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Abstract

This paper proposes a shape optimization algorithm based on the principles of Isogeometric Analysis (IGA) in which the
parameterization of the geometry enters the problem formulation as an additional PDE-constraint. Inspired by the isoparametric
principle of IGA, the parameterization and the governing state equation are treated using the same numerical technique. This
leads to a scheme that is comparatively easy to differentiate, allowing for a fully symbolic derivation of the gradient and
subsequent gradient-based optimization. To improve the efficiency and robustness of the scheme, the basis is re-selected during
each optimization iteration and adjusted to the current needs. The scheme is validated in two test cases.
c⃝ 2021 Elsevier B.V. All rights reserved.

Keywords: Isogeometric Analysis; Shape optimization; Elliptic Grid Generation; Parameterization techniques; Adjoint-based optimization

1. Introduction

Isogeometric analysis (IGA) was introduced by Hughes et al. in [1] as a numerical technique that bridges the gap
etween Computer Aided Design (CAD) and the numerical analysis of Partial Differential Equations (PDEs). This
s accomplished by using the same function space to represent the geometry Ω and to discretize the PDE problem

posed over Ω . Since its birth in 2005, IGA has been successfully applied to wide variety of problems including:
thermal analysis [2], linear elasticity problems [1], structural vibrations [3], incompressible flows [4] and inviscid
compressible flows [5].

As a mature numerical method, it is ready to be used in more complex industrial processes. Consequently,
several publications that consider the application of IGA to shape optimization problems in structural and fluid
dynamics [6–11] as well as heat conduction [12] have appeared in the literature.

Most of the available CAD software generates no more than a spline-based description of the boundary contours
∂Ω of Ω . Clearly, in the absence of numerical and modeling errors, the value of the shape optimization cost function
is solely determined by the shape of the domain, i.e., ∂Ω . When only the value of the state equation solution on
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he boundary is relevant for the optimization, an approach based on the boundary element method (BEM) [13]
onstitutes a viable choice. Not only does BEM avoid computing the state equation solution in regions where it
s not relevant for the optimization, it also avoids the potentially expensive and computationally delicate surface
o volume problem ∂Ω → Ω . As an example, design optimization using a T-spline BEM-isogeometric solver was

proposed by Kostas et al. in [14]. As a downside of BEM, the Green’s function of the underlying PDE-problem
needs to be known, which then leads to an associated boundary integral equation.

Hence, in order to perform shape optimization, many practical applications still require the parameterization
of interior Ω during each shape optimization iteration as well. Combining IGA and shape optimization is very
appealing as the CAD definition of ∂Ω can be used directly to compute a mapping for Ω , completely bypassing the

eed to first convert ∂Ω into a piecewise-linear curve that acts as an input for classical mesh generators. On the other
and, suitable parameterization algorithms are indispensable for generating bijective (folding-free), analysis-suitable
eometry parameterizations from the boundary CAD data. Furthermore, the parametric quality of the mapping
as a profound impact on the accuracy of the isogeometric analysis [15]. Therefore, besides bijectivity, practical
lgorithms aim at generating parameterizations of high numerical quality.

A variety of parameterization techniques have been proposed in the literature such as Coon’s Patch [16], Linear
pring [17] and approaches based on (constrained and unconstrained) quality cost function optimization [17–19].
hile mappings based on Coon’s Patch and Linear Spring follow from a closed-form expression and are hence cheap

o compute and straightforwardly differentiable, they often lead to folded (non-bijective) mappings. The same is
rue for unconstrained optimization. Constrained optimization approaches on the other hand typically have a higher
uccess rate. However, this comes at the expense of a large number of (constrained) iterations (typically about ∼30)
nd the notorieties associated with nonconvex optimization, such as the danger of getting stuck in local minima.

third class of approaches attempts to generate a mapping whose inverse is composed of harmonic functions in
. This approach is based on the observation that harmonic functions exhibit a large degree of smoothness, which

enefits the numerical quality of the resulting mapping. Furthermore, it can be shown that if the parametric domain
s convex, inversely harmonic mappings (IHMs) are bijective, thanks to the maximum principle [20,21]. Many
pproaches for approximating IHMs have been proposed in the literature [19,22], notably the PDE-based approach
alled Elliptic Grid Generation (EGG) [23,24]. EGG is of particular interest in shape optimization problems thanks
o the parametric smoothness and bijectivity of IHMs, which is beneficial for the robustness of the parameterization
ipeline.

In general, there are two main groups of shape optimization algorithms: gradient-free (like for example genetic
lgorithms [25]) and gradient-based methods (for example interior point methods [26,27]). The latter group generally
equires fewer underlying PDE evaluations at the expense of having to compute the gradient of the objective function
uring each iteration. Therefore, IGA parameterization algorithms that are differentiable with respect to the design
ariables are desirable. Hence, the implicit differentiability, made possible by the PDE-based problem formulation,
s yet another appealing feature of employing an EGG-based parameterization pipeline. An additional feature of
ifferentiability is efficiency: as the inner control points are a smooth function of the boundary control points, there
s no need for full remeshing after each iteration since cheaper mesh update strategies can be employed. This is
lso true for settings in which the boundary contours change as a smooth function of time.

Traditionally, IGA parameterizations are taken from tensor-product spline spaces. Unfortunately, structured spline
echnologies do not allow for local refinement, which may result in infeasibly-large function spaces. Therefore,
nstructured spline technologies such as THB-splines [28] are gaining an increased amount of interest in the
GA community, thanks to local refinement. An EGG-based planar parameterization framework that supports
HB-splines has been proposed in [29].

In order to combine the appealing features of EGG and THB-enabled local refinement, this paper adopts the
arameterization framework proposed in [29] and presents an IGA-based shape optimization algorithm in which
he parameterization is added to the optimization problem formulation in the form of an additional PDE-constraint.
n line with the isoparametric principle of IGA, we numerically treat this additional constraint in the same way
s the governing quantity (temperature, pressure, etc.) of the underlying optimization problem. Including the
apping explicitly as a PDE-constraint facilitates differentiation, allowing for gradient-based optimization, while

lso guaranteeing analysis-suitability, thanks to the bijectivity of IHMs. To improve the efficiency, the proposed
lgorithm employs THB-enabled adaptive local refinement strategies during every optimization iteration, resulting

n a variable discretization basis. We validate the proposed methodology by presenting two test cases.
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. Notation

In this work, we denote vectors in boldface while matrices receive a capital letter and may furthermore be
nclosed in square brackets for better readability. The i th entry of vector x is denoted by xi or simply xi and

similarly for the i j th entry of matrices. We make extensive use of vector derivatives. Here, we interchangeably use
the denotation

[∂tx] ≡

[
∂x
∂t

]
, with

[
∂x
∂t

]
i j

=
∂xi

∂t j
(1)

or the partial derivative and similarly for the total derivative. In the case of taking the derivative of a scalar, brackets
re avoided. However, the argument is treated as a 1 × 1 matrix and hence the derivative has dimension (1,m),

where m is the dimension of t. When integrating locally defined quantities u(ξ ) : Ω̂ → Rn over the physical domain
Ω , we avoid mentioning the push-forward with the mapping x : Ω̂ → Ω for convenience, i.e.,∫

Ω

u ◦ x−1dS =

∫
Ω̂

u(ξ ) det
[
∂ξ x
]

dξ −→

∫
Ω

u(x)dS, (2)

and assume that the reader is aware of the mathematical subtleties involved.

