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Summary

Breaching is an important production mechanism for stationary suction dredgers.
It is a process occurring in submerged sandy slopes, which mostly occurs in
dense sandy soils with a low permeability. The process is initiated by the
formation of a slope under water, whose angle is steeper than the internal fric-
tion angle, called the breach face. For dredging related breaching, this steep
slope is created by a suction dredger, but it can also be formed after initial
shear failure, caused by over steepening due to erosion, an earthquake, or an
outwardly directed water flow. During breaching process, this steep slope is
semi-stable due to negative pore pressure. Instead of a shear failure, particles
are released one by one from the breach face, making it seem like the breach
face is slowly moving backwards. The released particles form a density cur-
rent that flows away from the breach face, and can be collected by a stationary
suction dredger. When the size of the breach face increases over time, we have
an unstable breach.

In recent years, the breaching process has lost popularity as a production
mechanism in favour of trailing suction hopper dredgers and cutter suction
dredgers, However, stationary suction dredgers are still used in many smaller
scale sand collection projects, and damage due to unstable breaching still oc-
curs. Furthermore, unstable breaching has also caused several large scale slope
failures unrelated to sand collection, causing an increased interest in the mech-
anism in recent years. This thesis focuses on the development of a numerical
model capable of modelling the unstable breaching process.

To support the development of this model large scale laboratory exper-
iments were carried out. The experimental setup consist of a tank with a
height of 2 meters, a length of 5.1 meters and a width of 0.5 meters, with
glass panels for observation on one side. The tank is divided into two parts,
by a impermeable removable gate, which can be lifted vertically. A breach is
initiated by filling the tank with water, filling one side of the tank with sand,
and lifting the gate. By choosing the correct height and slope of the breach,
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viii SUMMARY

unstable breaches could be triggered. During these experiments the size and
frequency of larger slides during the breaching process was recorded. It was
found that slides occur more frequently with steeper breach faces. Unexpect-
edly, these slides were not found to increase the speed of the breach face. The
experiments also showed that the formula used to predict slope angles forming
at the toe of the breach, predict a steeper slope than observed.

A numerical model capable of modelling the unstable breaching process
should be able to model:

• Turbulent turbidity currents, and their interaction with surrounding wa-
ter.

• The slides frequently occurring during breaching, for this we require a
model which can reproduce the transition from static to yielding soil,
and the large scale deformations after this transition.

• The interaction of the turbidity current with the dense sandy soil: The
pick-up of sediment from the bed, and the sedimentation of particles
from the turbidity current to the bed

The created model is an extension of an existing mixture model (Settling-
FOAM), suitable for modelling sand-water mixtures with sand concentrations
up to 30%. This model was extended to be able to model higher concentra-
tions of sand (>50%), where there will be sustained contact between particles,
and friction forces between particles will dominate the flow. In this regime,
the mixture will remain static unless a large enough shear stress, called the
yield stress, is applied. The model achieves this by modelling the sand-water
mixture as a Bingham-like fluid with a yield stress. Numerically this is imple-
mented as a fluid with a viscosity dependent on the shear rate and yield stress.
To determine the yield stress, the effective pressure needs to be known. This
effective pressure is calculated using the mixture pressure and the momentum
balance of the water. The model also includes dilatancy, and its effect on the
pore pressure.

This model is able to model the flow of sand-water mixtures, the formation
of a sand bed due to settling, the soil mechanical behaviour of the dense bed,
erosion of the sand bed by a flow, and the formation of negative pore pressure
due to dilation. The model is also able to reproduce the (unstable) breaching
process in both 2D and 3D simulations.



Samenvatting

Bressen is een belangrijk productiemechanisme voor zandwinning met winzuigers.
Het is een proces dat voorkomt bij hellingen van zand onder water. Het komt
vooral voor in dichtgepakt zand met een lage doorlatendheid. Het bresproces
start met het ontstaan van een stuk helling steiler dan de inwendige wrijv-
ingshoek van het zand. Dit steile stuk wordt de breswand genoemd. Bij
bressen gerelateerd aan zandwinning, wordt deze steile wand gevormd door
een zuigkop, maar het is ook mogelijk dat deze gecreëerd wordt door een af-
schuiving als gevolg van erosie, aardbevingen, of grondwater stroming. Tijdens
het bres proces is dit steile stuk semi-stabiel door negatieve poriën druk. In
plaats van een afschuiving, laten zandkorrels een voor een los van de breswand,
waardoor het lijkt alsof deze langzaam achteruit beweegt. De losgelaten ko-
rrels vormen een dichtheidsstroming die van de breswand af stroomt, en kan
worden opgezogen door een winzuiger. Als de grootte van breswand groeit dan
spreken we over een instabiele bres.

De laatste jaren wordt het winnen van zand vooral gedaan door sleephop-
perzuigers en snijkopzuigers, in plaats van winzuigers die gebruik maken van
het bresproces. Maar voor kleinschalige zandwinprojcten wordt nog steeds
gebruik gemaakt winzuigers, en schade door instabiele bressen komt hier nog
steeds voor. Daarnaast hebben instabiele bressen ook meerdere, niet aan bag-
geren gerelateerde, grootschalige oevervallen veroorzaakt. Dit zorgde voor een
groei aan interesse voor het proces. Dit proefschrift richt zich op het ontwikke-
len van een numeriek model dat dit bresproces kan modelleren.

Ter ondersteuning van de ontwikkeling van dit model zijn grootschalige
laboratoriumproeven uitgevoerd. De opstelling bestond uit een bak met een
hoogte van 2 meter, een lengte van 5.1 meter en een breedte van 0.5 meter, met
aan één kant glazen wanden zodat het proces geobserveerd kon worden. De
bak was in tweeën gedeeld door een wand die opgetild kon worden. Een bres
werd gëınitieerd door de gehele bak te vullen met water, één helft van de bak te
vullen met zand, en de wand op te tillen. Door de hoogte en de helling van de
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bres te variëren kon een instabiele bres gëınitieerd worden. Tijdens de exper-
imenten werden ook grotere afschuivingen waargenomen. Deze afschuivingen
kwamen vaker voor bij een steilere breswand. Onverwacht, bleek dat de totale
erosiesnelheid niet verhoogd werd door deze afschuivingen. The experimenten
lieten ook zien dat de formule voor het voorspellen van de hellingen aan de
teen van de bres een steilere helling dan geobserveerd voorspelde.

Een numeriek model dat het instabiel bresproces modelleert moet het vol-
gende kunnen modelleren:

• Turbulente dichtheidsstromingen en hun interactie met de omgeving.

• De grotere afschuivingen. Hiervoor is een model nodig dat de overgang
van statisch naar afschuivende grond kan modelleren, en de grote ver-
vormingen tijdens deze afschuiving.

• De wisselwerking tussen de dichtheidsstromging en de zandbodem: De
erosie van de bodem door de stroming, en het sedimenteren van zand
vanuit de stroming.

Het ontwikkelde model is een uitbreiding van een bestaand mengselmodel
(SettlingFOAM), geschikt voor het modelleren van zand-water mengsels tot
een concentratie van 30%. Dit model is uitgebreid om het geschikt te maken
voor het modelleren van hogere concentraties zand (>50%), waar er langdurig
contact bestaat tussen zanddeeltjes, en wrijvingskrachten belangrijk worden.
In dit regime zal het mengsel niet afschuiven totdat een schuifspanning, groter
dan de zogenaamde vloeispanning, wordt toegepast. Dit effect wordt nage-
bootst door het zand-water mengsel te modelleren als een Bingham-vloeistof
met een bijbehorende vloeispanning. In numerieke zin is dit gëımplementeerd
als een vloeistof met een viscositeit afhankelijk van de vloeispanning en de af-
schuifsnelheid. Om de vloeispanning te bepalen is de effectieve spanning nodig.
Deze effectieve spanning wordt berekend met behulp van de mengseldruk en
de massabalans van de continue fase (water). Het model bevat ook dilatantie
en het effect hiervan op de poriëndruk.

Met dit model kan de stroming van zand-water mengsels, de formatie van
een zandbodem als gevolg van sedimentatie, erosie van de zandbodem, af-
schuivingen, en het ontstaan van negatieve poriëndruk als gevolg van dilatantie
worden gemodelleerd. Met dit model kunnen ook (instabiele) bressen worden
gemodelleerd in zowel 2D- als 3D-simulaties.
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Chapter 1

Introduction

Breaching is an important production mechanism for stationary suction dredgers.
Therefore much research was devoted to this process (Meijer and Os, 1976;
Breusers, 1977; van Rhee and Bezuijen, 1998). They also found that the
breaching process can become unstable, which in turn can lead to loss of land
as seen in Figure 1.1 In recent years, however, the breaching process has lost
popularity as a production mechanism in favour of trailing suction hopper
dredgers and cutter suction dredgers, leading to a decrease in research on the
topic.

Figure 1.1: A lake shore damaged by the unstable breaching process at
Hooidijk, 2008. (Source: D.R. Mastbergen)

However, stationary suction dredgers are still used in many smaller scale
sand collection projects, and damage by unstable breaching still occurs. This
occurred, for example, in 2008, in the Dutch town of Staphorst, where dredging
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2 CHAPTER 1. INTRODUCTION

activity initiated the breaching process, which resulted in the damage shown
in Figure 1.1 (De Groot and Mastbergen, 2008), and during the nineties many
failures due to unstable breaching occurred in sand production pits in the
Dutch province Overijssel Mastbergen (2001). Increased scale of dredging
activities also increases the chance of a breach becoming unstable.

Furthermore, unstable breaching has also caused several large scale slope
failures unrelated to sand collection, causing an increased interest in the mech-
anism in recent years. For example, between 2011 and 2014, Beinssen et al.
(2014) monitored a stretch of beach adjacent to a tidal inlet in Australia, called
Amity Point, and recorded 44 breaching related failure events. In September,
2015, an event occurred nearby at Inskip Point, Australia, resulting in a slowly
regressing erosion scarp of eventually 200 meters wide, which swallowed part
of a camping site. In this case the process was initiated by oversteepening
by erosion due to tidal currents, however a breach failure can also be initi-
ated by dredging activity. Breaching failures also occurred in 2007, during the
construction of a sludge depot in Hollandsch Diep. And breaching was also
identified as a source for large oceanic turbidity currents (Mastbergen and Van
Den Berg, 2003; Eke et al., 2011).

Breaching is a process occurring in submerged sandy slopes, which mostly
occurs in dense sandy soils with a low permeability (van Rhee and Bezuijen,
1998; Mastbergen and Van Den Berg, 2003). The process is initiated by the
formation of a slope under water, whose angle is steeper than the internal fric-
tion angle, called the breach face. For dredging related breaching, this steep
slope is created by a suction dredger, but it can also be formed after initial
shear failure, caused by over steepening due to erosion (As happened at Inskip
Point), an earthquake, or an outwardly directed water flow. Because a slope
steeper than the internal friction angle is not stable, it will start to move,
and shear deformation occurs. This shear deformation can be accompanied by
dilatancy, i.e. the increase of pore volume, especially in dense sands. Because
the compressibility of the pore water is negligible, this increase in pore volume
is accompanied by an inflow of water, driven by a decrease in pore pressure
inside the sand. The decrease in pore pressure leads to an increased effec-
tive pressure between grains, leading to an increased resistance against shear
deformation.

It is possible that at a certain point the pore pressure decreased so much,
that no further acceleration of shear deformation occurs. When the permeabil-
ity of the sand is low, this point is reached at very small shear deformations.
The sand will appear stable, while at the front sand particles are released one
by one as water flows into the sand, to accommodate dilation. These particles
are pulled down by gravity and together form a turbidity current. This results
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in a steep breach face slowly regressing away from its original position, while
releasing sand particles into a turbidity current (Figure 2.1). This current can
be used by the dredgers to collect sand without moving, as the current trans-
ports sand toward the suction mouth. This current interacts with the slope
downstream of the breach face through erosion and sedimentation.

A breach can be stable or unstable. When the breach is unstable, the
breach face increases in size over time (See Figure 1.2). When this happens,
of the process can go on for a long time, sometimes exceeding a day. The
end result can be large sections of land disappearing into the water, as seen in
Figure 1.1.

t0
t1

t2

Unstable

t0
t1
t2

Stable

Figure 1.2: The difference between stable and unstable breaching.

1.1 Observed breach failures

Unstable breaches have been observed in a variety of environments. Unsta-
ble breaches can occur along rivers, at beaches near tidal inlets, near sand
collection activity, and during the construction of submerged sandy slopes.

Bank failures in the Mississippi river are common. The Waterways Ex-
periment Station documents, and classifies these bank failures as either shear
failure, or flow failure. Shear failures are failures by sliding, which only cause
damage close to the river. During a flow failure on the other hand, the failure
can reach up to 100 metres inland. One such flow failure was observed near
Montz, Louisiana (Figure 1.3).
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Figure 1.3: Isometric view of the failure at Montz, Louisiana, 1973. (Taken
from Padfield (1978)).

These kind of failures occur multiple times each year. For example, between
1954 and 1964, 37 flow failures have been observed (Caldwell, 1966). Initially
these failures were seen as the result of liquefaction (e.g. Hvorslev (1949)).
However, soil samples showed no pockets of loose soil near the failures, and,
according to eyewitness reports, many failures took place over several hours
or even days. Therefore, Torrey III et al. (1988) and Padfield (1978) con-
cluded that liquefaction is unlikely, and these failures are probably the result
of breaching, triggered by a shear failure after oversteepening of the river bank
due to erosion.

Mastbergen (2001) identifies several breach failures in the Dutch province
Overijssel, between 2001 and 1997, reaching up to 36 metres inland. These
breach failures are all triggered by collection of sand by suction dredging in
lakes with soils consisting mostly of dense sands.

In 2007, during the construction of a sludge depot in Hollandsch Diep, 4
failures were observed. The amount of soil that was moved during these failures
was estimated to be between 10 000 m3 to 200 000 m3. Deltares concluded that
at least some of the failures were caused by unstable breaching (van der Ruyt
et al., 2008). In 2008, in the Dutch town of Staphorst, dredging for sand
collection initiated the breaching process, which resulted in the damage shown
in Figure 1.1 (De Groot and Mastbergen, 2008).

Between 2011 and 2014, Beinssen et al. (2014) monitored a stretch of
beach adjacent to a tidal inlet in Australia, called Amity Point. Here breach-
ing is likely triggered by oversteepening due to erosion by the tidal current.
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They recorded 44 breaching related failure events. The aftermath of one such
breaches, with a width of approximately 90 metres, can be seen on satellite
images (Figure 1.4). The largest of these resulted in the loss of 2980 m2 of
beach. In September, 2015, a similar event occurred nearby at Inskip Point.
A beach collapse resulting in a slowly regressing erosion scarp of eventually
200 meters wide developed, which swallowed a four-wheel drive vehicle, a car-
avan and a camper trailer (Shipway, 2015). Similar events have been observed
near tidal inlets in the south of France (Nedelec and Revel, 2015), and on the
Dutch island Ameland (Rijkswaterstaat, 2017).

0 20 40 60 80 100
Metres

Figure 1.4: Before and after a breach failure at Amity Point. Satellite images
at 2-8-2014 (left), and 18-8-2014. Taken from Google Earth.

1.2 Previous Research

A description of the breaching process was first published by Breusers (1974),
who describes the formation of steep walls after the insertion of a suction tube
into a layer of sand, which move away from the suction tube with a constant
speed. The performed tests were used by Breusers (1977) for the optimisation
of dredging by suction dredgers. Breusers (1977) also created a theoretical
formula to estimate the velocity at which the steep walls move away from the
suction tube. This velocity was called the wall velocity. This velocity depends
on the initial porosity and permeability, and the porosity and permeability
just before particles are released, and the angle of the wall.

Meijer and Os (1976) created a numerical model to estimate the steady
state pore pressures, for a steady state breach, with constant wall height,
angle, and velocity. They did this by linking the change in pore volume due
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to change in stresses, to pore pressures, using the Darcy equation. They
assumed a fixed, rectangular, profile, which moves in the horizontal direction
with a constant wall velocity. They assumed that in this steady state, there
also exists a steady state pore pressure profile. Their model required a stress
distribution as input. Based on this distribution they estimated the elastic
volumetric strain, and the dilatant volumetric strain. They found that the
effects of elastic volumetric change are negligible compared to the dilatant
volumetric chain, for their chosen sand type (with a median grain size, D50,
of 210 µm, and a permeability, k, of 0.15 mm s−1).

Later, Padfield (1978) and Torrey III et al. (1988), showed that breaching is
a possible failure mechanism for river banks. In this case triggered by a initial
shear failure, instead of a suction tube. Padfield (1978) carried out small scale
experiments in a centrifugal tank, to support his claims. Later, also van den
Berg et al. (2002) and van den Berg et al. (2017), proposed breaching as a
mechanism for large scale failures. Their evidence suggests that the Vlierzele
Sands, a 10 to 20 metres thick layer of sand found at or slightly below the
land surface in large parts of northern and western Belgium, were transported
there via turbidity currents created by large unstable breaching events.

van Rhee and Bezuijen (1998) carried out larger scale experiments, with
heights up to 2.2 m. Like Breusers (1977), they initiate the breaching with
a suction tube. They found that the wall velocity could not be predicted
using the theoretical formula of Breusers (1977). They proposed two possible
reasons: 1) At higher breach heights, dual mode slope failure is more likely,
which could increase the total wall velocity, and 2) the formation of a large
turbidity current at the lower part of the breach face, increasing the erosion
of the breach face. They also measured the pore pressure inside the soil, and
the concentrations and velocities of the turbidity current.

Mastbergen and Van Den Berg (2003) created a quasistatic 1D depth aver-
aged numerical model of a turbidity current on an erodible slope. The model
is derived from the momentum balance for the sand-water mixture, and mass
balance for the sand and water. In this model the breach acts as source of
sediment, with the size of the sediment flux source depending on the wall ve-
locity, and the height of the breach. In this qua see static model the movement
of the breach face, and its change in height, are not taken into account. They
apply this model to support their theory that breaching is the driving mech-
anism for flushing events in the Scripps Submarine Canyon (Shepard, 1951).
Using the same equations, Mastbergen (2009) created another depth averaged
1D numerical model, simulating the formation of a steady-state breach during
collection of sand by suction dredging. This steady state can form for a fixed
velocity of the suction dredger parallel to the breach, although the formation
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of a steady state breach is not guaranteed.
A similar model was developed by Eke et al. (2011). They validated this

model with laboratory experiments of a breach with an initial height of 0.7 m.
Like Mastbergen and Van Den Berg (2003), they applied their model to a
flushing event in a submarine canyon, the Monterey submarine canyon.

van Rhee (2002) created a 2D numerical model, for the simulation of the
sedimentation process in a trailing suction dredger. The model simulated
the flow of sand-water mixture up to concentrations of 30%. The interaction
of the sand-water mixture with the more dense soil was done by using an
immersed boundary, whose location is updated based on calculated values of
sedimentation and erosion. This model was later used for modelling stable and
unstable breaches (van Rhee, 2015).

Yao You carried out a series of breaching experiments (You et al., 2012;
You et al., 2013; You et al., 2014), with heights of 0.3 m and 0.9 m. Instead of
initiating the breach by a suction tube, they build a breach by filling a section,
closed off by a movable gate, with sand. The breaching process is initiated by
lifting the gate. For the breach with a height of 0.9 m they, like van Rhee and
Bezuijen (1998), observe dual mode slope failure for higher breach heights.
They also measured pore pressure inside the soil during their experiments.

1.3 Suction dredging breaching

Suction tube

vwallvwall

Figure 1.5: The development of a suction pit after vertically inserting a
suction tube into a dense sandy soil.

Breaching is an essential process for the collection of sand by suction dredg-
ing. Suction dredging is initiated by inserting a suction tube vertically into a
sand bed. This creates a suction pit, with steep walls (steeper than the inter-
nal friction angle of the sand) and thus initiates the breaching process. Due
to the breaching process, these steep walls start retrogressing away from the
suction tube, while the sand released forms a turbidity current which flows to-
ward the suction tube. The suction tube can then collect sand without having
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to move, making suction dredging an energy efficient way of collecting sand.
The velocity at which the steep walls retrogress is known as the wall velocity,
vwall. This wall velocity depends on the angle of the steep walls, and the sand’s
density, porosity, and permeability (See Section 2.1.2 for more information).
For constant sand properties, the wall velocity reduces as the wall angle be-
comes milder, and drops to zero when the wall angle becomes milder than the
internal friction angle.

Suction tube

vs vs

Top view

Side view

Figure 1.6: The formation of an equilibrium slope as the suction tube moves
at a constant horizontal velocity.

Usually, after injecting the suction tube vertically, and creating a suction
pit, the tube is moved horizontally at a fixed velocity. During this movement
an equilibrium slope, relative to the moving suction tube, can form. When
the eroding effect of the turbidity current formed during breaching is ignored,
this equilibrium slope has a constant slope angle. This slope angle is the one
at which the wall velocity is equal to the velocity of the suction tube. As the
velocity of the tube increases, the equilibrium wall angle becomes steeper.

As the size of the breach increases, so does the size of the turbidity current
and its contribution to the erosion of the breach face. The erosion by the
turbidity current increases the retrogression velocity. Therefore, to match
the velocity of the suction tube, a milder angle is required. This leads to
an equilibrium slope which becomes milder further down the breach face, as
the erosion by the turbidity current increases, creating a curved breach face
(Figure 1.7). This equilibrium slope can be predicted using the HMBreach
model of Mastbergen (2009)

To avoid damage by breaching during dredging activities, the expected
slope at the end of suction dredging is estimated. Using this estimated slope,
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Suction tube

vs

Figure 1.7: The formation of an equilibrium slope as the suction tube moves
at a constant horizontal velocity, for larger breach heights. The slope of the
breach wall becomes milder, as the turbidity current increases in size.

a minimum distance from the shore, and a maximum depth can be determined
for dredging activities. For more coarse sands (D50 > 200 µm, D15 > 100 µm),
these slopes can be found in tables. For finer sands, where the chance of
unstable breaching is greater, it is recommended to carry out more detailed
calculations with a numerical model. This is usually done by calculating the
equilibrium slope with HMBreach.

HMBreach predicts equilibrium slopes during dredging with a horizontally
moving suction dredger, taking into account the eroding effect of the turbidity
current. It does not predict what happens after dredging activities cease. After
ceasing the dredging activities, the breaching process continues until the height
of the breach face is reduced to zero. For calculations it is assumed that the
breach is stable, and therefore stops quickly after stopping of dredging activity.
This method does not check for the formation of unstable breaches. It is also
not appropriate to simulate a breach not initiated by a suction dredger (e.g.
the large breaching events on the Australian coast).

To predict the stability of a breach, several methods are available. The
simplest is an analytical formula derived by van Rhee (2015) (See also Sec-
tion 2.5), which predicts the size of the turbidity current by multiplying the
breach height with the calculated wall velocity, and combines this with an em-
pirical formula which predicts the equilibrium slope for this turbidity current.
If this equilibrium slope is milder than the slope of the profile above the breach,
an unstable breach can be expected. Another method employs the HMTurb
model of Mastbergen and Van Den Berg (2003), which also predict the size
of the turbidity current by multiplying the breach height with the predicted
wall velocity, but then models the behaviour of this current downstream of
the breach, instead of using an empirical model. Finally, the 2D model of van
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Rhee (2002) might be used to predict the stability of a breach, as has been
done by van Rhee (2015). However, these methods are not able to incorporate
the effect of sliding wedges on the breaching process, and, all methods men-
tioned are two dimensional, while the breaching process is a three-dimensional
process (See for example the final profile in Figure 1.3).

1.4 Objectives

Current models commonly used to simulate the breaching process, and do not
include all the effects of larger breach heights, and are two-dimensional. Most
importantly, the formation of large slides during dual mode slope failure is
not modelled by the current models, while it is believed the have a significant
effect on the process. Therefore, the main research question to be answered in
this thesis is:

How can we improve the prediction of the (unstable) breaching
process?

To successfully answer this questions, it has been sub divided into several
subquestions.

What is the effect of increasing breach height on the breaching
process?

To properly predict the effects of larger breach heights, these effects must
first be clear. It is believed that the large slides will form more often at
larger breach heights, and the turbidity current will become stronger, possibly
eroding the breach face itself and increase the total erosion velocity.

How does changing from a two-dimensional to a three-dimensional
setup affect the breaching process?

Current models are all two-dimensional, and all known experiments use a
limited width, and essentially model a two-dimensional process. However, as
observations in the field show, three-dimensionality plays an important role in
the breaching process. As the process progresses, the breach face spreads in
all directions, forming a shell shaped hole. Furthermore, it is expected that
erosion by the turbidity current can form gullies, which will affect the further
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movement of the current.

1.5 Methods

The breaching process is often investigated using laboratory experiments (e.g.
Breusers, 1977; You et al., 2012; van Rhee and Bezuijen, 1998). However,
laboratory have several downsides. They are usually limited in size, with a
maximum breach height of 2.2 m by van Rhee and Bezuijen (1998), because
larger scale experiments are very costly.

It is also difficult to observe three dimensional effects in laboratory ex-
periments. During experiments using a wider flume, the turbidity current
obscures the view further from the sides. Complicated measurement methods
are needed to follow the development of the breach face away from the sides
(van Rhee and Bezuijen, 1998).

