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Abstract: Identifying ships is essential for maritime situational awareness. Automatic identification
system (AIS) data and remote sensing (RS) images provide information on ship movement and
properties from different perspectives. This study develops an efficient spatiotemporal association
approach that combines AIS data and RS images for point–track association. Ship detection and
feature extraction from the RS images are performed using deep learning. The detected image
characteristics and neighboring AIS data are compared using a multi-dimensional feature similarity
model that considers similarities in space, time, course, and attributes. An efficient spatial–temporal
association analysis of ships in RS images and AIS data is achieved using the interval type-2 fuzzy
system (IT2FS) method. Finally, optical images with different resolutions and AIS records near
the waters of Yokosuka Port and Kure are collected to test the proposed model. The results show
that compared with the multi-factor fuzzy comprehensive decision-making method, the proposed
method can achieve the best performance (F1 scores of 0.7302 and 0.9189, respectively, on GF1 and
GF2 images) while maintaining a specific efficiency. This work can realize ship positioning and
monitoring based on multi-source data and enhance maritime situational awareness.

Keywords: ship matching; AIS; remote sensing image; spatiotemporal association; IT2FS

1. Introduction

The recognition and tracking of marine ship targets have garnered significant atten-
tion in recent years due to their critical role in enhancing maritime situational awareness.
These initiatives contribute to maritime traffic safety, fishery regulation, marine resource
management, combating illegal fishing, and supporting maritime rescue operations [1].
Remote sensing (RS) images have emerged as reliable data sources for maritime ship detec-
tion, driven by advancements in RS imaging technologies. These images provide several
advantages, including global accessibility, extensive coverage, regular updates, and the
availability of vast amounts of data [2]. Consequently, over the past decade, the number
of articles and methods related to ship detection using RS images has increased substan-
tially. Among these methods, deep learning-based techniques have gained popularity [3],
including the You Only Look Once series [4] and oriented region convolutional neural
networks [5] (oriented R-CNN). However, it is important to acknowledge the limitations of
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RS images, such as the extended re-entry period, susceptibility to cloud cover, and inability
to reveal the identities of the detected ships.

The limitations of RS images can be partially mitigated by incorporating automatic
identification system (AIS) data. AIS utilizes very high-frequency technology to transmit
and receive ship locations [6] and offers valuable support and position information [7]. The
high timeliness of AIS data can compensate for the lengthy return cycles of RS images. It
broadcasts information such as position, speed, course, ship type, and maritime mobile
service identity (MMSI) through AIS messages [8], which provide additional details that
aid in ship identification and complement the limitations of RS images. However, it is
important to note that AIS data have certain limitations in terms of ship identification. First,
AIS transponders can be inadvertently or intentionally turned off. For example, vessels
engaged in illegal fishing may deliberately disable their AIS transponders before entering
no-fishing zones and reactivate them upon departure. As a result, AIS data during these
periods may be lost or distorted. Additionally, maritime AIS signals can be influenced by
weather conditions, ocean waves, and various electromagnetic factors, leading to data loss,
noise, and sparsity in the collected AIS data.

By combining the real-time information provided by AIS data with the extensive cov-
erage and data richness of RS images, a more comprehensive and accurate understanding
of maritime activities can be achieved, including tracking, identification, and situational
awareness [9,10]. However, traditional methods of ship matching based on RS imagery
and AIS trajectories are often performed by setting certain thresholds for time and spatial
distances between ships and trajectories to determine if the track points match. This leads
to a temporal gap between sensor collection and shipping density, significantly affecting
the matching of AIS and remote sensing data [11]. Using fuzzy mathematics-based meth-
ods [12] can reduce the uncertainty in point–trace matching by considering the similarity
of features across multiple dimensions. However, current research primarily focuses on
measuring the similarities of trajectory time and space, which limits the comprehensive
characterization of ship trajectory characteristics [13]. Achieving a more comprehensive
description of ship trajectories remains challenging in existing research. In addition, current
research mainly focuses on using Synthetic Aperture Radar (SAR) images for ship matching,
while there is limited research on ship matching using optical remote sensing imagery.
SAR images can easily distinguish ships and wakes, whereas ship identification in optical
imagery is more influenced by resolution and ship speed [14].

