
Dissecting the secrets of software testing education in universities

Onur Gökmen1

Supervisor(s): Andy Zaidman1, Baris Ardıç1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Onur Gökmen
Final project course: CSE3000 Research Project
Thesis committee: Andy Zaidman, Baris Ardıç , Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Software testing plays a crucial role in deliver-
ing reliable software. Currently, research is ongo-
ing on how software developers and testers acquire
this knowledge of software testing to deliver reli-
able software and what kind of knowledge is being
transferred to developers and testers. In an effort to
gain more insight into this area, we will focus on
answering which software testing topics are being
discussed in dedicated software testing courses and
software engineering courses in top-ranked univer-
sities. Our findings show us that white-box testing,
black-box testing and the discussion of test levels
are the most commonly discussed topics in univer-
sities.

1 Introduction
In the current society, software is used for a wide range of ac-
tivities. Software helps to solve difficult problems, speeds up
information processing, automates repetitive tasks and much
more. To develop well-functioning, robust and reliable soft-
ware, software is being tested rigorously in different phases
of development [1].

Developers and testers play a crucial role in delivering
quality software by conducting various software testing tech-
niques [2]. However, software is becoming more and more
complex and testers must identify and simulate services that
software systems use and test these services [3]. Software
that is not properly tested may lead to disastrous events, such
as causing economic losses and even human deaths [4].

To prevent these disasters, developers and testers shared
in a survey conducted by JetBrains that software testing is
increasingly becoming an integral part of their development
[5].

On top of that, Augusto et al. analysed the impact of soft-
ware testing education in higher education on code reliability
and concluded that developers who learn basic testing princi-
ples are more than twice likely to produce reliable code [6].

It is clear that software testing is an integral part of the
software development life cycle and gaining software test-
ing knowledge results in reliable code. This highlights the
importance of investigating which software testing topics are
being discussed in software engineering and software testing
courses. Thus, the main research question is formulated as
follows:

What major software testing topics are being discussed in
syllabi of software engineering and software testing courses
at university level? In order to address our main research
question, we will divide it into four smaller parts.

1. What are the course contents of software testing and
software engineering courses?

2. What are the learning objectives of software testing and
software engineering courses?

3. What are the course activities of software testing and
software engineering courses?

4. How do course contents compare in different continents?

By exploring university courses that teach about software
testing techniques, we will gain insight into what testing tech-
niques are taught to students and the latest trends regarding
software testing in universities. Moreover, similarities and
differences in software testing topics and course activities
will be discovered by comparing continents.

The structure of this research is as follows: In Section 2,
we first explore related work to our main research question.
Section 3 describes our methodology, Section 4 details the
findings of our research. In Section 5, we will discuss these
results. After that, in Section 6 we will discuss the repro-
ducibility and ethical aspects of this research and finally, we
conclude our research and propose future research topics in
Section 7.

2 Related Work
Currently, researchers and educators are working on analyz-
ing and improving software testing education. Additionally,
systematic literature review and systematic literature map-
ping studies are conducted to provide an overview of the
research landscape regarding software testing and software
engineering fields. Finally, the importance of software test-
ing knowledge is highlighted in some of the research papers.
This section will state research papers that have contributed
to these categories.

Garousi and Mathur provided an overview of the state of
software testing education by researching course contents and
projects in top universities in Canada and North America [7].
Course projects were not up-to-date with the most recent test-
ing tools and technologies. In addition, most of the projects
are not built on real-world Systems Under Test, but rather
used “toy” examples to teach software testing topics.

On top of the overview of Canada and North Amer-
ica, Ardic and Zaidman analyzed dedicated software testing
courses in top universities according to the Times ranking and
concluded that different testing techniques, test design and
planning were the most popular testing skill categories [8].

Garousi et al. analyzed the knowledge gap between soft-
ware engineering courses and industrial needs by reviewing
papers related to software engineering courses [9]. They state
that the biggest knowledge gaps are in requirements engineer-
ing, design and testing. The authors implied that teaching ma-
terials in software engineering courses are not aligned with
Industry’s needs.

Garoushi et al. have conducted a systematic literature map-
ping on research papers associated with software testing edu-
cation [10]. The results show that software testing education
is becoming more active, which is concluded by the increas-
ing number of written papers regarding software testing edu-
cation.

Finally, the importance of software testing knowledge is
emphasized by Augusto et al [6]. University students im-
plemented two different functions before and after learning
software testing concepts like black-box, white-box and mu-
tation testing. Students with software testing knowledge are
more than twice likely to produce reliable code, than students
that did not receive software testing knowledge before imple-
mentation.