Therefore numerical simulation is used to investigate the problem. Numer-
ical simulation is a cost effective method, and allows to easily increase in scale.
It also makes observation of the process easier as data at every location can
be collected easily. However, numerical simulation requires several simplifica-
tions. To make sure these simplifications do not lead to wrong results, the
numerical model is validated.

Available numerical models used (e.g. van Rhee, 2015) for breaching do
not include movement of the dense soil. They assume the soil the be com-
pletely static, with only particles leaving the soil at the soil-water interface at
a steady rate. However, large slides during breaching are expected to have a
large impact for higher breach heights, which cannot be modelled with current
approaches. The requirements for the model can thus be roughly split into
three parts:

• The flow of particles suspended in a liquid, to model the turbulent tur-
bidity current, and its interaction with surrounding water.

• The dense sandy soil, where friction forces dominate over hydrodynamic
forces, including the effects of pore pressure feedback. To model the
slides frequently occurring during breaching, we require a model which
can reproduce the transition from static to yielding soil, and the large
scale deformations after this transition.

• The interaction of the turbidity current with the dense sandy soil. The
pick-up of sediment from the bed, and the sedimentation of particles in
the turbidity current to the bed
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The starting point in this thesis will be the existing model of van Rhee
(2015), which models the flow of sand-water mixtures well, as long as friction
between particles plays no roles. Thus this model will be extended to include
the frictional regime.

Classical soil mechanical methods use constitutive laws based on stress-
strain relationships (Schofield and Wroth, 1968; Zienkiewicz et al., 1977).
These methods can reproduce the transition from static two flowing soil well,
but are not suitable for simulating large scale deformation During the last
decade, techniques such as particle finite element (PFEM) (Oñate et al., 2011)
and the material point method (Alonso et al., 2015; Ceccato, 2015; Bandara
and Soga, 2015) have been developed to address this problem. These methods
are able to also reproduce the large scale deformations. However, combining
these models with complex turbulent flows remains a challenge.

This work considers a fluid mechanical formulation based on a stress-strain
rate constitutive law based on work published by Lalli and co-workers (Lalli
and Di Mascio, 1997; Lalli et al., 2005), who modelled the frictional regime
as a non-Newtonian fluid with a yield stress. Cassar et al. (2005) have shown
that the model, with some adaptations, also works well for submerged granu-
lar flows. Goeree (2018) has shown that this method also works for modeling
a submerged granular column collapse, including pore pressure feedback. Be-
cause this method is based on stress-strain it is easily combined with the fluid
dynamical model.

OpenFOAM (Open-source Field Operations And Manipulations) (Green-
shields, n.d.) will be used to create the numerical model. OpenFOAM is
an open-source C++ toolbox for the development of CFD (and other con-
tinuum mechanical) solvers. OpenFOAM allows users to easily extend the
core program with, among others, their own solvers, boundary conditions and
turbulence models. The model described in this thesis is an extension of an
existing model, settlingFoam. The chapter will start with a description of
settlingFoam, after which the extensions of the model are described.

For validation of the model laboratory experiments are carried out. During
experiments, pore pressure inside the sand, and the movement of the sand-
water interface are tracked. These experiments will be as large as feasible,
because it is expected that some processes only occur for larger breach heights.
These experiments also allow us to investigate:

• Breaches with slopes above the breach wall, and their effect on the sta-
bility of the breaching process.

• The angle of the slope which forms at the toe of the breach, which likely
play an important role in the stability of a breaching process.
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• The frequency of large slides, and their effect on the breaching process.

Besides validating with these laboratory experiments, the model will also
be validated for several subprocesses important for unstable breaching:

• The flow of sand-water mixtures.

• The formation of a dense bed due to settling of sediment.

• The soil mechanical behaviour of the dense bed.

• The erosion of a dense bed by a flow.

• The formation of underpressure in the pores due to dilation.

1.6 Reading guide

This thesis starts by first investigating the breaching process and its subpro-
cesses. In Chapter 2 a more in depth description of different aspects of the
breaching process will be given. First dilatancy, and how it relates to the
breaching process. Next, the turbidity current formed during breaching, and
how erosion and sedimentation due to this current affects the breaching pro-
cess, is treated. Then the stability of the breaching is explained. Next, dual
mode slope failure is explained. This is a combination of an interfacial process
where particles are released from the breach face, and internal shear failure.
Finally, the differences and similarities between breaching and liquefaction are
discussed.

Next, laboratory experiments are described in Chapter 3. Using the
knowledge gained in the previous steps a model will be developed. The govern-
ing equations, and the reasoning for choices taken, are described in Chapter 4.
The numerical implementation of the model is described in Chapter 5. Next
the created numerical model is validated in Chapters 6 and 7. Chapter 6
validates the model using subprocesses important in unstable breaching. Next,
in Chapter 7 the model is validated using the breaching process observed in
laboratory experiments. Finally, in Chapter 8, the results of previous the
chapters are used to give conclusions and recommendations, and to answer
the research questions.
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Chapter 2

Breaching process
description

Breaching is triggered by a slope steeper than the angle of repose, in dilative
sand with sufficiently low permeability. This steep slope is called the breach
face. Because a slope steeper than the internal friction angle is not stable, it
will start shearing. Due to dilatancy induced lower pore pressure, this shearing
is greatly reduced, and instead of a shear failure, particles are released at the
breach face particle by particle, causing the breach face to slowly retrogress.
The particles released form a turbidity current which transport them away
from the breach. The turbidity current interacts with the downstream slope via
erosion, and through sedimentation of particles from the current (Figure 2.1).
A breach can be stable or unstable. A breach is considered unstable when the
height of the breach face increases over time.

In this chapter a more in depth description of different aspects of the
breaching process will be given. First dilatancy, and how it relates to the
breaching process is discussed. Next, the turbidity current formed during
breaching, and how erosion and sedimentation due to this current effects the
breaching process is treated. Then breach stability is explained. Next, dual
mode slope failure, which is a combination of the breaching process with shear
failure, is explained. Finally, the differences and similarities between breaching
and liquefaction are discussed.

15
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Turbidity current

Retrogression velocity
Breach face

Sedimentation
Erosion

Figure 2.1: Schematization of the breaching process .

2.1 Dilatancy

Dilatancy is a vital phenomena for the breaching process. Without the nega-
tive pore pressure induced by dilatancy, breaching does not occur, and instead
a simple shear failure would occur. In this section dilatancy, and how it is
affected by different soil parameters, is discussed, and afterwards the link be-
tween dilatancy and breaching is shown.

τ

x x xψ

Figure 2.2: Schematization of dilatancy for idealised spherical particles . In
order for the top layer to move horizontally, it has to move upwards as well,
increasing the pore volume. The average angle, relative to horizontal, of the
path of the top-left particle is denoted ψ, which is equal to the dilatancy angle.

Reynolds (1885) was the first to publish on the change of volume of granular
materials during deformation. He coined the term dilatancy for increase of
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volume during deformation. Take for example the two layers of idealised round
particles in Figure 2.2. In order for the top layer to move horizontally, it has
to move upwards as well, increasing its pore volume. The same effect occurs
in less ideal dense sands. How sensitive sands are to dilatancy (or compaction)
is often expressed using the dilatancy angle, ψ (Rowe, 1962). This angle can
be interpreted as the angle of the path a particle takes, relative to the shear
direction. This angle can be visualised as the contact angle of two layers of
idealized particles. For the top layer to move ∆x horizontally, it will move
∆z tanψ vertically.

Because particles are not only moved horizontally, but vertically as well,
more work is required to shear the particles. Taylor (1948) proposed that the
necessary work to move a particle ∆x horizontally is

τ∆x = peff tanφc∆x+ peff∆y, (2.1)

where τ is the shear stress , which is equal to half the difference between the
maximum and minimum principle stresses,

τ =
1

2
(σ1 − σ3) , (2.2)

and peff is the effective pressure between sand particles, equal to the mean of
the maximum and minimum effective principle stresses,

peff =
1

2
(σ′1 + σ′3) , (2.3)

where σ′1 is the effective principle stress, which is the principle stress, σ1, minus
the water pressure, pc, and φc is the internal friction angle of the sand. This
leads to the following ratio between shear stress and effective pressure:

τ

peff
= tanφc +

∆y

∆x
= tanφc + tanψ. (2.4)

When dilative sand is sheared, initially it compacts slightly through small
rearrangements of particles. Afterwards it starts dilating (Figure 2.3b). This
dilation is accompanied by an increased ratio between yield stress and effective
pressure (Figure 2.3a). This ratio reduces to the internal friction angle, tanφc,
as the concentration goes to the equilibrium concentration.

Wan and Guo (1999) express the dilatancy angle as a function of the total
mobilized friction angle (tanφt = tanψ + tanφc), and an equivalent friction
angle φf , which reflects the influence of sliding, rolling, and rearrangement of
particles.
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Figure 2.3: a) The ratio of shear stress, τ , and effective stress, peff , and
b) the concentration, α, relative to the initial concentration, α0, versus the
principal strain, ε1, for initially dense and loose sands.

sinψ =
sinφt − sinφf

1− sinφt sinφf
. (2.5)

According to Wan and Guo (1999), both the total mobilized and equivalent
friction depend on the current, and critical void ratio. φf is

(2.6a)sinφf =

(
e

ecr

)βf

sinφc

(2.6b)sinφt =
εs

a+ εs

(
e

ecr

)−βt

sinφc,

where βf and βt are parameters which depend on the type of sand. For different
sand types, Wan and Guo (1999) found values between 0.3 and 1.5 for βf , while
for βt they assume a value of 1.3. εs is the total shear deformation, and the
term εs/(a+ εs) takes the initial compression into account. The void ratio, e,
is the total pore volume divided by the total grain volume, and is related to
the concentration αd as

e =
1− αd

αd
. (2.7)
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Ignoring the initial compression, ψ can be defined as

sinψ =

((
e
ecr

)−βt

−
(
e
ecr

)βf
)

sinφc

1−
(
e
ecr

)βf−βt

sinφc

, (2.8)

where ψ is positive for dense sands, where e < ecr, and negative for loose
sands, where e > ecr.

The critical void ratio, ecr, is the void ratio where neither dilation or com-
paction occurs. According to Verdugo and Ishihara (1996), ecr depends on the
confining pressure as follows

ecr = ecr0 exp

(
−peff

hcr

)
, (2.9)

where ecr0 is the critical void ratio without confining pressure, and hcr is a
material constant, and is usually in the order of 10 MPa (Been et al., 1991;
Verdugo and Ishihara, 1996), which means that for pressures of 100 kPa and
lower the critical void ratio changes only about 1%.

Boyer et al. (2011) show that this critical concentration, αeq, depends on
the shear rate, γ̇, relative to the effective granular pressure, peff . From exper-
iments in a shear cell they retrieve

αeq =
αeq;0

1 +
√
Iv
, (2.10)

where αeq;0 is the equilibrium concentration for zero shear, and Iv is the viscous
number, which is the shear rate made dimensionless

Iv =
µcγ̇

peff
, (2.11)

Here µc is the dynamic viscosity of water in Pa s, γ̇ is the second invariant of
the deformation tensor, γ, and, using the Einstein summation convention, is

defined as follows:

γ̇ =
√

0.5γijγij , (2.12)

and

γ = γij =
∂ui
∂xj

+
∂uj
∂xi

, (2.13)
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where ui is the particle velocity in the i-direction.
Roux and Radjäı (2002) suggest the linearization for the dilatancy angle

around the critical concentration:

ψ = Cdil (αd − αeq) . (2.14)

Pailha and Pouliquen (2009) instead use

tanψ = Cdil (αd − αeq) , (2.15)

where Cdil is a material constant. For αeq = αeq;0, this constant can be related
to Equation (2.8) via

Cdil =
sin (φc)

1− sin (φc)

(
− (βf + βt)

−1

αeq;0 − α2
eq;0

)
. (2.16)

For typical values, Cdil, is in the order of 10.

2.1.1 Dilatancy effects in slope stability

In dilative sands, this shearing is accompanied by an increase in pore volume.
Because water is almost incompressible, this increase in pore volume is accom-
panied by an inflow of water through the pore skeleton. This flow is driven
by a negative pore pressure, creating a pressure gradient. The velocity of this
inflow depends on the gradient of the pore pressure, and the permeability of
the sand. For low velocities, the inflow can be calculated with Darcy’s law
(Darcy, 1856):

qf = − k

ρcg
∇pe, (2.17)

where qf is the volumetric flux of pore water per unit area in m s−1, pe is the
excess pore water pressure in Pa, relative to hydrostatic pressure, and k is the
hydraulic permeability in m s−1.

van Rhee and Bezuijen (1992) investigated the underpressure gradient re-
quired to keep a slope, steeper than the angle of repose, stable. They derived
balance equations on two scales. They looked at the momentum balance on
micro scale, for a single spherical particle (Figure 2.4b), and at the force bal-
ance at the larger scale, for a continuum (Figure 2.4a) They found that the
minimum pore pressure gradient, perpendicular to the surface, to keep a slope
with angle β stable is:

∇⊥pe = −fs
ρd − ρc

ρc

sin (φc − β)

sinφc
, (2.18)
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Figure 2.4: The force and momentum balance of respectively a) a continuum,
and b) a single particle, where Fg is the gravity force, Fi is the force due to
inflow of water, Ff is the friction force, and N is the normal reaction force
(Redrawn from van Rhee and Bezuijen (1992)).

where φc is the internal friction angle, ρd is density of the particles in kg m−3,
and fs is a factor depending on which force balance is used to derive the for-
mula. For the single particle mode, fs is equal to 4

3 , while with the continuum
mode a value of (1− n) is found, where n is the porosity.

Equation (2.18) was compared with laboratory experiments. In these ex-
periments, they applied a pressure gradient over a 0.1 m thick soil sample, and
then rotated the until failure. They found that for an inward flow the single
particle mode gave the best prediction of stability (i.e. fs = 4

3 ), while for
outward flow, the continuum mode gave the best prediction (1.e fs = (1− n))
(See Figure 2.5).

However, there are several uncertainties involved in deriving the necessary
force using the single particle mode. The force due to inflow of water, Fi,
assumes that the pressure gradient caused by the inflow acts only on half of
the particle. It is unknown if this is the case. Furthermore, this mode assumes
a fixed position of the contact point between two particles, but it is doubtful
that this angle remains constant for every particle. Therefore, the continuum
approach is considered more correct. Although it does not take into account
the configuration of individual particles, its results can be considered an upper
boundary for necessary pore pressure.

2.1.2 Wall velocity

The results can be used to estimate the retrogression velocity of the breach
face (Figure 2.1), called the wall velocity.

It is assumed that the dilation rate, which controls the inflow of water,
is such that the generated pore pressure is enough to keep the slope just
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Figure 2.5: Relation between maximum slope angle and hydraulic gradient
measured (Redrawn from van Rhee and Bezuijen (1992)

stable. This is a sensible assumption, as at this point there is a force balance,
thus there is no extra forcing to induce more shearing and more dilation.
Therefore, the pore pressure gradient can be estimated with Equation (2.18).
This equation can be combined with Darcy’s law (Equation (2.17)) to estimate
the inflow of water:

qf =
k

ρcg
fs
ρd − ρc

ρc

sin (φc − β)

sinφc
. (2.19)

It is assumed that after an increase in porosity from the initial, n0, to a new
porosity, n1, the sand is released into the turbidity current, due to a decrease
in the possible dilation, and an increase in permeability. Then, assuming the
soil only expands in the horizontal direction, the change in volume required to
erode a cube with sides of ∆x0, soil volume, V0, and total volume Vtotal,0, is

Vsoil = (1− n0)∆x3
0 = (1− n1)∆x1∆x2

0 (2.20)

∆x1 =
1− n0

1− n1
∆x0 (2.21)

Vtotal,0 = ∆x3
0 (2.22)

Vtotal,1 = ∆x2
0∆x1 = ∆x3

0

1− n0

1− n1
(2.23)

∆V = Vtotal,1 − Vtotal,0 = ∆x3
0(

1− n0

1− n1
− 1) = ∆x3

0

n1 − n0

1− n1
, (2.24)
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where the subscript 0 indicates the initial state, and 1 the state just before
failure, And ∆V is the change in total volume. By combining this with Equa-
tion (2.19), the horizontal velocity of the erosion front, vwall, also known as
the wall velocity, is found:

∆V = qf∆x2
0∆t (2.25)

∆x3
0

∆t

n1 − n0

1− n1
= qf∆x2

0 (2.26)

∆x0

∆t

n1 − n0

1− n1
= qf =

k

ρcg
fs
ρd − ρc

ρc

sin (φc − β)

sinφc
(2.27)

vwall =
1− n1

n1 − n0

k

ρc|g|
fs
ρd − ρc

ρc

sin (φc − β)

sinφc
, (2.28)

where ∆t is the time increment, and g is the gravitational accelleration.

2.2 Turbidity current

As the erosion front retrogresses backwards, the sand particles are released
and flow downstream as turbidity current (Figure 2.1). The interaction of this
current, through erosion and sedimentation, with the slope downstream of the
breach face, as well as the breach face itself, play an important role in the
behaviour of the breaching process.

The characteristics of this flow of sand-water mixtures, depend mostly on
the Reynolds number (Mastbergen et al., 1988). The Reynolds Number, Re, is
the ratio of turbulent shear stresses over viscous shear stresses. The Reynolds
number increases as the particle flux increases.

For low fluxes, and thus low Re, the turbulent eddies are not strong enough
to keep sand particles in suspension. In this case the sand grains are trans-
ported by rolling over the bed. The grains come to a stop at a slope angle
close to the internal friction angle.

As the flux increases, and thus the Reynolds number, turbulent eddies
increase in strength. Mixing by turbulent eddies can balance the downward
particle flux by sedimentation. This way sand particles can stay in suspension,
and the sand-water mixture is transported downstream as a turbidity current.
Turbidity currents are particle-laden flows driven by gravity, in which particles
are suspended by turbulent eddies. A Turbidity current can interact with the
sand bed over which it flows. Particles from the mixture can sediment onto
the bed, or particles can be eroded from the bed by the turbidity current. A
turbidity current can also entrain ambient fluid.
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Figure 2.6: The experimental setup used by Mastbergen et al. (1988).

Mastbergen et al. (1988) created a sand fill dam in a 32 m× 2.5 m× 0.5 m
flume, and measured the resulting underwater slope, β, during construction of
this dam (Figure 6.22). For flows with a low production rate (s <10 kg s−1 m−1)
grain flows were observed, with intermittent flow slides. Slope angles increased
during grain flows, while after a flow slide much milder slopes were observed.
Because of this the average slope varied a lot in time. For higher production
rates (s >10 kg m−1 s−1) turbidity currents were observed. Flow slides occur a
lot less for this kind of flow, after some time the slope reaches an equilibrium,
βeq, after which the slope barely changes.

Using the Engelund-Hansen formula Mastbergen et al. (1988) derived for
the equilibrium slope, βeq,

tanβeq =
D0.6

50 (1− αd)1.2(1 + ∆αd)

s0.4
, (2.29)

where D50 is the median grain diameter, c is the sand volume concentration
of the turbidity current, and s is the sand production rate.

For concentrations lower than about 0.35 the slope is mostly influenced
by the grain diameter, D, and the sand production rate, s, when using this
formula. A larger grain diameter leads to a steeper slope, and a larger sand
production rate leads to a milder slope. A simpler, empirically derived formula
which excludes the influence of concentration is given in van Rhee (2015):

tanβeq =
1623D0.92

50

s0.39
. (2.30)
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2.3 Sedimentation

Sand particles inside the turbidity current can settle and be deposited on the
bed over which it flows, this is called sedimentation (Figure 2.1). The speed at
which sedimentation occurs (and whether sedimentation occurs at all) depend
on the vertical velocity of the sand particles in the current. The variety of
factors influencing this velocity are discussed in this and the next section.

Using the second law of Newton, the settling velocity of a single particle
in a fluid with hydrostatic pressure can be modelled as (Murray, 1970):

ρd
dwd

dt
=
FD

Vp
+ (ρd − ρc) |g|−Cmρc

dwd

dt
+ ρc

dwc

dt
, (2.31)

where wd and wc are the vertical velocities of the particle and the fluid re-
spectively, Cm is the added mass coefficient, Vp is the volume of the particle,
which is

Vp =
1

6
fshapeπD

3, (2.32)

where fshape is the shape factor, which takes into account the deviation of the
particle from the idealized spherical particle. FD is the drag force

FD = CD
1

8
πD2ρcwr|wr|, (2.33)

where CD is the drag coefficient, and wr is the vertical particle velocity relative
to the water velocity, wd − wc.

In a stagnant fluid (wc = 0) the terminal settling velocity, w∞d (when
dwd/dt = 0) can be derived using Equation (2.31):

w∞d =

√
4ψg∆D

3CD
. (2.34)

For laminar flow (Re∞p < 1), the drag coefficient, CD, for perfect spheres
is known exactly

CD =
24

Re∞p
, (2.35)

where the Reynolds particle number, Re∞p , is

Re∞p =
w∞d D

ν
, (2.36)

where ν is the kinematic viscosity of the liquid.
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As the particle Reynolds number increases, turbulence becomes more im-
portant. For Reynolds particle numbers smaller than 1× 106, the drag co-
efficient can be estimated with the formula of Turton and Levenspiel (1986)
(Figure 2.7):

CD =
24

Re∞p

(
1 + 0.173(Re∞p )0.657

)
+

0.413

1 + 16300(Re∞p )−1.09
. (2.37)

Adjustments for non-spherical particle are available, see e.g. Hölzer and Som-
merfeld (2008).

10−1 100 101 102 103 104 105
10−1

100

101

102

Re∞p

C
D

Figure 2.7: The drag constant, CD, as function of the Reynolds particle
number, Re∞p

When more than one particles settles, settling velocity is reduced by inter-
action between particles, and an upward flux of water to compensate for the
downward flux of particles. Currently, the most popular method to account
for these effects is the semi-empirical formula of Richardson and Zaki (1954),

w∞d = (1− αd)nw∞d0, (2.38)

where wd0 is the settling velocity for particles at a concentration of 0.
For the exponent, n, Richardson and Zaki (1954) give, when ignoring wall

effects,

n =


4.65 Re∞p ≤ 0.2

4.35Re∞p
−0.03 0.2 < Re∞p ≤ 1

4.45Re∞p
−0.1 1 < Re∞p ≤ 500

2.39 Re∞p > 500

(2.39)

Garside and Al-Dibouni (1977) gave an empirical formula based on a large
set of data (including that of Richardson and Zaki (1954)), with Rep ranging
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from 0.0011 to 3500:

n =
5.1 + 0.27Re∞p

0.9

1 + 0.1Re∞p
0.9 . (2.40)

In their data set they find an average deviation, of the observed fall velocity
from the estimated fall velocity, of 9.8%. This uncertainty increases as the
concentration of particles increases.

Previous formulae are valid for particles in a quiescent fluid. In the tur-
bulent turbidity current, settling velocities can differ. Due to the non-linear
dependence on the relative velocity of the drag force (Equation (2.33)), the
average settling velocity is reduced by turbulent fluctuations (Murray, 1970).
Turbulence also influences the settling velocity by affecting the drag coefficient
(Crowe et al., 2011). Particle settling velocities can also increase in turbulence
due to trajectory biasing. This is when particles are swept toward the down-
flow side of vortices (Mei, 1994). Experiments with particles similar to those
encountered during breaching (D50 = 210 µm and relative density of 2.65) by
Kawanisi and Shiozaki (2008), show a reduction in settling velocity up to 40%
as turbulent intensity increases.

2.4 Erosion

If the current is strong enough it can move sand particles via a combination of
drag and lift forces. Erosion (Figure 2.1) is the net effect of combined settling
and pick-up of particles, when the pick-up flux of particles is larger than the
flux of settling particles During breaching, the turbidity current can erode
particles both downstream of the breach face, as well as from the breach face
itself. This section discusses several factors influencing the quantity of erosion.

Shields (1936) was one of the first to experimentally determine the nec-
essary forcing to initiate the motion of sand particles. Based on a limited
number of experiments, he presented a graph which shows the dimension-
less shear stress, θ, at which motion of sand particles is initiated for varying
boundary Reynolds numbers, Reτ . Where,

θ =
τb

(ρd − ρc)D
(2.41)

Reτ =
u∗D
νc

, (2.42)
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where τb is the bed shear stress, νc, is the kinematic viscosity of the fluid, and
u∗ is the friction velocity, which is equal to

u∗ =

√
τb
ρc
. (2.43)

The critical Shields parameter, θcr, denotes the Shields parameter at which
initiation of motion of the particles takes place. The definition of initiation
of motion is contentious, with different researchers using different definitions.
Many researchers use qualitative visual descriptions as negligible, small, or
critical transport (Vanoni, 1975), or ’occasional particle movement at some
locations’, and ’frequent particle movement at all locations’ (Delft Hydraulics,
1972). Instead, Graf and Pazis (1977) defined incipient motion by the number
of particles entrained per square meter, and found a correspondence with the
Shields curve between 100, and 1000, particles entrained per square meter.