Building on previous research and addressing identified shortcomings, this study
proposes a ship-matching model that integrates RS images and AIS data while considering
multi-dimensional features. By enriching the extracted features for point–trace matching,
the model offers a comprehensive representation of ship trajectories, enabling effective
correlation between optical remote sensing imagery and AIS data. The model incorporates
four dimensions: space, time, course, and attributes, which describe the relationships be-
tween trajectory points and facilitate the association between ship targets in RS images and
ship tracks in AIS data. The proposed method incorporates oriented R-CNN techniques
to detect ships in RS images automatically [5]. To achieve point–track association, this
study employed the interval type-2 fuzzy system (IT2FS) [15]. It enables the mapping of
multi-dimensional features to fuzzy sets through variable fuzzification and fuzzy associa-
tion rules. Finally, the spatiotemporal association between AIS data and RS images was
achieved using the Hungarian algorithm, which establishes optimal associations between
corresponding points and tracks, thereby facilitating the integration of information from
both data sources. Experiments were performed at Yokosuka Port and Kure, Japan, using
Gaofen-1 (GF1) and Gaofen-2 (GF2) images. The results show that compared with the
multi-factor fuzzy comprehensive decision-making method, the proposed method can
achieve the best performance (F1 scores of 0.7302 and 0.9189, respectively, in GF1 and GF2
images), while maintaining a specific efficiency.

The remainder of this paper is organized as follows. Section 2 introduces related
research work and Section 3 elaborates on the existing techniques for fusing AIS data and
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RS images. Section 4 introduces the proposed methods for extracting multi-dimensional
point–track similarity. Section 5 presents an experimental verification and analysis of the
proposed approach. Section 6 concludes this paper.

2. Related Works

The inadequacies caused by a single monitoring system can be compensated for by
the combining of AIS data and RS images. There are two categories of multi-source data
spatiotemporal association methods: statistics-based methods and fuzzy mathematics-
based methods.

Most statistical methods use spatial and temporal distance as metrics, with the mini-
mum distance serving as the criterion for evaluating relevance. The mainstream statistical
method is Nearest Neighbor [16] and its variants. Nearest Neighbor (NN) compares the
spatial distance between the ship location and the track, using the minimum distance as
the basis for point–track matching. The distance within the threshold range and the closest
distance can be considered to be a successful association. Global Nearest Neighbor [17–19]
correlates AIS data and ship position in time and space scales, and calculates the global
optimal solution. However, the reliance on NN as a foundational calculation can pose
challenges in high-density transportation scenarios. Other statistical methods, such as
neural networks [20] and point pattern matching [21], are also available but have seen less
development in subsequent research. Neural networks define association as a classification
problem, with each pair of targets classified with a neural filter; however, this requires
multiple adjustments based on the data. Moreover, the training of a neural network relies
on the construction of a matching dataset of ships and trajectories as a basis. In point
pattern matching, it takes each observation target as an independent mass point, and uses
coherent point set (CPS) analysis to extract the topological relationship and realize multitar-
get association. However, this method is constrained by its specialized data requirements
and limited application scenarios, resulting in relatively poor universality.

Fuzzy mathematic methods are beneficial approaches for addressing uncertainties
in data from various sensors. In the study of trajectory association, fuzzy logic can easily
realize multi-source data fusion and improve computing efficiency [22], and it is the current
mainstream method. The process of fuzzy logic can be divided into four steps. The first
step is establishing fuzzy factors, using the fuzzy membership function to express fuzzy
factors. Then, it calculates fuzzy factors’ weights through logical operations. Combined
with fuzzy factors and their weights, the fuzzy sets are obtained to calculate matching
results [23]. In these steps, the calculation of the fuzzy factor is important to the result
quality, and multi-factor fuzzy comprehensive decision-making [13] is an appropriate
method. Multi-factor fuzzy comprehensive decision-making considers the relationship
between multi-source data and calculates the fuzzy factor sets of targets, such as distance,
bearing, speed, and course. Then, it performs the trajectory association through compre-
hensive decision-making. In addition, fuzzy clustering is also a feasible method for track
association; it converts the trajectory association to solving the membership degree of a
multi-source dataset relative to the known center of a cluster. However, incorrect and
omissive track correlation occurs in the presence of multiple targets and track intersection,
so it is gradually eliminated.

