evaluated for this larger
sample size due to computational limitations, bias-corrections might alleviate this problem.

Table 5.2.8: Rejection rates of the test statistics with a significance level of α = 5% for
data simulated from copulas with medium dependence in dimension d = 3, 5 for N = 5000.

Tail dependent data Tail independent data

d = 3 Gumbel t Normal Frank

Multiple tests NP Tn 0.228 0.092 0.042 0.03
NP-Kernel Tn 0.212 0.07 0.04 0.034

Multivariate test NP Tn 0.614 0.334 0.136 0.058
NP-Kernel Tn 0.566 0.278 0.11 0.05

d = 5

Multiple tests NP Tn 0.156 0.06 0.046 0.022
NP-Kernel Tn 0.112 0.036 0.032 0.012

Multivariate test NP Tn 0.984 0.876 0.484 0.108
NP-Kernel Tn 0.974 0.796 0.408 0.084

Results are based on B = 500 samples with same size N = 5000. The sample is split into two equally
sized subsamples and k = 1% of the remaining 2500 observations are used as tail observations.
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5.3 Summary
This chapter studied statistical inference procedures to characterize the multivariate tail depen-
dence structure. First, the focus was on estimating the stable tail dependence function (STDF) and,
inherently, the multivariate STDF-based TDC Λ. Secondly, methods for testing tail independence
were researched. These inference methods provide a comprehensive set of tools to characterize the
tail dependence structure fully, to assess the strength of the tail dependence, or to classify data as
either tail dependent or tail independent.

The STDF can be estimated nonparametrically and parametrically, but since parametric mod-
els lack the flexibility that is needed to accurately model tail dependence in higher dimensions,
the focus was on the empirical STDF and adjusted versions thereof. Specifically, we considered
smoothed versions of the empirical STDF based on the beta copula and based on a kernel-smoother.
Furthermore, three bias-correction methods were discussed to mitigate the significant bias terms
associated with uncorrected STDF estimators for data coming from copulas that converge slowly
to their extreme value copula. The simulation study showed that both smoothed versions of the
empirical STDF tend to yield slightly superior results compared to the standard empirical STDF in
terms of (integrated) MSE. However, the main advantage of the smoothed estimators is presented
by the more attractive visualizations, and not in the finite sample performance. The bias-corrected
estimators do offer a vast improvement in the finite sample performance of the estimators when
the convergence rate is low. Especially the third bias-corrected version of Beirlant et al. (2016)
performs well. When using this bias-corrected estimator, the multivariate TDC Λ can be estimated
with at least one decimal place accuracy in all considered dimensions d = 2, 3, 5. In contrast, the
bias of the uncorrected estimator is greater than 0.2 for the 5-dimensional Normal copula with
medium dependence.

Since the STDF is able to identify tail independence, it is natural to consider a testing procedure
based on this dependence function. However, under the null hypothesis of tail independence,
the asymptotic distribution of the empirical STDF becomes degenerate, making it impossible to
construct a test statistic based on the distribution. Following the idea of Hüsler and Li (2009),
we adjust estimators by using separate datasets for estimating high quantiles and for counting
exceedances. The asymptotic distribution of this adjusted empirical STDF is no longer degenerate,
and we derived its specific form in the d-dimensional case from Theorem 5.3. In addition, it is
shown that the kernel-smoothed and bias-corrected versions of the empirical STDF can be adjusted
similarly and asymptotic results for these estimators are also derived. Since the multivariate TDC
Λ is also able to identify tail independence (Main Theorem 2), we propose a new testing procedure
that only requires the evaluation of the STDF in the point (1, . . . , 1), simplifying estimation and
testing greatly. An extensive simulation study showed that this TDC-based test tends to be
more powerful than the STDF-based tests and yields rejection rates close to the significance level
when the null hypothesis is true in most instances. Tests based on the kernel-smoothed or bias-
corrected estimators do not offer significant improvements in the rejection rates that outweigh
the additional computation costs associated with these adjusted testing procedures. Besides the
multivariate testing approach, a multiple pairwise testing approach is considered, where p-values
were adjusted to correct for the multiple testing problem. However, the simulation study showed
that the multiple testing approach is significantly less powerful than the multivariate tests. Larger
sample sizes might alleviate this problem to some extent, but when the data collection does not
permit this, the multivariate TDC-based testing procedure is to be preferred.
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Chapter 6

Tail dependence in FX markets

In this chapter, previously discussed methods to characterize multivariate tail dependence struc-
tures are applied to assess extremal dependencies in FX (foreign exchange) markets. The aim of
this chapter is to illustrate how the introduced theory and statistical methods can be applied to
real data. The FX market serves as an interesting example to use for this purpose since it is by far
the largest and most liquid market in terms of trading volume and tends to exhibit extreme jumps
in reaction to political and financial crises. Moreover, the trading activities of buying and selling
currencies against an uncertain exchange rate expose many international companies and investors
to substantial financial risks.

The exchange rate indicates how much units of a particular domestic currency are required
to buy one unit of a particular foreign currency and is quoted as foreign-domestic (FORDOM,
FOR-DOM or FOR/DOM) (Wystup, 2006). That is, an EURUSD (Euro-US Dollar) rate of 1.18
indicates that 1 Euro is worth 1.18 US Dollars. The term domestic is unrelated to the location of
the trader or any country. It merely means the numeraire currency (unit of account). An increase
(decrease) in an FX rate corresponds to an increasing (decreasing) value of the foreign currency
relative to the domestic currency. Hence, if the EURUSD rate increases, the Euro becomes more
valuable relative to the US Dollar, and if the EURUSD rate decreases, the US Dollar becomes
more valuable relative to the Euro. Changes in demand or supply of either the domestic currency,
the foreign currency, or both, lead to movements in the spot rate (i.e., the current exchange rate).
Such changes in demand can be driven by interest rates, economic developments, or politics, for
example. See, e.g., Della Corte et al. (2016) for research on the drivers of FX rates.

As a corporation operating in the global economy, it is often inevitable to deal with foreign
currencies. For example, a company based in Europe with a client base in the UK will have
revenues in British Pounds which will have to be converted to Euros with the EURGBP conversion
rate. The uncertainty in this conversion rate, or foreign exchange (FX) rate, is inherited by the
EUR-denoted profits and costs of the company. This uncertainty in the profits and losses presents
the company with financial risks. Imagine for example that the EURGBP rate increases, indicating
that the British Pound becomes less valuable relative to the Euro due to some political crisis (e.g.,
the Brexit referendum). Profits made in the UK will now be less valuable in Euros than with the
lower FX rate. This represents a loss for the company. Movements in the FX rates can, therefore,
be considered as risk factors for a multinational company, and for any investor exposed to one or
more foreign currencies.

The illustrative application of extreme value theory to foreign exchange rates has been pop-
ular in literature, but only for bivariate dependencies. See, for example, Resnick (2004) for an
application of methods to estimate the spectral measure for tail dependence between the German
Mark and the French Franc (before the introduction of the Euro). In this chapter, however, the
focus is on illustrating methods to assess multivariate tail dependence. We first assess the extremal
dependence structure between three European currency pairs, being the EURGBP (Euro-British
Pound), EURSEK (Euro-Swedish Krona), and EURNOK (Euro-Norwegian Krone). Next, a higher
dimensional problem is considered by looking at the tail dependence structure of 5 worldwide cur-
rency pairs: EURUSD (Euro-US Dollar), GBPUSD (British Pound-US Dollar), USDCAD (US
Dollar-Canadian Dollar), USDTRY (US Dollar-Turkish Lira), and USDRUB (US Dollar-Russian
Ruble).

105
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6.1 Preliminary data analysis
The required FX rates are retrieved from Bloomberg for a 10-year timeframe ranging from January
2007 to January 2017. This leads to 2632 daily observations of the FX rates. Note that the size
of the dataset is very similar to the sample size of N = 2500 employed for the simulation studies
in the previous chapter. Appendix D.1 presents an overview of the time series of all considered
FX rates. Since the spot rates are not stationary (see Appendix D.2 for test results), log returns
are used to model the spot behavior: if s1, . . . , sT is a series of daily spot FX rates, the daily log
returns are

rt = log

(
st
st−1

)
, t = 2, . . . , T.

Log returns are often used because of modeling advantages and they are approximately the same
as regular returns if returns are small. Moreover, in the context of FX rates, log returns provide
the attractive property that changing the side of the exposure (i.e., buyer/seller of the foreign
currency) corresponds to changing the sign of the log return. The analysis can be based on daily
returns, as is commonly done in literature, but since this is not necessarily the time horizon used
by corporations for accounting or risk management purposes, some results are also considered
for alternative return horizons, taking either 1-month, 3-month, 6-month, or annual log returns.
Appendix D.2 shows that the ADF (Augmented Dickey Fuller) test indicates that the log return
series are mostly stationary, with some exceptions to be found for the 6-month and 12-month
return horizons. Figure 6.1.1 shows an example of the original time series, the daily log returns
and the monthly log returns for the EURGBP rate. Whereas the raw timeseries clearly exhibits
trends, the log return series look stationary, especially the daily log returns.

Figure 6.1.1: Time series of the EURGBP FX rate and corresponding daily and monthly log returns.

Usually, the log returns of financial series exhibit temporal dependence, which violates the iid
assumption that underpins most models used to characterize tail dependence. Indeed, the Ljung-
Box test indicates that most return series exhibit temporal dependence (see Appendix D.2 for
the testing results). A non-straightforward solution would be to adjust the considered theory on
multivariate tail dependence structures such that it can be applied to data that are time dependent
instead of iid. Einmahl et al. (2016a) and de Haan et al. (2016) conducted research in this direction
for univariate extreme value theory but it is beyond the scope of this data example to extend their
efforts to higher dimensions. A solution that can be employed more readily is to adjust data such
that they do satisfy the iid assumption. This can be achieved by applying a filter to the log return
series. In literature, this is a common approach to apply extreme value theory, copula theory,
or in general, models that rely on iid data, to time series that exhibit serial dependence. For
example, McNeil and Frey (2000) employed this method to model univariate tails, Wang et al.
(2010) apply a GARCH model to filter daily log returns of FX rates and to assess the marginal
extremal behavior, and Czado et al. (2012) apply an ARMA(1,1)-GARCH(1,1) filter before fitting
copulas to USD-exchange rates.

Hence, in order to account for time dependence between the marginal FX returns, an ARMA
model is used for the conditional mean and a GARCH (Bollerslev, 1986) or GJR-GARCH (Glosten
et al., 1993) model for the conditional variance. The GJR-GARCH model can be preferred to the
standard GARCH model because of the leverage term that allows for asymmetry in the reaction to
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positive and negative shocks. The ARMA(2,0)-GJR-GARCH(1,1) model yields satisfactory results
for the FX returns and is therefore employed in this analysis. Formally, this model is given by

rj,t+1 = aj,0 + aj,1rj,t + aj,2rj,t−1 + σj,t+1εj,t+1,

σ2
j,t+1 = ωj + (αj + γj1{εj,t < 0}) ε2

j,t + βjσ
2
j,t,

where rj,t is the log return of the j-th FX rate at time t and σj,t the volatility of the j-th FX rate
at time t. To determine the model fit, residuals are assumed to follow a t-distribution. This is a
common assumption when applying the ARMA-GARCH filter to financial returns. See Appendix
Appendix D.2 for goodness-of-fit testing results that confirm that residuals of the filtered FX return
series are approximately following a t-distribution. After applying an ARMA-GJR-GARCH filter
to the time series data, standardized residuals can be retrieved as follows

ε̃jt =
rj,t − E (rj,t|Ft−1)√

Var (rj,t|Ft−1)
,

where E (rjt|Ft−1) is the conditional expectation of rj,t given the information available one timestep
before (denoted by the sigma algebra Ft−1) and Var (rj,t|Ft−1) the conditional variance of the log
return at time t given the information available at time t− 1. See Patton (2013) for an elaborate
discussion on this filtering approach. To illustrate the effect of the filter, Figure 6.1.2 shows
the autocorrelation pattern of daily and monthly log returns of the EURGBP rate before and
after applying the ARMA-GJR-GARCH filter. Whereas the unfiltered log returns exhibit serial
dependence, especially for monthly returns, the autocorrelations of the filtered log returns suggest
that the filtered series are time independent. See Appendix D.1 for an overview of the results
of the filtering process for the timeseries of all considered FX rates. After applying the filter,
standardized residuals are tested for serial dependence. The results show that the filter effectively
removes temporal dependence (Appendix D.2).

Figure 6.1.2: Autocorrelation for different lags for daily and monthly log returns of the EURGBP rate
before and after applying the ARMA(2,0)-GJR-GARCH(1,1) filter.

The standardized residuals of the ARMA-GJR-GARCH filtered log return series are ultimately
used to assess the extremal dependence structure between several FX rates in the next sections. It
is important to note that since copulas are invariant under monotone transformations, the marginal
transformations applied to the original return series do not change the dependence structure be-
tween the FX rates. That is, the copula of the standardized residuals is the same as the copula of
the log return series. However, since the residuals do not contain temporal dependence (in theory),
it is easier to distill the true dependence structure of the data. Figure 6.1.3 illustrates the impor-
tance of the filtering procedures. The left-hand panels contain scatterplots for the raw EURUSD
and EURGBP rates on their original scale (top) and on the copula scale (bottom). Due to serial
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dependence and nonstationarity of the time series, the dependence structure is heavily distorted
and does not resemble any known parametric copula model. The rank correlation is estimated to
be ρ = 0.25, and the bivariate TDC is estimated as λ = 0, indicating tail independence. The log
return series presented in the middle panels yield significantly higher dependence measures: the
estimated rank correlation equals ρ = 0.51, and the estimated bivariate TDC equals λ = 0.41. By
taking the log returns the time series are less heavily distorted. Finally, the ARMA-GJR-GARCH
filtered monthly log returns are plotted in the right-hand panels. In theory, these series do not
contain time dependence, and, consequently, the copula plot (bottom) should only reflect the de-
pendence between the two FX rates. The dependence measures of the filtered log returns are
slightly lower than for the unfiltered log returns: the rank correlation is estimated to be ρ = 0.47,
and the estimated TDC equals λ = 0.30. Hence, in the presence of serial dependence, the (tail)
dependence structure might be overestimated.

Figure 6.1.3: Scatterplots for the FX rates (left panels), monthly log returns (mid panels), and
ARMA-GJR-GARCH filtered monthly log returns (right panels) of the EURGBP and EURUSD rates on
the original scale (top) and the copula scale (bottom).

Finally, it should be noted that we implicitely assume that the tail dependence structure is
constant over the considered timeframe. This is not necessarily a trivial assumption since evidence
has been presented that the overall dependence structure between financial-asset returns is time-
dependent. See, for example, Hartmann et al. (2006) and Peng and Lon (2012). One way to account
for time-varying dependence is to impose a parametric model with an autoregressive structure for
the parameters. See, e.g., Manner and Reznikova (2012), Almeida and Czado (2010), and Almeida
et al. (2012) for research on such approaches. Alternatively, (Markov) regime switching models can
be employed to account for structural breaks in the dependence structure. See, e.g., Chollete et al.
(2009), Stöber and Czado (2014) and Fink et al. (2016) for applications of copula regime switching
models. However, data constraints in estimating extreme value structures make it very challenging
to test for different dependence structures. Camilo et al. (2014) present a parametric approach
to model a time-dependent bivariate tail dependence structure. Since this is not the scope of this
thesis, we simply assume that the dependence structure is time independent.
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6.2 Tail dependence in European FX markets (3D)
This section is concerned with the trivariate tail dependence structure between the following three
European FX rates: EURGBP (Euro-British Pound), EURSEK (Euro-Swedish Krona), and EU-
RNOK (Euro-Norwegian Krone). The time series of these exchange rates are shown in Figure
6.2.1. Some noticeable trends can be observed from these timeseries. For example, the value of
the Euro compared to the other three currencies increased significantly in 2008-2009. This can
be explained by the fact that during crises, people tend to prefer larger, more stable currencies
over relatively smaller currencies. As such, the Euro would be one of the go-to currencies when
the economy takes a turn for the worse and can be considered a safe haven currency during these
times (Ranaldo and Söderlind, 2010). As of 2012, the Swedish economy proved to recover stronger
from the past economic crisis than the Norwegian economy, looking at indicators such as GDP
growth. However, due to decreasing oil prices and fears for a housing crisis in both Norway and
Sweden, both currencies lost value against the Euro in the past years. Lastly, the British Pound
lost value against the Euro after the Brexit referendum in 2016. This may explain the quick rise
of the EURGBP rate in 2016.

Figure 6.2.1: Time series of the considered EUR-exchange rates.

Following the methodology described in Section 6.1, the tail dependence structure between the
EURGBP, EURNOK, and EURSEK rates is investigated based on standardized residuals of fil-
tered marginal log returns. To get an initial overview of the data, pairwise dependence structures
between these residuals are shown on the copula unit scale in Figure 6.2.2. Overall, there seems
to be a positive dependence structure between the considered variables, which is also reflected by
the positive pairwise rank correlations that are equal to 0.16, 0.09, and 0.47, for respectively the
EURGBP-EURNOK, EURGBP-EURSEK, and the EURNOK-EURSEK combinations. Especially
the EURNOK and EURSEK exchange rates exhibit quite a strong positive dependence structure.
This can be explained by the fact that the two Scandinavian countries have a strong trading re-
lationship and a large overlap in their import and export products (most notably: petroleum).
The clustering of observations in the upper and lower orthants suggests that the EURSEK and
EURNOK exchange rates might be tail dependent, whereas the dependence structures between
the other two pairs look close to independent.

Note that it depends on the position of an FX exposure whether positive or negative returns
correspond to losses. We first assume a short EUR position for all exposures. This corresponds to
the scenario where a company makes profits denoted in another currency and then buys Euros to
retrieve its EUR-denoted profits. In this case, a cheap Euro is favorable and positive returns on the
EUR-exchange rate correspond to losses. Extreme losses are therefore represented by observations
in the upper right orthant of the copula plot. In order to magnify these large values, the variables
are further transformed to unit-Pareto margins (see Figure 6.2.3). Recall from Section 3.2.2 that
these figures can be interpreted based on the spectral measure: if points are mainly concentrated
on the x- and y-axis, as can be observed for the EURGBP-EURNOK and EURGBP-EURSEK
plots, only one main variable contributes to large norms of vector-observations. This indicates tail
independence: variables are not usually large together. Points that are scattered between the axes
correspond to vector-observations for which both components are large, indicating tail dependence.
This pattern can be seen in the EURSEK-EURNOK Pareto plot.
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Figure 6.2.2: Pairwise copula plots for the standardized residuals of ARMA-GJR-GARCH filtered daily
log returns of three EUR-exchange rates.

Figure 6.2.3: Pairwise Pareto plots for the residuals of ARMA-GJR-GARCH filtered daily log returns
of three EUR-exchange rates assuming a short EUR position.

The tail dependence strength can be assessed with the multivariate TDC Λ (Section 4.2.3).
Furthermore, test statistics developed in Section 5.2 can be evaluated to classify the tail depen-
dence structure as either tail dependent or tail independent. Table 6.2.1 presents the estimated
multivariate TDCs based on the empirical STDF and the bias-corrected version of Beirlant et al.
(2016), combined with test statistic and p-values for the corresponding multivariate TDC-based
tests. Since the time horizon of corporations is usually longer than one day, results are determined
for a range of different time horizons.

Table 6.2.1: Trivariate TDCs and test statistics with p-values for different return horizons of
EUR-exchange rates given a short EUR position.

1-day 1-month 3-months 6-months 12-months

Empirical STDF TDC (Λ) 0.14 0.14 0.12 0.14 0.19
(NP) Test statistic (Tn) 1.81 -0.60 -4.60 -0.99 -3.06

p-value 0.77 0.40 0.03 0.34 0.11

Bias-corrected TDC (Λ) 0 0 0 0.09 0
(NP-BC3) Test statistic (Tn) -0.29 -0.73 0.13 -0.18 -0.56

p-value 0.46 0.39 0.52 0.47 0.42
Calculations are based on k = 1% of the standardized residuals of the filtered log return observations. NP denotes
the empirical STDF estimator, NP-BC3 denotes the bias-corrected estimator of Beirlant et al. (2016).