3. Problem formulation

We are considering the shape optimization problem of a planar domain Ω (α) whose contours ∂Ω (α) are
parameterized by the n-tuple of design variables α = (α1, . . . , αn). If the design variables are taken from the

esign space λ, the optimization problem reads:

J
(
uα,Ωα,α

)
→ min

α

s.t. gi (uα,Ωα,α) ≥ 0, ∀i ∈ {1, . . . , N ̸=}

h j (uα,Ωα,α) = 0, ∀ j ∈ {1, . . . , N=}

α ∈ λ,

(3)

here the gi and h j are problem-specific constraints. Here, J (·, ·, ·) denotes the objective function and uα
: Ω → R

ome state variable whose physical meaning depends on the application (temperature, pressure, etc.). We regard
α as a scalar quantity for convenience. However, generalizations to vectorial quantities are straightforward. Note

hat the dependencies of the variables contained in J (·, ·, ·) are concatenated in descending order, i.e., in general
α

= uα(Ωα(α),α) and Ωα
= Ωα(α). The state variable uα follows from a PDE-problem posed over Ωα and may

ontain additional dependencies on α (such as source terms), hence the dependency on the tuple (Ωα,α). Tackling
3) computationally requires introducing a bijective geometry parameterization xα

: Ω̂ → Ωα , where Ω̂ denotes the
arametric domain which is assumed to be static. Here, we restrict ourselves to geometries that are topologically
quivalent to Ω̂ = (0, 1)2 for convenience. However, the generalization to multipatch settings is straightforward.
et

U f
= {v ∈ U | v = f on ∂Ωα

D} (4)

or some suitably-chosen vector space U and some ∂Ωα
D ⊆ ∂Ωα on which Dirichlet data is prescribed. Deriving the

eak form of the PDE-problem governing uα leads to

find uα
∈ Uuα

D s.t. B
(
uα, xα,α, φ

)
= 0, ∀φ ∈ U0, (5)

or some differential form B(·, ·, ·, ·). Here, uα
D denotes the Dirichlet data as a function of the design variables. By

ntroducing the mapping xα , the objective function takes the form

J (uα,Ωα,α) → J
(
uα, xα,α

)
≡ Jα, (6)

here uα satisfies (5). With the dependencies of uα and xα in mind, the gradient of (6) reads:

dJα

dα
=
∂ Jα

∂uα

(
∂uα

∂xα

dxα

dα
+
∂uα

∂α

)
+
∂ Jα

∂xα

dxα

dα
+
∂ Jα

∂α
. (7)

e see that (7) requires taking the derivative of xα with respect to α, while the state variable uα needs to be
α
ifferentiable with respect to x . These two derivatives often constitute the most challenging step in computing

3



J. Hinz, A. Jaeschke, M. Möller et al. Computer Methods in Applied Mechanics and Engineering 378 (2021) 113685

t
t
f
s
E

4

p
o
t

w

s

a
i
K
d
t
i

f

w

I

f

(
d

c

R
s
w

he gradient because differentiating xα or with respect to xα can be nontrivial, depending on the parameterization
echnique used. On the other hand, differentiation with respect to uα is relatively straightforward because the implicit
unction theorem can be used on (5). Hence, if we take xα as the solution of a PDE problem, differentiation is
implified, allowing for a symbolic derivation of all terms involved in (7). To this end, we adopt the principles of
lliptic Grid Generation, which will be the topic of the next section.

. Elliptic grid generation

Elliptic grid generation (EGG) is a PDE-based technique aimed at generating analysis-suitable geometry
arameterizations xα

: Ω̂ → Ωα given only a parametric description of the boundary contours ∂Ωα as a function
f the state vector α. Let the free topological variables in Ω̂ be given by the tuple ξ = (ξ1, ξ2)T

= (ξ, η)T . Then,
he equations of EGG read [29]:

A(xα) : H (xα
i ) = 0 in Ω̂ , for i ∈ {1, 2} s.t. xα

|∂Ω̂ = ∂Ωα, (8)

here

H (u)i j ≡
∂2u
∂ξi∂ξ j

and A(xα) =
1

g11 + g22 + ϵ

(
g22 −g12

−g12 g11

)
, (9)

with gi j = xα
ξi
·xα
ξ j

the entries of the metric tensor and ϵ a small positive constant (typically, we take ϵ = 10−4). Here,
A : B denotes the Frobenius inner product between matrices A and B. The solution of (8) is a mapping xα whose
inverse (xα)−1 constitutes a pair of harmonic functions on Ωα . As (xα)−1 maps into a convex parametric domain
Ω̂ , it follows from the maximum principle that xα is a bijection between Ω̂ and Ωα , where xα

|∂Ω̂ parameterizes
∂Ωα [20,21]. This property justifies limiting the choice of xα from the set of bijective parameterizations to the
ubset of mappings that satisfy (8).

Various alternative approaches for computing an inversely harmonic map have appeared in the literature, such
s [22]. In particular, here we mention the approach based on an isogeometric boundary element method proposed
n [19], which is further developed in [30] to support geometries of genus > 0 via a generalization of the Radó-
neser–Choquet theorem [31,32], which forms the theoretical foundation of harmonic maps, to multiply-connected
omains. While approaches based on BEM constitute a viable alternative to a PDE-based approach, in particular
hanks to the support for multiply-connected domains, we base a computational approach on (8) since it allows for
mplicit differentiation of xα with respect to the design variables (see (7)).