3. Study Areas and Data Sources

In this study, Yokosuka Port, Yokosuka City, and Kure, Hiroshima Prefecture, Japan,
were chosen as the experimental areas. GF1 and GF2 images of the port were used for ship
detection and association. Five RS images with varying widths were used: 29,200 × 27,620,
35,672 × 34,264, 34,160 × 33,876, 34,160 × 33,856, and 40,456 × 40,104 pixels, including
two GF1 images and three GF2 images. Yokosuka Port comprises one GF1 image and
two GF2 images, whereas Kure consists of one GF1 image and one GF2 image. The GF1
satellite is the first satellite in China’s high-resolution Earth observation system, with a
panchromatic spatial resolution of GF1 data of 2 m, and a multispectral spatial resolution
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of 8 m. The GF2 satellite is the first civilian optical RS satellite independently developed
by China. The panchromatic resolution of the GF2 data is 0.8 m and the multispectral
resolution is 3.2 m. More importantly, using Gaofen images, we can obtain the time of
image capture, which can be used during matching to filter out data from massive AIS
datasets within specific time frames. The thumbnails of the two ports are shown in Figure 1.
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(a,c) are GF1 images, (b,d) are GF2 images.

The AIS data sources were downloaded from Elane and Loong Ships for the period
spanning from June 2020 to April 2022, which covered the above GF1 and GF2 images
well. Multi-source AIS data can ensure the integrity of the data and avoid the omission of
AIS data. To avoid introducing additional uncertainties, we did not use additional linear
interpolation on the acquired data to supplement the potential missing data. The AIS data
can be divided into dynamic and ship archive data.

The AIS dynamic data mainly contain the trajectory information of ships, including
coordinated universal time (UTC), latitude, longitude, course over ground (COG), and
speed over ground (SOG). There are 77, 508, 672, and 591 AIS dynamic data points covering
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the period from August 2020 to March 2022, with a total of 3,570,966 ships. The ship archive
data mainly focused on ship attributes that do not change or are relatively stable, including
ship size, type, country, MMSI number, and international maritime organization number.
The database contains 445,993 ship file records. The AIS dynamic and ship file information
can be linked together according to the MMSI number as it will not change if the ship does
not change its country.

4. Research Methods

AISs provide valuable information about the movement trends and identities of ships,
while the precise localization capabilities of RS imagery aid in identifying AIS trajectories
over large areas. The mutual association between AIS and RS images enhances the under-
standing of ship activities, offering a more comprehensive view of maritime scenarios. As
illustrated in Figure 2, the approach to multi-dimensional point–track association involves
using the oriented R-CNN model to detect ship bounding boxes in RS images, with the
longitude and latitude of each ship determined through coordinate conversion. Although
ship types are not detected, the associated AIS data, which include ship trajectories and
attributes, are gathered within the spatial extent of the RS images. Multi-dimensional
features—such as space, time [12], course [24], and attributes—are then calculated for ship
target points in the RS images and corresponding trajectories in the AIS data. A feature sim-
ilarity model computes the relationship between the RS images and AIS data. Subsequently,
feature fuzzification and fuzzy rules are established to evaluate the similarities between
multi-dimensional features and perform point–track matching. Finally, the associated
point–tracks with high confidence are the output.
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4.1. Multi-Dimensional Feature Similarity Modeling

Existing studies on the association between RS images and AIS data primarily consider
spatiotemporal features and retained certain restrictions on matching accuracy and costly
computations [19]. This study considers point–track correlations based on the multi-
dimensional features of space, time, course, and attributes.

4.1.1. Spatial Feature Similarity

Spatial feature similarity measures the spatial distance between target points and ship
tracks. Each target point is projected onto its corresponding track, generating a reference
point on that track. The spatial distance between the target point and its reference point
is then used to evaluate the similarity between the spatial features of the target point and
the ship track. As the spatial distance decreases, the spatial feature similarity increases,
allowing the ship track with the highest spatial feature similarity to be assigned to the
target point.

In previous studies, the reference point was the point closest to the target point on
the ship track, which could have led to point–track mismatching. In Figure 3a, the red
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dots indicate the target points and the green and blue polylines represent the two ship
tracks. If the spatial distance is determined using the closest point, the target point is
closer to the blue track, as shown in Figure 3b. However, the red point is consistent from a
movement standpoint with the intended future routes of the green track. This study offers
an alternative method for determining how well the point–track spatial features match. As
shown in Figure 3c, the spatial distance between the target point and reference point in the
track can offer a precise assessment of how similar the point is to the track.
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To address the inconsistent sampling frequency between RS images and AIS data,
this study employs trajectory fitting to establish a reference point in the track for a target
point. In normal ship operations, ships often follow a straight-line or arc trajectory. The
trajectory fitting process involves creating a univariate polynomial function using a series
of trajectory points over a short period, as calculated by the following equations:

f (x) = d +
a − d

1 +
( x

c
)b (1)

g(x) = ae−
(x−b)2

2c2 (2)

where a, b, c, and d are constants. The latitude of the track point is used as the dependent
variable y and the longitude of the track point is entered as the independent variable x.
When the ship track consists of a small number of points, Equation (1) is considered to
be the best-fitting function. In the absence of this equation, the Gaussian fitting function
in Equation (2) is used. By adding the current track points to the fitting function, the
least-squares method is used to obtain the best values for these four parameters. After
parameter estimation, the longitude of the reference point, which is the same as the target
point, is entered into the fitting function to obtain the estimated latitude. Therefore, the
spatial distance between the reference and target points can be calculated using Equation (3):