The original Shields diagram plotted the critical Shields parameter against
the Boundary Reynolds number. Because both depend on the bed shear stress,
iteration is needed to determine the critical Shields parameter. The Shields
curve has been adapted, among others by van Rijn (1984), who plots the
critical Shields number against the Dimensionless grain diameter D∗.

D∗ =

[
Re2

τ

θ

]1/3

= D50

[
(ρd − ρc) g

ρcν2

]1/3

. (2.44)

The Shields curve can be approximated by the formula of Soulsby and
Whitehouse (1997):

θcr =
0.24

D∗
+ 0.055

(
1− e−0.022D∗

)
. (2.45)

Later, Paphitis (2001), combined data from 29 different sources to create
an updated shields curve. Besides the average critical Shields parameter, they
also provided upper and lower limits.

θcr;avg =
0.273

1 + 1.2D∗
+ 0.046

(
1− 0.57e−0.02D∗

)
(2.46)

θcr;max =
0.380

1 + 1.2D∗
+ 0.07

(
1− 0.57e−0.02D∗

)
(2.47)

θcr;min =
0.165

1 + 1.2D∗
+ 0.03

(
1− 0.57e−0.02D∗

)
. (2.48)



2.4. EROSION 29

The D∗ in the data used ranges from 0.1 to 3000. For typical breaching events,
the D∗ is usually between 1 to 10. The biggest difference with the original
curve of Shields (1936) is for small particles, with a D∗ < 1 (Figure 2.8).

NO MOTION

MOTION

10−1 100 101 102

10−1

100

D∗

θ c
r

Pathitis (2001)

Shields (1936)

Figure 2.8: The relation between critical Shields parameter and dimension-
less grain size as given by Shields (1936) and Paphitis (2001)

Once motion of particles is initiated, transport can occur as bed-load or
as suspended load. Bed-load is the transport of particles by sliding or rolling
over the bed, while suspended load is the transport of particles suspended in
the fluid.

Several researchers presented empirical formulas for the pick-up flux of
particles from the bed, into suspension, based on the difference between the
critical and actual shields parameter. Based on experiments, with grain sizes
ranging from 130µm and 1500 µm, van Rijn (1984) presented the following
empirical formula for the pick-up flux E,

E = 0.00033D0.3
∗ T 1.5ρd

√
∆gD50, (2.49)

where T is the transport parameter,

T =
θ − θcr

θcr
, (2.50)

∆ is the relative grain density

ρd − ρc

ρc
, (2.51)
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and D50 is the median grain diameter.
The pick-up flux, E, is the weight of particles pick-up per square meter of

the bed:

E = veρd (1− n0) , (2.52)

where ve is the downward velocity of the bed. Alternative formulae have been
developed by Nakagawa and Tsujimoto (1980) and Fernandez Luque and Van
Beek (1976).

2.4.1 Retarded Erosion (Dilatancy)

Bisschop et al. (2010) and van Rhee (2010) carried out research on the erosion
of granular material at high flow velocities. At high flow velocities standard
sediment pick-up formulae (e.g. van Rijn (1984)) overestimate the actual pick-
up. According to van Rhee (2010) this is because of under pressures caused by
dilatancy. Just as during breaching, soil cannot erode before being loosened
enough. The larger the pick-up flux, the quicker the expansion of soil, and
thus the larger the inflow of water. From Equation (2.17) it then follows that
a larger pick-up leads to a larger negative pore pressure, while for a small
pick-up flux this effect is negligible.

van Rhee (2010) adds a shear force, Fs, perpendicular to the soil, generated
by water flow to the force balance of Figure 2.4a. The force balance parallel
to the soil at equilibrium is then

Fs + Fg sinβ = Ff = (Fg cosβ + Fi) tanφc, (2.53)

or
Fs
Fg

= tanφ

(
sin (φ− β)

sinφ
+
Fi
Fg

)
. (2.54)

The left hand side is proportional to the dimensionless shear stress, θ, while
the right hand side is proportional to dimensionless shear stress necessary for
incipient motion, θcr. For a flat bed with no inflow of water, the right hand
side is equal to tanφc. With a slope or inflow of water, this term is multiplied

with a factor ( sin(φc−β)
sinφc

+ Fi

Fg
). van Rhee (2010) argues that, therefore, the

critical shields value can also be multiplied by this factor:

θ∗cr = θcr

(
sin (φc − β)

sinφc
+
Fi
Fg

)
, (2.55)

where θ∗cr is the adapted critical shields parameter.
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When the excess pore pressure gradient is known, the ratio between the
gravity and inflow force can be calculated with

Fi
Fg

=
∇pe · n

(1− n0) (ρd − ρc) |g| , (2.56)

where n is the unit vector perpendicular to the bed. The pore pressure gradient
is not always known a priori. Assuming that soil has to dilate from the initial
porosity, n0, to a porosity of n1, before it can be lifted from the bed, the
necessary inflow of water can be determined, and via Darcy’s equation also
the pore pressure gradient.

qf =
n1 − n0

1− n1
ve =

k

ρc|g|
∇pe · n. (2.57)

The relative force due to inflow of water is

Fi
Fg

=
n1 − n0

1− n1

ve
k (1− n0) ∆

. (2.58)

van Rhee (2010) adapts the pickup formula of van Rijn (1984) (Equa-
tion (2.49)), to include these effects. van Rhee (2010) replaces the transport
stage parameter, T , with T∗, using the adapted critical Shields parameter, θ∗cr,
defined in Equation (2.55)

E = 0.00033D0.3
∗ T 1.5

∗ ρd

√
∆gD50, (2.59)

where

T∗ =
θ − θ∗cr

θ∗cr

. (2.60)

Combining equations Equations (2.52), (2.55), (2.58) and (2.59) gives

ve = 0.00033D0.3
∗

[
θ

θcr

(
sin (φc − β)

sinφc
+

ve
(1− n0) k∆

n1 − n0

1− n1

)−1

−1

] √
∆gD50

1− n0
.

(2.61)

This formula cannot be solved analytically, but has to be solved iteratively.
If θ < θ∗cr for ve = 0 there is no erosion. If the slope, β, is steeper than the
internal friction angle, φc, a negative θ∗cr is calculated, so there must be an
erosion velocity to make sure θ∗cr > 0.

In the case of breaching the slope fails without an external force acting on
it. This means θ∗cr = 0. Applying this in Equation (2.55) gives the following
formula for the erosion velocity.
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ve = (1− n0) k∆
1− n1

n1 − n0

sin (φc − β)

sinφc
, (2.62)

which is equal to the wall velocity formula derived with the continuum ap-
proach (Equation (2.28)).

For high erosion velocities where ve/k >> sin (φc − β), Bisschop et al.
(2010) give the following formula which can be solved directly

v5
e =

(
0.00033D0.3

∗

√
∆gD50

1− n0

)2

T 3

(
k∆ (1− n0)

1− n1

n1 − n0

)3

. (2.63)

2.4.2 Restricted erosion (concentration)

During experiments with highly concentrated sand-water mixtures over erodi-
ble beds Winterwerp et al. (1992) found that erosion rate was limited by the
sand concentration in the mixture flowing over the bed. They give a maximum
possible pick-up flux based on the concentration near the bed, cb,

Emax = 0.033
1− n0 − cb

cb
. (2.64)

Rhee and Talmon (2010) also investigated the effect of high near bed sand
concentrations on erosion and sedimentation of the bed. They found an effect
on the net sediment pick-up rate. They assume that sediment pick-up is mostly
done by turbulent eddies. These turbulent eddies pickup particles from the
bed, where the concentration is (1−n0). The volume of the picked up sediment
is replaced by the sand-water mixture near the bed, with a concentration of
cb. The effect is taken into account by Rhee and Talmon (2010) by applying
a reduction factor, Eh, to the pick-up flux.

Eh =
(1− n0)− cb

1− n0
E. (2.65)

This formula matches well with the data of Van Rhee (2002).
Bisschop (2018) proposes another formula to determine the reduction fac-

tor.

Eh = E

(
n0 − cb
n0

)n
h

, (2.66)

where nh is an empirical factor. This formula matches well with the data of
Winterwerp et al. (1992), for nh = 1.38.
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2.5 Breach stability

The stability of a breach (Figure 1.2), whether the height of the breach face de-
creases (stable) or increases (unstable), is important. When breaches become
unstable they can go on for a long time, eroding large quantities of sand. van
Rhee (2015) proposes a stability limit for breaches, based on the slopes on top
(βtop in Figure 2.9) and at the toe of the breach face (βtoe in Figure 2.9). He
assumed that the change in wall height is controlled by the difference between
these two slopes. When βtoe is milder than βtop, an increase of the wall height,
and thus an unstable breach, is expected, and vice versa.

βtoe

βtop

βwall

Figure 2.9: Definitions of relevant angles .

βtop is determined by the pre-existing geometry, while βtoe will depend
mostly on the interaction between the formed turbidity current and the existing
downstream slope. To estimate βtoe, van Rhee (2015) uses a simplified version
of a formula empirically derived by Mastbergen et al. (1988) (Equation (2.30).
In this equation, βtoe depends on de grain size, and the sand production rate.
During breaching, the sand production rate is equal to the wall velocity, vwall,
multiplied by the wall height, Hwall, density ρd, and concentration, (1− n0).

s = vwallHwallρd (1− n0) (2.67)

van Rhee (2015) then combines this with Equations (2.28) and (2.30), giv-
ing:
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tanβeq = 1623D0.92

(
Hwall

kρd
∆n

ρd − ρc
ρc

(1− n0)
2

cotφc

)−0.39

(2.68)

where βeq is the equilibrium slope angle. van Rhee (2015) assumes that βtop

is equal to αeq. Thus a breach will be unstable if βeq is milder than βtop. A
critical wall height, above which the breach will be unstable can be determined:

Hwall >
17× 107D2.36 (n1 − n0) ρc|g|ρc sinφc

(1− n1) kfs (ρd − ρc) sin (φc − β) ρd (1− n0) tan (βtop)
2.56 (2.69)

Perhaps it is more informative to look at the expected change in wall height,
instead of just stable or unstable. If the angle at the toe, βtoe, is equal to βeq,
and the bottom of the breach wall moves along a line with the same angle as
βtoe, the change in wall height is:

dHwall

dx
= tanβtop − tanβeq (2.70)

2.6 Dual mode slope failure

van Rhee and Bezuijen (1998) carried out larger scale experiments, with heights
up to 2.2 m. They found that Equation (2.28) was not valid at these larger
scales. They noted two reasons: first, the formation of a large turbidity cur-
rent at the lower part of the breach face, increasing the erosion rate. Second,
besides pure breaching, where particles are released one by one at the breach
face, lumps of sand failing instead of single sand particles at the breach face
are also observed (Figure 2.10). You et al. (2014) call this combination of pure
breaching and sliding wedges dual mode slope failure, which they differentiates
from pure breaching where no slides occur. In their experiments they observe
a difference in erosion speed for pure breaching and sliding wedges. For pure
breaching the breach wall retrogresses at 2.5 mm s−1, while during slides is
retrogresses at 21 mm s−1. The slides are accompanied by a drop in excess
pore pressure. The size of the drop is correlated to the size of the slide.

You et al. (2014) argue that these slides occur when the negative pore
pressure generated inside the soil is insufficient to avoid shear failure. If the
steady state pore pressure, at constant height and wall velocity, cannot keep
the breach stable, slides are expected. These slides decrease the excess pore
pressure in the soil, after which they start increasing toward the steady state



2.7. BREACHING VS. LIQUEFACTION 35

until the next slide. According to them the susceptibility to slides depends
on the internal friction angle, φc, and the dilation potential. They define the
dilation potential, βdil, as

βdil = 0.5 +
mq

2mu
, (2.71)

where mu, controls the change in volume, e, due to elastic compression.mq

controls the change in volume due to dilation due to shear.

e = edil + eel = mu∆p′ +mq∆q, (2.72)

where ∆p′ is the change in mean effective stress, and ∆q the change in differ-
ential stress.

2.7 Breaching vs. Liquefaction

Dilatancy is most likely to occur in densely packed sand. For loosely packed
sand a reduction of the pore volume, called contraction, is more likely. This
contraction can cause another type of failure, liquefaction, where due to an
increase in pore pressure, the internal friction between particles disappears,
and the soil flows as a liquid.

Opposed to breaching failures, which can take several hours, liquefaction is
a quick process, usually lasting only seconds. The bathymetry after a liquefac-
tion failure is very similar to that of a breach failure. This can cause the effects
of breaching failures to be attributed to a liquefaction failure. For example,
for years, bank failures in the Mississippi where attributed to liquefaction, but
soil tests revealed that breaching failures where more likely Torrey III et al.
(1988) and Padfield (1978).
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t = 72s t = 76s t = 83s

Figure 2.10: A typical sliding wedge observed during breaching. Left: The
initial profile at t = 72s. Middle: Just after the start of the slide. Right:
The slide has moved down the breach face.



Chapter 3

Laboratory experiments

In this chapter laboratory experiments are described. The main goal of these
experiments is to collect data for validation of the numerical model. However,
these experiments also allow us to investigate:

• Breaches with slopes above the breach wall. Previous studies start with a
flat surface on top of the breach. It is expected that this allows transition
from stable to unstable breaching, which until now has only been done
in numerical experiments (van Rhee, 2015). It is expected that this
transition can be predicted with Equation (2.69).

• The angle of the slope which forms at the toe of the breach. Previous
studies either used a suction tube, thus not allowing a slope to develop,
or did not document the evolution of this slope. It is expected that
angles can be predicted using Equation (2.30), which is often used to
predict this angle.

• The frequency of large slides, and their effect on the breaching process.
So far the sliding frequency has only been investigated by You et al.
(2014). They looked at slides only as a function of sand type, and didn’t
investigate the effects of these slides. The expectation is that these slides
will increase in frequency as breach heights increase, as breach walls
become steeper, and as sand becomes more permeable. It is expected
that as the number of slides increase, that the wall velocity increases as
well.

37
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3.1 Method

3.1.1 Experimental setup

pump

Removable gate
2.5 m

5.1 m

2 m

0.3 m

Hstart

βstart

pump

1.25 m
1 m

4.5 m 0.5 m

Figure 3.1: The laboratory setup.

The experimental setup consist of a tank with a height of 2 meters, a length
of 5.1 meters and a width of 0.5 meters (Figure 3.1). The tank has glass panels
on one side (Figure 3.2). The tank is divided into two parts, with lengths of
2.55 meters, by a impermeable removable gate, which can be lifted vertically.
A false bottom, with a height of 0.3 meters and a length of 4.8 meters, is
placed at the bottom of the tank. This false bottom creates a 0.3 meter long
pump sump at one end of the tank.

To reduce the reflection of the turbidity current at the end of the tank, a
centrifugal pump is placed inside the pump sump. This pump pumps the sand
water mixture from the pump sump to a basin which is 4.5 m long, 1.25 m
wide, and 1.25 m high. On the opposite site of the tank a second pump is
located behind a 1 m high divider, which pumps clean water back into the
tank, to maintain a constant water level.

The whole tank is filled with water. Sand is placed on one side of the
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Figure 3.2: Glass panels at one side of the experimental setup, before the
start of experiment 8. The view is partially obstructed by metal beams.

removable gate. The sand is placed inside the tank layer by layer, and layers
are compacted by using a vibrating needle. The sand body is built up with
heights, Hstart, up to 1.47 m and angles on top of the wall, βstart, up to 30◦

(Table 3.1).

3.1.2 Sand properties

During the experiment two types of sand are used, GEBA and D9 (Table 3.2).
The initial porosity, n0, of each sand type was estimated by taking samples
before the start of the experiments for two experiments with GEBA, and two
experiments with D9 sand. The median and 15th percentile grain size, D50

and D15, are determined using sieves. The internal friction angle, φc, was
determined using a direct shear test. The permeabilities of the sand types are
determined with a falling head test. For D9 this was done with a porosity equal
to n0 (‘as indicated in Table 3.2), while for GEBA this was done at a lower
porosity. Instead, for GEBA sand, the permeability at n0, k0, is estimated
using the formula of Kozeny-Carman as follows:

k0 =

(
ntest

n0

)3(
1− n0

1− ntest

)2

ktest, (3.1)

where ktest is the permeability measured during the falling head test, with a
prosity of ntest.

3.1.3 Experimental procedure

Once the sand is in place, and the pumps are started, experiments are started
by raising the gate. The whole experiment is filmed from the side with a GoPro
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Table 3.1: List of experiments

Hstart (m) βstart (◦) sand type

1 0.66 0 GEBA
2 0.66 0 GEBA
3 0.66 0 GEBA
4 1.17 0 GEBA
5 1.17 0 GEBA
6 1.17 0 GEBA
7 0.8 20 GEBA
8 1.47 0 GEBA
9 0.8 30 GEBA
10 1.47 0 GEBA
11 0.66 30 GEBA
12 0.66 20 GEBA
13 0.66 0 D9
14 1.17 0 D9
15 0.8 30 D9
16 1.47 0 D9

Table 3.2: 50th and 15th percentile grain size, D50, D15, initial porosity, n0,
initial permeability, k0, and internal friction angle, φc, of the GEBA and D9
sand types.

D50 (µm) D15 (µm) n0 k0 (m s−1) φc (◦)

GEBA 120 80 0.415 9.5× 10−5 35.8
D9 330 225 0.430 2.2× 10−4 40.1

Conductivity meters

Pressure meters

Figure 3.3: Locations of measurement devices used during the experiments.
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Hero 3 camera. During the experiments the pore pressure inside the sand body
is measured using six to nine differential pressure meters. For these pressure
meters, connections are possible on the side of the tank in a three by seven
array (Figure 3.3). The connections used differ per experiment. Furthermore,
two arrays of conducitivity meters are placed inside the tank, on the side of the
gate without sand. Both arrays consist of 10 sensors spread over 0.4 meters.
These sensors can measure the conductivity of the sand-water mixture, which
can be translated into sand concentration.

x

x

Hwall

mild slopes < 0.2m
are considered part
of the breach face

0.5m 1.5m

+

+

βwall

βtoe

slope < φc
slope > φc
Begin/end breach wall

Begin/end calculation βtoe

Figure 3.4: Definitions used for the wall height, wall angle and toe angle.

3.1.4 Data analysis

After the experiments, profiles are extracted from the recorded videos (Fig-
ure 3.6. From these profiles wall velocity, wall height, wall angle and the
slope at the toe are retrieved. This allows for easier analysis and comparison
between experiments.

The breach wall is defined as the portion of the profile where the angle
is steeper than the internal friction angle. The steep wall can contain small
parts where the slope angle is milder than the internal friction angle. These
are considered part of the breach wall if they are less than 0.2 m in length. The
wall height, Hwall, is the vertical distance between the start and end points
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x x

x
x

ymax

ymin

∆x

profile at t0
profile at t1
Begin/end breach walls

Figure 3.5: Definitions used in determining the wall velocity.

of the breach wall. The wall angle is approximated by the angle of the line
between the start and end points of the breach wall (Figure 3.4). The average
angle at the toe of the wall is taken between 0.5 and 2 metres from the toe. The
toe angle is not determined right after the toe, because often a erosion hole is
located in front of the breach face. The toe angle is approximated by using a
straight line between the two points at the start and the end of this domain
(Figure 3.4). Sometimes, when the turbidity current is large, the transition
from turbidity current to still bed cannot be observed. In these cases the toe
angle is not determined.

The wall velocity is defined as the average horizontal distance traveled, per
unit of time, over the height of the breach wall.

vwall =

∫ ytop
ytoe

∆x(y)dy

(ytop − ytoe) (t1 − t0)
, (3.2)

where ytop, is the lowest of the two tops of the two profiles, while ytoe is
the highest of the two toes of the two profiles (Figure 3.5). ∆x(y) is the
horizontal distance between the two profiles at height y. The size of slides is
estimated using screenshots before and after a sliding event. Because breaching
can continue during slides, the slide volume will be overestimated as it also
includes erosion due to normal breaching.
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3.2 Results

3.2.1 General observations

Here we discuss the general behavior of a breaching experiment. Raising of
the sliding gate is initiated at t = 0 s, and, for experiment 8, finishes between
t =10 s to 17 s, depending on the initial breach height. When raising the gate
the underpressure measured inside the sand quickly increases (Figure 3.8c).
Afterwards it slowly decreases until the breaching front has passed the pressure
meter, after which it measures the hydrostatic pressure. When slides occur
nearby a pressure meter a small drop in underpressure is measured.

After raising the gate, the wall velocity reaches it’s maximum value (Fig-
ure 3.8a), and afterwards continuously decreases, likely due to the simultaneous
decrease in wall angle, which starts at 90◦ and becomes milder over time (Fig-
ure 3.8b) . The wall height can initially become steeper than 90 degrees for
some experiments. This is because the bottom part of the wall starts eroding
while at the top the sand is still held back by the gate. Once the gate is lifted,
the wall angle becomes milder again. At the start of the experiments several
slides occur, but during the later stages of the experiments these slides are no
longer observed (Figure 3.8b).

During experiment 8 (Hstart = 1.47 m, βstart = 0◦, GEBA), after about
750 s a disturbance is caused by a large slide of the freshly deposited sand at
the toe of the breach (Figure 3.7). After the slide, the slope at the toe of
the breach is steeper, while further downstream it became milder. Just before
the slide a spike in pore pressure is measured inside the soil, the large slide is
therefore likely caused by liquefaction. Such large slides do not occur regularly,
but similar slides were observed at the end of experiments 5 (Hstart = 1.17 m,
βstart = 0◦, GEBA), and 9 (Hstart = 0.80 m, βstart = 30◦, GEBA).

3.2.2 Effect of sand type

Results of a similar experiment, with the coarser and more permeable D9 sand
(Experiment 16), show an increase of the maximum wall velocity by a factor
3 (Figure 3.8a). This increase is likely caused by the higher permeability of
D9 sand, which plays a big role in Equation (2.28). Due to the increased wall
velocity, the total time of the experiment is a factor 8 shorter. This decrease
is partially explained by the increased wall velocity. However, the angle of
the deposition at the toe of the breach is also steeper than during the same
experiment with GEBA (Figure 3.8f), likely due to the larger grain size. Due
to the steeper slope, the reduction of the wall height is quicker.
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Figure 3.6: Profiles plotted every 90 seconds, for experiment 8. Linear
interpolation is used for parts which could not be observed. The red circle
shows the location for pore pressure measurements in Figure 3.8

t = 750s

t = 755s

t = 772s

Figure 3.7: A Liquefaction failure observed during experiment 8.
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Figure 3.8: For experiment 8 (Hstart = 1.47 m, βstart = 0◦, GEBA) and
16 (Hstart = 1.47 m, βstart = 0◦, D9) a) wall velocity, b) size of slides during
experiment, c) underpressures at x = 1.9, y = 0.7, d) Wall height, e) wall angle
averaged over the height of the wall, and f) Angle of the slope at the toe of
the wall.
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Interestingly, the initial drop in pore pressure when the gate is raised is
almost equal to the drop during experiment 8 (Figure 3.8c). This observation
goes against predictions by You et al. (2012), that the maximum pore pressure
will increase as permeability decreases. Instead, the maximum pore pressure
seems determined by the geometry. This is likely because at a certain pore
pressure the yield stress surpasses the shear stress. Then no further shear,
and thus shear dilation is expected, and there is no source for decreasing pore
pressure. You et al. (2012) do not take this effect into account.

3.2.3 Stable vs unstable breaching

A transition from stable to unstable breaching is found between experiments
11 and 12. These experiments have the same sand type and starting height
(Hstart = 0.66, GEBA) but differing slopes on top of the breach (βstart = 30
& βstart = 20 respectively). Both experiments show an initial reduction of the
wall height in the first 60 seconds (Figure 3.9d). However, in the following
180 seconds, experiment 11 shows an increase in wall height, while experiment
12 shows a decreasing wall height. During this time other variables, like the
wall velocity, wall angle, pore pressure, and toe angle are similar for both
experiments. The slides observed during experiment 11 are larger than those
observed during experiment 12. After 300 seconds the wall height starts to
decrease for experiment 11, because the slope at the top of the breach wall
changes from 30 to 0 degrees. A transistion from stable to unstable breaching
is also observed for experiments 7 and 9 (GEBA, Hstart = 0.8, βstart = 20 &
30). Experiment 15, which uses a slope on top of the breach of 30 degrees as
well, did not show unstable behavior. This is likely due to the use of D9 sand.
Due to its larger grain diameter, steeper slopes are formed at the toe of the
breach (as seen in Figure 3.8f), increasing the reduction of wall height.

3.2.4 Reproducibility

When interpreting data, it is important to take the variance between equivalent
experiments into account. Experiments 1, 2 and 3 (GEBA, Hstart = 0.66 m,
βstart = 0◦) have the same initial conditions, as do experiments 8 and 10
(GEBA, Hstart = 1.47 m, βstart = 0◦). These are used to give an indication
of the reproducibility of the experiments. While these experiments are not
sufficient to accurately describe the variance, they give a good first impression.

The largest variation is found in the slides. Not only the individual slides
show large differences in size (See e.g. Figure 3.9b), but also the total volume
of the slides varies more than 100% between experiments (Table 3.3). On
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Figure 3.9: For experiment 11 (Hstart = 0.66 m, βstart = 30◦, GEBA) and
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angle averaged over the height of the wall, and f) Angle of the slope at the toe
of the wall.
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Table 3.3: Mean and maximum differences for variables during compareable
experiments.