For a viable computational approach, we derive the weak counterpart of (8). Here, we adopt the approach
rom [24]. Given a differential function xα

D : ∂Ω̂ → R2 that parameterizes ∂Ωα , the mapping xα is the solution of:

find xα
∈ Vxα

D s.t. F(xα, σ ) = 0, ∀σ ∈ V0, (10)

ith

F(xα, σ ) =

2∑
i=1

∫
Ω̂

σ i A(xα) : H (xα
i )dξ . (11)

n (10) we used

V f
≡ {v ∈ V × V | v = f on ∂Ω̂}, (12)

or some suitably-chosen vector space V .
The discretization of (10) follows straightforwardly from replacing V by the finite-dimensional V α

h ⊂ V in
12) (and similarly for U). We denote the resulting set by Vα,f

h . As f needs to be compatible with the finite-
imensional space V α

h , the discretization may additionally require replacing the Dirichlet data xα
D by a proper

ollocation xα
D,h ∈ Vα

h \ Vα,0
h . As such, the discretized mapping operator xα

h ∈ V
α,xα

D,h
h satisfies

∀σ h ∈ Vα,0
h : F(xα

h , σ h) = 0. (13)

emark. Due to the appearance of second order derivatives in (13), we have to assume that xα
h is taken from a

pline space with global C1(Ω̂ )-continuity. For an approach that allows for lower regularity (and is hence compatible
ith simply-connected, convex multipatch domains), we refer to [33].
4



J. Hinz, A. Jaeschke, M. Möller et al. Computer Methods in Applied Mechanics and Engineering 378 (2021) 113685

x

r

A
a
i
p

I
d
p

Since (13) results in a nonlinear root-finding problem, we tackle it with a Newton-based iterative approach. Unlike
α , its discretized counterpart xα

h may fold due to the truncation error introduced by the numerical scheme. Grid
folding can be repaired by refining V α

h in the affected regions and recomputing xα
h from the enriched space. This

makes using an unstructured spline technology like THB-splines particularly appealing, thanks to local refinement.
For more details on the choice of V α

h and the algorithm that tackles the nonlinear root-finding problem (13), we
refer to [29].

Optionally, we may introduce Uα as the concatenation of the state variable and the corresponding mapping
operator as a function of α. Treating both quantities using the same numerical technique then allows for a compact
eformulation of the shape optimization problem (3) that reads as follows:

J
(
Uα,α

)
→ min

α

s.t. gi (Uα,α) ≥ 0, ∀i ∈ {1, . . . , N ̸=}

h j (Uα,α) = 0, ∀ j ∈ {1, . . . , N=}

α ∈ λ,

(14)

where Uα
= (uα, xα) ∈ Uuα

D × Vxα
D satisfies

∀Φ ∈ U0
× V0

: G(Uα,Φ,α) = 0, (15)

with Φ = (φ, σ ) and

G(Uα,Φ,α) = B(uα, xα,α, φ) + F(xα, σ ). (16)

Here, B(·, ·, ·, ·) and F(·, ·) are taken as defined in (5) and (11), respectively. As before, a discretization of (14)–(16)
follows by replacing V and U by their suitably-chosen finite-dimensional counterparts.

5. Computational approach

In this section we propose a computational approach for numerically treating the optimization problem (3).

5.1. Discretization

We discretize the optimization problem (3) by approximating

J (uα, xα,α) ≃ J (uα
h , xα

h ,α) ≡ Jα
h , (17)

where uα
h ∈ Uα

h is the solution of the discretized weak state equation (5) while xα
h ∈ Vα

h is the solution of (13) for
given α. Here, Ωα

h is parameterized by xα
h and approximates the domain Ωα whose contours are parameterized by

the α-differentiable xα
D : ∂Ω̂ → R2 which we consider a given function. The distance

D(∂Ωα
h , ∂Ω

α) ≡
xα

D,h − xα
D


L2(∂Ω̂) (18)

serves as a measure of the approximation quality.
Likewise, we approximate the gradient by replacing (uα, xα) → (uα

h , xα
h ) in (7), i.e.,

dJ
dα

≃
∂ Jα

h

∂uα
h

(
∂uα

h

∂xα
h

dxα
h

dα
+
∂uα

h

∂α

)
+
∂ Jα

h

∂xα
h

dxα
h

dα
+
∂ Jα

h

∂α
. (19)

t this point, it should be noted that for given α, the exact evaluations of J (·, ·, ·) and the components of its gradient
re independent of the particular choice of the coordinate system xα . As such, the quality of the approximations
ntroduced in (17) and (19) depend solely on the numerical accuracy of uα

h , which in turn is affected by the
arametric quality of xα

h and the distance of ∂Ωα
h to the exact ∂Ωα .

We numerically treat (3) based on a variable basis approach (VBA) rather than a static basis approach (SBA).
n SBA, uα

h and xα
h are constructed from the static tuple (Uh,Vh), while in VBA the tuple (Uα

h ,V
α
h ) may be chosen

ifferently during each iteration and is tuned to the current needs. We make a choice based on the following
rinciples:

A.
xα

− xα
 , with xα

∈ Vα
\ Vα,0 is sufficiently small;
D,h D L2(∂Ω̂) D,h h h

5
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G

w
t

B. xα
h ∈ Vα

h , resulting from xα
D,h in combination with (13), is a bijection and preferably of high numerical

quality;
C. uα

h ∈ Uα
h approximates uα well.

As such, for given α, we select the tuple (Uα
h ,V

α
h ) such that points A to C are satisfied with a minimal number of

degrees of freedom (DOFs).
In SBA, a necessary condition for local optimality follows straightforwardly from the discretized counterpart of

(3) over the static tuple (Uh,Vh). In contrast, VBA necessitates basing such a condition on (3) before discretization.
Hence, numerical assessment of local optimality in (3) is obligatory, due to the approximate nature of Jα

h and
its gradient. This may be regarded as a drawback since it can generate false positives/negatives caused by the
truncation error at the current iterate. On the other hand, VBA allows for α-specific feature-based basis selection
for approximating both xα and uα , leading to a highly flexible scheme. When performing shape optimization in
combination with EGG, a static Vh may be inappropriate for particular choices of α which results in grid-folding
(impeding the evaluation of Jα

h ), hence justifying VBA-enabled feature-based basis selection in applications which
are geometrically complex.

Remark. If we regard the truncation error τ (α) in uα
= uα

h +τ (α) as a random variable drawn from some probability
distribution, above methodology possesses many properties reminiscent of stochastic gradient descent [34]. As such,
the convergence tolerance should be designed with the expected magnitude of τ (α) (and its contribution to the
gradient) in mind and hence taken generously. Here, we regard this as a minor shortcoming since we consider
complex and highly nonconvex, nonlinear optimization problems in which the model error as well as the notorieties
associated with nonconvex optimization (such as the danger of getting stuck in local minima) pose a greater threat
to solution quality than the truncation error in practice. Furthermore, in most practical applications, a particular
state vector need not be optimal in order to be considered adequate.