S = 2 × arcsin

√
Sin2

(
yrp − ytp

)
2

+

(
cos

(
yrp

)
× cos

(
ytp

)
× Sin2 xrp − xtp

2

)
× R (3)

where S is the spatial distance, R is the Earth’s radius, xrp and yrp are the longitude and
latitude of the reference point, and xtp and ytp are the longitude and latitude of the target
point, respectively.
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4.1.2. Time Feature Similarity

Time feature similarity is a measurement of the distance between the image acquisition
and trajectory sampling times. It assesses the degree of synchronization in time between
the target point and the ship track. Similarly, without temporal features, high spatial feature
similarity also leads to mismatched results. As shown in Figure 4, the target point (red
dot) and ship track (blue polyline) match with a high spatial feature similarity. However,
the timestamp of the target point is between the sampling time of Points 4 and 5, and its
position is between Points 3 and 4. This means that the moving ship suddenly turned
sharply in the opposite direction and then corrected back to the original direction, which is
different from normal ship movement. Therefore, the target point may not belong to the
track of the red ship.
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Figure 4. Mismatching of point–track based purely on spatial feature similarity.

This study uses the directional consistency of the sailing ship to describe the similarities
in temporal features. The two blue dots, Points 4 and 5, represent continuous points on the
ship track, and the red dot is the target point, as shown in Figure 5. The target point (ship)

and two trajectory points form two vectors:
⇀

P4T and
⇀

TP5. If the target point is connected
to the track, the cosine of the angle formed by the two vectors can be used to assess the
consistency of the sailing ship. If the cosine value is positive, the direction is consistent;
otherwise, it is inconsistent.
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directional consistency of the sailing ship.

To calculate the time feature similarity quantitatively, the two closest points pa and pb
in the ship track to the target point tp were first extracted and sorted by timestamp. The
normalized time feature similarity TFS was then obtained using Equation (4):

TFS =

1 + (xpa−xtp)×(xpb−xpa)+(ypa−ytp)×(ypb−ypa)√
(xpa−xtp)2+(ypa−ytp)2 ×

√
(xpb−xpa)2+(ypb−ypa)2

2
(4)
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where
(

xpa, ypa
)
,
(

xpb, ypb

)
, and

(
xtp, ytp

)
are the individual members of the tuples and

can be considered as the longitude and latitude of points pa, pb, and tp.

4.1.3. Course Feature Similarity

Course feature similarity evaluates the course consistency between the target point
and ship track. It is essential to ensure consistency over the ground in the movement of the
target point relative to the ship track, as the target point in the cross-movement direction
and the ship trajectory also have high spatial and temporal similarities. In Figure 6, the blue
polyline denotes the ship track and the red point denotes the ship target point. Although
the target point and ship trajectory are quite close in both space and time, the course of the
target point, which assumes true north to be at 0◦, will have an impact on the point–track
matching result. Although 0 and 150◦ can essentially be ruled out, the target point is better
matched with the track when its course value is between 60◦ and 90◦.
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This study measured the course feature similarity by calculating the cosine value of the
angle between the course of the target point and the course of the ship track. Ship target
recognition from RS images can yield a rectangular bounding box of the ship target that
contains the four corner coordinates of the ship position. The four corner coordinates are
sorted in ascending order according to the longitudinal value, and are denoted as c1, c2,
c3, and c4. The long side of the rectangular bounding box of the ship target can then be
determined by the larger value of the distance between c1 and c2 and the distance between c1
and c3. The direction of the long side of the ground is the course of the ship’s target point.

To quantitatively calculate the course feature similarity, this study assumes that the
long sides of the rectangular bounding box of the ship target are c1 and c3, and the
two closest points in the ship track to the target point are p2 and p3. The angle between the
two vectors was selected as the acute angle. The normalized course feature similarity CFS
was then obtained using Equation (5):

CFS =

1 +
(xc3−xc1)∗(xp3−xp2)+(yc3−yc1)∗(yp3−yp2)√

(xc3−xc1)2+(yc3−yc1)2 ∗
√
(xp3−xp2)2+(yp3−yp2)2

2
(5)

where (xc1, yc1), (xc3, yc3),
(
xp2, yp2

)
, and

(
xp3, yp3

)
are the individual members of the

tuples and can be considered as the longitude and latitude of points c1, c3, p2, and p3.