3 Methodology
To answer our research questions, we first selected specific
software engineering and software testing courses. Subse-
quently, we collected data regarding these courses and fi-
nally, we performed manual keyword extractions and group-
ing techniques from the data that we collected.

3.1 Software Engineering and Software Testing
courses

In this study, we focused on software engineering and soft-
ware testing courses. These courses may overlap in the teach-
ing material that is taught, as software testing is a subset of
software engineering. In this study, we defined software test-
ing courses as courses that primarily focus on teaching soft-
ware testing topics. Henceforth, we will refer to software
testing courses as dedicated software testing courses.

On top of software testing topics, software engineering
courses also teach about designing, building and maintain-
ing software. In this study, we omitted these topics as they
are out of the scope.

3.2 Course selection
To initiate our research, we explored the top 150 universities
in the subject of Computer Science and Information Systems
by QS World University Rankings [11]. In this study, the im-
portance of the teaching quality outweighs other indicators.
Therefore, we opted to use QS ranking, because the primary
indicator for the construction of the ranking is academic rep-
utation and teaching methods.

In order to find the course syllabus and catalogue, we used
a list created by Ardic and Zaidman [8]. This list already
provides the course syllabus for software testing courses and
links to the course catalogue for software engineering courses
in the top 100 based on the Times Higher Education rank-
ing. For courses that are not present in this list, we manually
searched the course catalogue. The following keywords were
used in search engines:

• “University name + course catalog”

• “University name + module catalog”

• “University name + Computer science courses”

• “University name + Computer science course list”

For course catalogues that were not found using this ap-
proach, we manually searched university websites and the
related department regarding computer science, software en-
gineering and information systems to find course catalogues
or the curriculum of the study program.

Next, we analyzed course descriptions and contents to de-
termine the categorization of a course as a dedicated software
testing course or as a software engineering course. Courses
that primarily teach about software testing are classified as
dedicated software testing, whereas courses containing “soft-
ware” in their title, with the addition of “software testing” or
“testing” in the course descriptions and contents are classified
as software engineering courses.

3.3 Data collection and Labelling
The course syllabi functioned as our primary source of data to
potentially find information regarding course content, course
activities and learning objectives. The details of the course
syllabus ranged from comprehensive information with bul-
let points regarding the discussed topics, to limited available
information, providing only a few sentences with high-level
keywords like software testing and quality assurance.

Besides the course syllabus, we also attempted to find addi-
tional information, which mostly originated from course web-
site, the professor’s websites and Github links. Keywords
like “University name + Course code”, “University name
+ Course code + Professor name” and “University name +
Course code + Github” were used in search engines. We then
browsed through every page of the search, which mostly con-
sisted of 5-10 pages at maximum. Occasionally, obtaining
additional information from previous years was more acces-
sible. Subsequently, modifying the course year to the current
year in the URL occasionally provided access to recent infor-
mation.

Once we had access to course information, we manually la-
belled the course contents, course activities and learning ob-
jectives. These learning objectives were then grouped into
categories. Software testing courses have categories which
are similar to the categorization of learning outcomes by
Ardic and Zaidman with the addition of 5 more categories [8].
For software engineering courses, however, we have created
our own categories. We first extracted keywords for course
objectives and later we merged these keywords into groups.
Our categories represent a high overview of learning objec-
tives.

3.4 Data set
By utilizing this method, we have gathered 212 entries from
which 79 are dedicated software testing courses, 91 are soft-
ware engineering courses and the remaining 42 entries were
universities that are not classified, because no information
could be found or no courses provided software testing ed-
ucation. Therefore these 42 entries are no longer used in the
rest of this study.

Our investigation covered 61 courses in Europe, 59 courses
in North America, 34 courses in Asia, 12 courses in Aus-
tralia, and 4 courses in Latin America. 100 courses were part
of a bachelor’s program, whereas 70 courses were part of a
master’s program. In total 56 courses provided additional
information, such as slides, lecture videos and information
regarding learning objectives and course activities on course
websites, Github links or an educator’s website. The data col-
lected in this study is made available on our Github page [12].

4 Results
In this section, we will present our findings regarding course
contents, course activities and learning objectives.

4.1 Software testing topics
Dedicated software testing courses
The general overview of software testing topics in dedicated
software testing courses is displayed in Figure 1. During



Occurrences of testing topics

Figure 1: Overview of software testing topics in dedicated software
testing courses.