The results show that the standard estimate of the TDC is approximately equal to Λ = 0.15 for
all time horizons, indicating that there might be a similar light tail dependence structure for these
different return series. However, only for the 3-month horizon does the TDC-based test indicate
that the extremal dependence structure is significantly different from being independent. The bias-
corrected estimates indicate that the FX rates are tail independent. These findings suggest that
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the considered EUR-exchange rates are in fact asymptotically independent but exhibit residual
dependence above high but finite thresholds.

To get a better picture of the tail dependence structure between the three considered FX rates,
the full extremal dependence structure is assessed based on pairwise estimates of the STDF. Figure
6.2.4 shows the beta-copula smoothed estimated `-functions for 3-month log returns. As explained
in Section 3.4.2, the stable tail dependence function restricted to the unit simplex contains all
information on the function and is also commonly called the Pickands dependence function. It can
be seen that the EURGBP and EURNOK rates are estimated to be asymptotically independent,
whereas the other two FX pairs exhibit some very small deviations from tail independence.

Figure 6.2.4: Estimated pairwise STDFs for EUR-exchange rates given a short EUR position based on
the beta-copula smoothed empirical STDF using k = 1% of tail observations of the standardized residuals
of the filtered 3-month log returns.

However, pairwise dependence functions might not show the full picture of the extremal depen-
dence structure since higher order interaction terms might also play a role. Therefore, the trivariate
STDF is shown in Figure 6.2.5 below for both 3-month and annual log returns. The deviation from
the tail independent structure is very small for both return horizons and the dependence structures
look almost identical. Based on the visualizations of the data and the estimated tail dependence
functions and coefficients, it can be concluded that the three European FX rates might exhibit
very light tail dependence, mostly coming from the tail dependence between the EURSEK and the
EURNOK rates, but are most likely asymptotically independent. This indicates that the consid-
ered EUR-exchange rates do not tend to show simultaneous positive shocks, limiting the tail risks
associated with a short EUR position for these exposures.

Figure 6.2.5: Estimated trivariate STDFs for EUR-exchange rates given a short EUR position based on
the beta-copula smoothed empirical STDF using k = 1% of tail observations of the standardized residuals
of the filtered 3-month (left-hand-side) and 12-month (right-hand-side) log returns.

In contrast to the short EUR position, a long EUR position is now assumed for all European FX
exposures. This corresponds to the scenario where a company makes expenses denoted in another
currency and therefore has to sell Euros to retrieve the other currency. In this case, a valuable
Euro is favorable and negative returns on the EUR exchange rate correspond to losses. Extreme
losses are now represented by observations in the lower left orthant of the copula plot. By taking
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negative log returns, these observations are moved to the upper right orthant and the analysis can
be conducted in exactly the same way as before. Table 6.2.2 shows estimated TDC-values and
testing results. The results suggest that for all considered time horizons of one month or longer,
the data exhibit light tail dependence with an approximate TDC of Λ = 0.13. However, only
for the 1-month horizon does the TDC-based hypothesis test indicate that the tail dependence
structure is significantly different from the independent dependence structure. The bias-corrected
results indicate again that the EUR-exchange rates are tail independent.

Table 6.2.2: Trivariate TDCs and test statistics with p-values for different return horizons of
EUR-exchange rates given a long EUR position.

1-day 1-month 3-months 6-months 12-months

Empirical STDF TDC (Λ) 0.04 0.14 0.12 0.12 0.13
(NP) Test statistic (Tn) -1.50 -4.19 -1.81 -2.69 -2.19

p-value 0.27 0.04 0.23 0.14 0.19

Bias-corrected TDC (Λ) 0 0 0 0.07 0
(NP-BC3) Test statistic (Tn) 0.02 -1.11 -0.95 -0.79 -0.27

p-value 0.50 0.34 0.36 0.38 0.46
Calculations are based on k = 1% of the standardized residuals of the filtered log return observations. NP denotes
the standard empirical STDF estimator, NP-BC3 denotes the bias-corrected estimator of Beirlant et al. (2016).

To get a better picture of the tail dependence structure between the three long EUR exposures,
the full extremal dependence structure is assessed based on estimates of the pairwise STDF. Figure
6.2.6 shows the estimated pairwise `-functions for the 1-month log returns based on the beta-copula
empirical STDF. In contrast to the extremal dependence structure of losses for the short EUR
position, all pairwise dependencies seem to contribute to the full dependence structure here. That
is, all estimated pairwise STDFs deviate slightly from the tail independent STDF.

Figure 6.2.6: Estimated pairwise STDFs for EUR-exchange rates given a long EUR position based on
the beta-copula smoothed empirical STDF using k = 1% of tail observations of the standardized residuals
of the filtered 1-month log returns.

The full trivariate tail dependence function is shown in Figure 6.2.7 for 1-month and 1-year
log returns. The tail dependence structures looks similar for both time horizons and deviates only
slightly from the tail independent STDF. Compared to the short EUR position considered before
(Figure 6.2.5), the tail dependence between losses on the three EUR-exchange rates is stronger for
the long EUR position considered here. This could indicate that negative shocks to the relative
value of the Euro are mainly driven by adverse shocks to the Euro, while positive shocks to the
relative value of the Euro are mainly driven by approximately independent adverse shocks to the
value of the other currencies under consideration. However, the tail dependence is very modest and
based on the testing results and bias-corrected estimates it can be concluded that losses associated
with both long and short EUR positions are tail independent for the considered European FX
rates.
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Figure 6.2.7: Estimated trivariate STDFs for EUR-exchange rates given a long EUR position based on
the beta-copula smoothed empirical STDF using k = 1% of tail observations of the standardized residuals
of the filtered 1-month (left-hand-side) and 12-month (right-hand-side) log returns.

6.3 Tail dependence in worldwide FX markets (5D)
This section concerns the five-dimensional tail dependence structure between the following five
worldwide FX rates: EURUSD (Euro-US Dollar), GBPUSD (British Pound-US Dollar), USDCAD
(US Dollar-Canadian Dollar), USDTRY (US Dollar-Turkish Lira), and USDRUB (US Dollar-
Russian Ruble). The time series of these exchange rates are shown in Figure 6.3.1.

Figure 6.3.1: Time series of the considered USD-exchange rates.

Several trends can be observed from these time series. First of all, similar to the Euro, the
US Dollar is a relatively large and stable currency and can be considered a safe haven currency
during times of economic distress (Ranaldo and Söderlind, 2010). This might explain the increase
in value of the USD relative to the GBP, CAD, TRY and RUB currencies during the past financial
crisis. A sharp decline of the Euro against the Dollar can be observed in 2014. Factors that may
have contributed to this movement are the quantitative easing policy of the ECB and the Greek
sovereign debt crisis. The Russian Ruble also plunged against the US Dollar in this timeframe.
Decreasing oil prices played a large role here, Russia being one of the main oil exporters in the
world. The Turkish Lira has consistenly lost value against the US Dollar during the past decade.
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This is mostly due to political instability causing a Turkish capital flight to more stable currencies
such as the USD. Finally, the Brexit effect is also visible for the GBPUSD rate in 2016.

Following the methodology described in Section 6.1, the tail dependence structure between the
FX rates is investigated based on standardized residuals of filtered marginal log returns. To get
an initial overview of the data, the pairwise dependence structures are shown on the copula unit
scale in Appendix D.3. A selection of pairwise copula plots is shown in Figure 6.3.2 below.

Figure 6.3.2: Selection of pairwise copula plots for the standardized residuals of ARMA-GJR-GARCH
filtered daily log returns of five USD-exchange rates.

Overall, there seems to be a positive dependence structure between the considered variables,
which is also reflected by the pairwise rank correlations (see Table 6.3.1). The presence of tail
dependence is indicated by the clustering of observations in the upper right and lower left orthants
of the copula plots. Generally speaking, extremal dependencies between the USD-exchange rates
can be caused by either a single shock in the currency value of the common denominator, i.e., the
US Dollar, or by a joint shock in two or more of the other currency values. Interlinkages between
currency regions based on trading relationships or based on similar import or export products can
cause such joint shocks in multiple currency values.

Table 6.3.1: Rank correlations between the considered USD-exchange rates.

EURUSD USDCAD USDTRY USDRUB USDGBP

EURUSD 1.00 0.51 0.43 0.28 0.60
USDCAD 0.51 1.00 0.52 0.37 0.50
USDTRY 0.43 0.52 1.00 0.32 0.39
USDRUB 0.28 0.37 0.32 1.00 0.25
USDGBP 0.60 0.50 0.39 0.25 1.00
The correlations are computed for the ranked standardized residuals of the ARMA-
GJR-GARCH filtered daily log returns of the FX rates. Positive returns correspond to
an increasing value of the USD. The signs of the returns on the EURUSD and GBPUSD
rates have been changed.

To continue the analysis, we first assume a short USD position for all FX exposures. This
corresponds to the scenario where a company makes profits denoted in another currency and then
buys US Dollars to retrieve its USD-denoted profits. Alternatively, this scenario corresponds to
the unwinding of a currency carry trade. This investment strategy exploits differences between
interest rates by lending money against a low interest rate in one currency (in this case the USD)
and then receiving a higher interest rate in another currency (e.g., the Turkish Lira). At the end
of the currency carry trade, the foreign currency has to be converted back to the USD to repay the
loan. Since the future exchange rate at this point is uncertain, the strategy involves FX risk. A
cheap USD is favorable and positive returns on the USD correspond to losses. Extreme losses are
therefore represented by observations in the upper right orthant of the copula plot. By transforming
the variables to the Pareto scale, we zoom in on these upper orthants. The figures are shown in
Appendix D.3. A selection of the Pareto plots is shown in Figure 6.3.3 below. Recall that a
concentration of points on the x- and y-axis indicates tail independence, whereas points scattered



6.3. Tail dependence in worldwide FX markets (5D) 115

between the axes indicates tail dependence. Since some observations are scattered between the
axes, these figures support the hypothesis of tail dependence between the losses on a short USD
exposure.

Figure 6.3.3: Selection of pairwise Pareto plots for the standardized residuals of ARMA-GJR-GARCH
filtered daily log returns of five USD-exchange rates assuming a short USD position.

To quantify the strength of the tail dependence between the five USD-exchange rates, the
multivariate tail dependence coefficient Λ and the related test statistics are determined (Table
6.3.2). Similar as for the trivariate European FX example, the results are shown for a range of
different return horizons and for both the standard empirical STDF and the bias-corrected version
thereof. The TDC-values that are estimated with the standard empirical STDF indicate that the
five FX rates are tail dependent with a TDC-value ranging from Λ = 0.21 for a 1-day return horizon
to Λ = 0.36 for a 1-month return horizon. On the other hand, the TDC-values that are estimated
with the bias-corrected estimator indicate that the considered FX rates are tail independent. This
is also suggested by most testing results; only for the 6-month return horizon does the TDC-based
test reject the null hypothesis of tail independence.

Table 6.3.2: Multivariate TDCs and test statistics with p-values for different return horizons of
USD-exchange rates given a short USD position.

1-day 1-month 3-months 6-months 12-months

Empirical STDF TDC (Λ) 0.21 0.36 0.25 0.24 0.23
(NP) Test statistic (Tn) -4.02 -1.68 -2.50 -5.76 1.15

p-value 0.10 0.30 0.21 0.03 0.64

Bias-corrected TDC (Λ) 0 0 0 0 0
(NP-BC3) Test statistic (Tn) 0.48 -4.98 12.11 7.79 -1.37

p-value 0.56 0.07 1.00 0.99 0.35
Calculations are based on k = 1% of the residuals of the filtered log return observations. NP denotes the standard
empirical STDF estimator, NP-BC3 denotes the bias-corrected empirical STDF estimator of Beirlant et al. (2016).

To further assess the tail dependence structure, the STDF is estimated for all pairs of the
considered FX rates. Figure 6.3.4 shows the estimated `-function for a selection of FX pairs. See
Appendix D.4 for all figures. All estimated dependence functions deviate quite a bit from the
tail independent STDF. This indicates that all pairs contribute to the multivariate tail depen-
dence structure between the five USD-exchange rates. The full tail dependence structure cannot
be visualized since the problem is 5-dimensional. However, the trivariate `-functions can be ex-
plored to further assess extremal dependence between the FX rates. Figure 6.3.5 shows the esti-
mated trivariate STDF based on the beta-copula for the EURUSD-GBPUSD-USDRUB and the
USDCAD-USDTRY-USDRUB. Both estimated dependence functions deviate significantly from
the tail independent STDF. However, since the hypothesis tests and the bias-corrected results in-
dicate tail independence, this might be due to strong residual dependence above high but finite
thresholds.



116 Chapter 6. Tail dependence in FX markets

Figure 6.3.4: Selection of estimated pairwise STDFs for USD-exchange rates given a short USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail observations of the
standardized residuals of the filtered 1-month log returns.

Figure 6.3.5: Selection of estimated trivariate STDFs for USD-exchange rates given a short USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail observations of the
standardized residuals of the filtered 1-month log returns.

Next, a long USD position is assumed for all FX exposures. Recall that this corresponds to the
scenario where a company makes expenses in another currency and has to sell US Dollars. A strong
USD is favorable and negative returns on the USD exchange rates correspond to losses. Extreme
losses are represented by observations in the lower left orthant of the copula plots, but by taking
negative log returns, these observations are shifted to the upper right orthant. Table 6.3.3 present
the estimated multivariate TDCs and the test statistics. Whereas the standard empirical STDF
indicate that the multivariate TDC is approximately equal to Λ = 0.2 − 0.3, the bias-corrected
STDF estimator indicates again that the data are in fact tail independent.

Table 6.3.3: Multivariate TDCs and test statistics with p-values for different return horizons of
USD-exchange rates given a long USD position.

1-day 1-month 3-months 6-months 12-months

Empirical STDF TDC (Λ) 0.28 0.29 0.20 0.21 0.25
(NP) Test statistic (Tn) -2.64 -7.78 -1.66 -3.21 -2.34

p-value 0.20 0.01 0.30 0.15 0.23

Bias-corrected TDC (Λ) 0 0 0 0 0
(NP-BC3) Test statistic (Tn) -2.05 -0.73 1.08 8.77 2.77

p-value 0.28 0.42 0.62 0.99 0.79
Calculations are based on k = 1% of the residuals of the filtered log return observations. NP denotes the standard
empirical STDF estimator, NP-BC3 denotes the bias-corrected empirical STDF estimator of Beirlant et al. (2016).

The tail dependence structure between losses on a long USD exposure for the considered USD-
exchange rates can be further assessed based on estimates of the STDF. Figure 6.3.6 shows a selec-
tion of the estimated pairwise `-functions and we refer to Appendix D.4 for all figures. Although
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all pairs deviate slightly from the tail independent `-function, the bivariate tail dependencies are
weaker than for the short USD position. The estimated trivariate STDFs shown in Figure 6.3.7
also suggest this. In contrast to our findings for the EUR exposures, positive shocks to the value of
the USD exhibit stronger tail dependence than negative shocks in the value of the USD relative to
the other five considered currencies. The safe-haven property of the USD can offer an explanation
for this phenomenon.

Figure 6.3.6: Selection of estimated pairwise STDFs for USD-exchange rates given a long USD position
based on the beta-copula smoothed empirical STDF using k = 1% of tail observations of the
standardized residuals of the filtered 1-month log returns.

Figure 6.3.7: Selection of estimated trivariate STDFs for USD-exchange rates given a long USD
position based on the beta-copula smoothed empirical STDF using k = 1% of tail observations of the
standardized residuals of the filtered 1-month log returns.
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Chapter 7

Conclusion

Multivariate tail dependence captures the extent to which extremes of a vector of random variables
are likely to occur together. In the context of finance, simultaneous extreme events can have a
significant impact on companies, investors, or the economy as a whole. Therefore, this thesis aimed
to find suitable characterizations of the multivariate tail dependence structure, both theoretically
and statistically. Based on such characterizations, tail risk can be better understood, and informed
decisions regarding risk management can be made. Three types of tail dependence characterizations
were distinguished: (1) the full tail dependence structure; (2) a summary measure of the strength
of tail dependence; and (3) a classification into either tail dependence or tail independence. Our
main findings regarding these characterizations are summarized.

The full tail dependence structure

There is a plethora of functions to characterize the full multivariate tail dependence structure.
The multivariate extreme value distribution (MEVD) captures both the extremal behavior of the
margins and the tail dependence structure. The exponent and spectral measure are alternative
representations of the MEVD, but these measures also contain information on the marginal tails. A
copula approach can be taken to disentangle the marginal behavior from the dependence structure.
The copula of the MEVD is a particular type of copula, being an extreme value copula. Based on
the extreme value copula, three dependence functions were considered: the stable tail dependence
function (STDF), Pickands dependence function, and the tail copula. Whereas the STDF captures
the conditional probability that at least one component of a random vector is large, the tail copula
captures the conditional probability that all components of a random vector are large. The tail
copula therefore only captures part of the multivariate extremal behavior, while the STDF fully
describes it. Other attractive properties of the STDF are its bounds between tail independence
and tail comonotonicity, homogeneity of order one, and convexity. Because of its homogeneity, it
is sufficient to define the STDF on the unit simplex. This restriction is called the Pickands depen-
dence function and allows for intuitive visualizations of the tail dependence structure for bivariate
and trivariate problems.

The STDF can be estimated nonparametrically with the empirical STDF or with smoothed
or bias-corrected versions thereof. Some parametric estimation methods are also available, but
especially for higher dimensions, models that are currently developed lack flexibility. The sim-
ulation study presented in Section 5.1.5 showed that both the beta-copula and kernel-smoothed
versions of the empirical STDF slightly outperform the standard estimator in terms of (integrated)
mean squared error, but mainly offer advantages because visualizations of the smoothed STDF are
more intuitive to interpret than the original jumpy empirical STDF. For copula distributions that
converge slowly to their extreme value copula, the bias-corrected versions of the empirical STDF
offer significant reductions in bias and mean squared error. The kernel-smoothed bias-corrected
version of Beirlant et al. (2016) tends to outperform, but a disadvantage is that this method is
computationally expensive.
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Summary measures of tail dependence strength

Summary measures for the strength of tail dependence have been considered in literature almost
exclusively for the bivariate case. The primary statistic is the tail dependence coefficient (TDC)
λ defined as the limiting conditional probability of observing an extreme value of variable X2

given that X1 is extreme. The TDC is directly connected to the tail copula and the STDF, and,
inherently, also to the other dependence characterizations. Extensions of the TDC to capture the
strength of tail dependence for arbitrary dimensions d ≥ 2 are considered based on the connection
with the tail copula and the stable tail dependence function. The STDF-based extension Λ conveys
more information than the tail copula-based extension τ and has some attractive properties. Most
importantly, the multivariate TDC Λ is able to identify tail independence in all dimensions d ≥ 2
which is captured by Main Theorem 2. Because of its relationship with the STDF, the multivariate
TDC Λ can be estimated by evaluating the estimators for the full STDF in the point (1, . . . , 1).
The bias-corrected estimates offer one decimal place accuracy for estimates concerning up to 5
random variables. Besides these first-order tail dependence measures, second order measures have
been suggested to characterize the tail dependence structure in tail independent cases further. The
tail order describes the residual dependence that is left above high but finite thresholds and can
identify tail independence in the bivariate case, but not in higher dimensions.

Classification into tail dependence and tail independence

Finally, the classification of data as either tail dependent or tail independent can be made based
on a hypothesis test. Since both the stable tail dependence function ` and the multivariate TDC
Λ can identify tail independence and can be estimated nonparametrically, these characterizations
are natural candidates to fashion an appropriate test statistic. However, under the null hypothesis
of tail independence, the variance of the STDF estimators vanishes, and the distribution of the
test statistic becomes degenerate. Hüsler and Li (2009) suggest to adjust the empirical STDF
in such a way that high thresholds and exceedances are determined with independent datasets,
resulting in a non-degenerate asymptotic distribution of the estimator under the null hypothesis
of tail independence. Several new STDF-based test statistics were developed to evaluate the null
hypothesis of tail independence by extending this idea to higher dimensions and other estimators.
Specifically, we consider a supremum- and an integral-based test statistic for the empirical STDF,
the kernel-smoothed version, and the bias-corrected version of Beirlant et al. (2016). Although
these are all newly developed tests for the multivariate tail independence testing problem, our main
contribution here is a test statistic based on the multivariate TDC Λ which is also able to identify
dependence (Main Theorem 2) and can be estimated with one of the adjusted STDF estimators. It
is much easier to evaluate the TDC-based test statistic, and since this test statistic is asymptotically
Normal, critical values do not have to retrieved via simulations. Moreover, the simulation study in
Section 5.2.3 indicates that the TDC-based test is more powerful than the test statistics based on
the entire STDF. The smoothed and bias-corrected versions did not offer consistent improvements.
As an alternative to the multivariate testing approach, a multiple pairwise testing approach was
also considered, where the p-values for the bivariate tests were adjusted to correct for the multiple
testing problem at hand. This multiple testing approach is significantly less powerful than the
multivariate testing approach.