Experiments 1, 2 & 3 8 & 10

Range total slide volume (m3) 0.004–0.01 0.029–0.045
Range total horizontal distance (m) 0.53-0.58 2.09-1.93
Mean wall height (m) 0.31 0.88
Mean wall height difference (m) 0.04 0.09
Max. wall height difference (m) 0.20 0.22
Mean wall velocity (mm s−1) 2.0 2.0
Mean wall velocity difference (mm s−1) 0.6 0.4
Max. wall velocity difference (mm s−1) 1.7 1.3
Mean wall angle difference (◦) 6.5 7.4
Max. wall angle difference (◦) 18.6 19.2
Mean toe angle difference (◦) 4.0 2.9
Max. toe angle difference (◦) 11.1 4.6

the other hand, the total distance traveled by the breach (Measured by the
position of the top of the breach wall), are very close to each other. The mean
difference of wall height, wall angle, and toe angle are relatively small, while
the mean difference is wall velocity is about 25% of the mean wall velocity
(Table 3.3).
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1
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)

Exp.
8
10

Figure 3.10: Profiles plotted at 0, 180, 410, 600 and 810 seconds for experi-
ments 8 and 10.

The profiles of experiment 8 and 10 (Figure 3.10) look similar with some
small differences. The breach face is less steep during experiment 10. The
breach moves slightly faster in experiment 8, this might be related to the
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difference in wall angle, as Equation (2.28) predict a larger wall velocity for
steeper breach faces. The biggest difference is caused by the large liquefaction
slide which occurs near the end of experiment 8. No such slide is observed
during experiment 10. As a result of this slide the final profiles of both exper-
iments are quite different, and the final distance travelled by the breach face
is bigger for experiment 8.

3.2.5 Analysis of slide contribution

During the experiments numerous large slides occur. The largest slide observed
is 0.0432 m3. The largest slide in the less permeable GEBA sand is 0.022 m3.
The size of the slides correlates with the height of the breach face, with bigger
slides occurring with higher breach faces. More interesting than total size of
the slides, is their contribution to the erosion of the breach face, relative to
the total erosion by a combination of slides and pure breaching.

The slide contribution, pslide, during a time interval T is

pslide =

∫
T
vwallHwallBdt∑

Vslide
, (3.3)

where B is the width of the breach wall, and Vslide is the volume of a slide.
For GEBA Weiss experiments, the contribution of slides to the total ero-

sion, averaged over different wall heights, shows a larger contribution at larger
wall heights, with a contribution of 21 % when the wall height is between 1.3 m
and 1.5 m (Figure 3.11a). However, splitting the data by starting heights (Fig-
ure 3.11b) shows a large variation in contribution for the same height range.
It shows that, instead, the highest contribution to the erosion occurs with a
wall height closest to the starting height.

The wall angle is a better predictor for slide contribution (Figure 3.12).
The contribution rises from 0% below a wall angle of 50◦, up to 16% between
80◦ and 90◦. Splitting over different starting heights, shows less variation than
with wall heights. However, it should be noted that all experiments have the
same starting wall angle of 90◦. Interestingly, in a given bin, the experiments
with the largest starting height, never have the largest slide contribution.

The type of sand used has a large impact on slides. Experiments using the
more permeable D9 show a significantly higher slide contribution. For wall
angles between 80◦ and 90◦, the slide contribution is 81%, meaning almost all
erosion is due to slides. The contribution quickly drops as wall angle decreases.
For angles between 80◦ and 70◦, the contribution dropped to 18%. For angles
below 50◦, the contribution drops to zero for D9 as well.
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Figure 3.11: Contribution of the sliding wedges to the total erosion volume
of the breach face, averaged over different ranges of wall height, for a) all
experiments using Geba Weiss, and b) divided by different starting heights.
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Figure 3.12: Contribution of the sliding wedges to the total erosion volume
of the breach face, averaged over different ranges of wall angle, for a) all
experiments using Geba Weiss, and b) divided by different starting heights.
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Figure 3.13: Contribution of the slidies to the total erosion volume of the
breach wall, averaged over different wall angle ranges, for GEBA and D9 sand.

3.2.6 Analysis of wall velocity

Observed wall velocities compare well to predicted wall velocities (Figure 3.14),
with a standard deviation of 1.5 mm s−1, and an r2 value of 0.88. A positive
correlation between wall height and the ratio of measured and theoretical ve-
locities (calculated with Equation (2.28)) was found (Figure 3.15, p = 0.005).
The variation in the results is only partly explained by effects of the wall
height, with an r2 value of 0.24.

A correlation between the slide contribution and the wall velocity was ex-
pected, as during slides large volumes of sand are eroded quicker than during
breaching. Thus it was expected that, when the contribution by slides in-
creases, the measured velocity would be higher than the theoretical. Instead,
a slightly negative correlation was found, with velocities less than the theo-
retical velocity when slide contribution is the largest (Figure 3.16, p = 0.004,
r2 = 0.41).

3.2.7 Analysis of breach stability

The stability criterion, Equation (2.70), assumes that 1) the slope angle at the
toe of the breach can be predicted using the simplified formula of Mastbergen
et al. (1988) proposed by van Rhee (2015) (Equation (2.30)), and that 2) the
change in breach height can be predicted based on this slope angle. In this
section we test both assumptions based on the experimental results.

Observed toe angles are mostly lower than predicted angles (Figure 3.17).
For low sand flux, s, Equation (2.30) predicts unrealistic values, steeper than
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Figure 3.14: The total measured wall velocity (including slides) compared
to Equation (2.28).

the angle of repose. If we ignore angles steeper than the angle of repose,
the observed angle is on average, 7.1◦ degrees milder than predicted, with a
standard deviation of 4.6◦. This average difference is constant over the whole
range of predicted values.

It is possible that time factors play a role here, as the equilibrium angle
predicted by Equation (2.30) is not reached instantly. It is possible that the
observed slope angles are not the equilibrium angles. If this is the case, we
would expect the slope angle to change less when it is close to the predicted
angle (assuming the predicted angle is close to the actual equilibrium angle).
This is not the case however (Figure 3.18), instead we sea that the difference
between actual and predicted angle shows little correlation with the change of
slope angle.

There is a clear correlation between the relative angle at the toe, and the
change in wall height over distance (Figure 3.19, p = 1.6× 10−15), although
with a rather large spread (r2 = −0.58). There is a stronger decrease in
wall height than predicted by Equation (2.70), and the change from stable
to unstable does not occur at a relative angle of 0◦. If we apply a linear
regression to all the data points, we find a transition from stable to unstable
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Figure 3.16: The ratio between measured and theoretical (Equation (2.28))
wall velocity as a function of slide contribution.
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Figure 3.17: Measured slope angle at the toe theory plotted against Equa-
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Figure 3.18: The difference between the predicted (Equation (2.30)) and
measured toe angle, plotted against the change in toe angle over time.

at tanβtoe− tanβtop < −0.34, which corresponds to a difference of about 19◦.
However, visual inspection of the data points shows that most data points
with tanβtoe − tanβtop < −0.2, show an increasing wall height, and are thus
unstable. This corresponds to a angle difference of about 11◦.

The angle at the toe of the breach wall can be estimated using the sand
properties and the flux, which can be estimated using sand properties, wall
height and wall angle. Thus, an estimation of the stability of a breach can be
given using the current wall height and wall angle.

3.3 Concluding remarks

With the current experimental setup it was possible to initiate both stable
and unstable breaches. While unstable breaching was observed in two of our
experiments, the amount of data points during unstable breaching is limited. It
is therefore recommended to carry out additional experiments in the unstable
breaching regime.

Measured wall velocities correspond well with velocities predicted by Equa-
tion (2.28). A positive correlation between wall velocity and wall height is
found, where Equation (2.28) underpredicts the wall velocity for higher wall
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Figure 3.19: The change in wall height plotted against the tangent of the
slope at the toe minus the tangent of the slope on top of the breach. The solid
line is the value predicted by (Equation (2.70)). The dashed line is the result
of a linear regression, and is equal to −0.82− 2.4(tanβtoe − tanβtop)
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heights. The wall height only accounts for 21 percent of the variance of the
wall velocity.

In these experiments the volume of particles released from the breach face
via slides, relative to the volume of particles released one by one at the breach
face, is largest when the breach height is largest. However, splitting the results
by different starting heights, shows that this is because the highest wall heights
are found at the start of experiments, and most slides occur near the start of
the experiment, irrespective of the breach height (Figure 3.11b). Slides also
occur more often when the breach wall is steeper. Because all experiments start
with the same wall angle, it is unclear whether this is because the steepest wall
angles coincide with the start of the experiment. Contrary to expectations, the
wall velocity does not increase as the volume of slides increases (Figure 3.16).

The slopes measured at the toe of the breach correspond well with those
predicted by Equation (2.30), but are on average 7.1◦ milder than predicted.
The slope angle formed at the toe of the breach wall correlates with the change
in wall height, but a large spread in results is observed (Figure 3.19). Thus
predictions of breach stability can be made using Equations (2.28) and (2.30),
but with large uncertainty, it is therefore worthwhile to further investigate the
breaching process.
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Chapter 4

Model Equations

This chapter contains the governing equations underlying the numerical model.
It introduces the fluid mechanical equations, followed by the rheology of the
soil, and finally a mathematical description of the pore-pressure feedback.

4.1 Model requirements

The goal of the numerical model is the modelling of large three-dimensional
breaches. Available models used for breaching do not include movement of the
dense soil. They assume the soil the be completely static, with only particles
leaving the soil at the soil-water interface at a steady rate. However, large
slides during breaching are expected to have a large impact for higher breach
heights, which cannot be modelled with current approaches. The requirements
for the model can thus be roughly split into three parts:

• The flow of particles suspended in a liquid, to model the turbulent tur-
bidity current, and its interaction with surrounding water.

• The dense sandy soil, where friction forces dominate over hydrodynamic
forces, including the effects of pore pressure feedback. To model the
slides frequently occurring during breaching, we require a model which
can reproduce the transition from static of yielding soil, and the large
scale deformations after this transition.

• The interaction of the turbidity current with the dense sandy soil. The
pick-up of sediment from the bed, and the sedimentation of particles in
the turbidity current to the bed

59
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4.2 Governing equations for dilute suspensions

Two main approaches exist for modelling of dispersed solid particles in a liquid:
First, the Lagrangian approach, where individual particles, or groups of parti-
cles, are tracked (e.g. Patankar and Joseph, 2001; Nabi et al., 2013). Particle
positions are updated based on the forces acting on it. Second, the Eulerian
approach, where particle characteristics are averaged over time, volume or en-
sembles, leading to a fluid-like description of the particles (e.g. de Wit, 2010;
van Rhee, 2002). Instead of particles, the concentration of particles is tracked,
and is updated by solving and advection diffusion equation.

The Lagrangian method allows for more detailed modelling of the dispersed
particle phase, with individual particle tracks. Forces due to particle-particle
interactions follow directly from the simulation, while in the Eulerian frame-
work a closure relation is necessary to model diffusion due to particle-particle
interactions Particle reflection at the boundary can also easily be applied in a
Lagrangian framework. The Lagrangian method also deals better when parti-
cles undergo large accelerations (Durst et al., 1984). However, as the number
of particles increases, so does the computational effort required. This thesis
deals with large scale simulations with large amounts of particles. Individ-
ual particle tracks, and interaction with the boundary are unimportant, and
large accelerations are not expected. Therefore, the benefits do not justify the
increased computing power, and the Eulerian method is chosen.

4.2.1 Navier-Stokes

Fluid flow is described by the Navier-Stokes equations, which includes a mass
and a momentum balance. The mass balance is described by

∂ρ

∂t
+∇· ρu = 0, (4.1)

where: ρ is the density, t is time, and u is the velocity.
While the momentum balance is given by

ρ
Du

Dt
= ρg −∇p+∇· τ , (4.2)

where D
Dt is the material derivative

D

Dt
=

∂

∂t
+ u · ∇, (4.3)
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g is the gravitational acceleration, p is the pressure, and τ is the deviatoric
stress tensor, equal to total stress minus the pressure, which are handled sep-
arately. The divergence of this term takes the following form,

∇· τ = ∇·µc
[(
∇u+ (∇u)

T
)
− 2

3
I∇·u

]
, (4.4)

where µc is the dynamic viscosity, and I is the identity tensor.

4.2.2 Two-fluid Approach

To arrive at separate balance equations for different phases Equations (4.1)
and (4.2) are multiplied by a phase indicator, χk:

χk (x, y, z, t) =

{
1 if point (x, y, z) is in the kth phase at time t,

0 otherwise.
(4.5)

The different phases, the dispersed solid particles and fluid, are assumed to
be separated by an infinitesimally small interface. The time or space average
of χk is αk.

For practical purposes these formulas need to be averaged over time, space,
or ensembles. Here time averaging is used. For single phase flow Reynolds
averaging is usually applied. In Reynolds averaging variables are decomposed
into an average and a fluctuating part:

ψ = ψ + ψ′, (4.6)

where

ψ =
1

T

∫
T

ψ dt . (4.7)

For multiphase flows often Favre averaging is applied instead of the sim-
pler Reynolds averaging. For multi-phase flow this leads to simpler equations.
Velocities are decomposed in a mass weighted average and a fluctuating com-
ponent:

ψ = ψ̂ + ψ′′, (4.8)
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where

ψ̂ =
ρψ

ρ
. (4.9)

Other variables are decomposed in a phase weigthed average and a fluctu-
ating component:

ψ = ψ + ψ′′′, (4.10)

where

ψk =
χkψk
χk

=
χkψk
αk

. (4.11)

Applying these averages, Ishii and Hibiki (2011) give:

∂αkρk
∂t

+∇·
(
αkρkûk

)
= Γk, (4.12)

and

∂αkρkûk
∂t

+∇·
(
αkρkûkûk

)
=

−∇
(
αkpk

)
+∇·

[
αk
(
τ k + τRe

k

)]
+ αkρkĝk +Mk, (4.13)

where the subscript, k, indicates the phase. Γk is the mass generation at the
interface, for phase k. For solid particles in a fluid this variable is 0. Mk is
the average interfacial momentum source for phase k, the main contribution
is the drag force. pk is the normal pressure in phase k. Ishii and Hibiki (2011)
assumed that the pressure is the same in the continuous, and the dispersed
phase. This assumption is correct for liquid droplets dispersed in liquid, but
not for interacting particles dispersed in liquid, or particles in constant contact.
Then the particle pressure consists of a combination of the continuous phase
pressure, pc, and a pressure due to particle interactions or contact (Wachem
et al., 2004):

∇ (αdpd) =∇ (αdpc + peff) (4.14)
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Averaging introduced an extra term, ∇· τRe , which represent the effect of
the turbulent fluctuations of the velocity on the mean motion.

To solve the equations, the average stress terms, τ k, the turbulent stress
terms, τRe

k , the interaction forces between phases, Mk, and the particle pres-
sure, peff , require closure.

4.2.3 Mixture model

If the response of particles to changes in flow velocity are quick relative to the
timescale of velocity variations the equations can be simplified by using the
local equilibrium assumption with minimal errors (Johansen et al., 1990). In
the local equilibrium assumption it is assumed that there is no acceleration of
the particles relative to the mean flow. If this assumption is true, then the
determination of the difference in velocity between the dispersed phase, and
the continuous phase is straightforward. The particle response time relative
to the timescale of the velocity variations can be expressed with the Stokes
number, St :

St =
tp
tf
, (4.15)

where tf is the timescale of the velocity variations, and tp is the relaxation
time of a particle accelerating to terminal fall velocity. For small Reynolds
particle numbers, for spherical particles this can be calculated using stokes
drag as (Clift et al., 2005):

tp =
ρdD

2

18µc
. (4.16)

For Reynolds particle numbers above 1× 103, the drag coefficient can be esti-
mated as constant around 0.44. The relaxation time is then

tp =
2ρdD

3CDρcwd
. (4.17)

The breaching process occurs in fine sands, with diameters up to 300 µm.
This translates to a relaxation time around 4 ms. Based on simulations, it
is assumed that the characteristic time scale for the fluid, tf , does not drop
below 0.1 s, and thus the Stokes number is at most 0.04.

Because during the breaching process Stokes number are generally low,
the local equilibrium can be used without much error. With this assumption
closure for the often complicated interaction forces between phases, Mk, is no
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longer necessary. This term is removed from the governing equations in the
mixture model. In the mixture model the balance equations for the different
phases are summed to produce balance equations for the mixture. The number
of equations to be solved can be reduced by applying the mixture model,
reducing the required computational effort. Another benefit is that closure of
the particle pressure, peff , is no longer required. Here the mixture approach of
Manninen et al. (1996) is followed.

The continuity equation (Equation (4.12)) is summed over all phases, which
in this application are only the continuous and dispersed phases. This sum-
mation results in

∂

∂t

phases∑
k=1

(αkρk) +∇·
phases∑
k=1

(αkρkuk) =

phases∑
k=1

Γk, (4.18)

where k = 1 is the continous phases, and k ≥ 2 are the dispersed phases.
Because of mass conservation, the right hand side of Equation (4.18), is equal
to zero. Equation (4.18) can be rewritten as

∂ρm
∂t

+∇· (ρmum) = 0, (4.19)

where ρm is the mixture density, and um is the velocity of the centre of mass
of the mixture. These are defined as

ρm =

phases∑
k=1

αkρk (4.20a)

um =
1

ρm

phases∑
k=1

αkρkuk (4.20b)

The momentum equations (Equation (4.13)) are summed as well. This
leads to the following equation

∂

∂t
ρmum +∇· (ρmumum) = −∇pm +∇·

(
τm + τRe

m + τD
m

)
− ρmg +Mm,

(4.21)
where Mm is the influence of the surface tension force on the mixture, which
is equal to zero for solid particles. pm is the mixture pressure, and is equal to
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the sum of the pressures of each phase, τm is the mixture shear stress, and its
divergence is

∇· τm = ∇·µm

[(
∇u+ (∇u)

T
)
− 2

3
I∇·um

]
, (4.22)

where µm is the mixture viscosity, which according to Vand (1948) can be
estimated with

µm = µc
(
1 + 2.5αd + 7.349α2

d

)
. (4.23)

For low particle concentrations, the last term becomes negligible and the the-
oretical formula of Einstein (1906) is found. The term τD

m represents the
diffusion stress due to the differences between phase velocity and mixture ve-
locity.

τD
m = −

phases∑
k=1

αkρk (uk − um) (uk − um) . (4.24)

Often the mixture model equations are rewritten to contain the drift flux
velocity (Hence the name drift flux model) (e.g. Ishii and Hibiki, 2011; Man-
ninen et al., 1996; Brennan, 2001). The drift flux velocity is the difference
between the velocity of a phase and the volumetric flux of the mixture. The
volumetric flux, j, is the velocity of the volume centre (opposed to the mixture
velocity, which is the velocity of the mass centre). It is defined as follows,

j =

phases∑
k=1

αkuk. (4.25)

The drift flux is defined as

vkj = uk − j. (4.26)

τD
m

then becomes

τD
m =

αd

αc

ρcρd

ρm
vdjvdj . (4.27)
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Where vdj is the drift-flux of the dispersed phase relative to the volumetric
flux. Finally the continuity equations of the dispersed phase, d, is rewritten
using the mixture velocity, um, and the drift flux velocity, vdj :

∂

∂t
(αdρd) +∇· (αdρdum) = −∇·

(
αd
ρcρd

ρm
vdj

)
. (4.28)

The drift-flux, vdj , can be separated into several components:

• The drift-flux due to settling of the heavier dispersed particles, vsettle
dj .

• The drift-flux due to turbulent diffusion, vdiff
dj .

• The drift-flux due to pick-up of sediment at the soil-mixture interface,
vero
dj .

• The drift-flux due to the flow of the continuous phase through the pores
of the dispersed phase, vDarcy

dj .

In settlingFOAM, only the flux due to settling and turbulent diffusion is
taken into account.

Because of the equilibrium assumption the terminal settling velocity can
be used to compute vsettle

dj . In essence this is the same as assuming a constant
interaction force, Mp, and no acceleration of the particles relative to the con-
tinuous phase. The effect of the concentration on the drift flux is computed
with the formula of Richardson and Zaki (1954) as described in Section 2.3:

vsettle
dj = vsettle

dj0 (1− αd)n, (4.29)

where n is the Richardson-Zaki coefficient, and vsettle
dj0 is the drift flux at a

concentration of zero, which has to be prescribed by the user.

The diffision component of the drift-flux is

vdiff
dj = ρm

βµt
ρcαd

∇αd

ρm
, (4.30)

where β is the turbulent Prandtl/Schmidt number, which controls the diffusion
of particles relative to the diffusion of the liquid, and µt is the turbulent
viscosity.

vDarcy
dj , and vero

dj will be defined in Chapter 5
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4.2.4 Turbulence modelling

Favre averaging leads to an turbulent shear stress term, τRe in the momentum
equation (Equation (4.13)). This term contains the effects of the velocity
fluctuations and, using the Einstein notation, is defined as:

τReij = ρu′iu
′
j . (4.31)

This term is usually taken into account by applying the eddy viscosity concept
of as proposed by Boussinesq in 1877. Boussinesq proposed that the turbulent
stresses can be related to mean velocity gradients with an eddy viscosity, µt,
as follows

τRe = µt

(
∇um + (∇um)

T − 2

3
I∇·um

)
. (4.32)

Note the similarity with the viscous shear stresses (Equation (4.4)).
Closure for µt is required. The simplest method is a simple closure rela-

tion, Prandtl (1949) suggested the turbulent viscosity could be estimated by
multiplying a characteristic mixing length, lm, with a velocity scale, lm|∇u|.

µt = ρl2m|∇um|, (4.33)

where lm needs to be calculated with a closure relation. The velocity scale is
better estimated using the turbulent kinetic energy, kt.

kt =
1

2

(
u′x

2
+ u′y

2
+ u′z

2
)
. (4.34)

kt is usually determined using a balance equation.
For better determination of the length scale, often a second variable, using

another balance equation, is used. The most common variable is the turbulent
dissipation, ε, which is the rate at which turbulent kinetic energy is converted
into thermal energy in m2 s−3.

More detailed descriptions of the flow field can be obtained by Large Eddy
Simulation (LES) (Fox, 2012) or Direct Numerical Simulation (DNS) (Moin
and Mahesh, 1998). In LES the larger turbulent eddies are solved directly,
while only the smaller scales of the turbulence modelled by the turbulence
model (Equation (4.32)). LES requires a finer grid, and thus more computing
power. In DNS all turbulent scales are modelled directly, and no turbulence
model is required. The necessary grid resolution for this is impractical for
practical cases.
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Buoyant k-ε model

The buoyant k-ε model is used to determine the turbulent viscosity. The
buoyant k-ε is similar to the standard k-ε model (Launder and Spalding, 1983),
with an added buoyancy term to account for the effect of a density gradient
on the turbulence (Brennan, 2001). In the k-ε model, two transport equations
for the turbulent kinetic energy, kt, and dissipation of turbulent energy, ε are
solved.

The k-equation is

∂ρkt

∂t
+∇· ρktum = ∇· µt

σk
∇kt + P − Pb − ρε, (4.35)

and the ε-equation is

∂ρε

∂t
+∇· ρεu = ∇· µt

σε
∇ε+ C1ε

ε

k
P − (1− C3ε)

ε

k
Pb − C2ερ

ε2

k
, (4.36)

where σk and σε are the turbulent Prandtl numbers for kt, and ε, C1ε, C2ε,
and C3ε are coefficients to be set by the user, P is the turbulent production
term and is equal to

P = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

. (4.37)

For stably stratified flows (g · ∇ρm > 0), vortices move the denser mixture
upward, and the lighter mixture downward. This movement is counteracted
by gravity forces, causing a suppression of turbulent fluctuations. For unstably
stratified flows (g ·∇ρm) the turbulent fluctuations are instead enhanced. This
effect is taken into account via the buoyant production term, Pb.