Occurrences of testing topics

Figure 2: Overview of software testing topics in software engineering
courses.

our investigation, we have perceived that the details of syl-
labi can vary substantially. Some universities provided de-
tailed information, which made collecting course content eas-
ier. But, more often, syllabi contained high-level concepts
such as black-box testing and white-box testing. Therefore,
we have categorized the keywords such as coverages, control
and data flow to white-box testing and partitioning, boundary
and combinatorial testing to black-box testing.

The most taught topics were white-box testing, black-box
testing and testing tools, which all occurred in more than 40
out of 79 courses. The discussion of test levels, like unit test-
ing, integration testing, system testing and acceptance testing
also occurred relatively frequently.

In the category “Other”, we combined testing techniques
such as property testing, metamorphic testing, search-based
testing, security testing and syntax testing, which occurred in
less than 7 courses. We also observed that symbolic execu-
tion is commonly taught along with formal verification meth-
ods and fuzzing. These topics were mostly taught in graduate
programs. In total, 14 courses taught about symbolic exe-
cution and 11 courses taught about fuzzing in graduate pro-

grams. However, in undergraduate programs 3 courses taught
about symbolic execution and 1 course about fuzzing.

Finally, 13 universities provided a syllabus, but did not pro-
vide enough details to extract course information. The con-
tents of these syllabi were not extracted in this study.

Software engineering courses
Figure 2 contains an overview of each software engineering
course’s contents.

As shown in the table, the most covered topic was unit test-
ing, followed by testing techniques like white-box testing, in-
tegration testing and black-box testing. The rest of the test
levels in combination with regression testing also appeared in
course syllabi.

Upon comparing Figure 2 to Figure 1, it becomes clear that
the discussion of testing techniques defined in the category
“Other”, model-based testing, mutation testing, symbolic ex-
ecution and fuzzing are not emphasized in software engineer-
ing courses. Finally, 39 software engineering courses men-
tioned that software testing is part of the course contents,
but did not provide information on what topics are being dis-
cussed.

4.2 Course objectives
Dedicated software testing courses
In total, 48 out of 79 courses provided learning objectives in
course syllabi. In addition, we also considered course de-
scriptions if and only if the course descriptions mentioned
information regarding learning objectives. Using the descrip-
tion, a total of 10 courses were classified.

To classify and group the learning objectives, we have used
the categories that are introduced by Ardic and Zaidman [8].
This list categorizes common learning objectives found in
course syllabi related to software testing. We also introduced
5 additional categories, because not all learning objectives fit
in these categories. The most frequent learning objective cat-
egories with the number of occurrences are listed as follows:

• Practical experience (36) - Assess students in terms of
writing reliable test code by avoiding bad programming
practices in testing and by implementing test techniques.

• Testing techniques (27) - Assess the understanding and
knowledge of various software testing techniques.

• Tools and frameworks (25) - Assess the knowledge and
understanding of software testing tools and frameworks.

• Fundamentals of software testing techniques (23) -
Assess the fundamentals of software quality and soft-
ware testing, in terms of having basic knowledge regard-
ing concepts, models and terms.

• Testing strategy and plans (20) - Select and design test
strategies, plans and cases.

• Automated testing (13) - Assess the knowledge and un-
derstanding of test automation and analysis.

• Research (11) - Explain current trends in software qual-
ity and testing research.

• Quality assurance techniques (10) - Students are able
to explain the properties, strengths and weaknesses of
quality assurance techniques.



• Proper technique (10) - Justify the use of a software
testing technique.

• Conduct quality control (10) - Students are able to con-
duct quality control techniques such as test reviews, test
inspections, code refactoring and analyze test reports.

• Measurements (8) - Measure the efficiency of test suites
for software. In addition, students are able to apply mea-
surement techniques.

• Coverage (8) - Students are able to recall different test
coverage.

• Evaluate test process, techniques and outcomes (7) -
Students are able to assess, evaluate and compute test
process, techniques and outcomes.

• Metrics (7) - Students are able to describe and apply
software metrics.

• Select appropriate technique (3) - Students are able to
select and apply appropriate methods or techniques to
build quality and dependability into software systems.

The constructed list indicates that educators emphasize
practical experience. Moreover, the ability to understand and
apply various testing techniques deem important. Finally,
the understanding and usage of testing tools and frameworks
alongside grasping the fundamentals of software testing tech-
niques are also expected from students.