Suggestions for further research

Several directions for further research have been encountered. As mentioned in Section 5.2, rela-
tively little is known on testing procedures to classify data as either tail dependent or tail indepen-
dent, especially for multivariate data. We have contributed to existing literature by introducing
several new multivariate test statistics based on the STDF and the multivariate TDC Λ for eval-
uating the null hypothesis of tail independence. The performance of these new testing procedures
can be further assessed by taking into consideration higher-dimensional data or by exploring the
effect of specifying other model parameters. Especially the parameters for bias-corrected testing
procedures might improve the performance of those tests. The multiple testing approach presents
another line of research. Methods to adjust the p-values for the multiple testing problem currently
cause the tests to lose a significant amount of power. Alternative methods to undertake the mul-
tiple testing problem can be researched to improve the pairwise testing approach. More generally,
efforts could be made to develop an improved testing procedure by adapting the STDF estimator
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in such a way that the asymptotic distribution does not become degenerate without splitting the
sample. Since the currently employed method does not use data efficiently, the adjusted empirical
STDF has a relatively high variance and needs massive amounts of data to yield satisfactory re-
sults. An STDF-based testing statistic that uses data more efficiently might improve the accuracy
of the hypothesis tests significantly.

Further research can also be undertaken concerning several applications of the multivariate
tail dependence structure. First of all, bounds on tail risk measures such as the VaR and the ES
can be developed based on our characterizations of tail dependence. As mentioned in Chapter 1,
currently developed bounds on these tail risks measures entail too much uncertainty. By incor-
porating information on, for example, the classification of (groups of) data as tail dependent or
tail independent, uncertainty can be reduced. The multivariate TDC Λ might also be applied to
retrieve a more accurate estimation of tail risk. Many other applications in finance can also be
considered for further research. For example, it would be exciting to incorporate the extremal de-
pendence behavior into the pricing of basket options or credit default swaps. Another application
could be to optimize portfolio compositions based on minimal tail risk constraints as measured by
the multivariate TDC Λ.
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Appendix A

Multivariate regular variation

Univariate regular variation

A key concept in extreme value analysis is regular variation. See for example Chapter 2 of Resnick
(2007) for an exposition on the subject. Another standard reference on the topic of regular variation
is Bingham et al. (1987). Resnick (2004) provides an accessible overview.

Definition A.1. A measurable function U : R+ → R+ is regularly varying at ∞ with index α
(notation: U ∈ RVα) if for any x > 0,

lim
t→∞

U(tx)

U(t)
= xα. (A.0.1)

For α = 0 the function U is said to be slowly varying at ∞, written as U ∈ RV0.

The definition for (slow) regular variation at 0 can be defined similarly. A slowly varying
function will be represented by L (x). Note that since U(x)/xα ∈ RV0 for U ∈ RVα, a regularly
varying function U can be written as U(x) = xαL (x). Hence, regularly varying functions behave
asymptotically like power functions. It turns out, that regularly varying functions also behave
like power functions when it comes to integrating and differentiating. This is given formally by
Karamata’s theorem. The proof is given in Resnick (2007).

Theorem A.1. (Karamata’s theorem). Suppose α ≥ −1 and U ∈ RVα. Then
∫ x

0
U(t)dt ∈

RVα+1 and

lim
x→∞

xU(x)∫ x
0
U(t)dt

= α+ 1.

If α < −1 (or if α = −1 and
∫∞
x
U(s)ds < ∞), then U ∈ RVα implies that

∫∞
x
U(t)dt is finite,∫∞

x
U(t)dt ∈ RVα+1, and

lim
x→∞

xU(x)∫∞
x
U(t)dt

= −α− 1.

Furthermore, if U satisfies

lim
x→∞

xU(x)∫ x
0
U(t)dt

= β ∈ (0,∞),

then U ∈ RVβ−1. If
∫∞
x
U(t)dt <∞ and

lim
x→∞

xU(x)∫∞
x
U(t)dt

= β ∈ (0,∞),

then U ∈ RV−β−1.

For regularly varying distributions, Karamata’s theorem implies a relationship between the
distribution function and the density function. This is captured by the following theorem.
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Theorem A.2. Suppose that the distribution function F : R+ → [0, 1] is absolutely continuous
with density f , i.e.,

F (x) =

∫ x

0

f(t)dt, x ≥ 0.

If F = 1− F ∈ RV−α, α > 0, and f is monotone, then f ∈ RV−α− 1.

Multivariate regular variation

Multivariate regular variation (MRV) can be most easily delt with on cones in Rd. We say that
C ⊂ Rd is a cone if the following holds: x ∈ C if and only if tx ∈ C for every t > 0. In general,
multivariate regularly varying functions are defined as follows (Resnick, 2007).

Definition A.2. Suppose h ≥ 0 is a measurable function defined on a cone C. Suppose 1 =
(1, . . . , 1) ∈ C. We call h multivariate regularly varying with limit function ζ, provided ζ(x) > 0
for x ∈ C, and for all x ∈ C, we have

lim
t→∞

h(tx)

h(t1)
= ζ(x). (A.0.2)

The limit function ζ necessarily is homogeneous of order α with α ∈ R. That is, ζ(sx) = sαζ(x)
for all s > 0. Furthermore, h(tx) ∈ RVα.

For random variables, multivariate regular variation can be defined based on multivariate reg-
ular variation of the distribution function.

Definition A.3. Let F be a d-variate distribution function with support [0,∞)d and let 1 =
(1, . . . , 1) be a vector in Rd. Then F is said to be regularly varying on (0,∞)d if there exists a
function λ : (0,∞)d → (0,∞) such that

lim
t→∞

1− F (tx)

1− F (t1)
= λ(x), x ∈ (0,∞)d, (A.0.3)

with λ(sx) = s−αλ(x). That is, the limit function λ has to be homogeneous of order α.

This definition indicates that MRV describes the relative decay rates of joint tail probabilities
of a random vector. For large values of the index α, the probability of an extreme event decays
much faster than for small values of the index α.

Finally, an alternative definition of multivariate regular variation can be given as follows
(Rvačeva, 1962).

Definition A.4. A random vector X ≥ 0 is multivariate regularly varying if there exist an index
α > 0, and a Radon probability measure Φ (i.e., finite on compact sets) on Θ = {z ∈ Rd : ||z|| = 1},
the unit hypersphere, such that

lim
t→∞

P(||X|| ≥ tx,X/||X|| ∈ A)

P(||X|| ≥ t)
= x−αΦ(A), (A.0.4)

for every x > 0 and Borel set A in Θ with Φ(∂A) = 0, with ||X|| the L2-norm of X .

Equivalently, a random vector X ≥ 0 is said to be multivariate regularly varying if

lim
t→∞

P(||X|| ≥ tx)

P(||X|| ≥ t)
= x−α, (A.0.5)

for an index α > 0 and for every x > 0, and if there exists a Radon measure µ (i.e., finite on
compact sets) on E := [0,∞]\{0} such that,

lim
t→∞

P(X ∈ tB)

P(||X|| > t)
= µ(B), (A.0.6)

for any relatively compact set B ⊂ E with µ(∂B) = 0, where || · || denotes a norm on Rd (Resnick,
1987). Note that µ is homogeneous of order α and is a probability measure on {z ∈ Rd : ||z|| ≥ 1}.
The intensity measure µ that satisfies this scaling property of order −α, contains the extremal
dependence information of X. For large values of α, the conditional probability of an extreme set
decays much faster than for small values of α.



Appendix B

Proofs

B.1 D-vine tail density
Theorem 3.7. (Li and Wu, 2013). Suppose CF is a d-dimensional D-vine copula and assume that
all bivariate linking copulas CF ;ij have continuous densities and satisfy the uniform convergence
properties. If the baseline linking copula CF ;i,i+1 are all upper tail dependent, then

Υ{1,...,d}(w)

Υ{2,...,d−1}(w{2,...,d−1})
=

Υ{1,...,d−1}(w{1,...,d−1})

Υ{2,...,d−1}(w{2,...,d−1}

Υ{2,...,d}(w{2,...,d})

Υ{2,...,d−1}(w{2,...,d−1})

· c1,d|2,...,d−1

(
1− t1|2,...,d−1

(
w1|w{2,...,d−1}

)
, 1− td|2,...,d−1

(
wd|w{2,...,d−1}

))
,

where for j ∈ {1, . . . , d}, and S ⊆ {1, . . . , d}\{j},

tj|S (wj |wS) = lim
u↓0

Cj|S (1− uwj |1− uwi, i ∈ S)

=

∫ wj

0

ΥS∪{j}(w̃j ,wS)

ΥS(wS)
dw̃j .

Proof. (Different from the proof presented by Li and Wu (2013)). Recall from Section 2.4 that the
density c of the d-dimensional D-vine copula C is given by

c(x1, . . . , xd) =

d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Ci|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1),

Ci+j|i+1,...,i+j−1(xi+j |xi+1, . . . , xi+j−1)
)
.

The tail density for the D-vine copula is therefore defined as,

Υ{1,...,d}(w) = lim
t↓0

td−1c(1− twi, 1 ≤ i ≤ d)

= lim
t↓0

td−1
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Ci|i+1,...,i+j−1(1− twi|1− twi+1, . . . , 1− twi+j−1),

Ci+j|i+1,...,i+j−1(1− twi+j |1− twi+1, . . . , 1− twi+j−1)
)
.

Note that for a subset S ⊆ {1, . . . , d} the following holds,

lim
t↓0

Ci|S(1− twi|1− twj , j ∈ S) = lim
t↓0

P (Ui > 1− txi|Uj = 1− txj , j ∈ S)

= lim
t↓0

∫ 1

1−txi
ci|S(wi|1− txj , j ∈ S)dwi

= lim
t↓0

∫ xi

0

t · ci|S(1− tvi|1− txj , j ∈ S)dvi

=

∫ xi

0

Υi∪S(vi, xj , j ∈ S)

ΥS(xj , j ∈ S)
dvi,
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where ΥS denotes the marginal copula tail density of the variables Xi : i ∈ S.
For notational convenience, the arguments of the conditional copula densities are dropped in

the following, but they are always defined as above. Similar expressions for partial copula tail
density functions can then be derived as

Υ{1,...,d−1}(w) = lim
t↓0

td−2c(1− twi, 1 ≤ i ≤ d− 1) = lim
t↓0

td−2
d−2∏
j=1

d−1−j∏
i=1

ci,i+j|i+1,...,i+j−1,

Υ{2,...,d}(w) = lim
t↓0

td−2c(1− twi, 2 ≤ i ≤ d) = lim
t↓0

td−2
d−2∏
j=1

d−j∏
i=2

ci,i+j|i+1,...,i+j−1,

Υ{2,...,d−1}(w) = lim
t↓0

td−3c(1− twi, 2 ≤ i ≤ d− 1) = lim
t↓0

td−3
d−3∏
j=1

d−1−j∏
i=2

ci,i+j|i+1,...,i+j−1.

Using these expressions, it can be deduced that

Υ{1,...,d}(w)

Υ{2,...,d−1}(w)
= lim

t↓0
t2

(∏d−3
j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1 · c1,1+j|2,...,j · cd−j,d|d−j+1,...,d−1

)
∏d−3
j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1

×
c1,d−1|2,...,d−2 · c2,d|3,...,d−1 · c1,d|2,...,d−1∏d−3

j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1

= lim
t↓0

t2 · c1,d−1|2,...,d−2 · c2,d|3,...,d−1 · c1,d|2,...,d−1

d−3∏
j=1

c1,1+j|2,...,j · cd−j,d|d−j+1,...,d−1,

Υ{1,...,d−1}(w)

Υ{2,...,d−1}(w)
= lim

t↓0
t

(∏d−3
j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1 · c1,1+j|2,...,j

)
· c1,d−1|2,...,d−2∏d−3

j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1

= lim
t↓0

t · c1,d−1|2,...,d−2

d−3∏
j=1

c1,1+j|2,...,j ,

Υ{2,...,d}(w)

Υ{2,...,d−1}(w)
= lim

t↓0
t

(∏d−3
j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1 · cd−j,d|d−j+1,...,d−1

)
· c2,d|3,...,d−1∏d−3

j=1

∏d−1−j
i=2 ci,i+j|i+1,...,i+j−1

= lim
t↓0

t · c2,d|3,...,d−1

d−3∏
j=1

cd−j,d|d−j+1,...,d−1,

after which it is obvious that

Υ{1,...,d}(w)

λU{2,...,d−1}(w{2,...,d−1})
= lim

t↓0
c1,d|2,...,d−1 ·

Υ{1,...,d−1}(w{1,...,d−1})

Υ{2,...,d−1}(w{2,...,d−1}

Υ{2,...,d}(w{2,...,d})

Υ{2,...,d−1}(w{2,...,d−1})
.

This finalizes the proof. �
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Proposition 3.3. Based on the representation of the copula tail density function for a D-vine
copula, the following results can be deduced:

1. If some baseline linking copulas Ci,i+1 are tail independent (i.e., Υi,i+1 = 0 for some 1 ≤
i ≤ d), then Υ(w) = 0 (Li and Wu, 2013).

2. If all baseline linking copulas Ci,i+1 are tail dependent (i.e., Υi,i+1 > 0 for some 1 ≤ i ≤ d)
and if all linking copulas C{i,j|i+1,...,j−1} have a non-zero density everywhere on [0, 1]2, then
the D-vine copula is tail dependent (i.e., Υ(w) > 0).

Proof. Note that the full copula density can also be decomposed as follows,

Υ{1,...,d}(w) = lim
t↓0

td−1c(1− twi, 1 ≤ i ≤ d)

= lim
t↓0

td−1
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Ci|i+1,...,i+j−1(1− twi|1− twi+1, . . . , 1− twi+j−1),

Ci+j|i+1,...,i+j−1(1− twi+j |1− twi+1, . . . , 1− twi+j−1)
)

= lim
t↓0

td−1

(
d−1∏
i=1

ci,i+1 (1− twi, 1− twi+1)

)

·

(
d−1∏
j=2

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Ci|i+1,...,i+j−1(1− twi|1− twi+1, . . . , 1− twi+j−1),

Ci+j|i+1,...,i+j−1(1− twi+j |1− twi+1, . . . , 1− twi+j−1)
))

,

where

lim
t↓0

td−1
d∏
i=1

ci,i+1(1− twi, 1− twi+1) =

d−1∏
i=1

lim
t↓0

t · ci,i+1 (1− twi, 1− twi+1)

=

d−1∏
i=1

Υ{i,i+1}(wi, wi+1).

Hence, the D-vine copula density can be decomposed in the product of the bivariate copula densities
of the baseline linking copulas and terms coming from the higher level conditional copulas (see
Section 2.4 for terminology). It is straightforward to see from this decomposition that if some of
the baseline linking copulas Ci,i+1 are tail independent (i.e., Υi,i+1 = 0 for some 1 ≤ i ≤ d), then
the full copula density equals Υ{1,...,d} = 0. In contrast, if all baseline linking copulas Ci,i+1 are tail
dependent (i.e., Υi,i+1 > 0 for all 1 ≤ i ≤ d) and all bivariate linking copulas have a non-zero mass
everywhere on [0, 1]2, then the full copula tail density is positive (i.e., Υ{1,...,d} > 0) indicating
that there is tail dependence. �
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B.2 Euler representation of the tail copula
Because of the homogeneity of the tail copula, Euler’s formula provides us with the following
representation,

b(x1, . . . , xd) =

d∑
j=1

xj
∂b

∂xj
.

Since

P (X > x|Y = y) =

∫ ∞
x

fX|Y (ω|y)dω =

∫ ∞
x

fXY (ω, y)

fY (y)
dω

= − 1

fY (y)

∂

∂y

∫ ∞
y

∫ ∞
x

fXY (ω, z)dωdz = − 1

fY (y)

∂

∂y
P (X > x, Y > y) ,

it follows that

∂b

∂xj
=

∂

∂xj
lim
t↓0

CF (1− tx1, . . . , 1− txd)
t

=
∂

∂xj
lim
t↓0

P(U1 > 1− tx1, . . . , Ud > 1− txd)
t

= lim
t↓0

P (Ui > 1− txi, i ∈ Ij |Uj = 1− txj) = lim
t↓0

CF ;IJ |{j} (1− txi, i ∈ Ij |1− txj) .

Defining

tS1|S2
(xi, i ∈ S1|xj , j ∈ S2) = lim

t↓0
P(Ui > 1− txi, i ∈ S1|Uj = 1− txj , j ∈ S2)

= lim
t↓0

CF ;S1|S2
(1− txi, i ∈ S1|1− txj , j ∈ S2) ,

we can write

b(x1, . . . , xd) =

d∑
j=1

xj
∂b

∂xj
=

d∑
j=1

xjtIj |{j}. (B.2.1)

Based on this representation, Joe et al. (2010) present several interesting results that can
ultimately be used to write the tail copula recursively in terms of the copula density.

Proposition B.1. For all 1 ≤ j ≤ d

b(x1, . . . , xd) =

∫ xj

0

tIj |{j}(xi, i ∈ Ij |x)dx =

∫ xj

0

lim
t↓0

CF ;Ij |{j}(1− txi, i ∈ Ij |1− txj)dx. (B.2.2)

Proof. Firstly, note that∫ xj

0

∂b(x1, . . . , ωj , . . . , xd)

∂ωj
dωj = [b(x1, . . . , ωj , . . . , xd]

xj
0 = b(x1, . . . , xd),

where we have used that b is grounded. Secondly,

∂b(x1, . . . , xd)

∂xj
=

∂

∂xj

(
d∑
k=1

xktIk|{k}

)
=

∂

∂xj

 ∑
k∈{1,...,d}\{j}

xktIk|{k} + wjtIj |{j}


=

∑
k∈{1,...,d}\{j}

∂

∂xj
xk lim

t↓0
P (Ui > 1− txi, i ∈ Ik|Uk = 1− txk)

+
∂

∂xj
xj lim

t↓0
P (Ui > 1− txi, i ∈ Ij |Uj = 1− txj)

=
∑

k∈{1,...,d}\{j}

xk lim
t↓0

(−t)P (Ui > 1− txi, i ∈ Ik\{j}|Uk = 1− txk, Uj = 1− txj)

+ lim
t↓0

P (Ui > 1− txi, i ∈ Ij |Uj = 1− txj)

+ xj lim
t↓0

(−t) ∂
∂x

P (Ui > 1− txi, i ∈ Ij |Uj = x)

= lim
t↓0

P (Ui > 1− txi, i ∈ Ij |Uj = 1− txj) = tIj |{j}.
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It follows that

b(x1, . . . , xd) =

∫ xj

0

∂b(x1, . . . , x, . . . , xd)

∂x
dx =

∫ xj

0

tIj |{j}(xi, i ∈ Ij |x)dx

=

∫ xj

0

lim
t↓0

CF (1− txi, i ∈ Ij |1− tx)dx.

�

This result leads to the following representation of the tail copula.

Theorem B.1. (Joe et al., 2010). Let S1, S2 ⊆ I be two non-empty subsets of indices with
S1 ∩ S2 = ∅ and S1 ∪ S2 = I. W.l.o.g., write S1 = {1, . . . , s} and S2 = {s + 1, . . . , d} with
1 ≤ s ≤ d. Assume that the copula C has continuous partial derivatives of order (|S2|+ 1). Then
the tail copula is given by

b(x1, . . . , xd) =

∫ xs+1

0

· · ·
∫ xd

0

tS1|S2
(x1, . . . , xs|ωs+1, . . . , ωd)

∂d−sbS2
(ωs+1, . . . , ωd)

∂ωs+1 . . . ∂ωd
dωs+1 . . . dωd.