5.2. Gradient-based optimization using an adjoint formulation

In the following, we present a scheme that is suitable for gradient-based optimization, where all terms involved
are assembled from expressions that have been derived fully symbolically. For given α, we assume that a suitable
tuple (Uα

h ,V
α
h ) has been chosen based on principles A to C (see Section 5.1). Particular methodologies for satisfying

these principles depend on the application and are discussed in Section 6. In the following, the operator [·] returns
the canonical basis of a vector space, which we assume to be clear from context. Reminiscent of (12), we introduce

Vα,f
h ≡ {v ∈ Vα

h | v = f on ∂Ω̂} and Uα, f
h ≡ {v ∈ Uα

h | v = f on ∂Ω̂D}, (20)

where, as before, f ∈ Vα
h and f ∈ Uα

h by assumption. In (20), ∂Ω̂D ⊆ ∂Ω̂ refers to the preimage of ∂Ωα
D,h ⊆ ∂Ωα

h
under the mapping xα

h . As opposed to (4), here Uα
h is defined in the static parametric domain. In the following,

we assume that ∂Ωα
D = ∅ for convenience, i.e., uα

h is free of Dirichlet data or the data is enforced with Nitsche’s
method [35]. This significantly simplifies the expression for the gradient. Eq. (20) allows for the decomposition
into boundary (B) and inner (I) bases:[

Vα
h

]
=

[
Vα,B

h

]
∪

[
Vα,I

h

]
, with Vα,I

h = Vα,0
h and Vα,B

h = Vα
h \ Vα,I

h , (21)

iven xα
D,h ∈ Vα,B

h (see Section 5.1), we introduce the mapping

xα
h = xα

0 + xα
D,h, with xα

0 =

∑
σ i ∈

[
Vα,I

h

] cIi σ i and xα
D,h =

∑
σ j ∈

[
Vα,B

h

] cBj σ j , (22)

here the cBj are known. We introduce the vector of weights cA (where the subscript A stands for all), which is
he concatenation of the vectors cI and cB(α), containing the cIi and cBj , respectively. Similarly, we introduce

uα
h =

∑
α

diφi with the corresponding vector of weights (dA)i = di . (23)

φi ∈[Uh ]

6
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ith the introduction of the tuple (cA,dA), the discrete objective function is rewritten in the form

Jα
h (xα

h , uα
h ,α) −→ Jα

h (cA,dA,α) , (24)

ith

cA = cA(cI, cB), cI = cI(cB), cB = cB(α) and dA = dA(cA,α). (25)

With above concatenated dependencies in mind, the transposed gradient approximation reads:

dJα
h

dα

T

=

[
dcA
dα

]T
([
∂dA

∂cA

]T
∂ Jα

h

∂dA

T

+
∂ Jα

h

∂cA

T
)

+

[
ddA

dα

]T
∂ Jα

h

∂dA

T

+
∂ Jα

h

∂α

T

, (26)

here we denoted matrix quantities in square brackets.
Introducing the discrete EGG residual vector Fα

h with(
Fα

h

)
i = F(xα

h , σ i ), for σ i ∈

[
Vα,I

h

]
and F(·, ·) as defined in (11), (27)

e use the implicit function theorem [36] to derive an expression for the gradient of cA. We have:[
dcA
dα

]T

=

[[
dcI
dα

]T

,

[
∂cB
∂α

]T
]
, with

[
dcI
dα

]
= −

[
∂Fα

h

∂cI

]−1 [
∂Fα

h

∂cB

] [
∂cB
∂α

]
. (28)

imilarly, we define the residual vector Bα
h of the discretized weak state equation (see (5)), with entries(

Bα
h

)
i = B

(
uα

h , xα
h ,α, φi

)
, for φi ∈

[
Uα

h

]
. (29)

mplicit differentiation yields[
∂dA

∂cA

]
= −

[
∂Bα

h

∂dA

]−1 [
∂Bα

h

∂cA

]
and

[
ddA

dα

]
= −

[
∂Bα

h

∂dA

]−1 [
∂Bα

h

∂α

]
. (30)

ubstituting in (26) leads to

dJα
h

dα

T

=

[
dcA
dα

]T

b −

[
∂Bα

h

∂α

]T

a +
∂ Jα

h

∂α

T

, (31)

ith

a =

[
∂Bα

h

∂dA

]−T
∂ Jα

h

∂dA

T

and b = −

[
∂Bα

h

∂cA

]T

a +
∂ Jα

h

∂cA

T

. (32)

ector a is computed by solving the following linear system:[
∂Bα

h

∂dA

]T

a =
∂ Jα

h

∂dA

T

. (33)

ector b then follows from substituting a in (32). Furthermore, we have[
dcA
dα

]T

b =

[[
dcI
dα

]T

,

[
∂cB
∂α

]T
][

bI
bB

]
=

[
∂cB
∂α

]T

q, (34)

here

q = −

[
∂Fα

h

∂cB

]T

e + bB with e =

[
∂Fα

h

∂cI

]−T

bI . (35)

e compute the matrix–vector product

e =

[
∂Fα

h

∂cI

]−T

bI from the solution of
[
∂Fα

h

∂cI

]T

e = bI . (36)

inally, it should be noted that the matrix [∂αcB] in (34) depends on the operator
α 0 2 ˆ α,B α α α
π : C (R , ∂Ω ) → Vh , with π (xD) = xD,h (37)

7
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nd typically involves a sparse matrix–matrix inverse product. Upon transposing, the order of multiplication is
eversed and the transposed inverse moves to the front. Therefore, we can treat matrix–vector products of the form
∂αcB]T k by inverting a sparse linear system and subsequent multiplication by a sparse matrix. We will present
oncrete examples of this step in Section 6. In the following, we recapitulate all the necessary steps for computing
he tuple

(
Jα

h , dα Jα
h

)
for given α.

S.1: Choose an appropriate spline space tuple (Uα
h ,V

α
h ).

S.2: Compute xα
D,h from xα

D using πα .
S.3: Solve the nonlinear root-finding problem Fα

h (cI) = 0, yielding the analysis-suitable mapping xα
h .

S.4: Solve the root-finding problem Bα
h = 0 using a suitable numerical algorithm. This yields the state variable

uα
h .

S.5: Substitute (xα
h , uα

h ,α) in J (·, ·, ·) to compute Jα
h .

S.6: Compute a → b → e → q and finally dα Jα
h using (31) to (36).

Due to the approximate nature of the tuple (uα
h , xα

h ), we allow for a small amount of slack in the assessment of
numerical feasibility, i.e., we replace

gi (uα, xα,α) ≥ 0 −→ gi (uα
h , xα

h ,α) ≥ µ ∀i ∈ {1, . . . , N ̸=}

h j (uα, xα,α) = 0 −→ −µ ≤ h j (uα
h , xα

h ,α) ≤ µ ∀ j ∈ {1, . . . , N=},
(38)

ith µ > 0 in (3). The procedure that carries out S.1 to S.6, along with the relaxed constraints, is passed to a
radient-based optimization routine (such as IPOPT).