Overall, this implies that at the end of the courses, students
should have solid fundamentals of software testing, be able to
apply and implement different testing techniques and be able
to use tools and frameworks.

Software engineering courses
In total, 53 out of 91 courses provided learning objectives in
course syllabi. We also used course descriptions to identify
learning objectives. A total of 21 courses were categorized
using this approach.

In general, we have observed that software engineering
courses contained different topics, such as the principles of
software engineering and development, architecture and de-
sign, software requirements and testing. Courses provided
minimal depth and information related to these learning ob-
jectives, often just mentioning these keywords. Thus, our list
of categories provides a high overview of these learning ob-
jectives. The list of categories with the number of occurrences
is demonstrated as follows:

• Software engineering and development (60) - Under-
stand and practise the principles of software engineering
and development.

• Software testing (44) - Understand and apply software
testing techniques.

• Software architecture and design (42) - Students are
able to explain and apply different software architectures
and designs.

• Software management and maintenance (30) - Assess
the understanding and knowledge of software manage-
ment and maintenance techniques.

Occurrences of course activities

Figure 3: Overview of course activities in software engineering and
dedicated software testing courses.

• Software requirements (27) - Students are able to carry
out requirement analysis and are able to write require-
ments definitions.

• Large scale and complex software development (18)
- Students are able to produce complex software with
industrial strength quality.

• Theoretical approach to software testing (11) - As-
sess the understanding and knowledge of software test-
ing, verification and validation techniques.

• Practical approach to software testing (10) - Students
are able to apply software testing techniques in code
bases.

The constructed list indicates that software testing is an im-
portant factor regarding learning objectives. The importance
of the theoretical aspect of software testing is highlighted in
11 courses, whereas 10 courses emphasized the practical side
of software testing. Both categories are a subset of the soft-
ware testing category.

4.3 Course activities
The outline of course activities in software engineering and
dedicated software testing courses are depicted in Figure
3. An interesting observation is that software engineering
and dedicated software testing courses provide students with
practical learning experiences through assignments or group
projects. This corresponds with the practical experience ob-
jective, which was introduced in Section 4.2. Moreover, the
following observation were found:

• In total 14 courses a combined project with a presenta-
tion.

• There are 11 courses that did not have an exam, but
mainly assessed learning objectives through quizzes.
These courses are all except for one originating in North
America. 24 courses provided an exam together with
quizzes.

• Literature research is often combined with presentations
or a report/essay, which occurs in 10 out of 14 courses.



In terms of course activities, we observed that dedicated
software testing courses are quite similar to software engi-
neering courses. The main difference is that software engi-
neering courses incorporate projects even more than exams.

5 Discussion
In this section, we summarize the results and answer our re-
search questions.

RQ1: What are the course contents of software testing and
software engineering courses? In dedicated software testing
courses, white-box testing, black-box testing, tools regard-
ing software testing and unit testing are the most discussed
software testing topics. We also observed that topics, such
as symbolic execution, fuzzing, model-based testing, security
testing, metamorphic testing and automated test case genera-
tion frameworks like Randoop and Korat are also present in
course syllabi. However, these topics rarely appear and are
mostly found in master’s studies.

In software engineering courses, unit testing, white-box
testing, integration testing and black-box testing are the most
taught testing topics. The application of unit and integration
testing are integral parts of software testing as unit testing
validates individual components of software, whereas inte-
gration testing validates the interaction of different software
systems. Both of the testing techniques are well-suited to
combine with software projects, which is the main form of
assessment in software engineering courses.

RQ2: What are the learning objectives of software test-
ing and software engineering courses? In dedicated soft-
ware testing courses, practical experience, test techniques,
and tools and frameworks are the most common learning ob-
jectives.

In software engineering courses, excluding the principles
of software engineering and development, the most common
learning objective is software testing, which occurred in 48
% of the courses. As such, we see a strong indication that
educators consider software testing as an important aspect of
software engineering. Different topics, such as software ar-
chitecture, design and requirements are also present in soft-
ware engineering courses.

RQ3: What are the course activities of software testing and
software engineering courses? In dedicated software testing
courses, educators prefer assessing students through exams,
which occur in 45 out of 79 courses. In addition, educators
provide practical experience to students by either assigning
them a group project or by providing practical exercises re-
lated to software testing. In total, 40 courses provided practi-
cal assignments and 25 courses provided projects.