(B.2.3)

Proof. (Adapted from the proof in Joe et al. (2010) given for the lower tail copula.) Writing
ti = txi, we first derive an expression for tS1|S2

as follows (using the rules for differentiating under
the integral sign),

tS1|S2
(x1, . . . , xs|xs+1, . . . , xd) = lim

t↓0
CF ;S1|S2

(1− txi, i ∈ S1|1− txj , j ∈ S2)

= lim
t↓0

P(Ui > 1− ti, i ∈ S1|Uj = 1− tj , j ∈ S2)

= lim
t↓0

∫ ∞
1−t1
· · ·
∫ ∞

1−ts

cF (ω1, . . . , ωs, 1− ts+1, . . . , 1− td)
cF ;S2(1− ts+1, . . . , 1− td)

dω1 . . . dωs

= lim
t↓0

∂d−sCF (1− t1, . . . , 1− td)/∂ts+1 . . . ∂td
cF ;S2

(1− ts+1, . . . , 1− td)

= lim
t↓0

∂d−sCF (1− t1, . . . , 1− td)/∂ts+1 . . . ∂td

∂d−sCF ;S2(1− ts+1, . . . , 1− td)/∂ts+1 . . . ∂td

Since by a simple application of the chain rule it follows that

∂d−sCF (1− t1, . . . , 1− td)
∂ts+1 . . . ∂td

= (−t)−d+s ∂
d−sCF (1− tx1, . . . , 1− txd)

∂xs+1 . . . ∂xs

≈ t(−t)−d+s ∂
d−sb(x1, . . . , xd)

∂xs+1 . . . ∂xd
,

as t ↓ 0, we can write

tS1|S2
(x1, . . . , xs|xs+1, . . . , xd) =

∂d−sb(x1, . . . , xd)/∂xs+1 . . . ∂xd
∂d−sbS2

(xs+1, . . . , xd)/∂xs+1 . . . ∂xd
.

By applying Proposition B.1 multiple times, it follows that

b(x1, . . . , xd) =

∫ xs+1

0

· · ·
∫ xd

0

tS1|S2
(x1, . . . , xs|ωs+1, . . . , ωd)

∂d−sbS2
(ωs+1, . . . , ωd)

∂ωs+1 . . . ∂ωd
dωs+1 . . . dωd.

�
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If the conditional tail dependence functions tIj |{j}(·|wj), 1 ≤ j ≤ d, are proper distribution
functions, then the marginal tail dependence functions are given by evaluation of the tail copula
in ∞ (Joe et al., 2010).

Theorem B.2. (Joe et al., 2010). If all bivariate linking copulas of a D-vine C have continuous
second-order partial derivatives, then the tail copula is given by the recursions (for 1 ≤ i < i+ l ≤
d, l ≥ 2):

b{i,...,i+l}(xi, . . . , xi+l) =

∫ xi+1

0

· · ·
∫ xi+l−1

0

t{i,i+l}|{i+1,...,i+l−1}(xi, . . . , xi+l|ωi+1, . . . , ωi+l−1)

×
∂l−1b{i+1,...,i+l−1}(ωi+1, . . . , ωi+l−1)

∂ωi+1 . . . ∂ωi+l−1
dωi+1 . . . dωi+l−1,

up to

b(x1, . . . , xd) =

∫ x2

0

· · ·
∫ xd−1

0

t{1,d}|{2,...,d−1}(x1, xd)|ω2, . . . , ωd−1)

×
∂d−2b{2,...,d−1}(ω2, . . . , ωd−1)

∂ω2 . . . ∂ωd−1
dω2 . . . dωd−1.

If, furthermore, the supports of the bivariate linking copulas are the entire [0, 1]2 and the baseline
copulas are all tail dependent, then C is upper tail dependent.

Proof. The recursions follow immediately from theorem B.1. �
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B.3 TDC-based identification of tail independence

B.3.1 Main Theorem 1

Main Theorem 1. Let X1 and X2 be two continuous random variables joint with a copula CF
that belongs to the maximum domain of attraction of an extreme value copula. The variables X1

and X2 are asymptotically independent if and only if their tail dependence coefficient λ(CF ) is
equal to zero. That is,

CF ∈MDA(Π)⇔ λ(CF ) = 0.

Proof. By the relationship between the TDC and the STDF (Equation 4.2.3) it follows immediately
that if CF ∈ MDA(Π), then λ(CF ) = 2− `(1, 1) = 2− (1 + 1) = 0. Conversely, we have to show
that if λ(CF ) = 0, then CF ∈ MDA(Π). By the relationship between the extreme value copula
and the STDF (Proposition 3.5), it is sufficient to show that if λ(CF ) = 0, then `(x1, x2) = x1 +x2

for any x1, x2 ∈ R+. Alternatively, by the Pickands representation (Section 3.4.2), it is sufficient
to show that if λ(CF ) = 0, then A(t) = A(t, 1 − t) = 1 for any t ∈ [0, 1]. Without making use of
the maximimum principle for convex functions, this is done as follows.

• First of all, note that if λ(CF ) = 0, the relationship between the TDC and the Pickands
dependence function implies that

A(1/2) = 1.

• Recall the properties of the Pickands dependence function from Section 3.4.2. The A-function
is convex and is equal to 1 if it is evaluated in one of the unit vectors. Hence,

A(1) = A(0) = 1.

Furthermore, the bounds of the A-function imply that A(t) ≤ 1 for all t ∈ [0, 1]. Hence, it
is sufficient to show that A(t) ≥ 1 for all t ∈ [0, 1] in order to prove that A(t) = 1 for all
t ∈ [0, 1].

• The proof relies on the convexity of the Pickands dependence function. Formally, the con-
vexity of A implies that for all t1, t2 ∈ [0, 1] and α ∈ [0, 1] the following defining relationship
holds,

A (αt1 + (1− α)x2) ≤ αA(t1) + (1− α)A(t2).

This implies that for any t ∈ [0, 1], t2 ∈ [0, 1] and α ∈ [0, 1],

A(t) ≥ 1

α
(A (αt+ (1− α)t2)− (1− α)A(t2)) .

• The concept of the proof is to show that due to the convexity of A, the only line that can
pass through the three given points, is the horizontal line A(t) = 1. This is done by picking
a point t ∈ (0, 1) and by picking a boundary point t2 (i.e., t2 = 0 or t2 = 1) such that the
mid point 1/2 can be retrieved from a linear combination of t and t2. Note that it is always
possible to pick a boundary point t2 such that this is possible. In order for the convexity
relationship to hold, we must have that for the point t ∈ (0, 1), A(t) ≥ 1. Hence, A(t) = 1.

• Formally, let t ∈ (0, 1) and consider specifying α and t2 such that αt+ (1− α)t2 = 1/2 with
t2 ∈ {0, 1}.

– If t ∈ (0, 1/2), we find by putting t2 = 1 and α = 1/(2− 2t) ∈ (0, 1) that

A(t) ≥ 1

α

(
A

(
t

2− 2t
+

1− 2t

2− 2t

)
− (1− α)A(1)

)
=

1

α

(
A

(
1

2

)
− (1− α)A(1)

)
=

1

α
(1− (1− α)) = 1.
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– Similarly, if t ∈ (1/2, 1), we find by putting t2 = 0 and α = 1/(2t) ∈ (0, 1) that

A(t) ≥ 1

α

(
A

(
t

2t

)
− (1− α)A(0)

)
=

1

α

(
A

(
1

2

)
− (1− α)A(0)

)
=

1

α
(1− (1− α)) = 1.

• Hence, for any t ∈ [0, 1] we have that 1 ≤ A(t) ≤ 1, indicating that A(t) = 1.

�
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B.3.2 Main Theorem 2
Main Theorem 2. Let X1, . . . , Xd be continuous random variables joint with a copula CF that
belongs to the maximum domain of attraction of an extreme value copula. The variables X1, . . . , Xd

are asymptotically independent if and only if their STDF-based multivariate tail dependence coef-
ficient Λ(CF ) is equal to zero. That is,

CF ∈MDA(Πd)⇔ Λ(CF ) = 0.

Proof. If CF ∈MDA(Πd), the STDF is equal to `(x1, . . . , xd) = x1 + · · ·+xd. Hence, in that case
it follows immediately that

Λ(CF ) =
d− `(1, . . . , 1)

d− 1
=
d− d
d− 1

= 0.

Conversely, we have to show that if Λ(CF ) = 0, then CF ∈ MDA(Πd). By the relationship
between the extreme value copula and the STDF (Proposition 3.5), it is sufficient to show that if
Λ(CF ) = 0, then `(x) = x1 + · · · + xd for any x = (x1, . . . , xd) ∈ Rd+. Alternatively, by using the
Pickands representation, it is sufficient to show that if Λ(CF ) = 0, then A(x) = 1 for any x ∈ ∆d.
This is done as follows.

• First of all, note that if Λ(CF ) = 0, the relationship between the multivariate TDC Λ and
the STDF implies that `(1, . . . , 1) = d. Hence, for the Pickands dependence function we must
have that

A(1/d, . . . , 1/d) = 1.

• Recall from Section 3.4.2 that the A-function is convex and is equal to 1 if it is evaluated in
one of the unit vectors:

A(ej) = 1,

for ej the j-th unit vector, 1 ≤ j ≤ d. Since A(x) ≤ 1 for all x ∈ ∆d, it is sufficient to show
that A(x) ≥ 1 in order to prove that A(x) = 1. The aim is therefore to show that A(x) ≥ 1
for all x ∈ ∆d given that A(1/d, . . . , 1/d) = 1 and A(ej) = 1 for all j = 1, . . . , d.

• The proof hinges on the convexity of the Pickands dependence function. Formally, the con-
vexity of A implies that for all x,v ∈ ∆d, and α ∈ [0, 1], the following defining relationship
holds,

A (αx + (1− α)v) ≤ αA(x) + (1− α)A(v).

This implies that for any x,v ∈ ∆d and α ∈ [0, 1],

A(x) ≥ 1

α
(A (αx + (1− α)v)− (1− α)A(v)) .

• In the bivariate case, we showed that if we could find a boundary point such that for any
point x ∈ ∆2, the mid point is a linear combination of the chosen point x and an unit vector,
the A-function had to be greater than or equal to 1 in the point x. Hence, trying to apply
the same technique as for the bivariate proof, we would like to consider as a special case the
above inequality with v and α such that αx+(1−α)v = (1/d, . . . , 1/d) with v = ej for some
j ∈ {1, . . . , d}. However, for a general x it is impossible to always find a suitable unit vector
such that the mid point, (1/d, . . . , 1/d) can be retrieved as a linear combination. Therefore,
we need an extra step.

• For the 3-dimensional case the logic is as follows: we pick a point x ∈ ∆3 and connect it to
an unit vector ej , j ∈ {1, 2, 3}, such that the mid point (1/3, 1/3, 1/3) is a linear combination
of another unit vector ek, k ∈ {1, 2, 3}, and a point y on the line segment between x and ej .
We will show below that it is always possible to pick unit vectors ej and ek such that this is
true. Similar to the bivariate proof, the convexity of the Pickands dependence function yields
that A(y) = 1 in this setting. But then, applying the bivariate argument again, we also find
that A(x) = 1. The concept for the multivariate case is similar, but then we need more unit
vectors to connect a general point x ∈ ∆d to the mid point (1/d, . . . , 1/d) with linear line
segments. The argument explained here is made concrete with the following computations
for d = 3 and for d ≥ 2, in general.
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d = 3

We first consider the proof for the trivariate case. For a given point x ∈ ∆3, a coefficient α ∈ [0, 1],
and an index j ∈ {1, 2, 3},

A(x1, x2, x3) ≥ 1

α
(A (αx + (1− α)ej)− (1− α)A(ej)) .

Now define z = αx+(1−α)ej . Then z ∈ ∆3. Therefore, for some β ∈ [0, 1] and some k ∈ {1, 2, 3},
we have

A(z1, z2, z3) ≥ 1

β
(A (βz + (1− β)ek)− (1− β)A(ek)) .

Substitution gives us the following expression

A(x1, x2, x3) ≥ 1

α
(A (z)− (1− α)A(ej))

≥ 1

α

(
1

β
(A (βz + (1− β)ek)− (1− β)A(ek))− (1− α)A(ej)

)
=

1

α

(
1

β
(A (β(αx + (1− α)ej) + (1− β)ek)− (1− β)A(ek))− (1− α)A(ej)

)
.

We now wish to find α, β ∈ [0, 1] such that

β(αx + (1− α)ej) + (1− β)ek = (1/3, 1/3, 1/3).

If we can show that this is in fact possible, it follows that

A(x1, x2, x3) ≥ 1

α

(
1

β
(A (β(αx + (1− α)ej) + (1− β)ek)− (1− β)A(ek))− (1− α)A(ej)

)
=

1

α

(
1

β
(A (1/3, 1/3, 1/3)− (1− β)A(ek))− (1− α)A(ej)

)
=

1

α

(
1

β
(1− (1− β))− (1− α)

)
=

1

α
(1− (1− α)) = 1,

which was to be shown (for d = 3 at least). To establish the existence of such α, β ∈ [0, 1], consider
the following system of equations that needs to be solved, βαx1 + β(1− α)1{j = 1}+ (1− β)1{k = 1} = 1/3

βαx2 + β(1− α)1{j = 2}+ (1− β)1{k = 2} = 1/3
βαx3 + β(1− α)1{j = 3}+ (1− β)1{k = 3} = 1/3

Without loss of generality, assume that x1 ≥ x2 ≥ x3. In this case x1 ≥ 1/3 and x3 ≤ 1/3.
Since αβ ∈ [0, 1], the last equation definitely needs an extra term coming from the unit vector. In
contrast, α and β can be chosen in such a way that the first equation does not need an extra term
coming from the unit vector. Therefore, we choose j = 2 and k = 3. This leads to the following
system of equations:  βαx1 = 1/3

βαx2 +β(1− α) = 1/3
βαx3 +(1− β) = 1/3

Solving the sytem yields

α =
x1 + x2 + x3

2x1 + x3
, β =

2x1 + x3

3x1
.

Note that α ∈ [0, 1] because x1 ≥ x2 and that β ∈ [0, 1] because x1 ≥ x3. Also note that we do
not lose generality because for a different ordering of the x’s, j and k can be specified according
to the same logic, leading to similar solutions and the same conclusion.
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d ≥ 2

Now we consider the proof for a general d ≥ 2. For a vector x = (x1, . . . , xd) ∈ ∆d, a coefficient
α ∈ [0, 1] and an index j ∈ {1, . . . , d},

A(x1, . . . , xd) ≥
1

α
(A (αx + (1− α)ej)− (1− α)A(ej)) .

Performing the same trick as for the trivariate case, we find that for some α1, . . . , αd−1 ∈ [0, 1] and
for j1, . . . , jd−1 ∈ {1, . . . , d},

A(x) ≥ 1

α1

(
1

α2

(
. . .

1

αd−2

(
1

αd−1

(
A
(
αd−1y

d−2 + (1− αd−1)ejd−1

)
− (1− αd−1)A(ejd−1

)
)

− (1− αd−2)A(ejd−2
)

)
· · · − (1− α2)A(ej2)

)
− (1− α1)A(ej1)

)
,

where yd−2 = αd−2y
d−3 +(1−αd−2)ejd−2

is defined recursively with starting value y0 = x. Again,
we aim to find α1, . . . , αd−1 ∈ [0, 1] such that

αd−1y
d−2 + (1− αd−1)ejd−1

= (1/d, . . . , 1/d).

If we can show that this is in fact possible, it follows that

A(x) ≥ 1

α1

(
1

α2

(
. . .

1

αd−2

(
1

αd−1

(
A
(
αd−1y

d−2 + (1− αd−1)ejd−1

)
− (1− αd−1)A(ejd−1

)
)

− (1− αd−2)A(ejd−2
)

)
· · · − (1− α2)A(ej2)

)
− (1− α1)A(ej1)

)

=
1

α1

(
1

α2

(
. . .

1

αd−2

(
1

αd−1

(
A
(
1/d, . . . , 1/d

)
− (1− αd−1)A(ejd−1

)
)

− (1− αd−2)A(ejd−2
)

)
· · · − (1− α2)A(ej2)

)
− (1− α1)A(ej1)

)

=
1

α1

(
1

α2

(
. . .

1

αd−2

(
1

αd−1

(
1− (1− αd−1)

)
− (1− αd−2)

)
· · · − (1− α2)

)
− (1− α1)

)

=
1

α1

(
1

α2

(
. . .

1

αd−2

(
1− (1− αd−2)

)
· · · − (1− α2)

)
− (1− α1)

)
= · · · = 1,

which gives the desired result for a general d ≥ 2. To establish the existence of such α1, . . . , αd−1 ∈
[0, 1], consider the following system of equations that needs to be solved,


αd−1αd−2 . . . α2α1x1 + αd−1αd−2 . . . α2(1− α1)1{j1 = 1}+ αd−1αd−2 . . . α3(1− α2)1{j2 = 1}

+ · · ·+ αd−1(1− αd−2)1{jd−2 = 1}+ (1− αd=1)1{jd−1 = 1} = 1/d
. . .
αd−1αd−2 . . . α2α1xd + αd−1αd−2 . . . α2(1− α1)1{j1 = d}+ αd−1αd−2 . . . α3(1− α2)1{j2 = d}

+ · · ·+ αd−1(1− αd−2)1{jd−2 = d}+ (1− αd=1)1{jd−1 = d} = 1/d

Without loss of generality, assume that x1 ≥ x2 ≥ · · · ≥ xd. In this case x1 ≥ 1/d and xd ≤ 1/d.
Since α1 . . . αd−1 ∈ [0, 1], the last equation definitely needs an extra term coming from the unit
vectors. In contrast, α1, . . . , αd−1 can be chosen in such a way that the first equation does not
need an extra term coming from the unit vectors. Therefore, we choose ji = i+1 for 1 ≤ i ≤ d−1.
This leads to the following system of equations,

αd−1αd−2 . . . α2α1x1 = 1/d
αd−1αd−2 . . . α2α1x2 +αd−1αd−2 . . . α2(1− α1) = 1/d
. . .
αd−1αd−2 . . . α2α1xd−1 +αd−1(1− αd−2) = 1/d
αd−1αd−2 . . . α2α1xd +(1− αd−1) = 1/d
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Solving the system from the bottom up yields the following expressions for α1, . . . , αd−1,

1− αd−1 = 1
d − αd−1 . . . α1xd = x1−xd

dx1
⇒ αd−1 = dx1−(x1−xd)

dx1

1− αd−2 = 1
αd−1

(
1
d − αd−1 . . . α1xd−1

)
= 1

αd−1

(
x1−xd−1

dx1

)
⇒ αd−2 = αd−1dx1−(x1−xd−1)

αd−1dx1

. . .

1− α2 = 1
αd−1...α3

(
1
d − αd−1 . . . α1x3

)
= 1

αd−1...α3

(
x1−x3

dx1

)
⇒ α2 = αd−1...α3dx1−(x1−x3)

αd−1...α3dx1

1− α1 = 1
αd−1...α2

(
1
d − αd−1 . . . α1x2

)
= 1

αd−1...α2

(
x1−x2

dx1

)
⇒ α1 = αd−1...α2dx1−(x1−x2)

αd−1...α2dx1

Since x1 ≥ · · · ≥ xd, it is obvious that all α1, . . . , αd−1 ≤ 1. To see that α1, . . . , αd−1 ≥ 0, first
observe that

x1 − xd
dx1

≤ 1

d
⇒ αd−1 = 1− x1 − xd

dx1
≥ d− 1

d
,

since 1/d ≤ x1 ≤ 1 and 0 ≤ xd ≤ 1/d. Applying this inequality to the next equation,

1

αd−1

(
x1 − xd−1

dx1

)
≤ 1

αd−1
· 1

d
≤ d

d− 1
· 1

d
=

1

d− 1
⇒ αd−2 = 1− 1

αd−1

(
x1 − xd−1

dx1

)
≥ d− 2

d− 1
.

Repeating these steps recursively yields that

1

αd−1αd−2

(
x1 − xd−2

dx1

)
≤ 1

αd−1αd−2
· 1

d
≤ d

d− 1
· d− 1

d− 2
· 1

d
=

1

d− 2

⇒ αd−3 = 1− 1

αd−1αd−2

(
x1 − xd−2

dx1

)
≥ d− 3

d− 2

. . .

1

αd−1 . . . α3

(
x1 − x3

dx1

)
≤ 1

αd−1 . . . α3
· 1

d
≤ d

d− 1
· d− 1

d− 2
. . .

4

3
· 1

d
=

1

3

⇒ α2 = 1− 1

αd−1 . . . α3

(
x1 − x3

dx1

)
≥ 2

3

1

αd−1 . . . α2

(
x1 − x2

dx1

)
≤ 1

αd−1 . . . α2
· 1

d
≤ d

d− 1
· d− 1

d− 2
. . .