Pb =
Cµkt

ε
(g · ∇ρ) , (4.38)

where Cµ is another coefficient to be supplied by the user. Finally, the turbu-
lent viscosity is calculated as

µt = Cµ
k2

t

ε
. (4.39)
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The divergence of the turbulent and normal shear stresses can now be modelled
as

∇·
(
τm + τRe

m

)
= ∇·

(
µeff

[(
∇um + (∇um)

T
)
− 2

3
I∇·um

])
, (4.40)

where

µeff = µm + µt. (4.41)

Values for σε, σk, C1ε, C2ε, C3ε, and Cµ need to be supplied. These val-
ues are empirically determined. Cµ was found to be 0.09 in the logarithmic
region of the boundary layer (Klebanoff, 1955), and can drop to 0.05 in ho-
mogeneous shear flows (Tavoularis and Corrsin, 1981), Launder and Spalding
(1974) recommend a value of 0.09 (except when dealing with axisymetric jets).
C2ε controls the decay of isotropic turbulence, and was found to be 1.92 ex-
perimentally (Comte-Bellot and Corrsin, 1966). Poroseva and Bezard (2001)
found that the correct values of C1ε, and the ratio σε/σk depend on the type
of turbulent flow. They found C1ε ranging from 1.3 for round jets, up to 1.8
for wakes, where the standard value is usually 1.44 (e.g. Launder and Spald-
ing, 1974). The ratio σε/σk ranged from 1.2 for wakes, up to 1.5 for round
jets. The standard values usually used are σε = 1.3 and σk = 1, resulting in a
ratio of 1.3 (e.g. Launder and Spalding, 1974). C3ε should be 0.8 for horizontal
buoyant shear layers, and 0 for vertical buoyant shear layers (Maele and Merci,
2006). This can be achieved by replacing C3ε with

C3ε = 0.8 tanh
|uy|√
u2
x + u2

z

. (4.42)

4.2.5 Law of the Wall

Kármán (1930) observed that attached turbulent flows near a wall can be
described with the so-called law of the wall. The law of the wall states that
the flow profile close to the wall is given by

u

u∗
=

1

κ
ln
(
Ey+

)
, (4.43)
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where

y+ =
yu∗
νc

(4.44)

u∗ =

√
τb
ρc
, (4.45)

κ is the von Kármán constant, which varies in different experiments between
0.42 and 0.35 (George, 2007), and E is a function of the wall roughness, and
is roughly 9.0 for a smooth wall, and u is the mean streamwise velocity.

Equation (4.43) is valid for values of y+ ≥ 30. The region y+ ≤ 5 is the
viscous sublayer, here the velocity obeys

u

u∗
= y+. (4.46)

Between y+ = 5 and y+ = 30 is a buffer zone, where the streamwise
velocity profile follows neither the law of the wall, nor the equation for the
viscous sublayer (Figure 4.1).
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Figure 4.1: Mean streamwise velocity profile along a wall, obtained from
DNS measurements by Schlatter and Örlü (2010) (Reτ = 830), plotted with
the law of the wall (Equation (4.43), and Equation (4.46).
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4.3 Governing equations for dense suspensions

As particle concentration increases, interaction between particles increases.
First, this interaction occurs as collisions between particles. This is called the
collisional regime. When the effects of collisions are averaged over time, it can
be seen as a dispersive particle pressure. This dispersive pressure scales with
the square of the shear rate, γ̇ (Bagnold, 1954). This pressure disperses the
particles (hence its name), and increases the resistance to shearing (Bagnold,
1954).

As concentration increases further (αd & 0.5), there will be sustained con-
tact between particles. This is the frictional regime (Figure 4.2), where friction
forces between particles dominate the flow.

Dilute

Collisional

Frictional

Figure 4.2: An overview of the different particle regimes found during gran-
ular flow.

van Rhee (2002) applies the equations of the previous section for flows with
concentrations up to 30%, well into the collissional regime. The model results
compare well to experiments, it is therefore decided to ignore extra collisional
effects. However, a model for the frictional regime is required which is able to:

• Reproduce transition from static to yielding soil, and vice versa,

• Reproduce the right yield surface, and

• Handle large scale deformation.

Classical soil mechanical methods use constitutive laws based on stress-
strain relationships (Schofield and Wroth, 1968; Zienkiewicz et al., 1977).
These methods can reproduce the transition from static two flowing soil well,
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but are not suitable for simulating large scale deformation During the last
decade, techniques such as particle finite element (PFEM) (Oñate et al., 2011)
and the material point method (Alonso et al., 2015; Ceccato, 2015; Bandara
and Soga, 2015) have been developed to address this problem. These methods
are able to also reproduce the large scale deformations. However, combining
these models with complex turbulent flows remains a challenge.

This work considers a fluid mechanical formulation based on a stress-strain
rate constitutive law based on work published by Lalli and co-workers (Lalli
and Di Mascio, 1997; Lalli et al., 2005). Jop et al. (2006) extended this
method by employing a friction law developed by GDR MiDi (2004), and found
good agreement between their results and measurements of granular flows
down inclined planes. Cassar et al. (2005) have shown that the model, with
some adaptations, also works well for submerged granular flows. Because this
method is based on stress-strain it is easily combined with our fluid dynamical
model.

4.3.1 Mohr-Coulomb

To incorporate frictional effects in the mixture model, the dense mixture is
modelled as a Bingham fluid, as first proposed by Lalli and Di Mascio (1997).
This rheology is applied in computational cells where the concentration α is
higher than a given threshold value, αfric, to be chosen by the user. In the
Bingham rheology the shear stress tensor, τ , is defined such that:

γ̇ = 0 if τ ≤ τy
τ =

(
τy
γ̇ + µc

)
γ if τ > τy.

(4.47)

Here µc is the dynamic viscosity of water in Pa s, γ̇ is the second invariant of
the deformation tensor, γ, and, using the Einstein summation convention, is

defined as follows:

γ̇ =
√

0.5γijγij , (4.48)

and

γ = γij =
∂ui
∂xj

+
∂uj
∂xi

. (4.49)

When the shear stress is below a given yield stress, τy, the rate of strain,
characterized by γ̇, is 0, meaning no shear deformation. When the shear stress
is larger than the yield stress, the stress tensor is given by Equation (4.47).
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For the yield stress the formula of Coulomb is used:

τy = c+ peff tanφ, (4.50)

where peff is the contact stress between particles, per unit area, φc is the
internal friction angle, and c is the cohesion of the soil.

The yield stress is applied in the model via an effective viscosity, as follows:

µeff =
τy
γ̇

+ µm. (4.51)

Special care has to be taken when the shear rate, γ̇, drops to 0, as this
would give division by zero problems, this is discussed in Chapter 5. This
effective viscosity is applied as in Equation (4.40). Thus:

∇· τ
m

= ∇·µeff

(
∇um + (∇um)T − 2

3
I∇·um

)
. (4.52)

4.3.2 µ(I) Rheology

We estimate the ratio between shear stress and pressure, using the findings
of GDR MiDi (2004). GDR MiDi investigated the results of experiments and
discrete particle simulations of different types of dense granular flows in air.
They found that the ratio between shear stress and pressure, can be scaled by
the so-called inertial number, I. I is the ratio between the macro and mirco
time scale of granular flow.

Macro timescale, Tγ Micro timescale, Tp

b)a)

Figure 4.3: Schematic showing the physical meaning of the deformation and
confinement time scales [Based on GDR MiDi (2004)]

The macro time, Tγ scale is the time it takes for a particle to move over
another particle (Figure 4.3a).
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Tγ =
1

|γ̇| . (4.53)

The micro time scale is related to the time needed by a particle pushed down
by the effective pressure, peff , to find a new position (Figure 4.3b). For dry
granular flow this is

Tp = D
peff

ρd
. (4.54)

Then, I is

I =
|γ̇|D√
peff/ρd

. (4.55)

The ratio between shear stress and pressure is given by the friction coeffi-
cent µ(I):

µ(I) = φs + I
φ2 − φs
I0 + I

. (4.56)

where φs is the friction coefficient for static soil, φ2, is friction coefficient at
maximum shear rate, and I0 is a parameter controlling how quickly φ2 is
approached.

Because I is a local parameter it cannot take into account non-local effects
such as arching or grain clusters. However, this rheology seems to be able to
accurately predict many different types of granular flows (Cassar et al., 2005;
Jop et al., 2006; Doppler et al., 2007; Jop, 2008; Lagrée et al., 2011).

Jop et al. (2006) created a three-dimensional model for flow of granular
material based on the results of GDR MiDi (2004) for dry granular flow. They
calculate the yield stress, τy, as follows,

τy = µ(I)peff , (4.57)

and the effective viscosity, µeff , as

µeff =
τy
γ̇

+ µm. (4.58)

Extension to Submerged Flows

Cassar et al. (2005) investigated submarine flows of granular materials down a
rough incline. In this case the interstitial fluid plays an important role in the
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flow. They found that the flow can still be described by the µ(I)-rheology if a
micro time scale is chosen which takes the effect of this interstitial fluid into
account. The alternative time scale is based on the work of Courrech du Pont
et al. (2003). For particle Reynolds numbers (Equation (2.36)) lower than 2.5,
this new timescale is dominated by viscosity and is

Tv =
µc

peff
, (4.59)

and I becomes

Iv =
µc|γ̇|
peff

. (4.60)

For Reynolds particle numbers larger than 2.5, inertia effects become impor-
tant. The micro timescale in this regime is

Ti = D

√
2ρcCD

3peff
. (4.61)

The inertial number becomes

Ii = |γ̇|D
√

2ρcCD

3peff
. (4.62)

When the ratio between particle and fluid density is smaller than 4 (which
is the case for sand particles in water), Equation (4.55) is not used, and only
Rep determines which inertial number is used.

4.4 Pore pressure feedback

The framework presented by Iverson (2013) is used to implement pore pressure
feedback in our model.

The dilatancy is linked to the shear rate of the material by the dilatancy
angle, ψ. The dilatancy angle is determined using the linearization of Equa-
tion (2.14), repeated here

tanψ = Cdil (αd − αeq) . (4.63)

The equilibrium concentration, αeq, is calculated by the following formula
proposed by Boyer et al. (2011) (Equation (2.10)),
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αeq =
αeq;0

1 +
√
I
. (4.64)

The critical concentration, αeq;0, is assumed to be constant, which can be done
with little error for effective pressures less than 100 kPa (Boyer et al., 2011).

Besides the change in concentration due to shearing, Iverson (2013) also
takes into account the compression caused by a change in the mean effective
stress. This leads to the following formula:

1

αd

∂αd

∂t
= −∇·ud = − tanψγ̇ + C

Dpeff

Dt
, (4.65)

where C is the compressibility (the reciprocal of the bulk modulus) of the sand
skeleton. The formula can also be written as

tanψγ̇ = ∇·ud + C
Dpeff

Dt
. (4.66)

It can now be seen that shearing causes a combination of 1) Dilatancy
(∇·ud), and 2) An increase of the effective pressure (C Dpeff

Dt ).
To conserve the total volume, the dilatancy or compaction of the sand is

countered by an influx or outflux of water.

∇·ud = −(1− αd)∇· (uc − ud). (4.67)

The term (1−αd)(uc−ud) can be linked to the water pressure gradient using
Darcy’s law (Darcy, 1856).

(1− αd)(uc − ud) = qf = − k

ρcg
∇pe, (4.68)

where qf is the volumetric flux of pore water per unit area in m s−1, pe is the
excess pore water pressure in Pa, and k is the hydraulic permeability in m s−1.

Combining Equations (4.66) to (4.68) gives:

∇· k
ρcg
∇pe = C

Dpeff

Dt
− tanψγ̇. (4.69)
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Table 4.1: Overview of partial differntial equations.

Equation Eq. no. variables

Mixture mass and momentum balance 4.19 & 4.21 pm, um

Dispersed phase mass balance 4.28 αd

k-ε equations 4.35 & 4.36 kt, ε
Pore pressure equation 4.69 pe

Table 4.2: Overview of constitutive equations.

Variable ρm vdj µt µeff ψ peff

Equation 4.20a 4.29 4.39 4.58 2.14 See Section 5.2.2

The pore water component of the drift-flux is the opposite of the volumetric
flux of pore water, qf

vDarcy
dj = −qf =

k

ρcg
∇pe. (4.70)

4.5 Summary

Combining everything leaves us with 6 partial differential equations to be
solved (Table 4.1). Solving these equations gives us the mixture pressure and
velocity, the concentration of dispersed particles, the turbulent kinetic energy
and dissipation and the pore pressure. These equations are supplemented with
constitutive equations to determine the mixture density, drift-flux, effective
and turbulent viscosity, effective pressure, and the dilatancy angle (Table 4.2).
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Chapter 5

Numerical Implementation

This chapter describes how the equations described in Chapter 4 are solved
numerically. In Chapter 4 formulae to calculate the flow of the sand-water mix-
uture, as well as granular media were presented. These equations are solved
using OpenFOAM (Greenshields, n.d.; Weller et al., 1998), an open-source
C++ toolbox for the development of CFD (and other continuum mechani-
cal) solvers. OpenFOAM allows users to easily extend the core program with,
among others, their own solvers, boundary conditions and turbulence models.
The model described in this thesis is an extension of an existing model, Set-
tlingFoam. The chapter will start with a description of SettlingFoam, after
which the extensions of the model are described.

5.1 SettlingFoam

SettlingFoam is a numerical solver for the mixture model equations (Equa-
tions (4.19), (4.21) and (4.28)), and is one of the solvers available in Open-
FOAM.

5.1.1 Finite volume discretization

OpenFOAM uses an unstructured grid which divides the solution domain into
non-overlapping control volumes. Control volumes are bounded by a set of flat
faces and each face is shared with only one neighbouring control volume. All
variables are stored at the centres of control volumes. To avoid decoupling of
pressure and velocity, a method similar to Rhie and Chow (1983) is used. A

79
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P N
nf

Figure 5.1: A typical control volume in OpenFOAM with centre P, and a
neighbouring control volume with centre N. The vector nf is the unit vector
perpendicular to the face between the two control volumes.

typical 2D-representation of a control volume and its neighbour are shown in
Figure 5.1, though OpenFOAM functions the same in 3D.

The governing equations are discretized using the finite volume method.
To acquire the finite volume discretizations, governing equations are first in-
tegrated over a control volume. For example, the dispersed phase continuity
(Equation (4.28)) equation becomes

(5.1)

∫∫∫
CV

∂

∂t
(αdρd) dV +

∫∫∫
CV

∇· (αdρdum) dV

= −
∫∫∫

CV

∇·
(
αd

ρc

ρm
vdj

)
dV +

∫∫∫
CV

∇· ρdβµt∇
αd

ρm
dV,

where CV is the control volume. Using the Gauss’ divergence theorem, to
change the volume divergence integrals into surface flux integrals, this becomes

(5.2)

∫∫∫
CV

∂

∂t
(αdρd) dV +

∫∫
S

(αdρdum · n) dS

= −
∫∫

S

(
αd

ρc

ρm
vdj · n

)
dS +

∫∫
S

(
ρdβµt∇

αd

ρm
· n
)

dV,

which can then be numerically discretized in space as

(5.3)

∂

∂t
(αdρd)P VCV +

faces∑(
αd;fρdum;f · nfAf

)
= −

faces∑(
αd;f

ρc

ρm;f
vdj ;f · nfAf

)
+

faces∑(
ρdβµt∇

αd

ρm
· nfAf

)
,
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where VCV is the volume of the control volume, and Af is the surface area of
the face. The subscript P indicates cell averaged values, stored at the centre of
the control volume, while f indicates face averaged values, stored at the centre
of the face. The cell averaged values are regarded as the unknowns for which
discretized equations are derived. Interpolation is required to estimate face
averaged values. This interpolation introduces an error of O(∆xn), where ∆x
is the difference between two cell centres, and n depends on the interpolation
method used. OpenFOAM has several interpolation methods available, and
the user prescribes which method to use. Descriptions of several of these
methods can be found in Jasak (1996).

The mixture mass balance (Equation (4.19)) is discretized in space as

∂

∂t
(ρm;P)P VCV +

faces∑(
ρm;fum;f · nfAf

)
= 0. (5.4)

The momentum balance (Equation (4.21)) is discretized in a similar way.

(5.5)

∂

∂t
(ρmum)P VCV +

faces∑(
ρm;fum;fum;f · nfAf

)
= −VCV∇pm + ρm;Pg +

∑
faces

µeff,f∇um · nfAf

−
∑
faces

µeff,f

(
∇(um)T − 2

3
I∇·um

)
Af · nf ,

This can be discretized in time as follows

(5.6)

VCV ρ
t
m;P

ut+∆t
m;P − ut+∆t

m;P

∆t
+

faces∑(
ρtm;fu

t
m;fu

t+∆t
m;f · nfAf

)
= −VCV∇ptm + ρtm;Pg +

∑
faces

µteff,f∇ut+∆t
m · nfAf

−
∑
faces

µteff,f

(
∇(utm)T − 2

3
I∇·utm

)
Af · nf ,

where the superscript t indicates the variable at the current time, and the
superscript t + ∆t, the variable at the next time step. This introduces an
error of O(∆t), higher order schemes are also available in OpenFOAM. This
equation is called the momentum predictor in OpenFOAM, and is optionally
solved. When multiple iterations are used, variables denoted with superscript
t, are replaced by the guess for t+ ∆t from the latest iteration.
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The discretized momentum balance can be rewritten to

aPu
t+∆t
m;P =

neighbours∑
nb

anbu
t+∆t
nb + S(utm;P) + St − (∇p)tP , (5.7)

where ut+∆t
m;P is the velocity at the centre of the cell under considerations at

the next time step, aP, is a coefficient which follows from the discretizations,
um;nb is the cell averaged velocity of the neighbouring cell, anb is another
discretization coefficient. S(utm;P) contains all the explicit terms of the dis-
cretized formula, and S contains all other source terms. (∇p)P, is the pressure
gradient at the centre of the cell under consideration, and S is a container
variable for all the terms not containing velocities at the next time step, or
the pressure gradient.

To construct the pressure corrector, the pressure gradient in the left hand
side, is replaced with the pressure gradient at the next time step, while all
other terms on the left hand side are replaced with the guess from the latest
iteration, denoted by superscript ∗.

aPu
t+∆t
m;P =

neighbours∑
nb

anbu
∗
nb + S(u∗m;P) + S∗ − (∇p)t+∆t

P . (5.8)

This is rewritten to

um
t+∆t
;P =

H(u)

aP
− 1

aP
(∇p)t+∆t

P , (5.9)

where

H(u) =

neighbours∑
nb

anbu
∗
nb + S(u∗m;P) + S∗ (5.10)

This can be interpolated to the face centre

um
t+∆t
;f =

(
H(u)

aP

)
f

−
(

1

aP

)
f

(∇p)t+∆t
f . (5.11)

Combining this with Equation (5.4) gives the pressure correction equation:
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(5.12)

ρ∗m;P − ρtm;P

∆t
VCV =

faces∑
ρm;fAf

(
H(u)

aP

)
f

· nf

−
faces∑

ρm;fAf

(
1

aP

)
f

(∇p)t+∆t
f · nf .

The pressure is solved for with this equation in SettlingFOAM. After the
pressure is updated, the mixture velocities are updated using Equation (5.11).

To avoid rounding errors, caused by subtracting two large and almost equal
pressure values, a reference pressure is often subtracted from the total pressure.
It is common to subtract reference density times |g|h, where h is the height
in the direction opposite the gravity, from a given reference level. Instead, in
SettlingFOAM a variable density, ρm is used. The total pressure term is then
divided into a hydrostatic, and non-hydrostatic part

p = p′ + ρm|g|h, (5.13)

The gradient becomes

∇p = ∇p′ + ρmg + g · h∇ρm. (5.14)

5.1.2 Solution procedure

Like many OpenFOAM solvers, the SettlingFOAM solvers uses the PIMPLE
algorithm to solve the discretized equations. The PIMPLE algorithm is a
combination of Patankar and Spalding’s SIMPLE (Patankar and Spalding,
1972) and Issa’s PISO (Issa et al., 1991).

The PIMPLE algorithm in SettlingFOAM (See Section 5.1.2) is as follows:

1. At the start of the algorithm, optionally the velocity field is updated us-
ing the discretized momentum balance (Section 5.1.1), using the current
values of the pressure.

2. The concentration field is updated by solving for α with the discretized
mass balance for the dispersed phase (Section 5.4).

3. The start of the pressure correction loop. The pressure is updated by
solving for p′, using the pressure correction equation (Section 5.1.1).

4. With the updated pressure, the velocity field is updated with Equa-
tion (5.11).



84 CHAPTER 5. NUMERICAL IMPLEMENTATION

Start

OPTIONAL:
Solve momentum equation to update u

using older value of p (Section 5.1.1)
(Step 1)

Update concentration field (Section 5.4) (Step 2)

Solve pressure corrector equation to update p
(Section 5.1.1)

(Step 3)

Correct u using updated p (Equation (5.11)) (Step 4)

Final
inner corrector?

(Step 5)

Calculate turbulent quantities, k, ε & µRe

(Equations (4.35) and (4.36))
(Step 6)

Are the initial
residuals below the

desired value?

(Step 7)

Stop

Yes

Yes

No

No

Figure 5.2: Flowchart of the PIMPLE solution procedure used in Settling-
FOAM.
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5. The pressure correction loop, Step 3 & 4, is repeated x number of times.
Where x is determined by the user. When x is equal to 1, the PIMPLE
algorithm is the same as the SIMPLE algorithm.

6. The turbulent quantities are updated, using the discretized versions of
Equations (4.35) and (4.36).

7. The residuals of the pressure correction equation, and optionally the
mixture momentum balance, are checked. If their residuals are larger
than the desired minimal value, the algorithm is repeated. Otherwise,
the calculation is complete.

5.2 Extension to granular media

To make the model suitable for simulating the breaching process, it is extended
with the capability of modelling dense granular flows. The dense granular
flow is modelled as a fluid with a yield stress. In granular materials this
yield stress depends on the effective pressure, therefore the effective pressure
is calculated as well. Finally, pore-pressure feedback plays an important role,
and is implemented as well.

The goal is to model both the dense granular flow, as well as more dilute
sand-water mixtures in the same domain. Therefore, the interface between
these two regimes is modelled. At this interface the erosion by flow, and
sedimentation to the bed need to be modelled correctly, and the turbulence
near the interface needs to be handled correctly. Finally, the interpolation of
variables to this interface requires special care.

5.2.1 Effective viscosity

As described in Chapter 4, granular media is modelled as a fluid with a yield
stress. This is implemented in the model via Equation (4.58), which calculates
an effective viscosity as

µeff =
τy
γ̇

+ µm, (5.15)

where τy is the yield stress, and γ̇ is the second invariant of the shear rate
(Equation (4.48)). τy is calculated using µ(I)-rheology (Equation (4.57)) com-
bined with the viscous inertial number, Iv (Equation (4.60)).
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It is clear division by zero errors arise when using Equation (5.15) when
the second invariant of the shear rate, γ̇, goes to zero.

Regularization is used to avoid this problem. When using regularization
the viscosity converges to a large finite value, instead of infinity. When using
a regularized effective viscosity, the unyielded region thus becomes region of
high viscosity instead, whose viscosity depends on a regularization parameter
ε.

The simplest regularization (e.g. Allouche et al. (2000)) simply adds a
small parameter, ε, giving.

µeff =
τy
γ̇ + ε

+ µm. (5.16)

Another regularization proposed by Bercovier and Engelman (1980) is

µeff =
τy√
γ̇2 + ε2

+ µm. (5.17)

Yet another alternative was proposed by Papanastasiou (1987):

µeff =
τy
γ̇

(
1− exp

(
− γ̇
ε

))
+ µm. (5.18)

This last regularization retains division by zero when the shear rate is zero.
However, the term between brackets will also be equal to zero, thus the vis-
cosity reduces to µm, but special care might be required to avoid numerical
division by zero problems.

Finally, a bi-viscosity model can be applied (O’Donovan and Tanner, 1984).
In the bi-viscosity model, the effective viscosity is set to a user defined high
value, µeff ;0, when the second invariant of the shear rate is below a given value,
γ̇min

µeff =

{
µeff ;0, if γ̇ < γ̇min
τy
γ̇ + µm, if γ̇ ≥ γ̇min

(5.19)

When comparing viscosity, and shear stress, to those of Bingham model
(Figure 5.3), It can be seen that for similar regularization parameters, the
simple regularization shows the largest errors. The equations of Bercovier and
Engelman (1980) and Papanastasiou (1987) show very similar errors, and the
bi-viscosity model has the smallest errors, but does not have a smooth viscosity
or shear stress function. Burgos et al. (1999) compare yield surfaces recovered
using the regularization of Papanastasiou (1987), and the bi-viscosity model.
They find that the method of Papanastasiou (1987), for small enough regu-
larization parameters, recovers the correct yield surface, while the bi-viscosity
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Figure 5.3: The resulting relation between shear rate, shear stress (left),
and effective viscosity (right) when using different regularization methods,
compared to the exact result.

model can recover concave yield surfaces, where convex yields surfaces are
expected. Burgos et al. (1999) claim that the method of Bercovier and En-
gelman (1980) behaves similarly to that of Papanastasiou (1987), although no
proof is shown. Both the methods of Papanastasiou (1987) and Bercovier and
Engelman (1980) seem suitable for the problem at hand. Here, the method
of Bercovier and Engelman (1980) is chosen because it is slightly easier to
implement.

To increase the stability of the simulations further, the viscosity is limited
by a maximum viscosity, µmax (This has the same effect as limiting the yield
stress, τy). The final effective viscosity equation is then

µeff = min

(
τy√
γ̇2 + ε2

+ µm, µmax

)
(5.20)

5.2.2 Effective particle pressure

Closure of the effective particle pressure, peff , is necessary, as it is an important
variable for determining the inertial number, I, and the effective viscosity µeff

(Equations (4.55) to (4.62)). For flow of granular material in air, the effect of
the continuum phase can be neglected (as in e.g. Jop et al. (2006)). In this case
single phase equations can be used, and the particle pressure follows directly
from solving the equations. However, this work deals with flow of granular
materials in water, and the continuum phase is not negligible. In the applied
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mixture approach, only the mixture pressure, pm, follows from the governing
equations, and extra closure is needed to determine the effective pressure.