.3. Gradient assembly costs

In the following, we analyze the computational costs of assembling the gradient. The majority of the costs result
rom assembling sparse matrices, as well as solving sparse linear systems, such as in (33). In order to compute xα

h ,
e simultaneously assemble the quantities

Fα
h (ci

I) and
[
∂Fα

h

∂ci
I

]
(39)

uring a joint element loop at the beginning of the i th Newton iteration (see Section 4). As such, this routine
utomatically yields the matrix

[
∂cIFα

h

]
at the last step. If Bα

h is linear, assembling
[
∂dABα

h

]
is a precursor to

omputing uα
h and hence available. If Bα

h is nonlinear, we recommend basing an iterative algorithm on Newton’s
ethod and computing the residual and its derivative in tandem, as in (39). As such, additional cost factors are

ssembling
[
∂cABα

h

]
and solving a number of sparse linear equations. Due to the nonlinear nature of Fα

h , the cost
f computing dα Jα

h is of the same order as a discrete evaluation of J (·, ·, ·) (regardless of the length of α).
Finally, we note that the discrete constraint gradients associated with the gi and h j are efficiently computed by

eplacing Jα
h by the corresponding term in (26) and repeating steps (31) to (36). Hereby, the required matrices can

e reused from the assembly of the gradient.

.4. Memory-saving strategies in large-scale applications

In light of enabling large-scale optimization as well as the prospect of extending the presented methodology to
olumetric applications, in the following, we discuss ways to avoid the memory-consuming assembly of the matrices
nvolved in computing uα

h , xα
h and Jα

h and their derivatives.
Memory-saving strategies are based on the observation that matrices only appear in the form of matrix–vector

roducts during the assembly of dα Jα
h . Let B = B(. . . ,q, . . .). Then, we have[

∂B(. . . ,q, . . .)
∂q

]
a ≃

B(. . . ,q + ϵa, . . .) − B(. . . ,q, . . .)
ϵ

, (40)

or ϵ > 0 small. As such, in steps (31) to (36), matrix–vector products can be approximated using (40). Since Krylov-
ubspace (KS) methods such as GMRES [37] only require matrix–vector products, we combine a KS-method with

40) for solving linear systems as they appear in, e.g., Eq. (33). Reminiscent of Newton–Krylov [38], this principle

8
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Fig. 1. Plot of d(s) (see (41)) and the corresponding envelope function over the interval s ∈ [0, 1].

ay be extended to the computation of uα
h and xα

h , hence completely bypassing matrix assembly in steps S.1 to S.6.
ereby, we regard the cumulative error contribution to dα Jα

h ≃ dα Jα as negligible compared to other sources (such
s the model error and the truncation resulting from the numerical scheme). The optimal choice of ϵ is discussed
n [38].

. Examples

In this section we apply the methodology from Section 5.1 to selected test cases. We consider the first example
validation test case, in which the exact minimizer can be computed exactly (up to machine precision). Hereby, we

ompare the results of VBA (see Section 5) to the exact minimum. Furthermore, we compare the VBA results to
hose resulting from taking the tuple (Uα

h ,V
α
h ) static (SBA). In the second case, we consider the design of a cooling

lement, whereby the plausibility of the outcome can only be assessed using physical reasoning.
Both examples have been carefully selected in order to be geometrically challenging. We implemented the scheme

rom Section 5 in the open-source Python library Nutils [39].

.1. A validation example with known exact solution

We are considering the example of a domain fenced-off by four parametric curves that are given by an envelope
unction multiplied by a cosine, whereby the amplitude of the cosine is a degree of freedom in α = (α1, α2, α3, α4).

e define the function

d(s) =

(
g(s) − g(0)

g(0.5) − g(0)

)
  

envelope function

(
1 − cos(ωπs)

2

)
  
trigonometric component

, where g(s) = exp

(
−

(
s −

1
2

)2

2σ 2

)
, (41)

ith (ω, σ ) = (6, 0.2). Note that d(0) = d(1) = 0 and d(0.5) = 1, d(s) and the envelope function are depicted in
Fig. 1. Let ∂Ω̂ = γ̄S ∪ γ̄E ∪ γ̄N ∪ γ̄W , where the γβ, β ∈ {S, E, N ,W } denote the southern, eastern, northern, and

estern boundary of ∂Ω̂ , respectively. The contour parameterization xα
D : ∂Ω̂ → ∂Ωα reads:

xα
D(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
(ξ1, α1d(ξ1))T ξ ∈ γ̄S

(1 − α2d(ξ2), ξ2)
T ξ ∈ γ̄E

(ξ1, 1 − α3d(ξ1))T ξ ∈ γ̄N

(α4d(ξ2), ξ2)
T ξ ∈ γ̄W

, (42)

hile

λ = {α ∈ R4
| 0 ≤ α ≤

2
51}, (43)

where 1 is a vector of ones.
9
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Here, we base πα
: C0(R2, ∂Ω̂ ) → Vα,B

h (see Section 5) on an L2(∂Ω̂ ) projection. For given Vα,B
h , we hence

ave [
∂cB
∂α

]T

= −

[
∂Dα

∂α

]T [
∂Dα

∂cB

]−T

, where Dα
i =

∫
∂Ω̂

σB
i ·
(
xα

D − xα
D,h(cB)

)
dγ (44)

nd σB
i ∈

[
Vα,B

h

]
. In (44), we take matrix–vector products in the same way as in Section 5. We base our state

ariable residual on the following PDE problem:

− ∆xα uα
= −∆xα f α in Ω̂ , s.t. uα

⏐⏐
∂Ω̂

= f α, where f α
= det

[
∂xα

∂ξ

]
(45)

nd ∆xα denotes the Laplace–Beltrami operator corresponding to xα . Clearly, the exact solution of (45) satisfies
α

= f α . We derive the weak form of (45) and implement the boundary conditions using Nitsche’s method. This
eads to(

Bα
h

)
i =

(
∇(uα

h − f α),∇φi
)
Ωα

h
−

∫
∂Ωα

h

φi
∂uα

h

∂n
dγ −

∫
∂Ωα

h

(uα
h − f α)

∂φi

∂n
dγ + ηi

∫
∂Ωα

h

(uα
h − f α)φi dγ, (46)

ith φi ∈
[
Uα

h

]
. Here, ∂/∂n denotes the outward normal derivative with respect to Ωα

h and ηi ≫ 1 is a penalty
parameter. We use

ηi =

{
cI −1

i Ii > 0
0 else

, where Ii =

∫
∂Ωα

h

φi dγ and c = 103. (47)

The objective function reads:

Jα
=

∫
Ω̂

uαdS +
1
2

∥α∥
2

H⇒ Jα
h =

∫
Ω̂

uα
h dS +

1
2

∥α∥
2 (48)

nd there are no further constraints. Since uα
= ∂ξ xα , we have∫

Ω̂

uαdS = Area(Ωα) = 1 −

∑
i

αi A, where A =

∫
[0,1]

d(s)ds. (49)

e compute the exact value of A up to machine precision, which yields A ≃ 0.2374. The exact minimum over
∈ λ is assumed at α∗ = A1 and yields Jα∗

≃ 0.8873. The contours of the resulting domain Ωα∗ are depicted in
ig. 2.