Upon comparing the number of occurrences of practical
assignments or projects across continents, we observed that
25 out of 30 courses in Europe provided practical experience,
15 out of 24 courses in North America, 7 out of 13 courses
in Asia, 4 out of 8 courses in Australia and finally 2 out of 4
courses in Latin America. These numbers imply that practical
assignments or projects are incorporated around the globe.

Reading materials and quizzes are also incorporated in
dedicated software testing courses. There are 14 courses that
provided quizzes as a form of assessment, of which 6 are in

Comparison of course content

Figure 4: Overview of course contents in dedicated software
testing courses across the continents. The number after the con-
tinent in the x-axis represents the number of courses in the re-
spective continent.

North America, 4 in Asia, 2 in Europe and 2 in Australia.
In software engineering courses, educators mainly con-

veyed the learning objectives and the course contents through
a group project, which occurred in 48 out of 91 courses. Prac-
tical assignments are also used to convey practical experi-
ence to students, which is used in 40 out of 91 courses. In
contrast, Figure 3 shows us that exams are incorporated less
than projects. We observed that North America consistently
provides students with group projects, namely 25 out of 35
courses. In Europe, 16 out of 31 courses, in Asia 6 out of 21
courses and finally, in Australia 1 out of 4 courses provided a
project.

RQ4: How do course contents compare in different conti-
nents? The overview of the course contents of dedicated soft-
ware testing courses in different continents is listed in Figure
4. From this figure, it becomes clear that black-box testing,
white-box testing and tools are discussed globally since they
appear the most in each continent. Test levels, like unit test-
ing, integration testing, system testing and acceptance testing,
are consistently discussed in Europe. In other continents, the
discussion of test levels is not as quite common as in Europe.
For example, the number of occurrences of integration test-
ing, system testing and acceptance testing is almost similar in
North America, Asia and Australia. In addition, model-based
testing, TDD and BDD are discussed more frequently in Eu-
rope.

On the other hand, symbolic execution demonstrates a
greater occurrence in North America, when compared to the
rest of the continents. Finally, the discussion of UI testing is
more common in Asia than in the rest of the continents.

Figure 5 contains an overview of course contents of soft-
ware engineering courses across the continents. In general,
limited information are available regarding course contents.
Courses provided general terms like software testing, soft-
ware quality and testing in course contents. So deducing
software testing topics, in this case, is not possible. In North
America, for 24 courses out of 35, we had access to additional
information, like course slides, lectures and Github links of



Comparison of course content

Figure 5: Overview of course contents in software engineering
courses across the continents. The number after the continent
in the x-axis represents the number of courses in the respective
continent.

courses. These sources contained detailed information related
to course contents and thus extracting information in North
America was more convenient than in the rest of the conti-
nents. In the rest of the continent, we, unfortunately, found
around 3 to 4 courses providing additional information. From
Figure 5, we can confidently conclude that in all continents,
unit and integration testing are the most taught topics. Black-
box, white-box testing techniques and regression testing also
appear in course contents.

6 Responsible Research
In an effort to make this research as reproducible as possible,
we have provided the course catalogues, course syllabi and
additional information links of courses that are considered in
this data package. We have also provided links to course cata-
logues when we did not find any software testing courses and
software engineering courses that did not teach about soft-
ware testing topics. We have observed that course syllabi are
not complete, because not all universities provide detailed in-
formation in syllabi. In order to mitigate this risk, we have
made an effort to find additional information related to these
topics. All in all, we can not be entirely sure if a course does
or does not address software testing topics, learning objec-
tives or course activities.

In this study, we have mainly collected our courses via QS
ranking [11]. There exist different rankings, each using dif-
ferent indicators to rank universities. Depending on the rank-
ing, the consideration of universities will change and there-
fore the data package and the results will change. Moreover,
since we have used a ranking, based on academic reputation
and teaching quality, we are aware that the ranking will con-
tain more universities in Europe and North America, than in
the rest of the continents. In addition, we have observed that
information in these continents is more available than in Asia,
Australia and Latin America. This might skew the findings of
this study in favour of these continents. In order to gain a
full overview of the continents, further region-based investi-

gations are needed and universities should provide more in-
formation regarding courses.

We have utilized open coding as a methodological ap-
proach to categorize course contents and course activities.
Although, there are subjective elements involved in open cod-
ing, we have only extracted keywords depending on what
is available to us regarding course contents and activities.
For learning objectives in software testing courses, We have
mainly used categories defined by Ardic and Zaidman [8]. In
addition, We have merged keywords that could not fit into
these categories into new groups, leading to 5 more cate-
gories. In a similar way, we have also categorized learning
objectives for software engineering courses. We first identi-
fied learning objectives and in the next steps, we have com-
bined related learning objectives into new categories. Since
the categorization of the keywords is subjective by nature,
these categories may differ when undertaken by another per-
son.