From Equation (4.14) it follows that the gradient in effective pressure is,

∇peff = ∇pm −∇pc (5.21)

∇pm is known, while the continuum phase pressure gradient, ∇pc, follows from
the continuum phase momentum balance Equation (4.13),

αc∇pc =− ∂αcρcuc

∂t
+∇·αcρcucuc +∇·

(
αc

(
τ

c
+ τRe

c

))
+ αcρcg +M c − pc∇αc, (5.22)

where uc can be written in terms of known variables

uc = um +
αcρd

αdρm
vdj (5.23)

The dispersed phase stress is assumed to be zero when the concentration is
below a limiting value, and is assumed hydrostatic at the boundaries.

To solve Equation (5.22) for ∇pc, closures for ∇·
(
αc

(
τ

c
+ τRe

c

))
, M c,

and pc∇αc are required.
The interaction force, M c is approximated using the Darcy equations. The

Darcy equations are valid for pore Reynolds numbers smaller than 10 (Zeng
and Grigg, 2006). This Reynolds number is defined as

Repore =
ρD|ur|
µ

1

αd
, (5.24)

where D is the particle diameter, and ur is the velocity of the continuum
phase, relative to the dispersed phase: (uc − ud).

It is assumed that the only source for pore water flow, is the dilation, pore
water flows forced by gradients in water pressure are thus not modelled. In
this case the interaction force is equal to the pore pressure gradient

M c = α∇pe (5.25)

In this case no turbulence is expected, thus the term τRe
c

is neglected. This
leaves the term τ

c
which is approximated as

∇·αcτ c
= ∇·

(
µc

(
∇uc +

(
∇uc −

2

3
I∇·uc

)T
))

. (5.26)
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The gradient of the effective pressure can now be estimated with

(5.27)

∇p∗eff = ∇pm +
1

αc

(
∂αcρcuc

∂t
−∇·αcρcucuc

−∇·
[
µc

(
∇uc +

(
∇uc −

2

3
I∇·uc

)T
)])

− ρcg −∇pe,

where ∇p∗eff is the estimated gradient of the effective particle pressure.
The calculation of the continuum phase pressure can be simplified by con-

sidering only the hydrostatic continuum phase pressure and the simplified in-
teraction term. This simplifies Equation (5.21) to

∇phc
eff = ∇pm − ρcg −∇pe. (5.28)

The difference between this simplified effective pressure, phc
eff , and the actual

effective pressure gradient is

(5.29)

∇phc
eff −∇peff = ∇pc − ρcg −∇pe

=
1

αc

(
− ∂αcρcuc

∂t
+∇·αcρcucuc

+∇·
(
αc

(
τ

c
+ τRe

c

))
− pc∇αc

)
.

For small velocities and accelerations, the error caused by this simplification
are small as well.

A further simplification is made by assuming the dispersed phase pressure
to be hydrostatic. This gives

∇phd
eff = αd (ρd − ρc) g. (5.30)

The difference between the hydrostatic pressure and the actual pressure gra-
dient is

(5.31)∇phd
eff −∇peff =

(
∇pc − ρcg −∇pe

)
−
(
∇pm − ρmg

)
.

The first term on the right hand side is equal to the difference found in Sec-
tion 5.2.2, the second term is equal to

∇pm − ρmg = − ∂

∂t
ρmum −∇· (ρmum ⊗ um) +∇·

(
τ

m
+ τRe

m
+ τD

m

)
. (5.32)

Even in slowly flowing and accelerating granular material a large error is intro-
duced via the viscous shear stress, τ

m
(See Equation (4.52)), as in quasistatic

regions the effective viscosity, µeff , becomes large. This can cause large shear
stresses even when the velocity gradients might seem negligible.
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Implementation

Once the pressure gradient has been determined, the effective pressure is solved
for with a Laplace equation

∇2peff = ∇·∇p∗eff , (5.33)

where ∇p∗eff is the estimated pressure gradient. In all cells which are not
labeled as soil, and thus should have an effective pressure of 0, the effective
pressure is manually set to 0. This is done in OpenFOAM by first setting the
value in the cell to 0, as well as the source term for this cell.

At the domain boundaries, a hydrostatic effective pressure is assumed

∇p∗eff = αd (ρd − ρc) g · nfb, (5.34)

where nfb is the unit vector perpendicular to the boundary face.

Comparison

Equation

Full equation ∇pfull
eff = ∇pm −∇pc

Hydrostatic pc, minus interaction term ∇phc
eff = ∇pm − ρcg −∇pe

Hydrostatic peff , minus interaction term ∇phd
eff = αd (ρd − ρc) g −∇pe.

Table 5.1: Overview of different methods to calculate the effective pressure
gradient

Three different methods were proposed (Table 5.1). The three methods
are compared in a simulation of a column collapse, where both shear stress
and acceleration are not negligible. This simple simulation starts with a rect-
angular block of sand inside a domain filled with water, as in Figure 5.4. We
run the simulation for a short period of time, 0.01 seconds, and compare the
calculated effective pressures.

The size of the sand column is 2 m× 1 m. The total domain is 2.125 m× 4 m,
with grid cells of 31.25 mm× 31.25 mm, and a time step of 0.001 s. The sand
has a density of 2650 kg m−3, with a internal friction angle of 0.6 rad.

As expected, when using the hydrostatic effective pressure, there is a linear
increase in effective pressure along the y-axis, while the pressure is constant
in the x-direction (Figure 5.5a). This approach leads to large, unrealistic,
gradients in effective pressure along the vertical edge of the column.
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Water
60% sand
40% water

Figure 5.4: The set-up of the domain for the comparison of the effictive
pressures

Using the full equations, or assuming the continuum phase pressure to be
hydrostatic, results in more realistic pressure distributions (Figure 5.5b & c),
with an effective pressure approaching zero near the soil water interface. Over-
all, these approaches lead to a lower pressure over the whole domain. When
assuming hydrostatic pressure, we see a drop in pressure near the left bound-
ary. This drop is not present when using the full equations. The difference
between these two approaches is most likely caused by the effect of acceleration
(The time derivative in Section 5.2.2).

5.2.3 Flux limiting

To avoid unrealistically high concentrations, which can also cause numerical
instability, the drift-flux is limited using the approach of Zalesak (1979). The
algorithm is as follows:

1. For each cell, calculate the sum of all inflowing fluxes:

P+ =

faces∑
max

(
1

Vcell
φvdj∆t, 0

)
, (5.35)

where φvdj is the flux due to drift-flux, and is positive for inflowing flux,
and negative for outflowing flux.

2. Determine current concentration, plus the added concentration due to
inflowing fluxes.

Q+ = αd + P+ (5.36)

where αd is the current concentration.
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Figure 5.5: Effective pressure scaled by weight of sand (peff/(α(ρd − ρc)g))
in meters. Only the stress inside the sand column is shown here.

3. If this concentration exceeds the maximum concentration, a limiting fac-
tor, λ+, is calculated as

λ+ =
αmax − αd

P+
, (5.37)

where αmax is the maximum allowed concentration. If Q+ does not
exceed αmax, λ+ is equal to 1 (no limiting).

In a similar fashion the flux is limited to avoid the concentration dropping
below 0, leading to a factor λ−. Then the flux is limited as follows:

φvdj = φvdjmin
(
λ+, λ−

)
(5.38)

5.2.4 Dilatancy Modelling

The modelling of dilatancy effects is done in three steps. First the change in
concentration is determined. Secondly, this change of concentration is used as
a source term to calculate the resulting pore pressure. Finally, this calculated
pore pressure is used to update the drift flux, to include pore water flow.
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To determine the change in concentration, first the equilibrium concen-
tration is estimated using the formula proposed by Boyer et al. (2011) (Equa-
tion (2.10)). This equilibrium concentration is combined with the linearisation
proposed by Pailha and Pouliquen (2009) (Equation (2.15)) to arrive at the
dilatancy angle. Finally this dilatancy angle is multiplied with the second
invariant of the shear rate to estimate the change in concentration:

∆αd = Cdil

(
αd −

αeq;0

1 +
√
Iv

)
γ̇. (5.39)

Material properties Cdil, and αeq;0 have to be set by the user.
Once the change in concentration has been calculated, it serves as the

source term for the calculation of the pore pressure. The pore pressure is
calculated using the equation of Iverson (2013) (Equation (4.69)):

∇· k

ρc|g|
∇pe = C

Dpeff

Dt
+ ∆αd (5.40)

Appropriate boundary conditions are required to solve this equation. At fixed
walls, where there is no pore water flow, the gradient of the pore pressure
should be zero. Furthermore, the excess pore pressure is assumed to only exist
inside the soil, therefore the excess pore pressure is fixed to zero in cells not
labeled as soil, similar to the calculation of peff . The permeability, k, in the
equation is determined using the Kozeny-Carman equation (Carman, 1937)

k = ρc|g|D2
15cshape

(1− αd)
3

α2
d

(5.41)

The shape factor, cshape, is usually in the order of 0.001, and can be used by the
user to tune the permeability. Harmonic interpolation is used to interpolate the
permeability to the cell faces, at locations with large gradients in permeability,
like at the soil-water interface, this gives interpolated values closer to the lower
values.

Finally, when the underpressure has been calculated, the drift flux is up-
dated to include the pore water flow. Without this update, there would be
no change in concentration due to dilation observed in the model. The pore
water flow is calculated using the Darcy equation (Equation (4.68)). The drift

flux due to dilation, vDarcy
dj is then (see also Equation (4.68)):

vDarcy
dj = (1− αd) (ud − uc) = − k

ρc|g|
∇pe, (5.42)
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5.3 Interface modelling

To accurately model erosion and sedimentation at the soil-water interface,
small grid cells, in the order of a grain diameter, are required. Because the
model is applied to large scale phenomena, using grid cells of this size is not
feasible. Instead, erosion at the soil-water interface is parametrized. To do
this, the location of this interface needs to be known. This is done by first
determining which cells are considered soil, and which are considered sand-
water mixture.

Whether a cell belongs to the soil, is determined by its dispersed phase
concentration, αd. If in a cell this concentration exceeds a given concentration
αsoil, it is considered soil. For stability, the change from non-soil to soil occurs
at a higher concentration than the change from soil to non-soil. The interface
is the collection of cell faces, which have a soil cell on one side, and a non-soil
cell on the other side.

Handling of the soil-water interface is important. In the finite volume ap-
proach of OpenFOAM, several variables are interpolated from the cell centres
to the cell faces. Especially at the interface between soil and water this has
to be done carefully, as large gradients in variables can occur. This is most
noticable when discretizing the Laplacian part of the shear stress term (Equa-
tion (4.52)):∫∫∫

CV

∇·µeff∇udV =
∑
faces

µeff,f
ucell1 − ucell2

∆X
Af · nf , (5.43)

where µeff,face is the effective viscosity interpolated to the face, the subscripts,
cell1 and cell2, indicate the centres of the two cells neighbouring the face, ∆X
is the distance between the two cell centres.

There are several methods to interpolate the effective viscosity. The most
straight-forward way to interpolate the viscosity to the cell faces, is a simple
linear interpolation. The downside of this approach is that it leads to relatively
high viscosities at the soil-water interface. Using Equation (5.17), the viscosity
in unyielded soil is of order O

(
1
ε

)
, while the viscosity of water is around

O
(
1× 10−3

)
. When using a linear interpolation, the viscosity at the interface

is of the same order of magnitude as in the soil. This viscosity will likely
dominate the Laplacian term in this cell (See Equation (5.43)). This viscosity
has a strong influence on the turbulent properties of the flow past it, and the
behaviour of the soil.

To improve the calculation of turbulent properties of flows along the inter-
face, the viscosity at the interface can be determined by applying the law of the
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wall (Kármán, 1930). Then, the viscosity is determined based on flow proper-
ties of the cell on the water side of the interface. With this method the flow
near the wall and its turbulent properties are more in line with experiments.
To correctly model the turbulent properties near the wall, proper boundary
conditions for turbulent kinetic energy, kt, and turbulent dissipation, ε, need
to be set as well.

Another issue arises when the actual soil-water interface does not align
with the numerical grid. When this occurs, in cells which contain the actual
interface, the numerical concentration will be a mixture of the concentrations
of the soil, and that of the sand-water mixture next to it (Figure 5.6). The
numerical soil-water interface will be located on the nearest face, and sand
which is part of the soil will be seen as sand-water mixture. This leads to a
much lower viscosity, and this sand is easily transported by the flow.

αd = 0.6

αd = 0

0.6 0.6

0.6 0.6

0.3

0.3

0.15 0.15 0.08

0

0

0

0 0 0 0

Interface

Figure 5.6: The differences between the actual numerical interface, and con-
centrations.

A buffer layer is introduced, creating a second, artificial interface (Fig-
ure 5.7). All non-soil cells adjacent to the interface, are labelled as buffer cells,
and an artificial interface is determined between buffer cells and non-soil cells.
Linear interpolation is used at the real interface, while a viscosity based on the
law of the wall is applied at the artificial interface. The linear interpolation at
the real interface, leads to high viscosities at the interface, causing the cells in
the buffer layer to ’stick’ to the interface, while the use of the law of the wall
at the artificial interface leads to better prediction of turbulent properties.
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Buffer layer

Non-soil

Soil

Real interface Artificial interface

Figure 5.7: The interfaces as applied in the model

5.3.1 Erosion modelling

Pick-up of sediment is modelled by calculating a pick-up-flux, E, based on the
flow properties near the interface, and adding it as diffusion to the dispersed
phase mass balance equation (Equation (4.28)). The diffusion coefficient, CE,
is calculated using the pick-up flux, E, calculated with Equation (2.59), as
follows:

CE = E
ρ2

m

ρdρc

∆x

αsoil
fα, (5.44)

where fα is a reduction factor, to adjust for the fact that a cell is considered
fully eroded (i.e. not considered part of the soil) not when the concentration
becomes 0, but when it drops below a value set by the user, αsoil.

fα = rS + (1− rS)
α−αsoil

αmax
, (5.45)

where rS is the ratio of the sedimentation flux, S, and the erosion flux, E,
limited between 1 and 0. Thus when the sedimentation flux exceeds the erosion
flux, this correction factor becomes 1, and erosion flux is not reduced. αmax,
is the maximum concentration of the cell while it is subject to erosion.

E is calculated according to Equation (2.59), but can easily be replaced by
any formula. The Shields parameter, θ, is calculated at the artificial interface,
while other variables are determined at the real interface (Figure 5.7). When
a buffer cell is adjacent to multiple faces belonging to the artificial interface,
the maximum Shields parameter at these faces is used.
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The following diffusion term is added to Equation (4.28):

∇·CE∇
ρdα

ρm
. (5.46)

Using diffusion to model the erosion 1) improves stability of the simulation, and
2) introduces the concept of hindered erosion (Section 2.4.2) in a natural way.
When the flow past the interface consists of pure water, the erosion following
from the diffusion method, is similar to the calculated flux, E. However, as
the concentration of sand in the flow increases, the erosion rate reduces.

5.3.2 Wall functions

The wall shear stress at a boundary, or at the artificial soil-water interface, is
defined as

ττ = (µc + µRe)
∂u

∂y
, (5.47)

where y is the coordinate perpendicular to the wall or interface, and u is the
velocity parallel to the wall or interface, In OpenFOAM, for cells adjacent to
a no-slip boundary, this is discretized to

ττ = (µc + µRe)
u

∆yτ
, (5.48)

where ∆yτ is the shortest distance between the boundary and the cell centre.
To make sure the calculated shear stress is in accordance with Equa-

tion (5.47), µRe has to be chosen accordingly. Using the law of the wall
(Equation (4.43)), ττ , can be rewritten as

ττ = ρcu
2
∗ =

ρcuu∗κ
ln (Ey+)

. (5.49)

Combining this with Equation (5.47) gives for the turbulent viscosity at the
no-slip boundary:

µRe;τ =
µcκy

+

ln (Ey+)
− µc, (5.50)

where y+ is calculated as:

y+ =
∆yτu∗
νc

, (5.51)

and u∗ is estimated with the relation

u∗ = C0.25
µ

√
kt. (5.52)
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Because the law of the wall is used to arrive at this turbulent viscosity, the
formulation is only valid for y+ ≥ 30 where the law of the wall applies.

Boundary conditions for ε follow from the assumption that the turbulent
production P and the dissipation ρε are equal. Close to the wall, if the velocity
perpendicular to the wall is zero, the production term is

P = (µc + µRe)
∂u

∂y

∂u

∂y
= ττ

∂u

∂y
= ρcu

2
∗
∂u

∂y
= ρcε, (5.53)

using the law of the wall (Equation (4.43)) gives:

∂u

∂y
=
u∗
κy
, (5.54)

which gives:

ε =
u3
∗
κy
. (5.55)

In OpenFOAM, instead of fixing the turbulent velocity, kt, the production
of turbulent velocity is set near the boundary. The production, P , in the cell
adjacent to the boundary or interface is modelled as

P = (µc + µRe)
∂u

∂y

∂u

∂y
= (µc + µRe)

u

∆yτ

u∗
κy

= (µc + µRe)
u

∆yτ

k0.5
t C0.25

µ

κy
(5.56)

5.4 Adapted advection equation

The dispersed phase continuity equation (Equation (4.28)) is solved to update
the concentration field:

∂

∂t
(αdρd) +∇· (αdρdum) = −∇·

(
αd
ρcρd

ρm
vdj

)
, (5.57)

where the drift-flux, vdj , can be separated into several components: drift-flux

due to settling, vsettle
dj , drift-flux due to turbulent diffusion, vdiff

dj , drift-flux due

to pick-up of sediment, vero
dj , and drift-flux due to pore water flow, vDarcy

dj .
These drift-flux can be divided into diffusion fluxes and other fluxes. In this
approach, besides the drift-flux due to turbulent diffusion, the erosion flux
(Section 2.4) is modelled as a diffusion as well.
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The updated formula becomes:

∂

∂t
(αdρd) +∇· (αdρdum) = −∇·

(
αd
ρcρd

ρm
v∗dj

)
+∇· (µtβ + CE)∇ρdαd

ρm
,

(5.58)

where v∗dj = vsettle
dj + vDarcy

dj .
Using the Gauss theorem this can be rewritten to:

(5.59)

∂

∂t
(αdρd)P VCV +

faces∑(
αd;fρdum;f · nfAf

)
= −

faces∑(
αd;f

ρc

ρm;f
v∗dj ;f ·nfAf

)
,+

faces∑(
(βµt +CE)∇αd;f

ρm
·nfAf

)
.

Discretizing this in time gives:

(5.60)αt+∆t
d = αdt+

∆t

VCV

(
U(αt+∆t

d ) +D(αt+∆t
d )

)
,

where

U(αt+∆t
d ) = −

faces∑(
αt+∆t

d;f ρdum;f · nfAf

)
−

faces∑(
αt+∆t

d;f

ρc

ρm;f
vdj ;f · nfAf

)
(5.61)

D(αt+∆t
d ) =

faces∑(
(βµt + CE)∇

αt+∆t
d;f

ρm
· nfAf

)
(5.62)

The concentration field is now updated as follows: 1) update using only
diffusion:

α∗d = αtd +
∆t

VCV
D(α∗d) (5.63)

2) update using the other fluxes:

αt+∆t
d = α∗d +

∆t

VCV
U(αt+∆t

d ) (5.64)

And finally, 3) calculate the total drift-flux to be used in the momentum
balance (Equation (4.21)):

vdj = v∗dj +
ρm

ρcα∗d
(βµt + CE)∇α

∗
d

ρm
(5.65)
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Determine change in concentration and pore pressure
(Equation (5.40))

(Step 2)

Calculate effective pressure (Step 3)

Calculate the effective viscosity (Equation (5.20)) (Step 4)

Determine the erosion diffusion coefficient
(Equation (5.44)

(Step 5)

Solve momentum equation to update u
and update concentration field

(Step 6)

PISO loop:
Solve pressure corrector equation to update p

and correct u using updated p
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desired value?

(Step 9)

Stop

Yes

No

Figure 5.8: The solution procedure for the extended SettlingFoam model.
Steps not in the original SettlingFoam model are labeled in light grey.
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5.5 New Solution procedure

Compared to the original SettlingFoam, the solution procedure of the extended
model has several new steps (Figure 5.8). The new procedure is as follows:

1. Each time step starts by determining the location of the soil-water in-
terface. This is done by first determining which cells belong to the soil.
Non-soil cells adjacent to soil cells are labelled as buffer cells, and the face
between the two cells is added to the interface. Cell faces of the buffer
cells not shared with a soil cell are added to the artificial interface.

2. Next the change in concentration due to dilation is calculated (Equa-
tion (5.39)), and used to calculate the pore pressure (Equation (5.40)).
The calculated pore pressure is used to determine the dilatancy compo-
nent of the drift flux (Equation (5.42)).

3. The pore pressure is then used in the calculation of the effective pressure.
This is done by estimating the gradient of the effective pressure, and
using this to solve a Laplace equation to determine the effective pressure.

4. Once the effective pressure is determined, the effective viscosity can be
calculated (Equation (5.20)).

5. Then, the erosion flux is determined (Equation (2.59)), and used to cal-
culate the erosion diffusion coefficient (Equation (5.44)).

What follows (Step 6–9) is equal to the solution procedure of the original
SettlingFoam solver. Optionally the momentum balance is solved to update
the velocity. Then the concentration field is updated. After this the pressure
corrector loop is repeated a set number of times, decided by the user. In
the pressure corrector loop, the pressure correction equation Section 5.1.1 is
solved, and the velocity field is updated using Equation (5.11). After this the
turbulence equations (Equations (4.35) and (4.36)) are solved. If the residuals
are not below the desired values, all steps, starting from Step 2 are repeated.
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Chapter 6

Validation sub processes

In this chapter, and the next, the model, as presented in Chapters 4 and 5,
is validated. In this chapter the ability of the model to simulate the subpro-
cesses important in unstable breaching is validated, while the validation of the
models ability to model the actual unstable breaching process is handled in
the following chapter. The subprocesses which are validated in this chapter
are:

• The flow of sand-water mixtures, for sand concentrations up to 30%. this
subprocess is validated by comparing modelling results to experiments of
open channel flow of sand-water mixtures by Xingkui and Ning (1989).

• The formation of a dense bed due to settling of sediment. This is vali-
dated using experiments in a settling tank by Runge (1999), where an
initially homogeneous sand-water mixture is allowed to settle and form
a bed.

• The soil mechanical behaviour of the dense bed. To validate whether our
approach can reproduce the formation of a yield surface, we apply the
model to a purely cohesive vertical cut, for which analytical upper and
lower bounds are known. The behaviour of granular material, without
a cohesion but with an internal friction angle, is also validated. This is
done by initializing piles of sand with varying initial slope angles, and
varying internal friction angles.

• The erosion of a dense bed by a flow. This is first validated in a simple
1D channel flow, using cyclic boundaries. This validation serves mostly

103
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to check the proper implementation of the erosion formula, as well as
our implementation of dilatancy retarded erosion. Next, the model is
applied to a sand-fill experiment by Mastbergen et al. (1988), where due
to a balance between sedmentation and erosion, a certain equilibrium
slope should form.

• The formation of an underpressure due to dilation. This process is val-
idated using experiments by Rondon et al. (2011) of a granular column
collapse under different initial concentrations. During these experiments
pore pressures where measured which can be used as validation.

6.1 Channel flow

The flow of sand-water mixtures, for low sand concentrations is validated by
comparing modelling results to experiments of open channel flow of sand-water
mixtures by Xingkui and Ning (1989).

6.1.1 Methods

Xingkui and Ning (1989) studied open channel flow of sediment-laden water,
in a channel 0.3 m wide, and 20 m long, with an incline of 1%. They used
beach sand with a median grain diameter, D50, of 150 µm, and a density
of 2640 kg m−3, with concentrations up to 2.1%, and plastic particles with
a median grain diameter, D50, of 266 µm, and a density of 1052 kg m−3, with
concentrations up to 15%. They published measurements of mean velocity and
concentration along the centreline of the channel, which are used to compare
their results to model results.

Here the three experiments (named SQ1, SQ2 & SQ3 in Xingkui and Ning
(1989)) using beach sand, are modelled. The height of the flow is 8 cm for
all three flows. In the model the flows are modelled with a rigid lid, instead
of a free water surface. The difference between the three experiments is the
average concentration, ᾱ, which is 0.0054, 0.0177, and 0.021 for SQ1, SQ2,
and SQ3. The experiments are modelled in 3D, with a single cell, and periodic
boundaries, in the streamwise direction. 32 cells are used along the height
of the channel, and 64 along the width of the channel. The forcing is done
via a pressure jump over the periodic boundary, based on the gravitational
acceleration and the 1% incline. Instead of a free surface, a rigid lid with a
slip boundary condition is applied.

The Schmidt-Prandtl number, β (see Equation (4.30)), which controls the
relation between turbulent diffusion and diffusion of particles, is set to 1, sim-
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ilar to successful simulations carried out by Goeree et al. (2016) for the same
experiments.

6.1.2 Results

Model results compare well with the experimental measurements (Figure 6.1).
Flow velocities follow a similar logarithmic profile as measured, but are slightly
larger. This might be due to an error in the incline, or due to roughness applied
at the wall boundaries. The concentration also match well with experimental
results.

6.2 Settling

The settling of sediment is validated using experiments in a settling by Runge
(1999), where an initially homogeneous sand-water mixture is allowed to settle
and form a bed.