For increasingly fine (Uα
h ,V

α
h ), the minimum of the discretized optimization problem should converge to the

xact minimum, allowing us to test the consistency of the scheme.
In the following, we discuss how to choose the tuple (Uα

h ,V
α
h ) during each iteration. We start by dividing Ω̂ into

structured set of elements, resulting from the bivariate knot vector Ξp1,p2 = Ξ p1 ×Hp2 , where the pi denote the
olynomial degree. Here, we restrict ourselves to bicubic bases, i.e., p1 = p2 = 3, with maximum regularity. With
oints A to C (see Section 5) in mind, we repeatedly refine the φi ∈

[
V α,B

h

]
, where, as before

V α
h × V α

h = Vα
h and V α,B

h = {φ ∈ V α
h | φ ̸= 0 on ∂Ω̂}

ntil the Dirichlet data is approximated sufficiently well. Refinement of some φi ∈

[
V α,B

h

]
entails replacing its

upporting elements by their finer counterparts from the next level in the element hierarchy, leading to a finer
lement segmentation of Ω̂ and an associated canonical THB-spline basis with a locally increased number of DOFs.
or more information on THB-refinement we refer to [28,40].

Here, V α
h is initialized to the coarse-grid basis resulting from Ξp1,p2 . Let the i th contribution to the projection

esidual be denoted by ri (xα
D,h), where

R(xα
D,h)2

=
1
2

∫
∂Ω̂

xα
D − xα

D,h

2 dγ =
1
2

∑
i

∫
∂Ω̂

φi
xα

D − xα
D,h

2 dγ ≡
1
2

∑
i

r2
i (xα

D,h). (50)

ere, we made use of the fact that the φ form a partition of unity on ∂Ω̂ .
i

10
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Fig. 2. The contours of the domain Ωα∗ that correspond to the exact minimizer α∗.

We refine φi ∈

[
V α,B

h

]
whenever ri (xα

D,h) exceeds a threshold µi . The threshold is of the form

µi =
µ√

∥φi∥L2(∂Ω̂)

, (51)

here µ is a small positive constant that tunes the accuracy of the approximation xα
D,h ≃ xα

D on ∂Ω̂ .
As a next step, we compute xα

h using the methodology from Section 4. As the choice of Vα
h = V α

h × V α
h , at

his point, is solely based on accurately resolving the boundary contours, it may be too optimistic (in terms of
he number of inner DOFs) for computing a folding-free mapping. In the case of folding, we apply a posteriori
efinement to defective elements, i.e., elements E ⊂ Ω̂ on which

det
[
∂xα

h

∂ξ

]
(p) < 0

for some p ∈ E , by refining all φi ∈
[
V α

h

]
that are non-vanishing on E . The defective mapping is prolonged to the

refined space and serves as an initial guess for recomputing it from the enriched space. This step may be repeated
until Vα

h is such that xα
h ∈ Vα

h is folding-free. Note that, although the proposed methodology is robust in practice, it
may lead to over-refinement. The methodology may be combined with the refinement strategies proposed in [29],
which avoid over-refinement.

Remark. Here, we base the selection of Vα
h on a posteriori strategies, which necessitates recomputing xα

h after
ach refinement. Choosing the coarse-grid basis properly (i.e., not too coarse), we typically did not encounter more
han 1 − 2 a posteriori refinements in the cases considered in this work. Fortunately, the defective mappings can be
sed as an initial guess for the recomputed one, significantly reducing computational costs.

Reliable a priori refinement strategies are however desirable and constitute a topic for future research.

After achieving bijectivity, additional refinement can be performed in order to further improve the quality of the
apping. A posteriori strategies that rely on the Winslow functional [41] are discussed in [29].
Upon completion, we are in the possession of an analysis-suitable xα

h : Ω̂ → Ωα
h from the appropriately refined

α α
Vh . As a next step, we choose a suitable space Uh . Heuristically, there exists a strong correlation between the

11
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Fig. 3. Block diagram summarizing all the steps required for computing the tuple
(
Jα

h , dα Jα
h

)
.

regions in which V α
h has been refined in order to yield an analysis-suitable xα

h and the regions that ought to be
refined in order to accurately approximate uα . As such, we initialize Uα

h to the current choice of V α
h . In this work,

e always base Uα
h on V α

h or a (possibly repeated) uniform h-refinement thereof. However, for more flexibility, we
riefly recapitulate possible feature-based refinement strategies.

In all cases, plausible a priori (aPr) strategies refine elements that are too large (on Ωα
h ), while a posteriori (aPos)

trategies depend on the underlying PDE problem. In the case of (45), aPos refinement can be based on the strong
esidual norm

mSR =

∫
Ωα

h

(
∆uα

h − ∆ f α(xα
h )
)2 dS + F(uα

h |∂Ω̂ ), (52)

here F(·) : Uα,B
h → R+ is a suitably-chosen penalty term that gauges how well the boundary condition is resolved

y Nitsche’s method. Note that (52) requires that the entries of xα
h are elements from C2(Ω̂ ), which is satisfied

f we utilize bicubics with maximum regularity. Eq. (52) may then be decomposed into the basis function wise
ontributions (as in (50)) or serve as a cost function for dual weighted residual (DWR) based aPos refinement [42].

Alternatively, the weak residual norm mWR, with

mWR =

∑
i

c2
WR,i and cWR,i = B(uα

h , xαh ,α, ψi ) (53)

may be utilized. Here, the ψi are taken from a space Ū ⊃ Uα
h that results from uniformly refining Uα

h in p or h.
For more details, we refer to [17].

Upon completion of an adequate state variable approximation uα
h , we are in the position to assemble the tuple(

Jα
h , dα Jα

h

)
utilizing the principles from Section 5. All the required steps are summarized in Fig. 3.

In the following, we present the results of a computational approach for various values of µ (see Eq. (51)) and
uref, where uref refers to the number of aPr h-refinements of Uα

h with respect to V α
h . For this, the procedure that
corresponds to Fig. 3 has been passed to a SLSQP [43] routine. In all cases, we use the initial guess α0 = 0.

12
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(a) Table showing | min Jα
h − min Jα

|. (b) #iterations required until convergence.