7 Conclusions and Future Work
This study aimed to find out which software testing topics are
being discussed in software engineering and software testing
courses in top-ranked universities. The main observations of
this research were that white-box testing, black-box testing
and testing tools are the most commonly taught topics in soft-
ware testing courses. In software engineering courses, unit
testing, white-box testing, integration testing and black-box
testing are the most discussed topics. Furthermore, in this
study, we also address the learning objectives and course ac-
tivities of these courses.

In this study, the availability of information in course
syllabi formed a limitation, which differs heavily in each
continent regarding course contents, learning objectives and
course activities. Thus our findings are not complete, but
rather provide a general overview of each continent with the
available information.

In future work, this study can be used to compare different
learning resources related to software testing education, such
as MOOCs, books and the Internet. Furthermore, this work
can also be used by educators to gain insights into the topics
being covered by course syllabi, enabling them to structure
their own syllabi.

References
[1] Okeke Stephen and K Oriaku. Software development

methodologies: Agile model vs v-model. International
Journal of Engineering and Technical Research, 2:108–
113, 11 2014.

[2] Mauricio Aniche. Effective software testing : a devel-
oper’s guide. Manning Publications, Shelter Island, NY,
1 edition, 2022.

[3] J.A. Whittaker. What is software testing? and why is it
so hard? IEEE Software, 17(1):70–79, 2000.

[4] Theo Leggett. 737 max crashes: Boeing says not guilty
to fraud charge. BBC News, 2023. available: https:
//www.bbc.com/news/business-64390546.

https://www.bbc.com/news/business-64390546
https://www.bbc.com/news/business-64390546


[5] Jetbrains survey testing 2022. available: https://www.
jetbrains.com/lp/devecosystem-2022/testing/.

[6] Otavio Augusto Lazzarini Lemos, Fábio Fagundes Sil-
veira, Fabiano Cutigi Ferrari, and Alessandro Garcia.
The impact of software testing education on code relia-
bility: An empirical assessment. Journal of Systems and
Software, 137:497–511, 2018.

[7] Vahid Garousi and Aditya Mathur. Current state of the
software testing education in north american academia
and some recommendations for the new educators. In
2010 23rd IEEE Conference on Software Engineering
Education and Training, pages 89–96, 2010.

[8] Baris Ardic and Andy Zaidman. Hey teachers, teach
those kids some software testing. Proceedings of the
Fifth ICSE Workshop on Software Engineering Educa-
tion for the Next Generation (ICSE SEENG), pages 9–
16, 2023.

[9] Vahid Garousi, Gorkem Giray, Eray Tuzun, Cagatay
Catal, and Michael Felderer. Closing the gap between
software engineering education and industrial needs.
IEEE Software, 37(2):68–77, 2020.

[10] Vahid Garousi, Austen Rainer, Per Lauvås, and An-
drea Arcuri. Software-testing education: A systematic
literature mapping. Journal of Systems and Software,
165:110570, 2020.

[11] Qs world university rankings by subject 2023:
Computer science and information systems.
available: https://www.topuniversities.com/
university-rankings/university-subject-rankings/
2023/computer-science-information-systems.

[12] Onur Gökmen. Study data, 2023. available: https://
github.com/onurgkmn/CSE3000.

https://www.jetbrains.com/lp/devecosystem-2022/testing/
https://www.jetbrains.com/lp/devecosystem-2022/testing/
https://www.topuniversities.com/university-rankings/university-subject-rankings/2023/computer-science-information-systems
https://www.topuniversities.com/university-rankings/university-subject-rankings/2023/computer-science-information-systems
https://www.topuniversities.com/university-rankings/university-subject-rankings/2023/computer-science-information-systems
https://github.com/onurgkmn/CSE3000
https://github.com/onurgkmn/CSE3000

	Introduction
	Related Work
	Methodology
	Software Engineering and Software Testing courses
	Course selection
	Data collection and Labelling
	Data set

	Results
	Software testing topics
	Dedicated software testing courses
	Software engineering courses

	Course objectives
	Dedicated software testing courses
	Software engineering courses

	Course activities

	Discussion
	Responsible Research
	Conclusions and Future Work