6.2.1 Method

These experiments were carried out in a circular column with a height of 1.5 m
and a diameter of 0.28 m. Inside this column an initial homogeneous sand-
water mixture is formed with concentrations ranging from 5 to 45%, using two
types of sand with median diameters of 270µm and 80µm. These mixtures
are then allowed to settle. Concentration meters are placed along the height of
the column, measurements of the concentration meters at 0.9 m, 1.05 m, 1.2 m
and 1.35 m from the bottom are reported by Runge (1999). A rotating grid
is installed inside the column to create different levels of turbulence, for this
validation only experiments without this grid are used. Experiments 42, 46,
108, and 112 are used to for validation (Table 6.1).

Exp # D50 (µm) αd T (◦C)

42 80 0.25 24.7
46 80 0.17 21.7
108 270 0.25 25.1
112 270 0.17 21.2

Table 6.1: Experiments from Runge (1999) used for validation
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Figure 6.1: A comparison between experimental results obtained by Xingkui
and Ning (1989), and model results, for three different experiments, SQ1, SQ2,
and SQ3.
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6.2.2 Results

The change from initial concentration to clear water at the concentration me-
ters takes longer during the experiments, than during the simulation (Fig-
ure 6.2). During the experiments this change is spread over 10 s to 50 s, while
during the numerical simulation, the change takes only a few seconds. This
can be caused by using only a single grain diameter for the simulation, while
the sand used during the experiment contains a range of grain diameters, each
settling at a different rate.

However, the timescale of the settling, or the distance along the time axis
between measurements at the different levels, is very similar between the ex-
periments and the numerical simulations. This indicates that the calculated
hindered settling velocities for our single grain diameter are accurate.
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Figure 6.2: Concentrations measured during settling tests at various heights.
Numerical results are plotted over results found in Runge (1999).
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6.3 Erosion

The correct implementation of erosion in the model is checked by comparing
the erosion velocity of a flat bed, over which a flow driven by a constant
pressure gradient. This constant pressure gradient should lead to a constant
shields parameter, θ, as long as acceleration is negligible.

6.3.1 Method

A two dimensional domain of 0.4 m high and 0.1 m wide is used (Figure 6.3). A
Cartesian grid is used with grid cells of 0.004 m× 0.004 m (Unless mentioned
otherwise). Inside this domain, a layer of sand, with a concentration of 60% is
placed up to a height of 0.1 m. A cyclical is used for the inlet and outlet, and a
slip boundary condition is applied at the top of the domain. A concentration
jump is applied, so that the sand concentration of inflowing water is always
zero.

0.1m

0.3m

α = 0.6

α = 0

∂U
∂y = 0

Bed at t = 0

Figure 6.3: The setup of the erosion tests in OpenFOAM.

A pressure jump is applied between the inlet and outlet. The pressure
jump is only applied where there is no soil adjacent to the inlet boundary.
This pressure jump is chosen so that the total force on the water column is
constant. If there is no acceleration this constant force can be related to the
shields parameter, θ. Simulations are initiated by running the model with a
fixed bed until a steady state is reached. The simulation is then run with an
erodible bed until no soil remains in the domain. Results are then compared
to the theoretical results, which are simply using the erosion speeds following
from whatever erosion formula is used (In this case van Rijn (1984)), using
the Shields parameter related to the forcing. This means that we only check
whether the formula is implemented correctly, and not whether the resulting
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erosion is actually correct. Unless mentioned otherwise, the dilatancy of the
soil is ignored.

6.3.2 Results

Increasing the forcing, and thus Shields parameter, results in faster erosion
velocities in agreement with the theory (Figure 6.4). However, the observed
erosion velocity is slower than predicted by theory. This can be because as
the bed erodes, and the height of the water flow increases, water close to the
bed needs time to accelerate to a steady state. Until it reaches this steady
state, the actual Shields parameter is lower then the theoretical, and therefor
erosion velocity is also lower. When the Shields parameter is held fixed, instead
of being derived from the flow field, the erosion velocity is indeed in agreement
with the theoretical (Figure 6.5).
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Figure 6.4: Simulated position of the bed, compared to the theoretical solu-
tion, for varying Shields parameters.

Changing the grid size, has small effects of the erosion velocity (Figure 6.6).
Previous simulations did not take dilatancy into account, and therefore the
effect of retarded erosion (Section 2.4.1) is not seen. When permeability
of the soil is reduced from 1000 m s−1 (Dilatancy effects are negligible) to
1× 10−4 m s−1, a clear decrease in erosion velocity is observed. The reduced
erosion velocity is in agreement with velocities predicted using Section 2.4.1.
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Figure 6.5: Simulated position of the bed, compared to the theoretical solu-
tion, with the Shields parameter either fixed, or derived from the flow proper-
ties.
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Figure 6.6: Simulated position of the bed, compared to the theoretical solu-
tion, for varying grid size parameters.
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Figure 6.7: Simulated position of the bed, compared to the theoretical solu-
tion, for varying permeabilities.

6.4 Bingham flow

In this section the model is applied to the plane Bingham Poiseuille flow. The
steady state solution and stopping times are compared to analytical solutions.
This serves as a check of the correct implementation of the yield stress in the
model, and the ability to model large scale deformations.

6.4.1 Steady state

x

y

2H

Figure 6.8: Bingham pouiselle flow

The plane Bingham Pouiselle flow is the flow of a fluid, with a yield stress
τy, and a viscosity µc through a channel of total height 2H, with no slip
boundary conditions (see Figure 6.8), where the flow is driven by a constant
pressure gradient, dp

dx , The steady state horizontal velocity profile for a Bing-
ham Pouiselle flow is:
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ux =

{
1

2µc

dp
dx (H − y0)

2
for 0 ≤ |y|≤ y0

1
2µc

dp
dx

(
H2 − y2

)
− τy

µ (H − y) for y0 ≤ |y|≤ H
(6.1)

where

y0 = τy|
dp

dx
|−1 (6.2)

This is valid when:

dp

dx
>
τy
H

(6.3)

The Bingham Pouiselle flow is modelled using: τy = 0.25 Pa, H = 0.5 m,

µ = 1 Pa s, and dp
dx = 1 Pa m−1. The domain is discretized into 64 cells over the

height, giving us a grid size of 1/64 m. The regularization parameter ranges
from 1× 10−2 s−1 to 1× 10−5 s−1. The model runs until a steady state is
reached.
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Figure 6.9: Comparison between OpenFOAM results and the analytical so-
lution of the Bingham Pouiselle flow, a) for several regularization parameters,
b) for several grid sizes, using ε = 1× 10−5

The modelled steady state flow profiles are close to the analytical solution
(Figure 6.9). As the regularization parameter decreases, the shear inside the
plug also decreases. However, as the regularization parameter decreases, the
modelled velocity of the plug converges to 0.03 m s−1, instead of the analytical
value of 0.031 25 m s−1. This discrepancy reduces as the grid size decreases
(Figure 6.9b).
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6.4.2 Cessation

When a steady state plane Bingham Pouiselle flow is reached, and the pressure
gradient is reduced below the critical value for flow (Equation (6.3)), the flow
rate will reduce to zero in a finite time. An analytic upper bound for this
stopping time is given by Chatzimina et al. (2007):

Tf ≤
4

π2
ln

[
1 +

π2

4

||u(0)||
Bn − f

]
, (6.4)

where Tf is the dimensionless stopping time, which is the stopping time tf
made dimensionless by ρH2/µc, Bn is the Bingham number, which is the
yield stress made dimensionless by µcV/H, f is the pressure gradient made
dimensionless by µcV/H

2, where V is the steady state mean velocity of the
domain, and ||u(0)|| is defined as:

||u(0)|| =
∫ 1

0

U dY, (6.5)

where U is the steady state dimensionless velocity u/V , and Y is the dimen-
sionless y-coordinate, y/H.

The ability of the model is tested by reducing the pressure gradient to
zero for six different simulations, with varying Bingham numbers. There is
good agreement between the analytical upper limit (Equation (6.4)) and the
modelled stopping times (Figure 6.10).

6.5 Vertical cohesive wall

To test the ability of the model to accurately reproduce the transition of co-
hesive soils, from stable to unstable, it is applied to the well-known vertical
cohesive wall problem. In this test, a vertical cut submerged in water is ini-
tiated, as in Figure 6.11, with height h, and cohesion c. This simulation is
carried out with different cohesions to identify the critical cohesion, ccr, where
failure of the vertical wall occurs.

6.5.1 Known Analytical Bounds

While no exact limit has been derived for this problem, it is possible to derive
an upper and a lower bound for the critical cohesion. The simplest lower limit
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Figure 6.10: Comparison between OpenFOAM results and the analytical
upper bound of the stopping time for the Bingham Pouiselle flow

x

Reference point
h

Figure 6.11: Vertical wall of cohesive material . The red cross indicates the
reference point. All velocity plots in the results section are sampled at this
reference point
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Table 6.2: Default values used in simulations

Variable Value

Wall height [m] 1
Gravitational constant [m s−2] 9.81
Dispersed phase concentration [%] 0.6
Dispersed phase density [kg m−3] 2650
Continuum phase density [kg m−3] 1000
Regularization parameter [s−1] 1× 10−5

Grid size [m] 0.05
Threshold concentration for rheology [%] 0.5

can be derived by assuming a straight slip surface. In this case we find that
the cohesion needed to keep a wall with height h stable, is

ccr ≥
hαd (ρd − ρc) g

4
. (6.6)

A higher limit was found by Fellenius (1948) by using circular slip surfaces:

ccr ≥
hαd (ρd − ρc) g

3.83
. (6.7)

The best analytical upper limit was found by De Josselin De Jong (1980):

ccr ≤
hαd (ρd − ρc) g

3.39
. (6.8)

More accurate, but not analytical, limits were found recently, using the finite
element method, by Pastor et al. (2000)

hαd (ρd − ρc) g

3.786
≤ ccr ≤

hαd (ρd − ρc) g

3.760
. (6.9)

6.5.2 Method

The values given in Table 6.2 are used, unless mentioned otherwise. For these
values, Pastor et al. (2000) predict a critical cohesion between 2565 Pa and
2582 Pa

We run this test case for 0.2 seconds, and look at velocity magnitudes at
the reference point (See Figure 6.11). These velocities should indicate whether
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the vertical wall is stable or not. When it is not stable, constant acceleration
is expected, while for a stable simulation no acceleration should occur. Due
to the regularization applied in Equation (5.17), the final velocity for stable
solutions will be non-zero, but after an initial acceleration towards this non-
zero value, no further acceleration should occur.

6.5.3 Results
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Figure 6.12: Contour plot of velocity magnitude, U , [m s−1] for a cohesion of
2200 Pa, 0.1 seconds after the start of the simulation. The dashed line denotes
the circular slip surface of Fellenius.

The contour plots of the velocity magnitude (Figure 6.12) and the second
invariant of the shear rate (Figure 6.13) for a cohesion of 2200 Pa, show a band
with strong gradient in the velocity. This indicates the development of a slip
surface that separates non-moving soil from the mobilized soil wedge. The
dashed line in both figures denote the circular slip surface given by Fellenius
(1948). This slip circle corresponds well with the area of high velocity gradi-
ents. In the stable parts of the vertical cohesive wall, a non-zero velocity is
observed. It is again hypothesized that this is the result of the regularization.

Although there is no validation material for the deformation of the vertical
wall after failure, it is still interesting. To show the deformation after failure,
longer simulations of 4 seconds are carried out with cohesions of 2000 Pa and
1500 Pa (Figures 6.14 and 6.15). With a cohesion of 2000 (Figure 6.14), we see
a small slump of the vertical wall, which comes to a stop after approximately 2
seconds. With a cohesion of 1500 Pa (Figure 6.15), we see a larger deformation
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Figure 6.13: Contour plot of the second invariant of the shear rate, γ̇, [s−1]
for a cohesion of 2200 Pa, 0.1 seconds after the start of the simulation. The
dashed line denotes the circular slip surface of Fellenius.
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Figure 6.14: Contours of α = 0.45 plotted every 0.5 seconds, for a cohesion
of 2000.
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Figure 6.15: Contours of α = 0.45 plotted every 0.5 seconds, for a cohesion
of 1500.

of the wall, which comes to a stop after approximately 3 seconds.

The velocity magnitude at the reference point (See Figure 6.11), is strongly
dependend on the cohesion used. A clear change in behaviour is seen between
2200 kPa to 2300 kPa (Figure 6.16). Simulations with a cohesion of 2200 kPa
or lower show a clear continuous acceleration over the simulation period, in-
dicating a yielded vertical wall. Simulations with a cohesion of 2300 kPa or
higher on the other hand, show a small acceleration at the start of the sim-
ulation from 0 to a small velocity, after which the velocity remains constant,
indicating an unyielded vertical wall. These results indicate a critical cohe-
sion between 2200 kPa to 2300 kPa, lower than the lower boundary of 2565 kPa
proposed by Pastor et al. (2000), but in the same order of magnitude.

The chosen regularization parameter for the viscosity regularization (Equa-
tion (5.20)) has a strong effect on the resulting velocity magnitude (Fig-
ure 6.17). For a yielded vertical cut, the acceleration increases as the reg-
ularization parameter decreases. The acceleration converges for regularization
parameters of 1× 10−5 s−1 and lower. For the unyielded vertical cut the reg-
ularization parameter affects the residual velocity, which converges to a fixed
value for parameters of 1× 10−4 s−1 and smaller.
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Figure 6.16: Velocity magnitudes, at the reference point in the vertical wall,
for varying cohesions.
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6.6 Internal friction angle

A simple test of the implementation of the friction angle, is to initiate simula-
tions with triangular sand piles with varying initial slope angles, φinit. When
the initial slope angle is greater than the internal friction angle, φc, it is ex-
pected that sand starts moving until the slope angle is below the internal angle
of friction. On the other hand, when the initial slope angle is milder than the
internal friction angle, no flow should occur.

6.6.1 Results

Results show that the model behaves as expected (Figure 6.18). When the
initial slope, φinit, is milder than the internal friction angle, φc, the pile is
stable and does not move (Figure 6.18b). When the initial slope is lower than
the internal friction angle, movement of the pile is observed (Figure 6.18a,c
& d). Movement stops when the slope angle drops below the internal friction
angle.

Interestingly, the method used to determine the effective pressure (See
Section 5.2.2) has an important effect on the results. When the hydrostatic
effective pressure is used, no movement of the pile is observed, even when
the slope angle exceeds the internal friction angle (Figure 6.18e). Both other
methods do yield the expected movement of the pile.

6.7 Pore pressure feedback

To test the pore pressure feedback the data of Rondon et al. (2011) is used.
Rondon et al. (2011) experimentally investigated the collapse of a granular
column in a viscous liquid, for varying volume fractions. They varied the
initial volume fraction from 0.55 to 0.6. For The dense columns (0.6) the pore
pressure feedback slows down the process, while it speeds up the process for the
loose columns. They used glass beads of 225 µm with a density of 2500 kg m−3,
and an angle of repose of 21◦. The equilibrium concentration of the material
is 0.58.

Inside a flume with a length of 0.7 m, and a width and height of 0.15 m,
filled with liquid with viscosities of 0.012 Pa s and 0.024 Pa s, they construct a
columns with varying heights and lengths behind a liftable gate (Figure 6.19).
During the experiment they measured the pore pressure at a single point, in
the bottom of the tank, 2 cm from the end of the tank.
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Figure 6.18: Contours of granular piles over time for varying initial slope an-
gle, φinit, and varying internal friction angle, φc. The last two are simulations
where the effective pressure, peff , was assumed to be hydrostatic. Thick grey
lines indicate the initial profile, and cyan lines indicate the final position of the
granular pile, after 5 s of simulation. Black lines indicate profiles in between
the initial and final position, for every second.
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Figure 6.19: The setup used by Rondon et al. (2011).
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For two experiments, pore pressure data is available. One is a case with
dense packing (αd = 0.6), with a starting height of 4.2 cm, and starting length
of 6 cm, and a liquid viscosity of 0.012 Pa s. The other is a case with loose
packing (αd = 0.55), with a starting height of 4.8 cm, and starting length of
6 cm, and a liquid viscosity of 0.012 Pa s. Here we focus on the dense packing
case.

The permeability of the granular media is not reported, and nothing is
known about the relation between shear rate and dilation rate. Therefore,
the permeability, k, and the dilation constant, Cdil, will be varied during the
various simulations. The dilation constant, Cdil, controls the dilation angle
(Equation (2.14)). A larger value of Cdil, results in larger dilation angles.
The permeability will be varied by varying the shape factor, cshape, in Equa-
tion (5.41), the base value will be the standard shape factor of 0.01. For the
dilation constant a value of 4 is taken as base value, similar to Pailha and
Pouliquen (2009).

6.7.1 Results

The overall behaviour of the pore pressure during the granular collapse is sim-
ilar during both the simulation, and the experiment. There is a quick drop of
pore pressure at the start, after which it slowly drops while the granular media
dilates and shears. The peak of the pore pressure found in the simulations is
larger than measured during the experiments, but in the same order of magni-
tude (Figures 6.20 and 6.21). After the initial peak, the pore pressure quickly
returns to zero. The speed at which this reduction takes place is much higher
during simulations than observed during experiments.

Permeability has a clear effect on the results (Figure 6.20). As the per-
meability decreases, the reduction of pore pressure slows down. As the shape
factor reduces to 0.002, there is good agreement in reduction time between the
experiment and simulation. However, the reduction of pore pressure during
simulations is smoother than measured during the experiment. The reduction
in permeability also slightly increases the peak pore pressure.

The dilation factor also has a strong influence on the results (Figure 6.21).
For smaller values (Cdil <2), increasing the factor increases the pore pressure
peak. This is because at these lower values more shear is necessary the generate
enough negative pore pressure to keep the granular column stable. For low
values of Cdil, this negative pore pressure cannot be generated. For larger
values (Cdil ≥2), increasing the dilation factor leads to a wider peak, with a
smaller peak value.

These results show that the pore pressure feedback mechanism functions as
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Figure 6.20: The pore pressures measured during numerical simulations with
varying permeabilities, compared to the pore pressures measured during the
laboratory experiments. Cdil = 4.
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Figure 6.21: The pore pressures measured during numerical simulations with
varying dilation factors, compared to the pore pressures measured during the
laboratory experiments. Shape factor = 0.01.
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expected in our numerical model. Furthermore, by varying the permeability
and dilation factor we can get close to the observed experimental pore pressure
measurements.

6.8 Sand fill

Overflow

β

Sand-water mixture

2.5m 2.1m

32m

Figure 6.22: The experimental setup used by Mastbergen et al. (1988).

Mastbergen et al. (1988) created a sand fill dam in a 32 m× 2.5 m× 0.5 m
flume, by releasing a sand-water mixture at one side. The resulting under-
water slope, i, during construction of this dam (Figure 6.22) was measured.
Two sand types were used, a fine sand with a median grain size of 135µm,
and a bit coarser sand with a median grain size of 200 µm, both with a den-
sity of 2650 kg m−3. Concentrations of the sand-water mixture where 12% and
30%, and the specific flow rates, q, used where: 0.01 m2 s−1, 0.025 m2 s−1 and
0.1 m2 s−1. This gives specific flow rates (s = ρdqαd) ranging from 3 kg s−1 m−1

to 80 kg s−1 m−1 For flows with a low production rate (s <10 kg s−1 m−1) grain
flows were observed, with intermittent flow slides. Slope angles increased dur-
ing grain flows, while after a flow slide much milder slopes were observed.
Because of this the average slope varied a lot in time. For higher production
rates (s >10 kg m−1 s−1) turbidity currents were observed. Flow slides occur
a lot less for this kind of flow, after some time the slope reaches an equilib-
rium, αeq, after which the slope barely changes. These slopes are reported by
Mastbergen et al. (1988).

The numerical setup differs somewhat from the experimental setup. In
the experimental setup the sand-water mixture is released from a pipe, which
moves vertically during the experiment so that the discharge is always close
to the sand bed. Instead, in the numerical setup, for simplicity a fixed inlet
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point is chosen. Furthermore, instead of a free surface like in the experiments,
a rigid lid is applied in the numerical simulations.

6.8.1 Results
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Figure 6.23: Contour lines of the soil every 100 seconds for the experiment
using D50 = 200 µm, s = 30 kg s−1 m−1.

The formation of the equilibrium slope occurs in roughly two stages. First,
below the inlet a recirculation zone is formed, with a peak just right of it
(Figure 6.23). This peak becomes higher as time goes on, until it reaches the
top of the flume. Once the top of the flume is reached, the formed slope starts
to expand towards the right, away from the inlet. After a while the top part
of this slope keeps a constant slope angle.

These slope angles are compared to those measured by Mastbergen et al.
(1988) and the empirical relation given (Figure 6.24). Similarly to Mastbergen
et al. (1988), the slope is measured between y = −1.5, and y = −0.5 metres.
Results for a median grain diameter of 200 µm compare well with those ob-
tained experimentally. The resulting slopes with a median grain diameter of
135 µm are, as expected, milder than those with a median diameter of 200µm.
However, the measured slopes are milder than seen in experiments by about
5◦. Overall, the numerical experiments capture the trends (Milder slopes for
larger fluxes, and milder slopes for smaller grains) well.
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Figure 6.24: Comparison between experimental data, emperical formula
(Mastbergen et al., 1988) and numerical results.



Chapter 7

Validation breaching
process

This chapter compares the results of the model with the breaching experiments
described in Chapter 3. Results of the model are compared to the experimental
data, to judge how well the model is able to simulate the breaching process, and
how well it can predict the change from a stable to an unstable breach. Profiles,
wall velocities, pore pressures, and stability are compared. The sensitivity of
the model to certain variables is also checked.

7.1 Methods

With our numerical model we simulate all the laboratory experiments (Chap-
ter 3). Experiments in the lab with equal starting conditions, are simulated
only once (Table 3.1).

For the sand properties the measured variables of Table 7.2 are used. The
critical concentration, αeq;0, is chosen to be the same as as the sand concentra-
tion during breaching, just before it is released from the breach face (1− n1).

This leaves the dilatancy factor, Cdil unknown. Here a value of 4 is chosen.
This is similar to what was used by Pailha and Pouliquen (2009), who derived
a value of 4.09 by looking at which slope angle motion is initiated with varying
concentrations, and Wang et al. (2017), who used a value of 4 after calibration.

The domain of the numerical simulations is the same size as the tank used
in the experiments, with a 0.3 m× 0.3 m space cut out where the pump sump
is located. The domain is divided into cells of 25 mm× 25 mm. Results are not
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Table 7.1: List of simulated experiments, their comparable laboratory exper-
iments, starting height Hstart, starting slope βstart and sand type. Definitions
of Hstart and βstart are shown in Figure 7.1

Lab exp. Hstart (m) βstart (◦) sand type

1, 2 & 3 0.66 0 GEBA
4, 5 & 6 1.17 0 GEBA
7 0.8 20 GEBA
8 & 10 1.47 0 GEBA
9 0.8 30 GEBA
11 0.66 30 GEBA
12 0.66 20 GEBA
13 0.66 0 D9
14 1.17 0 D9
15 0.8 30 D9
16 1.47 0 D9

Table 7.2: 50th and 15th percentile grain size, D50, D15, initial sand concen-
tration, αd;0, initial permeability, k0, internal friction angle, φc, the critical
concentration αeq;0, and the density of the dispersed phase, ρd, of the GEBA
and D9 sand types.

Sand
D50

(µm)
D15

(µm)
αd;0 αeq k0

(m s−1)
φc

(◦)
ρd

(kg m−3)

GEBA 120 80 0.585 0.545 9.5× 10−5 35.8 2650
D9 330 225 0.57 0.56 2.2× 10−4 40.1 2650
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yet fully converged at this grid size, but this size is chosen to keep simulation
times reasonable.

The pump sump is replaced by an outlet boundary. The return flow is
modelled as an 0.3 m wide inlet boundary, in the top right of the domain. At
the inlet and outlet there is a constant flow of 1.5 l s−1. All other boundaries
are wall boundaries, with a no slip condition.

2 m

5 m

2.5 m 2.2 m 0.3 m

0.3 m

1.7 m

Hstart

βstart

Inlet

Outlet

Figure 7.1: Numerical domain used for the breaching simulations.

There is no removable gate employed in the numerical simulations. In-
stead, the sand bed is initiated without, and is able to move immediately after
starting the simulation. Effects caused by the lifting of the gate (Disturbance
of the soil near the gate, and erosion of the bottom of the breach face while
the gate is not fully lifted) are thus not modelled.

The viscosity regularization parameter, ε, is set to 1× 10−3 s−1, chosen
as small as possible, while keeping the simulation stable. And a maximum
viscosity, µmax of 1× 106 Pa s, chosen as large as possible, while keeping the
simulation stable. The time step used during the simulation is 0.002 s. The
simulation is run until the breach is no longer active, defined here as not change
in the profile for at least 10 seconds.