3

2
· 1

d
=

1

2

⇒ α1 = 1− 1

αd−1 . . . α2

(
x1 − x2

dx1

)
≥ 1

2
,

showing that for all α1, . . . , αd−1 the required bounds hold. Therefore, for any x ∈ ∆d, it holds
that 1 ≤ A(x) ≤ 1, indicating that A(x) = 1. This is what needed to be shown. �
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B.4 Asymptotical behavior of STDF estimators

B.4.1 Asymptotics of the empirical STDF
Theorem 5.1. (Einmahl et al., 2012). Assuming that

1. limt↓0 t
−1 (1− CF (1− tx1, . . . , 1− txd)) exists and converges uniformly to `(x1, . . . , xd) on

[0, T ]d for T > 0 (first order condition);

2. t−1 (1− CF (1− tx1, . . . , 1− txd))− `(x) = O (tα), uniformly in x ∈ [0, 1]d as t ↓ 0, for some
α > 0 (second order condition);

3. k = O
(
n2α/(1+2α)

)
for the positive number α used in the assumption above, and k → ∞ as

n→∞;

4. for all j = 1, ..., d, the first-order partial derivative of ` with respect to xj exists and is
continuous on the set of points x such that xj > 0;

we have

sup
x∈[0,T ]d

∣∣∣√k (ˆ̀
n,k(x)− `(x)

)
−B`(x)

∣∣∣→ 0,

for T > 0 as n→∞. Here B`(x) is a zero-mean Gaussian process defined in Equation 5.1.5.

Proof. We produce an outline of the proof and refer to the original proof for the multivariate case
in Einmahl et al. (2012) for details. Also see Theorem 7.2.2 in de Haan and Ferreira (2006) for
a detailed proof in the bivariate case. The idea of the proof is to capture the distributions of
the differences between the theoretical `-function and the respective approximations made in the
process to retrieve the empirical STDF ˆ̀

n,k. To formalize this idea, let

Ui = (Ui1, . . . , Uid) = (1− F1(Xi1), . . . , 1− Fd(Xid))

for i = 1, . . . , n, denote by U1:n,j ≤ · · · ≤ Un:n,j the order statistics of U1j , . . . , Unj , j = 1, . . . , d,
and denote by dae the smallest integer larger than or equal to a. Define

Sn(x) =
(n
k
Udkx1e:n,1, . . . ,

n

k
Udkxde:n,d

)
,

Vn(x) =
n

k
P
(
F1(X1) > 1− kx1

n
or . . . or Fd(Xd) > 1− kxd

n

)
=
n

k
P
(
U1 ≤

kx1

n
or . . . or Ud ≤

kxd
n

)
,

Tn(x) =
1

k

n∑
i=1

1

{
F1(Xi1) > 1− kx1

n
or . . . or Fd(Xid) > 1− kxd

n

}

=
1

k

n∑
i=1

1

{
Ui1 ≤

kx1

n
or . . . or Uid ≤

kxd
n

}
,

with x = (x1, . . . , xd) ∈ [0, 1]d. Note that Sn(x) contains the approximate high quantile levels
based on the marginal empirical distribution functions (rank-based) and that ˆ̀

n,k(x) = Tn(Sn(x)).
Now we can write,

√
k
(

ˆ̀
n,k(x)− `(x)

)
=
√
k (Tn (Sn(x))− Vn (Sn(x))) (=: D1(x))

+
√
k (Vn (Sn(x))− ` (Sn(x))) (=: D2(x))

+
√
k (` (Sn(x))− `(x)) . (=: D3(x))

Here D1 represents the part introduced by the approximation of the multivariate probability
(i.e., the dependence part), D2 represents the part introduced by the approximation of the limiting
value t ↓ 0 by the finite value k/n, and D3 represents the part introduced by the approximation of
the marginal distributions with the ranked data (i.e., the marginal part).
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It is a known result that for T > 0,

sup
x∈[0,2T ]d

∣∣∣√k (Tn(x)− Vn(x))−W`(x)
∣∣∣→ 0,

see Einmahl et al. (1997), Einmahl et al. (2012) or Prop. 7.2.3 in de Haan and Ferreira (2006).
Because of the uniform continuity of W`, this can be used to show that

sup
x∈[0,T ]d

|D1(x)−W`(x)| → 0.

The D2-term represents the error made from the approximation of the limiting value with a
finite value. Because of the assumptions 2 and 3, it can be shown that

sup
y∈[0,2T ]d

√
k |Vn(y)− `(y)| =

√
kO
((

k

n

)α)
= O

((
k

n2α/(1+2α)

)1/2+α
)

= O(1).

and, hence, that

sup
x∈[0,T ]d

|D2(x)| → 0.

Finally, the Vervaat (1972) lemma can be used similarly to the proof of de Haan and Ferreira
(2006) (Thm. 7.2.2) for the bivariate case to ensure the marginal convergences for j = 1, . . . , d,

sup
x∈[0,T ]

∣∣∣√k (n
k
Udkxje:n,j − xj

)
+W`(xjej)

∣∣∣→ 0 a.s.,

which, combined with an application of the mean value theorem yields the result that

sup
x∈[0,T ]d

∣∣∣∣∣∣D3(x) +

d∑
j=1

`j(x)W`(xjej)

∣∣∣∣∣∣→ 0 a.s..

Putting everything together, the result is retrieved:

sup
x∈[0,T ]d

∣∣∣∣∣∣√k
(

ˆ̀
n,k(x)− `(x)

)
−

W`(x)−
d∑
j=1

`j(x)W`(xjej)

∣∣∣∣∣∣→ 0 a.s..

�
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B.4.2 Asymptotics of the adjusted empirical STDF
Theorem 5.3. Under the null hypothesis of tail independence and with the conditions of Theorem
5.1, supplemented with the conditions that m/n→ θ > 0 and m/n− θ = O(n1/2), it holds that

{√
k
(
`n,k(x1, . . . , xd)− (x1 + · · ·+ xd)

)
,x ∈ [0, 1]d

}
→

d∑
j=1

Wj ((1 + θ)xj) =: B(x) (5.2.2)

as n→∞, where Wj , j = 1, . . . , d, are d independent Brownian motions.

Proof. The proof can be derived similarly to the proof of Theorem 5.1. Note that this is a different
approach than taken by Hüsler and Li (2009) to prove the result for the bivariate case. Let

Ũi = (Ũi1, . . . , Ũid) =
(

1− F1(X̃i1), . . . , 1− Fd(X̃id

)
,

for i = 1, . . . ,m, denote by Ũ1:m,j ≤ · · · ≤ Ũm:m,j the order statistics of Ũ1j , . . . , Ũmj , j = 1, . . . , d,
and denote by dae the smallest integer larger than or equal to a. Define

S̃m(x) =
(m
k
Ũdkx1e:m,1, . . . ,

m

k
Ũdkx1e:m,1

)
,

Vm(x) =
m

k
P
(
U1 ≤

kx1

m
or . . . or Ud ≤

kxd
m

)
= θ

n

k
P
(
U1 ≤

kx1

m
or . . . or Ud ≤

kxd
m

)
,

Tn(x) =
m

k

1

n

n∑
i=1

1

{
Ui1 ≤

kx1

m
or . . . or Uid ≤

kxd
m

}

= θ
1

k

n∑
i=1

1

{
Ui1 ≤

kx1

m
or . . . or Uid ≤

kxd
m

}
,

with x = (x1, . . . , xd) ∈ [0, 1]d. Note that S̃m(x) contains the approximate high quantile levels
based on the ranks of X̃1j , . . . , X̃mj , j = 1, . . . , d, and that `n,k(x) = Tn(S̃m(x)). Now, similarly
to the original empirical STDF, the following decomposition can be made,

√
k
(
`n,k(x)− ||x||1

)
=
√
k
(
Tn(S̃m(x))− Vm(S̃m(x))

)
, (=: D1(x))

+
√
k
(
Vm(S̃m(x))− ||S̃m(x)||1

)
, (=: D2(x))

+
√
k
(
||S̃m(x)||1 − ||x||1

)
. (=: D3(x))

Here, it is used that under the null hypothesis of tail independence, the STDF satisfies `(x) =
x1 + · · · + xd = ||x||1. As in the proof of Theorem 5.1, the D1 term represents the part of the
distribution introduced by the approximation of the multivariate probability (i.e., the dependence
part), D2 represents the part introduced by the approximation of the limiting value t ↓ 0 by the
finite value k/n for the probability and by the finite value k/m for the high thresholds, and D3

represents the part introduced by the approximation of the marginal distributions with the ranked
data (i.e., the marginal part). From the proof of Theorem 5.1, we know that for T > 0,

sup
x∈[0,2T ]d

∣∣∣∣√k(1

θ
Tn(x)− 1

θ
Vm(x)

)
−W`(x)

∣∣∣∣→ 0,

which can be used to show that

sup
x∈[0,T ]d

|D1(x)− θW`(x)| → 0.

Under the assumption of tail independence, this is equivalent to

sup
x∈[0,T ]d

∣∣∣∣∣∣D1(x)− θ
d∑
j=1

W`,j(xj)

∣∣∣∣∣∣→ 0,
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with W`,j , j = 1, . . . , d, the marginal processes defined in Equation 5.1.4. The D2-term represents
the error made from the approximation of the limiting value t with a finite value. Because of
assumption 2 and 3 in Theorem 5.1, a similar reasoning can be used to show that

sup
x∈[0,T ]d

|D2(x)| → 0.

For the final D3-term, we use the proof of Theorem 5.1 to find that

sup
x∈[0,T ]d

∣∣∣∣∣∣D3(x) +

d∑
j=1

`j(x)W̃`(xjej)

∣∣∣∣∣∣→ 0,

where W̃` denotes a Brownian motion based on the data (X̃11, . . . , X̃1d), . . . , (X̃m1, . . . , X̃md) in-
dependent of the Brownian motion W` introduced above. Note that the processes W̃`(xjej) are
equal to its marginal processes, W̃`,j , defined in Equation 5.1.4, for j = 1, . . . , d. Moreover, since
the first partial derivatives of the `-function are all equal to one under the null hypothesis of tail
independence, the above expression can be simplified to

sup
x∈[0,T ]d

∣∣∣∣∣∣D3(x) +

d∑
j=1

W̃`,j(xj)

∣∣∣∣∣∣→ 0.

Putting everything together, we find that,

√
k
(
`n,k(x)− ||x||1

)
= D1(x) +D2(x) +D3(x)→ θ

d∑
j=1

W`,j(xj)−
d∑
j=1

W̃`,j(xj).

Since the Brownian motions W` and W̃` are based on independent datasets, they are independent.
Hence, variances of the Brownian motions can be added to retrieve the final result:

√
k
(
`n,k(x)− ||x||1

)
→

d∑
j=1

W j((1 + θ)xj),

where W j , j = 1, . . . , d, are d independent Brownian motions. �
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B.4.3 Asymptotics of the bias-corrected adjusted empirical STDF

Proof. According to Theorem 5.6,

`k(x) = `(x) + α
(n
k

)
M(x) +

1√
k
B`(x) +O

(
1√
k

)
.

Therefore, the following decomposition holds,

√
k
(
`
BC

k,k (x)− `(x)
)

=
√
k

 ˜̀
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(
k
k

)ρ̃k(x∗)

α̃k(x) 1
k

∑k
j=1K(aj)a
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j

1
k

∑k
j=1K(aj)

− `(x)


=
√
k

1
k

∑k
j=1K(aj)a

−1
j `k(ajx)

1
k
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j=1K(aj)

−
√
k

(
k

k

)ρ̃k(x∗)

α̃k(x)
1
k

∑k
j=1K(aj)a

−ρ̃k(x∗)
j

1
k

∑k
j=1K(aj)

− `(x)

=
√
k

1
k

∑k
j=1K(aj)a

−1
j

(
`(ajx) + α

(
n
k

)
M(ajx) + 1√

k
B`(ajx) +O

(
1√
k

))
1
k

∑k
j=1K(aj)

−
√
k

(
k

k

)ρ̃k(x∗)
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1
k

∑k
j=1K(aj)a

−ρ̃k(x∗)
j

1
k

∑k
j=1K(aj)

− `(x)

=
√
k

1
k

∑k
j=1K(aj)a

−1
j

(
aj`(x) + a1−ρ

j α
(
n
k

)
M(x) + 1√

k

√
ajB`(x)

)
1
k

∑k
j=1K(aj)

+O (1)

−
√
k

(
k

k

)ρ̃k(x∗)

α̃k(x)
1
k

∑k
j=1K(aj)a

−ρ̃k(x∗)
j

1
k

∑k
j=1K(aj)

− `(x)

=
√
k

(
α
(n
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)
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(
k
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1
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+
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(
k
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α̃k(x)

1
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(
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−ρ̃k(x∗)
j

)
1
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∑k
j=1K(aj)

+

(∫ 1

0
K(u)u−1/2du

1
k

∑k
j=1K(aj)

)
B`(x) +O(1).

Now, by Proposition B.3 (see below) and under the assumptions of Theorem 5.2, it follows that

√
k
(
`
BC

k,k (x)− `(x)
)

=
√
k

(
α
(n
k

)
M(x)−

(
k

k

)ρ̃k(x∗)

α
(n
k

)
M(x)

)
1
k
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j=1K(aj)a

−ρ
j

1
k

∑k
j=1K(aj)

+

(∫ 1

0
K(u)u−1/2du

1
k

∑k
j=1K(aj)

)
B`(x) +O(1).

Since the function α is assumed to be a regularly varying function with index ρ < 0, we can



142 Appendix B. Proofs

write α(t) = tρLα(t) where Lα is slowly varying at infinity. Hence,

√
k
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`
BC

k,k (x)− `(x)
)

=

√
k

k

√
kα
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+
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(
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B`(x) +O(1)

=
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0
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log

(
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)√
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(
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)(
ρ̃k(x∗)− ρ
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+

(
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)1/2−ρ√
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(
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β

(
n
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)
1

β
(
n
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(
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(
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where we used the mean value theorem. The theorem now follows under the assumptions since

lim
t→∞

1

β(t)

(
Lα(tc)

Lα(t)
− 1

)
= O(1).

To see that this is in fact the case, we refer to the proof presented in Beirlant et al. (2016), since this
part of the proof only depends on the properties and assumptions of the true stable tail dependence
function `. �

Proposition B.2. For any fixed d-vector x∗, under the assumptions of Theorem 5.2,

√
kα
(n
k

)
(ρ̃k(x∗)− ρ)→ 1− rρ−1/2

log r

B(x∗)

M(x∗)

∫ 1

0
K(u)u−1/2du∫ 1

0
K(u)u−ρdu

a−1/2 − 1

a−ρ − 1
,

where

ρ̃k(x∗) =

(
1− 1

log r
log

∣∣∣∣∆k,a(rx∗)

∆k,a(x∗)

∣∣∣∣) ∧ 0

and
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k(x), ˜̀
k(x) =

1

k

k∑
j=1

K(aj)a
−1
j `k(ajx)

Proof. Using Theorem 5.6, the homogeneity properties of ` and M , and the fact that B`(ax) ∼√
aB(x), it follows that
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1

k
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−1
j `k(ajx
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=
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+
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K(u)u−1/2du

)
B`(x

∗) +O
(

1√
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)
.
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Hence,

∆k,a(x∗) = a−1 ˜̀
k(ax∗)− ˜̀

k(x∗)

= α
(n
k

)
M(x∗)

1

k

k∑
j=1

K(aj)a
−ρ
j

(
a−rho − 1

)
+

1√
k

(∫ 1

0

K(u)u−1/2du

)(
a−1/2 − 1

)
B`(x

∗) +O
(

1√
k

)
.

A similar expression can be obtained for ∆k,a(rx∗) from which it can be deduced that

ρ̃k(x∗) = ρ+
1− rρ−1/2

log r

1√
k

B`(x
∗)

α
(
n
k

)
M(x∗)

∫ 1

0
K(u)u−1/2du

1
k

∑k
j=1K(aj)a
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j
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+O

(
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(
n
k

)) .
The proposition follows. �

Proposition B.3. For any fixed d-vector x∗ , under the assumptions of Theorem 5.2,

√
k
(
α̃k(x)− α

(n
k

)
M(x)

)
→1− rρ−1/2

log r

M(x)

M(x∗)

∫ 1

0
K(u)u−1/2du∫ 1

0
K(u)u−ρdu

a−1/2 − 1

a−ρ − 1

ρ2 + ρ− 1

ρ(1− ρ)(1− 2ρ)
B(x∗)

+
2(1− ρ)

ρ
B(x),

in D([0, T ]d) for every T > 0. Here,
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∑k
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∑k
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a
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l
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j

(
a
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l

) ,
and ρ̂k(x∗) is defined as in the proposition above.

Proof. To prove the proposition, we show that the following difference,

D =
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tends uniformly to zero as n→∞ almost surely.
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The main idea now is to replace the terms with ρ̃k(x∗) by the same terms with ρ and to study
the difference by the mean value theorem. For instance, if we look at the term

1

k2

k∑
j=1

k∑
l=1

a
−ρ̃k(x∗)
j

(
a
−ρ̃k(x∗)
j − a−ρ̃k(x∗)

l

)
,
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appearing several times as a denominator in the bound of D, we can rewrite as follows:

1
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a−ρj
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−ρ
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)
+
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a
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a
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j log aj
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a
−ρ̆k(x∗)
j

1

k
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a
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j log aj


by the mean value theorem where ρ̆k(x∗) is an intermediate value between ρ̃k(x∗) and ρ. Using the
same appraoch for each term in combination with Proposition B.2, the desired result is retrieved.

�
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Additional simulation results

C.1 Evaluating the global STDF estimator performance
It is claimed by Segers et al. (2017) that the following equalities hold,

Integrated squared bias :

∫
[0,1]d

(
E
[
ˆ̀
n(x)

]
− `(x)

)2

dx = E
[(

ˆ̀(1)
n (U)− `(U)
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)]
Integrated variance :
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)]

.

By conditionalizing on the random vector U these equalities can be shown as follows. Here we
use the tower property of conditional expectation and the fact that ˆ̀(1)

n and ˆ̀(2)
n are estimators

based on two independent random samples drawn from the same distribution. For the integrated
squared bias it follows that,

E
[(

ˆ̀(1)
n,k(U)− `(U)

)(
ˆ̀(2)
n (U)− `(U)

)]
= Eu

[
E
[(

ˆ̀(1)
n,k(U)− `(U)

)(
ˆ̀(2)
n,k(U)− `(U)

) ∣∣∣U = u
]]

= Eu

[(
E
[
ˆ̀
n,k(u)

])2

− 2`(u)E
[
ˆ̀
n,k(u)

]
+ (`(u))

2

]
= Eu

[(
E
[
ˆ̀
n,k(u)

]
− `(u)

)2
]

=

∫
[0,1]d

(
E
[
ˆ̀
n,k(u)− `(u)

])2

du.
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Lastly, it follows for the integrated MSE that
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C.2 Initial STDF simulations

Figure C.2.1: Initial STDF simulations to determine the sample size N and the threshold value k.
Shown is the integrated mean squared error (MSE) of the empirical STDF for data simulated from the
Gumbel, t-, Normal, and Frank copula in dimensions d ∈ {2, 3, 5, 7, 10}. Model parameters are chosen
such that all bivariate margins have medium dependence (ρ = 0.5). Results are based on B = 20, 000
samples of k tail observations from a sample of size N .