µ uref µ uref

0 1 2 0 1 2

10−2 8.2 × 10−3 4.6 × 10−4 7.7 × 10−6 10−2 4 2 3
10−4 3.7 × 10−3 1.6 × 10−4 5.5 × 10−6 10−4 4 3 3
10−6 2.7 × 10−4 1.3 × 10−5 5.2 × 10−7 10−6 2 3 3

Table 2
Tables showing the average of the number of DOFs involved in computing xα

h (a) and uα
h (b) (over all iterations) for various combinations

f (µ, uref).

(a) Average #DOFs for xα
h . (b) Average #DOFs for uα

h .

µ uref µ uref

0 1 2 0 1 2

10−2 483.5 389 452 10−2 241.75 625 2641
10−4 735.5 676 676 10−4 367.75 1169 4337
10−6 1145 1460 1460 10−6 572.5 2737 10 609

Table 3
Tables showing | min Jα

h − min Jα
| (a) and the required number of iterations until convergence is reached (b) in the SBA case for various

combinations of (ne, uref).

(a) Table showing | min Jα
h − min Jα

|. (b) #iterations required until convergence.

ne uref ne uref

0 1 2 0 1 2

12 8.4 × 10−3 5.4 × 10−4 6.5 × 10−6 12 4 3 2
16 7.2 × 10−3 4.1 × 10−4 1.1 × 10−5 16 4 3 2
23 4.7 × 10−3 2.4 × 10−4 8.3 × 10−6 23 4 3 2

Table 1 shows the discrepancy between the exact objective function minimum and its numerical approximation
min Jα

h − min Jα
| (a) and the required number of iterations until convergence is reached (b), for all possible

combinations of µ = (10−2, 10−4, 10−6) and uref = (0, 1, 2). In all cases, we initialized
[
V α

h

]
to a bicubic

B-spline basis with 7 elements per coordinate direction and maximum regularity. Finally, Tables 3 and 4 show
the corresponding results from a static basis approach. Hereby, ne denotes the number of elements we used per
coordinate direction. Their values have been carefully selected to yield roughly the same number of DOFs associated
with both xα

h and uα
h as the average number of DOFs in the VBA-results (see Table 2).

Table 1(a) clearly demonstrates the consistency of the scheme, whereby discrepancies as low as ∼ 0.5×10−6 are
chieved. Comparing the VBA to the SBA results, Tables 1(a) and 3(a) demonstrate that VBA outperforms SBA in
erms of accuracy, where an up to ∼ 10-fold error reduction of VBA over SBA can be observed. The total number
f iterations required until convergence is achieved is comparable for VBA and SBA and never exceeds the number
f four iterations.

.2. Designing a cooling element

We are considering the design of a cooling element of dimension ∆x = 2 and ∆y = 1. In this example, there
re four active coolers whose positions can slide in the direction tangential to ∂Ωα and to a lesser extend in the
ormal direction (see Fig. 4). Further degrees of freedom are their radii Ri . Hence, the state vector is given by
= (x , x , x , x , R , R , R , R ), which is comprised of 12 DOFs. The surface cooling rate for the i th active
1 2 3 4 1 2 3 4

13
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able 4
ables showing the number of DOFs involved in computing xα

h (a) and uα
h (b) in the SBA case for various combinations of (ne, uref).

(a) #DOFs for xα
h . (b) #DOFs for uα

h .

ne uref ne uref

0 1 2 0 1 2

12 450 450 450 12 225 729 2601
16 722 722 722 16 361 1225 4489
23 1352 1352 1352 23 676 2401 9025

Fig. 4. The cooling element design template. Here, the centers of the active coolers are depicted by small black dots. Their positions
constitute degrees of freedom in the design space, as well as their radii.

cooler Ci reads:

hi
−

(x) =
1

20
R3

i

∥x − xi∥
2

(
uα

h (x) − T∞

)
, (54)

where T∞ = 0 denotes the ambient temperature. A heat source delivers a constant heat influx given by

Ntot = N W
in + N int

in , (55)

here N W
in denotes the influx at the western boundary, while N int

in denotes the influx delivered directly to the cooling
lement through an additional source term which satisfies

N int
in =

∫
Ωα

A exp

(
−

∥x − x0∥
2

2σ 2

)
dS, (56)

here A =
Ntot

4πσ 2 , x0 = (1.5, 0.25)T and σ = 0.1. Note that changing the domain of integration from Ωα to R2 in (56)
ields a value of N int

in = Ntot/2. As Ntot is a constant quantity, we necessarily have N W
in = Ntot − N int

in . The surface
heat flux density hW : Γ α

W → R at the western boundary Γ α
W ⊂ ∂Ωα is of the form hW (y) = FW (Ωα) sin (πy).

herefore, we have

N W
in = Ntot − N int

in =

∫
Γα

W

FW sin (πy)dγ. (57)

ence

FW (Ωα) =
Ntotπ

2

(
1 −

∫
α

1
4πσ 2 exp

(
−

∥x − x0∥
2

2σ 2

)
dS

)
. (58)
Ω
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T

w

w

R
t
t
t

w

T

he relationship between uα and the (uniform) temperature of the heat source T α reads:

Ntot = A1(Ωα)
∫
Γα

W

(T α
− uα) sin (πy)dγ + A2(Ωα)

∫
Ωα

(T α
− uα) exp

(
−

∥x − x0∥
2

2σ 2

)
dS, (59)

here

A1(Ωα) =
π

2

(
1 −

W (Ωα)
4πσ 2

)
and A2(Ωα) =

W (Ωα)
8π2σ 4 , (60)

ith

W (Ωα) =

∫
Ωα

exp

(
−

∥x − x0∥
2

2σ 2

)
dS. (61)

Inverting (59) gives:

T α(uα,Ωα) =

Ntot + A1(Ωα)
∫
Γα

W
uα sin (πy)dγ + A2(Ωα)

∫
Ωα uα exp

(
−

∥x−x0∥
2

2σ 2

)
dS

2
π

A1(Ωα) + W (Ωα)A2(Ωα)
. (62)

emark. The rationale behind A1(Ωα) and A2(Ωα) in (62) can be understood as follows: given Ntot = 1, suppose
he cooling element width were to be contracted to ∆x → 0. We have lim∆x→0 W (Ωα) = 0. In the limit, the
emperature of the heat source should be fully determined by the first term on the right hand side of (59), which is
he case because lim∆x→0(A1, A2) = (π2 , 0). As such, a constant influx of 1 = Ntot = N W

in means

T α
− uα

|Γα
W

= 1.

Conversely, suppose Ωα were to be replaced by R2. Then, the dependency is divided equally among both terms
since for

W (Ωα
= R2) = 2πσ 2, we have (A1, A2) =

(
π

4
,

1
4πσ 2

)
.

So, for T α
− uα

= 1, both terms contribute the same factor of 1
2 to the right hand side of (59).