7.2 Results

Simulation results show that the model is able to qualitatively reproduce the
laboratory experiments. Just after the start of the experiments the soil re-
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mains stable due to a large excess negative pore pressure formed inside the
soil (Figure 7.3), and a turbidity current is formed by sand released from the
steep breach face (Figure 7.2), with increasing velocity as the sediment moves
down (Figure 7.3). Initially (t = 0.01 s) the negative pore pressure concen-
trates around the initial shear plane. As the pore pressure drops, the yield
stress along this plane increases, causing a shear plane to form elsewhere, and
decrease pore pressure along the plane instead. As the pore pressure drops
along this new plane, again another shear plane will form, and so on. After
5 s, a large area of negative pore pressure can be observed.

As the experiment continues, due to sand released at the wall, the breach
face moves horizontally. Part of the released sand settles at the toe of the
breach, with a lower concentration. During the experiments the excess pore
pressure reduces, and the peak moves closer to the breach face. As the breach
height and angle decreases over time, so does the size and the velocity of the
turbidity current.

Finally, at the end of the simulation, a bed is formed, with angles milder
than the internal friction angle. No excess pore pressure, or turbidity current
remains.

7.2.1 Profiles

Here we compare three representative experiments (Figures 7.4 to 7.6). One
experiment without slope, using GEBA sand (Figure 7.4), one experiment with
slope, using GEBA sand (Figure 7.5), and one experiment without slope, using
Dorsolit 9 sand (Figure 7.6).

The profiles show that the model is able to numerically reproduce breaching
behaviour. The steep breach wall is semi-stable due to negative pore pressure,
and moves horizontally by releasing particles at the breach face, instead of
failing due to a large slide. As the experiment progresses, the breach wall
diminishes in size and becomes less steep. However, comparing numerical
profiles to experimentally obtained profiles reveals several differences between
experiments and simulation, the most important are:

• The buildup of a slope at the toe of the breach is slower during simu-
lations than observed in experiments. This causes the breach height to
reduce slower in simulations, compared to experiments. Thus, unstable
breaching becomes more likely. It also causes stable breaches to travel
further horizontally.

• In the simulations, during breaching, there is strong rounding of the
profile near the top of the breach wall. This rounding is not observed
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Figure 7.5: Comparison of numerical and experimental profiles for experi-
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during experiments. This is particularly troublesome during experiments
with a slope above the wall, where this effect is even larger. This also
causes breaches to travel further horizontally. The amount of rounding
observed depends on values of Cdil and ∆x, with more rounding for
larger grid cells and lower dilatancy factors. However, the lower part of
the breach wall, not affected by the rounding at the top, moves with a
velocity similar to that observed during experiments.

• For the experiment with Dorsolit 9 sand (Experiment 16, Figure 7.6),
the breach wall advances faster initially in experiments. This is likely
caused because large slides observed at the start of these experiments
are not observed in simulations. These slides have a large contribution
to the wall velocity at the start of experiments.

7.2.2 Wall velocity

The experimental and numerical average x-coordinate of the breach wall over
time are compared for the three experiments (Figure 7.7). Similar behaviour
is observed for all three experiments. Initially, there is a match between the
numerical and experimental breach wall positions. However, after a while, a
difference between the two emerges. In the numerical simulations the wall
is moving faster than during experiments. During the experiments, the wall
velocity reduces over time. During numerical simulations the wall velocity
reduces slower, or even increases.

This effect is also visible in the mean difference between numerical and
simulated velocity. Figure 7.8 displays the difference in wall velocity, averaged
over 0.005/k0 (the time it takes to transverse 0.1 m if we assume vwall = 20k0).
For experiments using GEBA sand, the difference is initially almost 0, and
increases over time to a maximum of 3 mm s−1. For experiments using D9 sand,
numerical simulations initially underestimate the wall velocity, Over time the
numerically derived velocity for these experiments starts to overestimate the
wall velocity by about 5 mm s−1.

The discrepancy between simulations and experiment can be explained by
several things:

• The lack of large slides observed in the numerical simulations. Particu-
larly for experiments using the coarser D9 sand this effect is significant.

• The difference between wall height and angle. During the experiments
the wall height reduces quicker than during the simulations, mostly due
to less build up of sediment at the toe of the breach during simulations.
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wall velocities are averaged over 0.005/k0 (the time it takes to transverse 0.1 m
if we assume vwall = 20k0).

Also the breach angle reduces quicker during experiments. This causes
the wall velocity to reduce more quickly over time than seen during
simulations.

• The rounding at the top of the breach wall during experiments. The
transition from the breach wall to the top of the breach becomes smooth
in the numerical experiments, while in the laboratory experiments a
sharper transition can be seen. This effect causes an increase of the
horizontal velocity near the top of the breach face. This also explains why
the wall velocity increases over time for certain simulations (Figure 7.7).

7.2.3 Pore pressure

As in the experiments, during simulations the excess pore pressure peaks
shortly after the start of the experiment, and then reduces over time (Fig-
ure 7.9). However, there is a discrepancy in the speed of this reduction. Dur-
ing numerical simulations the excess pore pressure reduces slower than during
experiments. This can be partly explained by the difference in breach wall
height during the experiments (breach walls reduce in height more quickly
during experiments), as lower excess pore pressures are expected for smaller
wall heights.

A difference is also found for the horizontal distribution of excess pore
pressure (Figure 7.10). There is a initial negative pore pressure peak close to
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the breach face, just as during experiments. After this peak, the pore pressure
increases, towards zero. During numerical simulations this rate of increase
is slower than during experiments. For experiment 8, the numerical peak is
also further away from the breach face than during the physical experiment.
This can be explained by the regularization (Equation (5.17)). Regularization
causes a small shear rate in non-yielded areas, and these small shears are still
a source in the pore pressure equation (Equations (5.39) and (5.40)), thus
causing larger excess pore pressure further away from the breach face, where
the soil has not yet yielded.
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Figure 7.11: Comparison of numerical and experimental pore pressure peaks
measured during experiments at various pressure probe locations. Results are
grouped by experiment.

The excess pore pressure peaks over time, at a given fixed location, are
similar in physical experiments and numerical simulations. In most cases, the
peak is larger during numerical simulations. The largest discrepancies are seen
for experiments with a slope on top of the breach.
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Figure 7.12: Profiles shown every 60 seconds, for simulations with a starting
height of 0.8 m, and varying slope angles above the breach face, using GEBA
sand properties.
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7.2.4 Breach stability

The stability of a breach is determined by the change of its wall height over
time. A breach is considered unstable when the breach height increases over
time, and stable when it decreases over time.

The stability is tested using simulations with a starting height of 0.8 m
and a slope above the breach wall of 10◦, 20◦, and 30◦ for both GEBA and
D9 sand. For simulations using the GEBA sand, the effect of the rounding
of profiles near the top of the breach has a strong effect on the resulting
profiles (Figure 7.12). As the slope above the breach wall steepens, the effect
of the rounding increases. For simulations with the D9 sand this effect is
smaller, likely because the speed of rounding is smaller relative to the larger
wall velocity when using D9 sand.

When looking at the development of breach height over time (Figure 7.14),
the expected trend is observed. Breaches with a steeper slope on top of the
breach have a faster increase, or a slower decrease, of breach height over time.
Unstable breaches, where the breach height increases over time, are observed
for simulations with GEBA and slopes of 30◦ and 20◦, and for the simulation
using D9 with a slope of 30◦.

The stability of the simulated breaches is less than observed during physical
experiments. This is possibly caused by the slower built up of the slope at the
toe of the breach during simulations, causing the bottom of the breach face to
be lower than during physical experiments. Furthermore, the rounding of the
profile observed during simulations likely plays a role as well.

7.3 Model sensitivity

7.3.1 Dilatancy factor

The dilatancy factor, Cdil, plays an important role (Equation (4.63)). It con-
trols the ratio between shear velocity and dilation, with more dilation (with
the same shear rate) for larger dilatancy factors. However, determining the
appropriate value of Cdil is difficult. In this work a common value for Cdil

is used, but the actual value remains unknown. Therefore, it is important to
know the effects of changing this parameter. For experiments 8, and 16 the
Cdil is varied between 1 and 16.

The dilatancy factor appears to have a strong effect on the rounding at
the top of the breach face (Figures 7.15 and 7.16). As the dilatancy factor de-
creases, meaning more shearing is required to get the same amount of dilation,
the rounding at the top of the breach wall increases.
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Figure 7.16: Profiles shown every 30 seconds, for simulations with a starting
height of 0.8 m, and varying dilatancy factors, using D9 sand properties.
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Figure 7.17: Comparison of the average x-coordinate of the breach wall for
varying Cdil
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The effect of the dilatancy factor on the wall velocity (Figure 7.17) is
minimal when using the more permeable D9 sand. For simulations with GEBA
sand there is a clear effect of Cdil on the wall velocity, with larger wall velocities
for lower values of Cdil. When looking at the profiles (Figure 7.15), it seems
that the differences in velocity are mostly caused by rounding at the top of
the breach face.

There is also a strong effect of the dilatancy factor on the pore pressures,
for the experiments with GEBA sand Figure 7.18. For the experiments with a
Cdil of 1, or 2, The initial minimum of the pore pressure is doubled compared
with the laboratory experiments, and the experiments with a Cdil of 4, or 8.
As a higher value of Cdil means more dilatancy at the same shear rate, and
thus lower pore pressure, these results are somewhat surprising. However, at
the lower Cdil, the initial shear rate inside the sand also increased, causing the
lower pore pressures. For the experiments with D9 sand, changing the Cdil

has a minimal effect on the observed pore pressures.

Slides

One of the main purposes for developing the model was the incorporation of
large slides, which could not be modelled with conventional models. However,
while the model is able to simulate slides (Section 6.5), these were not observed
during the simulations of the physical experiments. Simulations with varying
Cdil show that formation of slides depends on this variable (Figure 7.19). As
Cdil is reduced, the formation of a clear sliding wedge can be seen. This sliding
wedge also explains the changing profiles for lower Cdil (Figure 7.16).

7.3.2 Equilibrium concentration

The equilibrium concentration, αeq;0, controls the amount of dilation. In the
current model is also assumed that concentration at which particles are re-
leased at the breach face (That is, the term (1 − n1) in Equation (2.28)). It
is therefore expected that changing αeq;0 will have significant effects on the
breaching process. Because the equilibrium concentration (as well as n1) are
difficult to determine, it is important to understand their effect on the process.
As expected, αeq;0 controls the wall velocity, with the largest velocity observed
for the highest equilibrium concentration (Figures 7.20 to 7.22).
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Figure 7.18: Excess pore pressure over time measured at x = 1.9, y = 0.7,
for simulations with a starting height of 1.47 m, using GEBA sand (top) and
D9 sand (bottom), using varying Cdil.
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height of 1.47 m, and varying equilibrium concentrations, using GEBA sand
properties.
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Figure 7.21: Profiles shown every 30 seconds, for simulations with a start-
ing height of 0.8 m, and varying equilibrium concentrations, using D9 sand
properties.
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Figure 7.22: Comparison of the average x-coordinate of the breach wall for
varying αeq
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Figure 7.23: Excess pore pressure over time measured at x = 1.9, y = 0.7,
for simulations with a starting height of 1.47 m, using GEBA sand (top) and
D9 sand (bottom), using varying αeq.
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Figure 7.24: Comparison of the average x-coordinate of the breach wall for
varying grid size.

7.3.3 Grid dependence

The amount rounding observed at the top of the breach wall depends on the
size of the grid size, with more rounding observed for larger grid cells (Fig-
ure 7.26). This also causes a small increase in wall velocity as grid cells become
larger (Figure 7.24). There is also an increase in pore pressure observed for
an increase in grid cell size, with the pore pressures closest to the measured
values for the smallest grid cells (Figure 7.25).

7.3.4 Starting height

Increasing the starting height leads to an increased peak of the excess pore
pressure (Figure 7.27). For a starting height of 2 m or higher, an increased
erosion along the breach wall is observed (Figure 7.28). This increased erosion
leads to an increasing wall velocity compared to breaches with a lower starting
height. It was expected that shear slides would play a larger role at larger
starting heights, however, the current simulations do not show this effect.

7.3.5 3D effects

Until now, all simulations have been two-dimensional. To study the effects of
this simplification, experiment 8 has been simulated using a three-dimensional
domain, with a domain width of 0.5 m, as well. A cell size of 0.05 m× 0.05 m
was used, and a no-slip boundary was used at the side walls.

There is an observable difference between the three- and two-dimensional
simulations. The three-dimensional simulation shows less rounding near the
top of the domain, as well as steeper breach walls (Figure 7.29). The 3D
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Figure 7.25: Excess pore pressure over time measured at x = 1.9, y = 0.7, for
simulations with a starting height of 1.47 m, using GEBA sand, using varying
grid sizes.
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Figure 7.26: Profiles shown every 60 seconds, for simulations with a starting
height of 1.47 m, using GEBA sand properties, and varying grid sizes.
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Figure 7.27: Excess pore pressure over time measured at x = 1.9, y = 0.7,
for simulations with varying starting heights, using GEBA sand.
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Figure 7.28: Profiles shown every 60 seconds, for simulations with varying
starting heights, using GEBA sand.
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Figure 7.29: Profiles shown every 60 seconds, for simulations with a starting
height of 1.47 m, using GEBA sand, along the centreline for a 2D and a 3D
simulation.

simulations also has larger wall velocities (Figure 7.30), possibly caused by the
steeper breach faces.

The excess pore pressures observed during the 3D simulations are larger
than during the 2D simulations. This is likely due to the no-slip boundary ap-
plied at the sides in the 3D case. Because of the no-slip boundary, larger shear
rates are observed here, causing an increase in dilatancy, and thus increased
pore pressure as well. The different pore pressure distributions will also affect
the breach profiles and wall velocities. Results also show that there is no big
difference between pore pressures measured at the centre of the domain (at z
= 0.25 m), or along the side of the domain (at z= 0 m).
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Figure 7.30: Comparison of the average x coordinate of the breach wall, for
a 2D and a 3D simulation.

To further test the 3D capabilities of the model, a final, three-dimensional
simulation is carried out. In a domain 3 m long, 2 m wide, and 1 m high, a



154 CHAPTER 7. VALIDATION BREACHING PROCESS

0 100 200 300 400

−2

−1

0

Time (s)

P
o
re

p
re

ss
u

re
(k

P
a
)

3D (z = 0.25 m)

3D (z = 0 m)
2D
Lab

Figure 7.31: Excess pore pressure over time measured at x = 1.9, y = 0.7,
for a 2D and a 3D simulation.

0.5 m high, 1:2 slope is created. Out of this slope a 0.3 m× 0.6 m block of soil
is removed to initiate breaching (Figure 7.32). D9 sand properties were used.
A cell size of 0.05 m× 0.05 m was used, with no-slip boundaries was used at
all walls.

At the start of the simulation, the breach spreads out radially from the
initial position (Figure 7.33). After about 30 seconds, the breach covers the
complete width of the domain, and continues breaching in the x-direction.
After about 55 seconds the breaching process stops, and during the next 65
seconds most sediment released during the breaching process settles.

7.4 Concluding remarks

In this chapter the created model has been applied to the breaching exper-
iments of Chapter 3. Results show that the model is able to numerically
reproduce breaching behaviour. A steep breach wall is formed, with parti-
cles releasing slowly from the breach face, instead of a big slide. As sediment
is released at the breach face, the breach face moves horizontally with a ve-
locity similar to that observed in physical experiments. As the experiment
progresses, the breach wall diminishes in size and becomes less steep. Further-
more, as observed during physical experiments, the excess pore pressure is the
lowest just after the starting the experiment. The excess pore pressure then
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Figure 7.32: Initial set-up of the 3D simulation.

slowly converges to 0 Pa over time. The model is also able to simulate both
stable (Breach height diminishes over time) as well as stable (Breach height
increases over time) breaches.

However, comparing numerical results to physical experiments also reveals
several differences:

• The buildup of a slope at the toe of the breach is slower during simu-
lations than observed in experiments. This causes the breach height to
reduce slower in simulations, compared to experiments. Thus, unstable
breaching becomes more likely. It also causes stable breaches to travel
further horizontally.

• In the simulations, during breaching, there is strong rounding of the
profile near the top of the breach wall. This rounding is not observed
during experiments. This is particularly troublesome during experiments
with a slope above the wall, where this effect is even larger. This also
causes breaches to travel further horizontally. This is probably due to
shear deformations in the model, which are either not observed during
experiments, or would lead to small shear slides in experiments.

• For the experiment with D9 sand (Figure 7.6), the breach wall advances



156 CHAPTER 7. VALIDATION BREACHING PROCESS

t = 0 t = 15

t = 30 t = 55

t = 120

0 0.1 0.2 0.3 0.4 0.5

Concentration (%)

Figure 7.33: results of the 3D simulation. Sidewalls are coloured according
to the sand concentration. And the soil is shown by a brown surface.
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faster initially in experiments. This is likely caused because large slides
observed at the start of these experiments are not observed in simula-
tions. These slides have a large contribution to the wall velocity at the
start of experiments.

• For experiments with GEBA sand, the wall velocity at the start of the
experiment is similar to that observed during physical experiments. How-
ever, over time a discrepancy between observed and simulated wall veloc-
ity emerges, with larger velocities during simulations. This can be linked
to the breach height reducing more slowly compared to experiments, and
to the rounding observed during simulations.

• The observed excess pore pressure peak, at the start of the experiments
are similar in the simulations and physical experiments. However, the
rate at which the pore pressure reduces is slower during simulations.
This can be caused by the slower reduction in breach height. However, a
slower reduction is also observed spatially, with a slower decrease in pore
pressures further away from the breach face for simulations. This can be
caused by the use of regularization. During simulations, in quasi-static
areas where no shearing should occur, there is still some shear when
applying regularization. Therefore, there is still a source of dilation, and
thus excess pore pressure, in these regions, where there should be none.
This can cause the higher excess pore pressures further away from the
breach face.

• Shear slides, like observed during the physical experiments, do not ap-
pear in the simulations, unless Cdil is lowered. This can partly explain
why the build-up of sediment at the toe of the breach is smaller during
simulations, as after large shear slides, large parts of the slides remain
in front of the breach face. A possible reason for the lack of slides is
a too high Cdil, but can also be caused by excess pore pressures being
too large, and thus making the soil stabler than in reality. One reason
shear slides are observed less than during experiments, is that during
experiments a very narrow internal shear surface forms for slides. Due
to the chosen numerical approach, in the model the shearing is spread
over a larger area, thus changing the behaviour of the soil.

Simulations show that results depend heavily on the values used for the
dilation factor, Cdil, and the equilibrium concentration αeq. αeq has a strong
effect on the wall velocity, with larger velocities for larger equilibrium concen-
trations, while Cdil has a strong effect on the shape of the profile over time,
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with more rounding for smaller dilation factors. Finally, simulations show
the effects of simulating in two or three dimensions, and the effects of no-slip
boundaries at the sides of the breach.

Finally we have shown that the model is able to model three dimensional
breaches. Three dimensional aspects of the model need to be validated as well.
For this three dimensional validation material needs to be generated.



Chapter 8

Conclusions and
Recommendations

As stated in the introduction, the goal of this dissertation was to answer the
following question

How can we improve the prediction of the (unstable) breaching
process?

with the following two sub-questions

What is the effect of increasing breach height on the breaching
process?

How does changing from a two-dimensional to a three-dimensional
setup affect the breaching process?

159
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8.1 Conclusions

8.1.1 Breach height effects

During laboratory experiments, a correlation between breach height and wall
velocity was found, with larger velocities as breach height increases. This effect
is not included in the standard wall velocity equation Equation (2.28).

Interestingly, the breach height does not affect the contribution of shear
slides significantly, nor do shear slides increase the total wall velocity.

Instead, increased wall velocities can be explained by increased erosion by
the turbidity current, due to increased sand production. Numerical experi-
ments with increasing wall heights support this theory.

Numerical experiments also show a strong link between the wall height and
the measured negative pore pressure peak, with more negative pore pressure
as wall height increases.

As predicted by the equations, the stability of a breach decreases as breach
height increases.

8.1.2 3D effects

The numerical model is suitable to model the breaching process in both 2D
and 3D. The model can be a helpful tool in gaining better understanding of
the effects of three dimensionality.

There are clear effects when switching to three dimensional simulations.
In 3D an initially small disturbance spreads in multiple directions. This leads
to a greater increase in breach surface over time than during two dimensional
experiments. This leads to a greater increase in sand production, and will affect
settling of the sand at the toe, and could thus lead to less stable breaches.

8.1.3 Predicting stability

Experiments show that the equations commonly used to predict the wall ve-
locity (Equation (2.28)), and the slope angle at the toe of the breach (From
Mastbergen et al. (1988), Equation (2.30)), correspond well with values mea-
sured during experiments.

Predicting the stability of a breach, by combining these two equations
(Equation (2.69)) proves more difficult, the chance of a stable breach is under-
estimated. In some cases a breach turns out to be stable when the equations
predict an unstable breach. The equations can thus be used as a conservative
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estimate of breach stability, although this has not yet been tested in three
dimensional cases.

The numerical model, modelling the frictional regime, where grains are in
constant contact with each other, as a fluid with a yield stress, can reproduce
breaching behaviour. The model is also able to simulate both stable (breach
height diminishes over time) as well as unstable (breach height increases over
time) breaches.

However, there are still several important differences between model and
physical experiment. First, there is a slower buildup of sediment at the toe of
the breach, causing milder slopes, and a slower reduction of the breach height
over time. Second, there is rounding of the profile seen at the top of the
breach face, which is not observed during experiments. Third, while initially
the wall velocity corresponds with measurements from experiments, over time
numerical wall velocities become larger than the experimentally measured ve-
locities. Fourth, the reduction of excess pore pressure is slower in both space
and time compared to experiments. Finally, the shear slides observed during
experiments, are not seen during most simulations. Thus, the numerical in its
current state should not be used to predict the stability of a breach, until the
model has been developed further.

8.1.4 Other conclusions

There is a large contribution of shear slides to the total sand flux from the
breach, when the breach face is steep. The amount of slides also correlates
strongly with the permeability of the sand. The contribution of shear slides to
the total sand flux went up from 10% to 80% when the permeability increased
by a factor of just 2.3.

Shear slides were observed mostly at the start of the experiments. This is
likely because the breach face is the steepest at the start of the experiments,
and reduces over time, leading to a smaller resisting force needed to stabilize
the slope. However, it is also possible that other factors (for example, the
effects of lifting the removable gate at the start of the experiment) cause the
increase in slides at the start of the experiment. To test this hypothesis,
experiments with different initial slopes of the breach face should be carried
out.

The dilation factor and the equilibrium concentration have a significant
effect on the results. When varying the dilatancy factor, which controls the
relation between shear rate and dilation rate, shear slides appear only for lower
dilatancy factors. This indicates that by calibrating the dilatancy factor, the
shear slides can be modelled. However, lowering the dilatancy factor also
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influences the wall velocity and excess pore pressure. It is also possible that
the lifting of the removable gate at the start of the experiments, which is not
modelled, influences the amount of slides.

8.2 Recommendations

8.2.1 Laboratory experiments

During the experiments only two types of sand were investigated. Repeating
the experiments with more kinds of sand will likely give a better insight into
the effects of different sand properties on the breaching process.

The experiments always started with a flat bed at the toe of the breach. It
will be interesting to see how starting with different slopes angles affects the
results. It is interesting to see what happens to slope when a slope equal to
or larger than the expected equilibrium slope is applied at the toe.

The initial slope of the breach face was fixed 90◦. Varying the initial slope
angle should give interesting insights. This can also confirm the importance
of the slope of the breach face on the formation of shear slides during the
experiments.

Most large slides occur at the start of experiments, right after the gate has
been lifted. It is expected that this is because the breach wall is the steepest at
the start of the experiment, but lifting the gate could also influence the amount
of slides. Therefore it might be worthwhile to investigate the breaching process
with different starting mechanisms.

Finally, it is recommended to design and carry out three dimensional exper-
iments, which can act as validation material for the three dimensional model.

8.2.2 Numerical method

The dilation factor Cdil, which controls the ratio between shear rate and dila-
tion rate, has a significant effect on the results. Therefore, it is recommended
to develop methods for determining this factor for different sand types. The
method of Pailha and Pouliquen (2009) could be applied. They looked at
the slope angle where motion was initiated, for varying initial sand concentra-
tions. It is also worthwhile to investigate the relation between Cdil and other
variables like the shear rate, γ̇, and the effective pressure, peff .

In the current model, only a single fraction of sand, with a single grain
diameter is used. In reality, sands have a large range of different grain di-
ameters. This has a large effect, for example, on the settling velocity of the
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sediment, as larger grains settle faster. This effect can be seen clearly when the
settling in the model is compared to experiments. Due to the variety of grain
diameters, there is a spread in fall velocities not seen in the model. Therefore,
it is recommended to include multiple fractions in the model.

In the current model, the pick-up flux equation of van Rijn (1984), com-
bined with the retarded erosion correction of van Rhee (2010), is used. How-
ever, there are several pick-up flux equations available. It is recommended
investigate different equations, and chose the equation which fits the problem
best.

The model has been used to simulate 2D cases, or 3D cases with limited
widths. It would be interesting to see what happens during 3D simulations
with a wider domain, as this would come closer to breach failures observed in
nature.

Shear slides, as observed during physical experiments, were not seen in most
simulations. While it is expected that slides can be simulated if the correct
variables are used, it is worth investigating different methods of simulating the
sand in the frictional regime.
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