C.3. STDF estimator simulations 147

C.3 STDF estimator simulations

Table C.3.1: Evaluation estimators in dimension d = 2 for tail dependent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 2, k = 25 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Gumbel

Strong dep. NP 0.14 1.7 1.8 0.0043 5.1 5.1
NP-Beta 0.26 0.98 1.2 0.59 3.4 4
NP-Kernel 0.06 5.5 5.6
NP-BC1 0.97 5.6 6.6 0.19 21 21
NP-BC2 1.6 11 12 0.58 27 28
NP-BC3 0.019 5.8 5.8

Medium dep. NP 0.18 2.9 3 0.028 7.7 7.7
NP-Beta 0.1 2 2.1 0.089 6 6
NP-Kernel 0.21 7.9 8.1
NP-BC1 0.97 8.9 9.9 1 27 28
NP-BC2 1.6 12 14 0.069 40 40
NP-BC3 0.029 7.3 7.3

Light dep. NP 0.24 2.2 2.5 0.018 5.3 5.3
NP-Beta 0.012 1.7 1.7 0.0088 4.6 4.6
NP-Kernel 0.28 6.2 6.5
NP-BC1 0.76 5.7 6.5 0.0082 15 15
NP-BC2 1.5 7.8 9.3 0.14 25 25
NP-BC3 0.051 5.7 5.7

t

Strong dep. NP 0.17 1.9 2 0.045 6 6
NP-Beta 0.34 1.2 1.6 1.1 4 5.1
NP-Kernel 0.02 5.6 5.6
NP-BC1 1 6.1 7.1 0.41 23 23
NP-BC2 1.2 7.6 8.8 0.47 24 24
NP-BC3 0.028 6 6

Medium dep. NP 0.55 2.5 3.1 2 6.4 8.4
NP-Beta 0.25 1.9 2.2 1.7 5.4 7
NP-Kernel 3.1 6.7 9.8
NP-BC1 0.73 6.8 7.5 0.056 22 22
NP-BC2 2 12 14 0.9 39 40
NP-BC3 2.5 7.5 10

Light dep. NP 0.8 1 1.8 3.3 2.9 6.2
NP-Beta 0.53 0.75 1.3 3.1 2.3 5.4
NP-Kernel 4.2 2.7 6.8
NP-BC1 1.2 1.9 3.1 2.9 7.3 10
NP-BC2 3 3.2 6.2 1.6 6.8 8.3
NP-BC3 3.9 3.3 7.3

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based
on B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each
sample consists of N = 2500 observations, of which k = 25 tail observations are used.
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Table C.3.2: Evaluation estimators in dimension d = 2 for tail independent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 2, k = 25 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Normal

Strong dep. NP 28 2.9 31 142 7.7 149
NP-Beta 26 1.9 28 137 5.6 143
NP-Kernel 144 7.6 152
NP-BC1 18 8 26 77 29 106
NP-BC2 24 22 46 71 60 131
NP-BC3 98 12 110

Medium dep. NP 3.1 1.4 4.5 17 3.9 20
NP-Beta 2.7 1 3.7 16 3.2 20
NP-Kernel 18 3.8 22
NP-BC1 2.3 2.5 4.8 6.3 7.8 14
NP-BC2 6.3 7.9 14 7.1 13 20
NP-BC3 9.6 4.5 14

Light dep. NP 0.41 0.37 0.79 1.1 1.3 2.4
NP-Beta 0.15 0.27 0.42 1.2 1.1 2.2
NP-Kernel 1.9 1.2 3.1
NP-BC1 0.92 0.48 1.4 0.78 2.9 3.6
NP-BC2 3.1 1.2 4.3 0.51 3.3 3.8
NP-BC3 0.9 1.1 2

Frank

Strong dep. NP 0.86 0.7 1.6 4.9 2.4 7.2
NP-Beta 0.59 0.47 1.1 5.1 1.8 6.9
NP-Kernel 6.2 2.6 8.7
NP-BC1 0.86 0.68 1.5 0.63 2.5 3.1
NP-BC2 11 8.7 20 108 157 265
NP-BC3 5.5 2.1 7.6

Medium dep. NP 0.38 0.33 0.71 0.96 1.3 2.2
NP-Beta 0.13 0.24 0.37 1.1 0.92 2
NP-Kernel 2 1.2 3.3
NP-BC1 0.81 0.34 1.1 0.48 2 2.5
NP-BC2 12 13 25 0.82 5.7 6.5
NP-BC3 0.0015 0.086 0.087

Light dep. NP 0.29 0.17 0.46 0.27 0.7 0.97
NP-Beta 0.034 0.12 0.15 0.26 0.48 0.74
NP-Kernel 0.89 0.61 1.5
NP-BC1 0.81 0.18 0.99 0.36 1.7 2.1
NP-BC2 3.5 0.74 4.2 0.14 1.8 1.9
NP-BC3 0.1 0.38 0.48

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based
on B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each
sample consists of N = 2500 observations, of which k = 25 tail observations are used.
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Table C.3.3: Evaluation estimators in dimension d = 2 for tail dependent data with k = 5%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 2, k = 125 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Gumbel

Strong dep. NP 0.012 0.31 0.33 0.053 1.1 1.2
NP-Beta 0.0018 0.25 0.25 0.032 0.78 0.81
NP-Kernel 0.08 0.94 1
NP-BC1 0.092 2.4 2.5 0.84 14 15
NP-BC2 0.21 4 4.2 0.0029 6.7 6.7
NP-BC3 0.00084 1.1 1.1

Medium dep. NP 0.052 0.55 0.6 0.4 1.6 1.9
NP-Beta 0.034 0.49 0.52 0.47 1.3 1.7
NP-Kernel 0.36 1.5 1.9
NP-BC1 0.14 3.1 3.2 0.13 10 10
NP-BC2 0.12 4.1 4.2 0.015 7.9 7.9
NP-BC3 0.028 1.7 1.7

Light dep. NP 0.15 0.47 0.62 1.6 1.2 2.8
NP-Beta 0.14 0.43 0.57 1.3 1.2 2.5
NP-Kernel 1.1 1.1 1.2
NP-BC1 0.086 1.8 1.9 0.083 6 6.1
NP-BC2 0.095 2.5 2.6 0.023 5.6 5.6
NP-BC3 0.025 1.6 1.6

t

Strong dep. NP 0.0059 0.38 0.38 0.0012 1.2 1.2
NP-Beta 0.016 0.3 0.32 0.034 0.92 0.95
NP-Kernel 0.00057 1.1 1.1
NP-BC1 0.16 2.5 2.6 0.73 13 14
NP-BC2 0.037 2.1 2.2 0.0052 4.7 4.7
NP-BC3 0.0015 1.1 1.1

Medium dep. NP 1.9 0.54 2.5 13 1.2 14
NP-Beta 1.9 0.47 2.4 13 1.2 14
NP-Kernel 11 1.5 13
NP-BC1 0.18 2.4 2.6 1.2 8 9.2
NP-BC2 0.32 4.6 4.9 1.3 9.4 11
NP-BC3 3.2 2.5 5.7

Light dep. NP 2.4 0.3 2.7 15 0.83 16
NP-Beta 2.3 0.27 2.6 15 0.82 15
NP-Kernel 13 0.85 14
NP-BC1 0.54 0.75 1.3 2.5 2.6 5.1
NP-BC2 0.74 1.3 2 2.7 3.2 5.9
NP-BC3 5.3 1.5 6.7

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based on
B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each sample
consists of N = 2500 observations, of which k = 125 tail observations are used.
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Table C.3.4: Evaluation estimators in dimension d = 2 for tail independent data with k = 5%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 2, k = 125 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Normal

Strong dep. NP 49 0.53 49 244 1.2 245
NP-Beta 47 0.44 48 243 1.3 244
NP-Kernel 231 1.3 232
NP-BC1 28 3.2 31 129 15 144
NP-BC2 27 14 41 108 18 126
NP-BC3 129 12 141

Medium dep. NP 10 0.44 10 60 1.1 62
NP-Beta 9.8 0.38 10 59 1.1 60
NP-Kernel 52 1.2 54
NP-BC1 2.7 1.4 4.1 15 5 20
NP-BC2 2.5 4 6.5 12 7.5 19
NP-BC3 16 4 20

Light dep. NP 1.5 0.21 1.7 11 0.73 12
NP-Beta 1.4 0.18 1.6 11 0.64 12
NP-Kernel 9.4 0.61 10
NP-BC1 0.21 0.28 0.49 1.1 1.2 2.3
NP-BC2 0.32 0.56 0.88 0.78 1.5 2.2
NP-BC3 1.2 0.99 2.2

Frank

Strong dep. NP 10 0.41 11 81 1.2 82
NP-Beta 10 0.35 10 80 1.1 81
NP-Kernel 65 1.2 66
NP-BC1 0.57 0.64 1.2 3.7 3.2 6.8
NP-BC2 49 9.4 58 323 225 548
NP-BC3 52 1.5 53

Medium dep. NP 2.8 0.26 3.1 23 0.78 24
NP-Beta 2.7 0.22 2.9 23 0.72 24
NP-Kernel 18 0.77 19
NP-BC1 0.17 0.27 0.44 0.69 1 1.7
NP-BC2 4 12 16 0.063 0.78 0.84
NP-BC3 0.006 0.23 0.24

Light dep. NP 0.79 0.15 0.94 6.6 0.54 7.2
NP-Beta 0.74 0.13 0.87 6.6 0.52 7.1
NP-Kernel 5.3 0.48 5.8
NP-BC1 0.079 0.13 0.21 0.16 0.41 0.57
NP-BC2 0.18 0.34 0.52 0.2 0.67 0.87
NP-BC3 0.035 0.23 0.26

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based
on B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each
sample consists of N = 2500 observations, of which k = 125 tail observations are used.
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Table C.3.5: Evaluation estimators in dimension d = 3 for tail dependent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 3, k = 25 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Gumbel

Strong dep. NP 0.16 4.2 4.3 0.011 3 3
NP-Beta 0.74 2.6 3.4 0.59 2.5 3.1
NP-Kernel 0.0014 3.2 3.2
NP-BC1 1.3 16 17 0.66 20 21
NP-BC2 3.6 32 36 0.46 17 18
NP-BC3 0.0032 3.4 3.4

Medium dep. NP 0.29 7.9 8.2 0.00011 5.3 5.3
NP-Beta 0.33 6.1 6.4 0.2 4.8 5
NP-Kernel 0.066 5.7 5.7
NP-BC1 1.5 29 30 0.49 20 20
NP-BC2 3 42 45 0.84 31 32
NP-BC3 0.0058 5.8 5.8

Light dep. NP 0.26 7.1 7.3 0.017 4.3 4.3
NP-Beta 0.1 5.7 5.8 0.0017 4 4
NP-Kernel 0.14 5.1 5.2
NP-BC1 1.1 21 22 0.34 15 15
NP-BC2 3.4 31 34 0.58 24 25
NP-BC3 0.025 5.6 5.7

t

Strong dep. NP 1.5 4.1 5.7 7.3 3.1 10
NP-Beta 0.61 2.8 3.4 5.1 2 7.1
NP-Kernel 9.2 2.8 12
NP-BC1 1.5 15 17 4.6 13 17
NP-BC2 1.9 18 20 5.6 14 20
NP-BC3 8.4 3 11

Medium dep. NP 3.2 6.6 9.8 5.4 4.4 9.8
NP-Beta 2.2 5.2 7.4 4.8 3.8 8.5
NP-Kernel 5.5 4.4 9.9
NP-BC1 1.4 22 23 0.83 17 18
NP-BC2 4.3 44 49 0.42 34 34
NP-BC3 1.8 4.8 6.6

Light dep. NP 4.2 2.9 7.1 6.8 1.9 8.7
NP-Beta 3.7 2.3 5.9 6.8 1.6 8.4
NP-Kernel 7.1 2 9.1
NP-BC1 3.1 6 9.1 2.2 5 7.2
NP-BC2 7.3 11 19 2.3 9.6 12
NP-BC3 1.4 2.2 3.7

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based on
B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each sample
consists of N = 2500 observations, of which k = 25 tail observations are used.
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Table C.3.6: Evaluation estimators in dimension d = 3 for tail independent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 3, k = 25 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Normal

Strong dep. NP 153 6.9 160 200 3.9 204
NP-Beta 149 5.2 154 198 3.4 201
NP-Kernel 198 5 203
NP-BC1 96 25 121 125 16 141
NP-BC2 108 94 202 94 52 146
NP-BC3 116 11 128

Medium dep. NP 19 3.9 23 30 2.9 33
NP-Beta 18 3.1 22 30 2.3 32
NP-Kernel 30 2.9 33
NP-BC1 8.6 8 17 8.5 7.3 16
NP-BC2 20 29 50 8 16 24
NP-BC3 5.1 3.7 8.8

Light dep. NP 1.5 1.1 2.6 2.4 0.97 3.3
NP-Beta 1.1 0.81 1.9 2.2 0.72 3
NP-Kernel 2.9 0.79 3.7
NP-BC1 1.8 1.3 3.1 0.6 1.2 1.8
NP-BC2 7.2 3.6 11 0.85 2.8 3.6
NP-BC3 0.04 0.22 0.26

Frank

Strong dep. NP 4.8 1.9 6.7 11 1.7 13
NP-Beta 4.4 1.4 5.8 11 1.4 12
NP-Kernel 9.4 1.6 11
NP-BC1 1.7 1.9 3.6 0.56 1.6 2.2
NP-BC2 35 20 54 203 162 365
NP-BC3 9.1 1.4 10

Medium dep. NP 1.4 0.97 2.3 2.7 0.95 3.6
NP-Beta 0.99 0.7 1.7 2.7 0.65 3.3
NP-Kernel 2.8 0.73 3.5
NP-BC1 1.4 0.96 2.4 0.29 0.79 1.1
NP-BC2 53 80 134 0.92 6.4 7.3
NP-BC3 0.17 0.68 0.85

Light dep. NP 0.61 0.5 1.1 0.64 0.48 1.1
NP-Beta 0.26 0.37 0.62 0.67 0.34 1
NP-Kernel 0.93 0.4 1.3
NP-BC1 1.4 0.54 2 0.13 0.54 0.67
NP-BC2 8.6 2.1 11 0.22 1.4 1.6
NP-BC3 0.000033 0.0032 0.0033

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are simu-
lated from distributions with different dependence strengths. Strong, medium and weak dependence correspond
to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based on B = 20, 000
simulation samples, while the TDC results are based on B = 500 simulation samples. Each sample consists of
N = 2500 observations, of which k = 25 tail observations are used.
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Table C.3.7: Evaluation estimators in dimension d = 3 for tail dependent data with k = 5%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 3, k = 125 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Gumbel

Strong dep. NP 0.027 0.77 0.8 0.089 0.65 0.73
NP-Beta 0.0086 0.64 0.65 0.037 0.53 0.57
NP-Kernel 0.071 0.59 0.66
NP-BC1 0.26 8.4 8.6 0.3 8.6 8.9
NP-BC2 0.23 11 11 0.0057 3.4 3.4
NP-BC3 0.0056 0.79 0.8

Medium dep. NP 0.23 1.6 1.8 0.7 1 1.7
NP-Beta 0.19 1.4 1.6 0.53 0.99 1.5
NP-Kernel 0.53 0.95 1.5
NP-BC1 0.39 11 11 0.51 10 11
NP-BC2 0.15 11 11 0.087 6.3 6.3
NP-BC3 0.0031 1.7 1.7

Light dep. NP 0.91 1.4 2.4 2.4 0.85 3.3
NP-Beta 0.88 1.3 2.2 2.2 0.83 3.1
NP-Kernel 1.9 0.83 2.7
NP-BC1 0.35 6.6 7 0.35 6.1 6.4
NP-BC2 0.2 8.7 8.8 0.39 7.2 7.6
NP-BC3 0.93 2.3 3.2

t

Strong dep. NP 2 0.8 2.8 9.6 0.54 10
NP-Beta 1.7 0.66 2.3 8.6 0.44 9
NP-Kernel 9.8 0.5 10
NP-BC1 1 8.4 9.4 5.9 7.3 13
NP-BC2 1.7 4.4 6 7.7 2.8 10
NP-BC3 8.9 0.54 9.4

Medium dep. NP 12 1.4 13 21 0.8 22
NP-Beta 12 1.2 13 21 0.73 22
NP-Kernel 20 0.74 21
NP-BC1 1.6 8.6 10 2.7 9.1 12
NP-BC2 1.4 15 16 1 7.7 8.7
NP-BC3 2.1 2.7 4.8

Light dep. NP 16 0.82 16 28 0.52 28
NP-Beta 16 0.74 16 28 0.49 29
NP-Kernel 24 0.53 24
NP-BC1 3.1 2.8 6 4.5 2.8 7.3
NP-BC2 2.4 4.3 6.6 1.3 3.5 4.8
NP-BC3 0.79 1.7 2.5

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based
on B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each
sample consists of N = 2500 observations, of which k = 125 tail observations are used.
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Table C.3.8: Evaluation estimators in dimension d = 3 for tail independent data with k = 5%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 3, k = 125 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Normal

Strong dep. NP 248 1.2 250 330 0.66 331
NP-Beta 250 1.1 251 326 0.72 326
NP-Kernel 312 0.75 312
NP-BC1 152 10 162 196 12 208
NP-BC2 119 63 182 138 18 156
NP-BC3 148 14 161

Medium dep. NP 62 1.1 63 99 0.7 100
NP-Beta 63 1 64 99 0.62 99
NP-Kernel 88 0.73 89
NP-BC1 17 5.2 23 25 5.9 31
NP-BC2 6.7 13 20 7 6.5 14
NP-BC3 7.5 4.6 12

Light dep. NP 10 0.57 11 22 0.42 22
NP-Beta 11 0.51 11 22 0.37 22
NP-Kernel 18 0.41 18
NP-BC1 1 0.99 2 1.8 1.3 3
NP-BC2 0.58 1.4 1.9 0.15 0.74 0.89
NP-BC3 0.0092 0.11 0.12

Frank

Strong dep. NP 64 1.1 65 130 0.72 131
NP-Beta 64 0.91 65 131 0.62 132
NP-Kernel 106 0.65 107
NP-BC1 3 2.6 5.7 5.2 4.7 9.9
NP-BC2 246 20 266 598 167 765
NP-BC3 93 0.79 94

Medium dep. NP 19 0.71 20 43 0.55 44
NP-Beta 19 0.6 19 43 0.58 44
NP-Kernel 34 0.51 35
NP-BC1 0.75 0.9 1.6 1.6 1.4 3
NP-BC2 53 97 150 0 0 0
NP-BC3 1.5 4.2 5.7

Light dep. NP 5.5 0.42 5.9 14 0.36 14
NP-Beta 5.5 0.38 5.8 14 0.32 14
NP-Kernel 10 0.36 11
NP-BC1 0.24 0.39 0.64 0.38 0.47 0.85
NP-BC2 0.21 0.6 0.81 0.005 0.1 0.11
NP-BC3 0.0000062 0.0015 0.0015

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are simu-
lated from distributions with different dependence strengths. Strong, medium and weak dependence correspond
to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based on B = 20, 000
simulation samples, while the TDC results are based on B = 500 simulation samples. Each sample consists of
N = 2500 observations, of which k = 125 tail observations are used.
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Table C.3.9: Evaluation estimators in dimension d = 5 for tail dependent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 5, k = 25 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Gumbel

Strong dep. NP 0.28 10 11 0.00012 2.1 2.1
NP-Beta 1.8 7.5 9.2 0.25 1.6 1.8
NP-Kernel 0.00093 2 2
NP-BC1 3 42 45 0.22 7.4 7.6
NP-BC2 6.8 83 89 0.26 11 11
NP-BC3 0.0044 1.9 1.9

Medium dep. NP 0.51 24 24 0.021 3.4 3.4
NP-Beta 0.69 20 20 0.02 3.3 3.3
NP-Kernel 0.064 4.5 4.5
NP-BC1 4.4 93 97 0.61 18 19
NP-BC2 5.5 150 155 0.51 40 40
NP-BC3 0.12 4.5 4.6

Light dep. NP 0.63 25 25 0.21 3.8 4
NP-Beta 0.13 21 21 0.056 3.1 3.1
NP-Kernel 0.31 4.6 4.9
NP-BC1 3.1 80 83 0.41 14 15
NP-BC2 7.6 152 160 0.57 86 86
NP-BC3 27 6.3 33

t

Strong dep. NP 22 8.2 30 27 1.3 28
NP-Beta 13 5.7 19 21 0.98 22
NP-Kernel 27 1.4 28
NP-BC1 15 34 48 22 6.1 28
NP-BC2 16 37 53 22 7.3 29
NP-BC3 27 1.3 28

Medium dep. NP 24 17 42 11 2.8 14
NP-Beta 20 14 34 10 2.4 13
NP-Kernel 11 2.9 14
NP-BC1 5.3 69 74 1.7 12 14
NP-BC2 10 182 193 0.42 57 58
NP-BC3 0.32 6.5 6.8

Light dep. NP 33 8.8 42 14 1.4 16
NP-Beta 30 6.9 37 14 1.1 15
NP-Kernel 15 1.5 16
NP-BC1 12 22 34 3.8 4.3 8.1
NP-BC2 20 53 74 2.2 31 33
NP-BC3 2.1 0.0058 2.1

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based on
B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each sample
consists of N = 2500 observations, of which k = 25 tail observations are used.
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Table C.3.10: Evaluation estimators in dimension d = 5 for tail independent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 5, k = 25 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Normal