The weak state equation is based on the following PDE-problem:

−d∆uα
= − f uα

+ A exp

(
−

∥x − x0∥
2

2σ 2

)
in Ωα

s.t. d
∂uα

∂n

⏐⏐⏐⏐
∂Ωα

=

{
−hcooling + FW sin(πy) x ∈ Γ̄ α

W
−hcooling x ∈ ∂Ωα

\ Γ̄ α
W
, (63)

here

hcooling =

4∑
i=1

hi
−

and f = 10−3 denotes the internal dissipation rate. (64)

he i th entry of the discretized weak state equation residual reads:(
Bα

h

)
i = d

(
∇uα

h ,∇φi
)
Ωα

h
+

∫
Ωα

h

f uαφi dS

+

∫
Ωα

h

A exp

(
−

∥x − x0∥
2

2σ 2

)(π
2
φi − φi

)
dS +

4∑
j=1

∫
∂Ωα

h

φi h
j
−dγ −

π

2
Ntotφi , (65)

with A as in (56), d = 0.8,

φi =

∫
α
φi sin(πy)dγ and φi ∈

[
Uα

h

]
. (66)
ΓW
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Fig. 5. The initial guess passed to the minimization routine.

We are minimizing the manufacturing costs of the cooling element such that the heat source temperature does not
exceed the value of Tmax = 80. The problem reads:

J
(
uα,Ωα,α

)
→ min

α

s.t. Tmax − T α
≥ 0

α ∈ λ,

(67)

where

J
(
uα,Ωα,α

)
=

∫
Ωα

1dS +

4∑
i=1

CCE R2
i , with CCE =

100
π
. (68)

urthermore, the feasible design space λ is the space of all α such that the active coolers do not overlap and the
enus of Ωα does not change (allowing for shape optimization without topology changes). This leads to a total of
0 (partly nonlinear) inequalities.

A major challenge is deciding where to place the active coolers and what radii to use. Increasing the radius means
dditional cooling but also additional manufacturing costs and decreased cooling element area, decreasing the heat
apacity and the channel heat conductivity. Furthermore, placing a cooler close to the internal heat source (see (56))
educes the amount of internal influx, increasing the influx amplitude FW (see (57)) at Γ α

W for compensation.
We are considering the case Ntot = 10 and follow the same approach as in Section 6.1 with µ = 0.5 × 10−3

and uref = 1. Since xα is a continuous function of the input state vector, we improve the efficiency by storing the
tuples (αi , ci

A,V
α,i
h ) (see Section 5) after each iteration. Whenever some αi with ∥α − αi

∥ < ϵ is found in the
atabase, the corresponding mapping xα,i

h ∈ Vα,i
h is prolonged to the coarsest element segmentation of Ω̂ that is

ompatible with both Vα,i
h and the current Vα

h . Upon completion, it is restricted to Vα
h , which yields the vector

cR
A =

(
cR
B, cR

I
)T . The weights corresponding to the inner DOFs, cR

I , are extracted and then used as an initial guess
or the root-finding problem (13). We have noticed this to lead to a tremendous speedup, in particular during the
ast iterations, in which α varies only slightly. Hereby, the required number of iterations is reduced from typically
our to as few as one.

emark. This principle may be extended to higher than zeroth-order database interpolation.

Here, we use ϵ = 0.05. A feasible initial guess is created by picking one of the coolers and increasing its radius
ntil T α < Tmax. The initial design is depicted in Fig. 5. As in Section 6.1, the routine that computes Jα

h , dα Jα
h and

he constraints is passed to an SLSQP optimizer.
Figs. 6(a) to 6(d) show the cooling element after 4, 7, 10 and 13 iterations. Convergence is reached after 15

terations and the corresponding design is depicted in Fig. 7. The final design reduces the manufacturing costs from
α α
he initial Jh = 10.66 to Jh = 6.29.
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Fig. 6. The cooling element after 4(a), 7(b), 10(c) and 13(d) iterations.

Fig. 7. The final cooling element design after 15 iterations.

A striking difference between the initial and all intermediate designs is the improved heat conductivity within
the channel, leading to a more homogeneous temperature (and one that is higher on average). This is not surprising.
As the cooling efficiency is linear in the difference between the temperature at the boundaries and the ambient
temperature T∞ = 0, a higher average temperature implies higher average cooling efficiency.

The final design places a modestly-sized cooler C1 at the center of the southern boundary and a similarly-sized
cooler C2 at the western part of the northern boundary. To its right, a slightly larger cooler C3 is placed while a
small cooler C4 is placed at eastern boundary close to y = 0.4.

Compared to the initial design, one big cooler has been replaced by several modestly-sized ones, improving the
channel heat conductivity and by that the cooling cost efficiency. The slightly larger size of C3 compared to C2 can

T
be explained by the internal heat source centered at x0 = (1.5, 0.25) . The small radius of C4 may be explained by

17
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t
he fact that increasing its size reduces the amount of internal influx area, leading to a larger influx at Γ α
W instead.

As such, we regard the final design as plausible, adding more credibility to the proposed numerical scheme.

7. Conclusions

In this manuscript, we proposed an IGA-based shape optimization algorithm in which the parameterization is
added to the problem formulation in the form of an additional PDE-constraint. This has enabled us to derive a fully
symbolical expression for the gradient of the objective function, allowing for gradient-based optimization. The
discretization of the equations has been accomplished with the so-called variable basis approach (VBA) in which a
new THB-spline basis is chosen during each iteration based on the current requirements, such as accurately resolving
the geometry contours and particular features of the state equation solution. This leads to a highly flexible scheme
in which folding due to numerical truncation is automatically repaired through THB-enabled local refinement.

We have tested the scheme by applying it to two examples. In the first example, we compared the numerical
solution to the known exact solution and concluded that the scheme is consistent. Comparing the VBA-approach
to an approach in which the basis is taken static (SBA) furthermore revealed that VBA-enabled feature-based
refinement leads to a ∼10-fold error reduction over SBA at a comparable total number of DOFs. This discrepancy
may be further increased by employing more proficient a priori and a posteriori refinement techniques. In the
second example, we considered the design of a cooling element. Unlike in the first example, the exact minimizer
was unknown, however, the optimization routine converged to a design that we consider plausible. In both cases, the
scheme succeeded in fully automatically parameterizing a wide range of geometries which would be too complex
for other symbolically-differentiable parameterization strategies (such as Coon’s Patch) at the expense of leading to
a nonlinear problem.

Finally, we briefly discussed possible memory-saving strategies for large-scale optimization and (possible)
future implementations of the scheme with support for volumetric applications. Furthermore, the scheme is
straightforwardly enhanced to support multipatch parameterizations by adopting the mixed FEM EGG algorithm
introduced in [33].
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