Strong dep. NP 911 17 928 296 2.5 298
NP-Beta 868 14 881 290 2 292
NP-Kernel 291 2.4 293
NP-BC1 593 76 670 195 13 209
NP-BC2 502 413 914 99 63 162
NP-BC3 139 19 158

Medium dep. NP 148 12 159 59 1.8 61
NP-Beta 140 9.2 149 59 1.7 61
NP-Kernel 58 2.2 60
NP-BC1 51 30 81 21 6.3 27
NP-BC2 60 133 193 4.4 27 32
NP-BC3 0.26 2.7 3

Light dep. NP 11 3.5 15 6.5 0.7 7.2
NP-Beta 10 2.6 13 6 0.58 6.6
NP-Kernel 6.2 0.76 7
NP-BC1 4.3 4.4 8.8 0.76 1.1 1.8
NP-BC2 20 20 39 9 70 78
NP-BC3 0.035 0.41 0.44

Frank

Strong dep. NP 38 5.9 44 26 1.1 27
NP-Beta 38 4.3 42 26 0.9 27
NP-Kernel 21 1.1 22
NP-BC1 4.3 5.8 10 1 1.6 2.6
NP-BC2 162 42 203 429 86 514
NP-BC3 20 1 21

Medium dep. NP 9.4 3.1 12 6.7 0.68 7.3
NP-Beta 8.9 2.3 11 6.5 0.64 7.1
NP-Kernel 6 0.6 6.5
NP-BC1 2.8 2.8 5.6 0.23 0.63 0.86
NP-BC2 481 460 941 86 182 267
NP-BC3 5.3 0.67 6

Light dep. NP 2.9 1.6 4.5 1.7 0.36 2
NP-Beta 2.3 1.2 3.5 1.8 0.33 2.1
NP-Kernel 2 0.33 2.3
NP-BC1 2.4 1.5 3.9 0.064 0.2 0.26
NP-BC2 30 17 47 40 137 176
NP-BC3 0.32 0.51 0.82

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based
on B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each
sample consists of N = 2500 observations, of which k = 25 tail observations are used.
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Table C.3.11: Evaluation estimators in dimension d = 5 for tail dependent data with k = 1%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 5, k = 125 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Gumbel

Strong dep. NP 0.14 1.9 2 0.12 0.34 0.46
NP-Beta 0.026 1.6 1.6 0.055 0.29 0.35
NP-Kernel 0.064 0.32 0.38
NP-BC1 0.62 23 23 0.24 6 6.2
NP-BC2 0.56 23 23 0.0023 2.2 2.2
NP-BC3 0.00078 0.5 0.5

Medium dep. NP 1.4 4.3 5.7 1.1 0.67 1.7
NP-Beta 1 4 5 0.9 0.65 1.5
NP-Kernel 0.75 0.74 1.5
NP-BC1 2.3 41 43 0.52 12 12
NP-BC2 0.49 33 33 0.16 7.4 7.5
NP-BC3 1 2 3

Light dep. NP 7 4.5 11 5.4 0.64 6
NP-Beta 6.5 4.3 11 5 0.6 5.6
NP-Kernel 3.8 0.8 4.6
NP-BC1 2 28 30 0.19 6.7 6.9
NP-BC2 2.7 41 44 18 17 34
NP-BC3 51 2 53

t

Strong dep. NP 26 1.6 28 29 0.23 29
NP-Beta 24 1.3 25 27 0.23 28
NP-Kernel 29 0.24 29
NP-BC1 18 20 39 25 3 28
NP-BC2 24 7.7 32 27 1.5 29
NP-BC3 27 0.28 28

Medium dep. NP 80 3.2 83 36 0.4 37
NP-Beta 78 2.9 81 35 0.46 36
NP-Kernel 32 0.5 32
NP-BC1 13 38 52 5.9 13 18
NP-BC2 4.2 52 56 0.32 16 16
NP-BC3 1.6 7 8.6

Light dep. NP 121 2.3 123 57 0.35 57
NP-Beta 120 2.1 122 56 0.28 57
NP-Kernel 50 0.39 50
NP-BC1 22 15 37 9 4.7 14
NP-BC2 4.5 18 22 1.7 0.73 2.4
NP-BC3 2.1 0.00096 2.1

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are simu-
lated from distributions with different dependence strengths. Strong, medium and weak dependence correspond
to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based on B = 20, 000
simulation samples, while the TDC results are based on B = 500 simulation samples. Each sample consists of
N = 2500 observations, of which k = 125 tail observations are used.
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Table C.3.12: Evaluation estimators in dimension d = 5 for tail independent data with k = 5%.

STDF results - ˆ̀
n TDC results - Λ̂n

d = 5, k = 125 Int. bias2 Int. var. Int. MSE Bias2 Var. MSE
×1000 ×1000 ×1000 ×1000 ×1000 ×1000

Normal

Strong dep. NP 1370 2.7 1370 444 0.32 444
NP-Beta 1350 2.4 1350 441 0.29 442
NP-Kernel 427 0.36 427
NP-BC1 898 42 940 283 14 297
NP-BC2 538 299 836 137 27 165
NP-BC3 164 26 190

Medium dep. NP 436 2.9 439 174 0.35 175
NP-Beta 429 2.6 431 174 0.31 174
NP-Kernel 158 0.42 158
NP-BC1 124 29 154 43 12 55
NP-BC2 11 43 54 0.085 1.3 1.4
NP-BC3 0.54 6.2 6.7

Light dep. NP 90 1.6 92 49 0.3 50
NP-Beta 88 1.4 90 50 0.24 50
NP-Kernel 41 0.26 41
NP-BC1 7.3 5 12 2.8 2 4.8
NP-BC2 0.44 2.5 2.9 2.3 46 48
NP-BC3 0.19 2 2.2

Frank

Strong dep. NP 443 2.6 446 222 0.4 222
NP-Beta 444 2.3 446 220 0.35 220
NP-Kernel 186 0.36 186
NP-BC1 19 15 34 7.1 7 14
NP-BC2 1360 39 1400 923 35 958
NP-BC3 171 0.42 172

Medium dep. NP 149 1.9 151 88 0.32 88
NP-Beta 148 1.7 150 88 0.28 88
NP-Kernel 71 0.33 71
NP-BC1 4.9 4.5 9.4 1.5 2 3.5
NP-BC2 1330 547 1880 122 228 350
NP-BC3 56 0.69 57

Light dep. NP 47 1.3 49 32 0.26 33
NP-Beta 48 1.1 49 32 0.22 32
NP-Kernel 25 0.23 25
NP-BC1 1.4 1.6 3 0.48 0.64 1.1
NP-BC2 0.089 1.1 1.2 45 167 212
NP-BC3 3.2 3.6 6.8

Considered are the empirical nonparametric estimator (NP), the beta-smoothed estimator of Kiriliouk et al.
(2018) (NP-Beta), the kernel-smoothed estimator (NP-Kernel), the bias-corrected estimators of Fougères et al.
(2015) (NP-BC1, NP-BC2) and the bias-corrected estimator of Beirlant et al. (2016) (NP-BC3). Data are
simulated from distributions with different dependence strengths. Strong, medium and weak dependence
correspond to bivariate correlations of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. STDF results are based
on B = 20, 000 simulation samples, while the TDC results are based on B = 500 simulation samples. Each
sample consists of N = 2500 observations, of which k = 125 tail observations are used.
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C.4 Testing simulations

Table C.4.1: Evaluation test statistics in dimension d = 2 for tail dependent data.

STDF test rejection rates TDC test rejection rates

In Sn Tn

d = 2, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Gumbel

Strong dep. NP 0.098 0.012 0.11 0.012 0.36 0.072
NP-Kernel 0.058 0.004 0.29 0.034
NP-BC 0 0

Medium dep. NP 0.076 0.014 0.07 0.004 0.19 0.028
NP-Kernel 0.03 0 0.14 0.014
NP-BC 0 0

Light dep. NP 0.054 0.012 0.038 0.004 0.084 0.01
NP-Kernel 0.022 0.004 0.06 0
NP-BC 0 0

t

Strong dep. NP 0.098 0 0.11 0.004 0.33 0.068
NP-Kernel 0.078 0 0.28 0.04
NP-BC 0 0

Medium dep. NP 0.044 0.014 0.024 0.004 0.1 0.006
NP-Kernel 0.038 0.004 0.096 0.012
NP-BC 0 0

Light dep. NP 0.054 0.012 0.03 0.01 0.048 0.006
NP-Kernel 0.03 0.01 0.038 0.002
NP-BC 0 0

Tests are conducted to evaluate the null hypothesis of tail independence. Data are simulated from distributions with
different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation of
ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500. The
sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are used as tail
observations. All implementations of the test statistics are our own (see Appendix E.2).
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Table C.4.2: Evaluation test statistics in dimension d = 2 for tail independent data.

STDF test rejection rates TDC test rejection rates

In Sn Tn

d = 2, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Normal

Strong dep. NP 0.05 0.01 0.036 0.006 0.17 0.014
NP-Kernel 0.036 0.004 0.14 0.012
NP-BC 0 0

Medium dep. NP 0.046 0.01 0.032 0.006 0.076 0.002
NP-Kernel 0.028 0.006 0.068 0.002
NP-BC 0 0

Light dep. NP 0.048 0.01 0.034 0.01 0.05 0
NP-Kernel 0.032 0.006 0.036 0
NP-BC 0 0

Frank

Strong dep. NP 0.028 0.008 0.044 0.008 0.04 0.006
NP-Kernel 0.02 0.004 0.028 0.004
NP-BC 0 0

Medium dep. NP 0.022 0.002 0.028 0.008 0.03 0
NP-Kernel 0.018 0.002 0.02 0
NP-BC 0 0

Light dep. NP 0.032 0.004 0.034 0.008 0.024 0
NP-Kernel 0.024 0.006 0.014 0
NP-BC 0 0

Tests are conducted to evaluate the null hypothesis of tail independence. Data are simulated from distributions with
different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation of
ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500. The
sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are used as tail
observations. All implementations of the test statistics are our own (see Appendix E.2).
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Table C.4.3: Evaluation test statistics in dimension d = 3 for tail dependent data.

STDF test rejection rates TDC test rejection rates

In Sn Tn

d = 3, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Gumbel

Pairwise testing

Strong dep. NP 0.038 0.004 0.064 0.004 0.25 0.032
NP-Kernel 0.034 0 0.2 0.022

Medium dep. NP 0.036 0.006 0.036 0.004 0.098 0.008
NP-Kernel 0.02 0.002 0.084 0.008

Light dep. NP 0.042 0.008 0.03 0.004 0.03 0
NP-Kernel 0.024 0.002 0.026 0.002

Multivariate testing

Strong dep. NP 0.32 0.072 0.41 0.15 0.75 0.41
NP-Kernel 0.29 0.062 0.66 0.31
NP-BC 0.8 0.004

Medium dep. NP 0.13 0.014 0.15 0.032 0.39 0.13
NP-Kernel 0.098 0.012 0.32 0.078
NP-BC 0.09 0

Light dep. NP 0.052 0 0.032 0 0.15 0.018
NP-Kernel 0.022 0.002 0.14 0.014
NP-BC 0 0

t

Pairwise testing

Strong dep. NP 0.056 0.006 0.078 0.004 0.23 0.054
NP-Kernel 0.034 0.004 0.19 0.022

Medium dep. NP 0.04 0.014 0.028 0.008 0.038 0
NP-Kernel 0.028 0.012 0.022 0.002

Light dep. NP 0.034 0.022 0.038 0.018 0.032 0
NP-Kernel 0.024 0.018 0.02 0

Multivariate testing

Strong dep. NP 0.32 0.082 0.42 0.15 0.75 0.41
NP-Kernel 0.32 0.086 0.66 0.32
NP-BC 0.81 0.002

Medium dep. NP 0.058 0.014 0.058 0.004 0.2 0.034
NP-Kernel 0.042 0.006 0.17 0.02
NP-BC 0.014 0

Light dep. NP 0.052 0.016 0.04 0.01 0.086 0.004
NP-Kernel 0.024 0.012 0.078 0.008
NP-BC 0 0

Tests are conducted to evaluate the null hypothesis of tail independence with either a multivariate testing approach
or a pairwise testing approach with a Hochberg correction for the p-values. Data are simulated from distributions
with different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation of
ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500. The
sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are used as tail
observations. All implementations of the test statistics are our own (see Appendix E.2).
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Table C.4.4: Evaluation test statistics in dimension d = 5 for tail independent data.

STDF test rejection rates TDC test rejection rates

In Sn Tn

d = 3, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Normal

Pairwise testing

Strong dep. NP 0.034 0.006 0.02 0 0.084 0.008
NP-Kernel 0.016 0.002 0.098 0.004

Medium dep. NP 0.04 0.018 0.024 0.008 0.02 0
NP-Kernel 0.026 0.01 0.024 0

Light dep. NP 0.044 0.014 0.036 0.008 0.012 0
NP-Kernel 0.026 0.006 0.012 0

Multivariate testing

Strong dep. NP 0.13 0.022 0.12 0.02 0.37 0.13
NP-Kernel 0.098 0.01 0.3 0.09
NP-BC 0.27 0

Medium dep. NP 0.046 0.008 0.04 0.006 0.12 0.012
NP-Kernel 0.038 0.002 0.086 0.016
NP-BC 0.002 0

Light dep. NP 0.044 0.016 0.032 0.006 0.044 0.006
NP-Kernel 0.028 0.004 0.036 0.002
NP-BC 0 0

Frank

Pairwise testing

Strong dep. NP 0.032 0.01 0.026 0.008 0.018 0.002
NP-Kernel 0.02 0.006 0.028 0.002

Medium dep. NP 0.044 0.02 0.054 0.014 0.006 0
NP-Kernel 0.028 0.016 0.01 0

Light dep. NP 0.046 0.02 0.046 0.02 0.016 0
NP-Kernel 0.032 0.014 0.02 0

Multivariate testing

Strong dep. NP 0.032 0.01 0.036 0.004 0.068 0.008
NP-Kernel 0.02 0.002 0.062 0.006
NP-BC 0.14 0

Medium dep. NP 0.05 0.014 0.038 0.01 0.034 0.002
NP-Kernel 0.026 0.01 0.034 0.002
NP-BC 0 0

Light dep. NP 0.044 0.01 0.044 0.014 0.054 0.008
NP-Kernel 0.038 0.01 0.054 0.008
NP-BC 0 0

Tests are conducted to evaluate the null hypothesis of tail independence with either a multivariate testing approach
or a pairwise testing approach with a Hochberg correction for the p-values. Data are simulated from distributions
with different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation of
ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500. The
sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are used as tail
observations. All implementations of the test statistics are our own (see Appendix E.2).
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Table C.4.5: Evaluation test statistics in dimension d = 3 for mixed dependencies.

STDF test rejection rates TDC test rejection rates

In Sn Tn

d = 3, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Asymmetric tail dependent distributions

Pairwise testing

t NP 0.036 0.008 0.026 0.002 0.052 0.004
NP-Kernel 0.022 0.002 0.048 0.002

D-Vine 1 NP 0.03 0.016 0.032 0.008 0.072 0.006
NP-Kernel 0.018 0.008 0.07 0

D-Vine 2 NP 0.034 0.018 0.024 0.012 0.036 0
NP-Kernel 0.024 0.008 0.04 0

Multivariate testing

t NP 0.076 0.006 0.072 0.01 0.28 0.06
NP-Kernel 0.034 0.004 0.24 0.032
NP-BC 0.02 0

D-Vine 1 NP 0.08 0.014 0.078 0.016 0.27 0.052
NP-Kernel 0.058 0.004 0.22 0.042
NP-BC 0.028 0

D-Vine 2 NP 0.058 0.012 0.054 0.008 0.15 0.024
NP-Kernel 0.03 0.006 0.12 0.016
NP-BC 0.016 0

Asymmetric tail independent distributions

Pairwise testing

Normal NP 0.036 0.01 0.028 0.006 0.058 0.002
NP-Kernel 0.026 0.008 0.032 0

D-Vine 3 NP 0.04 0.02 0.036 0.012 0.036 0
NP-Kernel 0.026 0.016 0.032 0

D-Vine 4 NP 0.046 0.02 0.04 0.014 0.018 0
NP-Kernel 0.026 0.014 0.024 0

Multivariate testing

Normal NP 0.056 0.004 0.048 0.002 0.18 0.038
NP-Kernel 0.028 0.004 0.13 0.018
NP-BC 0.004 0

D-Vine 3 NP 0.056 0.01 0.046 0.006 0.164 0.03
NP-Kernel 0.03 0.004 0.112 0.014
NP-BC 0.022 0

D-Vine 4 NP 0.06 0.018 0.042 0.008 0.04 0.002
NP-Kernel 0.034 0.006 0.032 0.006
NP-BC 0 0

Tests are conducted to evaluate the null hypothesis of tail independence with either a multivariate testing approach
or a pairwise testing approach with a Hochberg correction for the p-values. Data are simulated from distributions
with different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation
of ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500.
The sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are
used as tail observations. All implementations of the test statistics are our own (see Appendix E.2).



164 Appendix C. Additional simulation results

Table C.4.6: Evaluation test statistics in dimension d = 5 for tail dependent data.

STDF test rejection rates TDC test rejection rates

I∗n Sn Tn

d = 5, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Gumbel

Pairwise testing

Strong dep. NP 0.04 0 0.16 0.024
NP-Kernel 0.13 0.012

Medium dep. NP 0.014 0.008 0.044 0.004
NP-Kernel 0.036 0

Light dep. NP 0.02 0.008 0.016 0.002
NP-Kernel 0.014 0

Multivariate testing

Strong dep. NP 0.94 0.81 0.98 0.94
NP-Kernel 0.97 0.9
NP-BC 0.99 0.96

Medium dep. NP 0.59 0.3 0.85 0.57
NP-Kernel 0.77 0.47
NP-BC 0.74 0.25

Light dep. NP 0.14 0.024 0.35 0.076
NP-Kernel 0.29 0.072
NP-BC 0 0

t

Pairwise testing

Strong dep. NP 0.036 0.002 0.16 0.026
NP-Kernel 0.13 0.012

Medium dep. NP 0.024 0.016 0.018 0
NP-Kernel 0.008 0

Light dep. NP 0.052 0.024 0.01 0
NP-Kernel 0.008 0

Multivariate testing

Strong dep. NP 0.95 0.85 1 0.96
NP-Kernel 0.98 0.91
NP-BC 1 0.98

Medium dep. NP 0.31 0.08 0.62 0.28
NP-Kernel 0.52 0.22
NP-BC 0.29 0.03

Light dep. NP 0.078 0.012 0.18 0.038
NP-Kernel 0.16 0.036
NP-BC 0.002 0

∗ Since the integral-based tests did not offer significant improvements relative to the supremum-based test or the
multivariate TDC-based test and because of relatively long running times for the integral-based tests, it was decided to
omit these simulations for dimension d = 5.
Tests are conducted to evaluate the null hypothesis of tail independence with either a multivariate testing approach
or a pairwise testing approach with a Hochberg correction for the p-values. Data are simulated from distributions
with different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation of
ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500. The
sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are used as tail
observations. All implementations of the test statistics are our own (see Appendix E.2).
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Table C.4.7: Evaluation test statistics in dimension d = 5 for tail independent data.

STDF test rejection rates TDC test rejection rates

I∗n Sn Tn

d = 5, k = 25 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01

Normal

Pairwise testing

Strong dep. NP 0.01 0 0.026 0.002
NP-Kernel 0.02 0

Medium dep. NP 0.024 0.012 0.004 0
NP-Kernel 0.006 0

Light dep. NP 0.044 0.014 0.006 0
NP-Kernel 0.006 0

Multivariate testing

Strong dep. NP 0.56 0.23 0.86 0.55
NP-Kernel 0.78 0.43
NP-BC 0.74 0.55

Medium dep. NP 0.074 0.01 0.28 0.046
NP-Kernel 0.18 0.042
NP-BC 0.27 0

Light dep. NP 0.018 0.004 0.06 0.004
NP-Kernel 0.042 0.004
NP-BC 0 0

Frank

Pairwise testing

Strong dep. NP 0.044 0.022 0.004 0
NP-Kernel 0 0

Medium dep. NP 0.04 0.008 0.004 0
NP-Kernel 0.006 0

Light dep. NP 0.066 0.024 0.008 0
NP-Kernel 0.006 0

Multivariate testing

Strong dep. NP 0.044 0.01 0.16 0.026
NP-Kernel 0.092 0.028
NP-BC 0.99 0.99

Medium dep. NP 0.036 0.002 0.082 0.016
NP-Kernel 0.068 0.008
NP-BC 0.83 0

Light dep. NP 0.032 0.01 0.052 0.006
NP-Kernel 0.052 0.002
NP-BC 0 0

∗ Since the integral-based tests did not offer significant improvements relative to the supremum-based test or the
multivariate TDC-based test and because of relatively long running times for the integral-based tests, it was decided to
omit these simulations for dimension d = 5.
Tests are conducted to evaluate the null hypothesis of tail independence with either a multivariate testing approach
or a pairwise testing approach with a Hochberg correction for the p-values. Data are simulated from distributions
with different dependence strengths. Strong, medium and weak tail dependence correspond to a bivariate correlation of
ρ = 0.8, ρ = 0.5 and ρ = 0.2, respectively. Results are based on B = 500 samples with sample size N = 2500. The
sample is split into two equally sized subsamples (θ = 1) and k = 1% of the remaining 1250 observations are used as tail
observations. All implementations of the test statistics are our own (see Appendix E.2).
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Appendix D

Additional FX results

D.1 Timeseries filtering process

Figure D.1.1: Timeseries filtering process for three European FX rates.
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Figure D.1.2: Timeseries filtering process for five worldwide FX rates.
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D.2 Test results for model assumptions

Table D.2.1: ADF-test p-values for stationarity in timeseries.

Raw 1-day 1M 3M 6M 12M
log returns log returns log returns log returns log returns

EURGBP 0.39 0.01 0.01 0.01 0.16 0.76
EURNOK 0.53 0.01 0.01 0.01 0.05 0.45
EURSEK 0.59 0.01 0.01 0.01 0.08 0.52
EURUSD 0.11 0.01 0.01 0.01 0.11 0.28
USDCAD 0.54 0.01 0.01 0.01 0.07 0.48
USDTRY 0.99 0.01 0.01 0.01 0.05 0.15
USDRUB 0.62 0.01 0.01 0.01 0.30 0.84
GBPUSD 0.67 0.01 0.01 0.03 0.33 0.61
The ADF-test (Augmented Dickey Fuller test) evaluates the alternative hypothesis of stationarity. Low
p-values support the alternative hypothesis. High p-values support the null hypothesis of non-stationarity.

Table D.2.2: Goodness-of-fit tests p-values for a t-distribution of the filtered residuals.

1-day log returns 1M log returns 3M log returns 6M log returns 12M log returns

KS AD KS AD KS AD KS AD KS AD

EURGBP 0.90 0.76 0.92 0.84 0.95 0.93 0.41 0.72 0.97 0.94
EURNOK 0.16 0.06 0.73 0.56 0.85 0.87 0.44 0.73 0.94 0.89
EURSEK 0.46 0.39 0.72 0.86 0.47 0.69 0.50 0.59 0.93 0.96
EURUSD 0.16 0.23 0.88 0.83 0.62 0.80 0.58 0.48 0.37 0.41
USDCAD 0.45 0.67 0.76 0.79 0.90 0.90 0.31 0.56 0.79 0.85
USDTRY 0.13 0.02 0.03 0.01 0.95 0.96 0.96 0.95 0.98 1.00
USDRUB 0.45 0.24 0.22 0.21 0.45 0.29 0.59 0.41 0.36 0.30
GBPUSD 0.49 0.46 0.24 0.17 0.78 0.83 0.52 0.54 0.72 0.88
The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests evaluate the null hypothesis of t-distributed residuals.
The residuals are retrieved from the fitted ARMA-GRJ-GARCH model and are tested against the maximum likelihood fitted
t-distribution. Low p-values support the alternative hypothesis. High p-values support the null hypothesis and indicate
that residuals do follow a t-distribution.
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Table D.2.3: Ljung-Box test p-values for autocorrelation in timeseries.

1-day log returns 1M log returns 3M log returns 6M log returns 12M log returns

Raw Filtered Raw Filtered Raw Filtered Raw Filtered Raw Filtered

EURGBP 0.01 0.51 0.00 0.39 0.00 0.56 0.00 0.84 0.00 0.38
EURNOK 0.51 0.25 0.00 0.91 0.00 0.43 0.00 0.27 0.00 0.66
EURSEK 0.03 0.66 0.00 0.88 0.00 0.89 0.00 0.97 0.00 0.94
EURUSD 0.54 0.51 0.00 0.83 0.00 0.89 0.00 0.95 0.00 0.42
USDCAD 0.07 0.77 0.00 0.90 0.00 0.70 0.00 0.55 0.00 0.37
USDTRY 0.16 0.57 0.00 0.36 0.00 0.55 0.00 0.91 0.00 0.86
USDRUB 0.00 0.15 0.00 0.64 0.00 0.44 0.00 0.33 0.00 0.39
GBPUSD 0.02 0.77 0.00 0.55 0.00 0.84 0.00 0.78 0.00 0.93
The Ljung-Box test evaluates the null hypothesis of temporal independence in a given timeseries. Low p-values support the
alternative hypothesis and indicate temporal dependence in a timeseries. High p-values support the null hypothesis.
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D.3 Transformed observations worldwide FX rates

Figure D.3.1: Pairwise copula plots for five worldwide FX rates.
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Figure D.3.2: Pairwise Pareto plots for five worldwide FX rates.



D.4. Pairwise STDF estimation worldwide FX rates 173

D.4 Pairwise STDF estimation worldwide FX rates

Figure D.4.1: Estimated pairwise STDFs for USD-exchange rates given a short USD position based on
the beta-copula smoothed empirical STDF using k = 1% of tail observations of the standardized residuals
of the filtered 1-month log returns.
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Figure D.4.2: Estimated pairwise STDFs for USD-exchange rates given a long USD position based on
the beta-copula smoothed empirical STDF using k = 1% of tail observations of the standardized residuals
of the filtered 1-month log returns.
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R Codes

E.1 STDF estimators

Empirical STDF

e l l_np_e s t <− f unc t i on ( data , x = NULL, k = 0 . 01 ) {
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }
df_ranked <− sapply ( data , rank )
t e s t <− as . data . frame ( matrix (NA, nrow ( df_ranked ) , 0) )
f o r ( i in 1 : nco l ( df_ranked ) ) {

t e s t <− cbind ( t e s t , d f_ranked [ , i ] > n+(1/ 2)−k∗x [ i ] )
}
e l l <− sum(rowSums( t e s t )>0)/k
return ( e l l )

}

Beta-smoothed empirical STDF

e l l_np_beta_e s t <− f unc t i on ( data , x = NULL, k = 0 . 01 ) {
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− k∗n}

e l l <− (n/k ) ∗(1−C. n(1−(k/n) ∗ t ( as . matrix ( x ) ) , as . matrix ( data ) , smoothing = "beta " ,
o f f s e t = 0 , method = "C" , t i e s . method = " average " ) )

re turn ( e l l )
}

Kernel-smoothed empirical STDF

Kernel <− f unc t i on ( t , tau ) { re turn ( ( tau + 1) ∗ ( t^tau ) ) }

e l l_np_kerne l_e s t <− f unc t i on ( data , x = NULL, k = 0 .01 , tau=5){
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }

a <− ( 1 : k ) / (k+1)
s1 <− sum( sapply (a , f unc t i on ( a j ) {Kernel ( aj , tau ) ∗ (1 / a j ) ∗ e l l_np_e s t ( data , a j ∗x , k )

}) )
s2 <− sum( sapply (a , f unc t i on ( a j ) {Kernel ( aj , tau ) }) )
s1 / s2

}

Fougères et al. (2015) bias-corrected empirical STDF

e l l_np_r e s c a l e d <− f unc t i on ( data , a , x , k ) {
(1 /a ) ∗ e l l_np_e s t ( data , x = a∗x , k )

}

Delta <− f unc t i on ( data , a , x , k ) {
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e l l_np_r e s c a l e d ( data , a , x , k )− e l l_np_e s t ( data , x , k )
}

rho_hat <− f unc t i on ( data , a , r , x , k ) {
r e s <− 1 − (1 / log ( r ) ) ∗ l og ( abs ( Delta ( data , a , r ∗x , k ) /Delta ( data , a , x , k ) ) )
re turn ( i f e l s e ( r e s > −0.1 , −1, r e s ) ) #from K i r i l i o u k
#return (min ( res , 0) )

}

e l l_np_e s t_BC1 <− f unc t i on ( data , x = NULL, k = 0 . 1 , k1 = (nrow ( data )−10) , a=0.4) {
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }
i f ( k1 < 1) {k1 <− round ( k1∗n) }

rhot <− rho_hat ( data , a , r =0.4 , x , k )
a_temp <− ( a^(− rhot )+1)^(−1/ rhot )
f i n a l v a l <− e l l_np_r e s c a l e d ( data , a , x , k ) − Delta ( data , a_temp , x , k )

#f i n a l v a l
r e turn ( i f e l s e ( f i n a l v a l < max(x ) , max(x ) , i f e l s e ( f i n a l v a l > sum(x ) , sum(x ) ,

f i n a l v a l ) ) )
}

e l l_np_e s t_BC2 <− f unc t i on ( data , x = NULL, k = 0 . 1 , k1 = (nrow ( data−10) ) , a=0.4) {
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }
i f ( k1 < 1) {k1 <− round ( k1∗n) }

Delta_temp_ax <− Delta ( data , a , a∗x , k1 )
Delta_temp_x <− Delta ( data , a , x , k1 )

f i n a l v a l <− ( e l l_np_e s t ( data , x , k ) ∗Delta_temp_ax − e l l_np_e s t ( data , a∗x , k ) ∗
Delta_temp_x) / ( Delta_temp_ax−a∗Delta_temp_x)

#f i n a l v a l
r e turn ( i f e l s e ( f i n a l v a l < max(x ) , max(x ) , i f e l s e ( f i n a l v a l > sum(x ) , sum(x ) ,

f i n a l v a l ) ) )
}

Beirlant et al. (2016) bias-corrected empirical STDF

e l l_np_r e s c a l e d <− f unc t i on ( data , a , x , k ) {
(1 /a ) ∗ e l l_np_e s t ( data , x = a∗x , k )

}

t i l d e_e l l <− f unc t i on ( data , tau , x , k ) {
sum( sapply ( c ( 1 : k ) / (k+1) , f unc t i on ( i ) {Kernel ( i , tau ) ∗ e l l_np_r e s c a l e d ( data , a=i , x ,

k ) }) ) /k
}

Delta_Kernel <− f unc t i on ( data , a , tau , x , k ) {
t i l d e_e l l ( data , tau , a∗x , k ) /a − t i l d e_e l l ( data , tau , x , k )

}

rho_hat_Kernel <− f unc t i on ( data , a , tau , r , x , k ) {
r e s <− 1 − (1 / log ( r ) ) ∗ l og ( abs ( Delta_Kernel ( data , a , tau , r ∗x , k ) /Delta_Kernel ( data , a ,

tau , x , k ) ) )
re turn ( i f e l s e ( r e s > −0.1 , −1, r e s ) ) #from K i r i l i o u k
#return (min ( res , 0) )

}

alphaM_hat <− f unc t i on ( data , rho , x , k ) {
a_seq <− ( 1 : k ) / (k+1)
a_seq_rho <− a_seq^(−rho )

temp1 <− sapply ( a_seq , func t i on ( i ) { e l l_np_r e s c a l e d ( data , i , x , k ) })
temp2 <− sum(k∗a_seq_rho∗temp1 )−sum( temp1∗sum( a_seq_rho ) )
temp3 <− sum(k∗ ( a_seq_rho^2) ) − sum( a_seq_rho∗sum( a_seq_rho ) )

temp2/temp3
}
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e l l_np_e s t_BC3 <− f unc t i on ( data , tau = 5 , x = NULL, k = 0 . 1 , k1 = nrow ( data )−10){
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }
i f ( k1 < 1) {k1 <− round ( k1∗n) }

rhot <− rho_hat_Kernel ( data , a=0.4 , tau , r =0.4 , x , k1 )
a lphat <− alphaM_hat ( data , rhot , x , k1 )

temp1 <− sapply ( c ( 1 : k ) / (k+1) , f unc t i on ( i ) Kernel ( i , tau ) ∗ ( i ^(− rhot ) ) )
temp2 <− sapply ( c ( 1 : k ) / (k+1) , f unc t i on ( i ) Kernel ( i , tau ) )

r e s <− t i l d e_e l l ( data , tau , x , k ) − ( ( k1/k )^rhot ) ∗ a lphat ∗ (sum( temp1 ) /k )
f i n a l v a l <− r e s / (sum( temp2 ) /k )

f i n a l v a l
#return ( i f e l s e ( f i n a l v a l < max(x ) , max(x ) , i f e l s e ( f i n a l v a l > sum(x ) , sum(x ) ,

f i n a l v a l ) ) )
}

E.2 Testing functions

Adjusted empirical STDF

### Husler−Li e s t imator func t i on
e l l_Husler_Li <− f unc t i on ( data , x=NULL, theta=1, k=0.1) {

i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− round (nrow ( data ) / ( theta+1) )
m <− nrow ( data )−n
i f ( k < 1) {k <− k∗m}

t e s t <− as . data . frame ( matrix (NA, n , 0) )
f o r ( i in 1 : nco l ( data ) ) {

t e s t <− cbind ( t e s t , data [ 1 : n , i ] > quan t i l e ( data [ ( n+1) : ( n+m) , i ] , min ( (m+1−k∗x [ i
] ) /m, 1) ) )

}
re turn ( (1 /k ) ∗ theta ∗sum(rowSums( t e s t )>0) )

}

Adjusted kernel-smoothed empirical STDF

Kernel <− f unc t i on ( t , tau ) { re turn ( ( tau + 1) ∗ ( t^tau ) ) }
e l l_np_kerne l_es t2 <− f unc t i on ( data , x = NULL, theta=1, k = 0 . 1 , tau=5){

i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }

a <− ( 1 : k ) / (k+1)
s1 <− sum( sapply (a , f unc t i on ( a j ) {Kernel ( aj , tau ) ∗ (1 / a j ) ∗ e l l_Husler_Li ( data , a j ∗x ,

theta=1, k=k) }) )
s2 <− sum( sapply (a , f unc t i on ( a j ) {Kernel ( aj , tau ) }) )
s1 / s2

}

Adjusted bias-corrected empirical STDF

Kernel <− f unc t i on ( t , tau ) { re turn ( ( tau + 1) ∗ ( t^tau ) ) }

HL_e l l_np_e s t <− f unc t i on ( data , x = NULL, theta=1, k = 0 . 1 ) {
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− round (nrow ( data ) / ( theta+1) )
m <− nrow ( data )−n
i f ( k < 1) {k <− k∗m}

t e s t <− as . data . frame ( matrix (NA, n , 0) )
f o r ( i in 1 : nco l ( data ) ) {

t e s t <− cbind ( t e s t , data [ 1 : n , i ] > quan t i l e ( data [ ( n+1) : ( n+m) , i ] , min ( (m+1−k∗x [ i
] ) /m, 1) ) )

}
re turn ( (1 /k ) ∗ theta ∗sum(rowSums( t e s t )>0) )

}
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e l l_np_r e s c a l e d <− f unc t i on ( data , a , x , k ) {
HL_e l l_np_e s t ( data , x = a∗x , k = k) /a

}

t i l d e_e l l <− f unc t i on ( data , tau , x , k ) {
sum( sapply ( c ( 1 : k ) / (k+1) , f unc t i on ( i ) {Kernel ( i , tau ) ∗ e l l_np_r e s c a l e d ( data , a=i , x ,

k ) }) ) /k
}

Delta <− f unc t i on ( data , a , x , k ) {
e l l_np_r e s c a l e d ( data , a , x , k )−HL_e l l_np_e s t ( data , x , k )

}

Delta_Kernel <− f unc t i on ( data , a , tau , x , k ) {
t i l d e_e l l ( data , tau , a∗x , k ) /a − t i l d e_e l l ( data , tau , x , k )

}

rho_hat <− f unc t i on ( data , a , r , x , k ) {
r e s <− 1 − (1 / log ( r ) ) ∗ l og ( abs ( Delta ( data , a , r ∗x , k ) /Delta ( data , a , x , k ) ) )
re turn ( i f e l s e ( r e s > −0.1 , −1, r e s ) ) #from K i r i l i o u k
#return (min ( res , 0) )

}

rho_hat_Kernel <− f unc t i on ( data , a , tau , r , x , k ) {
r e s <− 1 − (1 / log ( r ) ) ∗ l og ( abs ( Delta_Kernel ( data , a , tau , r ∗x , k ) /Delta_Kernel ( data , a ,

tau , x , k ) ) )
re turn ( i f e l s e ( r e s > −0.1 , −1, r e s ) ) #from K i r i l i o u k
#return (min ( res , 0) )

}

alphaM_hat <− f unc t i on ( data , rho , x , k ) {
a_seq <− ( 1 : k ) / (k+1)
a_seq_rho <− a_seq^(−rho )

temp1 <− sapply ( a_seq , func t i on ( i ) { e l l_np_r e s c a l e d ( data , i , x , k ) })
temp2 <− sum(k∗a_seq_rho∗temp1 )−sum( temp1∗sum( a_seq_rho ) )
temp3 <− sum(k∗ ( a_seq_rho^2) ) − sum( a_seq_rho∗sum( a_seq_rho ) )

temp2/temp3
}

e l l_np_e s t_BC3 <− f unc t i on ( data , tau = 5 , x = NULL, k = 0 . 1 , k1 = nrow ( data ) /2−10){
i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− nrow ( data )
i f ( k < 1) {k <− round (k∗n) }
i f ( k1 < 1) {k1 <− round ( k1∗n) }

rhot <− rho_hat_Kernel ( data , a=0.4 , tau , r =0.4 , x , k=k1 )
a lphat <− alphaM_hat ( data , rhot , x , k=k1 )

temp1 <− sapply ( c ( 1 : k ) / (k+1) , f unc t i on ( i ) Kernel ( i , tau ) ∗ ( i ^(− rhot ) ) )
temp2 <− sapply ( c ( 1 : k ) / (k+1) , f unc t i on ( i ) Kernel ( i , tau ) )

r e s <− t i l d e_e l l ( data , tau , x , k ) − ( ( k1/k )^rhot ) ∗ a lphat ∗ (sum( temp1 ) /k )
f i n a l v a l <− r e s / (sum( temp2 ) /k )

#f i n a l v a l
r e turn ( i f e l s e ( f i n a l v a l < max(x ) , max(x ) , i f e l s e ( f i n a l v a l > sum(x ) , sum(x ) ,

f i n a l v a l ) ) )
}

Test statistics

### One−point TDC t e s t s t a t i s t i c based on data
Tn <− f unc t i on ( data = data , x=NULL, theta=1, k=0.1) {

i f ( i s . nu l l ( x ) ) {x <− rep (1 , nco l ( data ) ) }
n <− round (nrow ( data ) / ( theta+1) )
m <− nrow ( data )−n
i f ( k < 1) {k <− k∗m}
i f ( i s . nu l l ( dim(x ) ) ) {

sq r t ( k ) ∗ ( e l l_t e s t_fun ( data = data , x=x , k=k)−sum(x ) )
} e l s e {

r e s u l t <− c ( )
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f o r ( i in 1 : nrow (x ) ) {
r e s u l t [ i ] <− s q r t ( k ) ∗ ( e l l_t e s t_fun ( data = data , x=x [ i , ] , k=k)−sum(x [ i , ] ) )

}
re turn ( r e s u l t )

}
}

### Integ ra t ed t e s t s t a t i s t i c based on data
In <− f unc t i on ( data = data , theta=1, k=0.1) {

f <− f unc t i on (x ) {(Tn( data = data , x=x , theta=theta , k=k) )^2}
adapt Integra te ( f , lowerLimit = rep (0 , nco l ( data ) ) , upperLimit = rep (1 , nco l ( data )

) ,
absError = 0 . 1 , maxEval = 2000) $ i n t e g r a l

}

### Supremum t e s t s t a t i s t i c based on data
Sn <− f unc t i on ( data = data , theta=1, k=0.1) {

f <− f unc t i on (x ){−abs (Tn( data = data , x=x , theta=theta , k=k) ) }
−bobyqa ( rep (1 , nco l ( data ) ) , f , lower = rep (0 , nco l ( data ) ) , upper = rep (1 , nco l (

data ) ) ) $ f v a l
}
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