4.1.4. Attribute Feature Similarity

Attribute feature similarity is the assessment of ship size consistency between the
ship target points discovered from RS images and the ship size indicated in AIS data.
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The attribute feature relies on previous knowledge discovered from AIS data. To increase
the matching accuracy, the rectangular bounding box of the ship discovered using object
recognition can be used to determine its size. After considering the acceptable error, the
trajectory to be matched can be dismissed based on the attribute-matching result, because
the attribute feature is an objective and truthful indicator. The attribute feature similarity
AFS is represented mathematically as follows in Equation (6):

AFS =

{
e−( |width−W|

W +
|length−H|

H ), e−( |width−W|
W +

|length−H|
H ) ≥ ε

0 , e−( |width−W|
W +

|length−H|
H ) < ε

(6)

The AFS is normalized by the exponential function. H and W are determined by
the bounding box of the ship, while length and width are determined by AIS data. The
acceptable error is concretized as the threshold ε. In this study, if the width of the bounding
box did not exceed one-half of the true value and the length did not exceed one-fifth of
the true value, it was considered a successful match, so the threshold was set to 0.5 after
exponential operations.

The precision of the bounding box is critical for estimating attribute feature similarity.
However, the size of a ship is often overestimated in RS images when it resembles the wake
or waves around it. Figure 7 depicts the scenarios in which the bounding box of the ship
target contains wakes in the sailing states at low, medium, and high speeds. While the
length and width of the bounding box warp to variable degrees when traveling at high
speeds, the wake has little impact on the size of the ship at low and medium speeds. The
severity of the length distortion increases with speed.
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medium speed, and (c,f) are high speed.
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As a result, this study adjusts the confidence of the bounding box length and width
to correct the distortion of the target recognition findings. It considers how the trajectory
speed in the AIS data affects confidence. The AFS should add the ship’s speed during
calculation with the correction factors αW and αH :

Aa = e−(αW
|width−W|

W +αH
|length−H|

H ) (7)

AFS =

{
Aa, Aa ≥ ε
0, Aa < ε

(8)

The correction factors αW and αH are constructed by a piecewise function to describe
the relationship with ship speed. Generally, when the ship speed is faster, the resulting
wake is longer, and the bounding box score is lower, so the bounding box score is used as
an evaluation index. Based on the experimental result and expert experience, we designed
the following classification function. If the speed is less than 10 kn, the confidence of the
length and width remains the same with no correction. When the speed is 10 to 15 kn, the
factor of the long axis αH is reduced to the score, and αW remains unchanged. A speed
greater than 15 kn means the ship is driving at high speed, and the white waves generated
around the ship may also be recognized at this time. Thus, the value of the correction factor
is further reduced, as calculated in Equation (9):

f (α, v) =


αW = αH = 1, 0 < v ≤ 10kn;

αW = 1, αH = score, 10 < v ≤ 15;
αW = v

vmax
, αH = v

vmax
score, 15 ≤ v ≤ vmax

(9)

4.2. Fuzzy Point–Track Association

Traditional methods that rely on calculating spatiotemporal distances often face chal-
lenges in densely populated areas, where small differences in distances can significantly
affect the matching results and reduce matching accuracy. By employing fuzzy mathemat-
ics, similarity values can be fuzzified, allowing for a more effective handling of uncertainty.
This approach enhances robustness in ship trajectory matching [25]. In this section, the
interval type-2 fuzzy system (IT2FS) [15] is used to assess the fuzzy point–track association.
The IT2FS can implement a weighted average at the semantic level and produce precise
results from fuzzy semantic description data. Three processes are involved in the fuzzy
association of points and tracks: multi-dimensional feature similarity fuzzification [23],
fuzzy association rule generation, and fuzzy inference [26]. The membership functions of
the IT2FS are all Gaussian membership functions with the uncertain standard deviation
IT2FS_Gaussian_UncertStd [27]. The most common center-of-sets price reducer and the
Nie–Tan algorithm [28] are selected for price reduction and defuzzification.

4.2.1. Interval Type-2 Fuzzy Sets

An interval type-2 fuzzy set, denoted as
∼
F, is characterized by a type-2 membership

function φ∼
F
(x, u) = 1 as:

∼
F =

{(
(x, u), φ∼

F
(x, u)

)
| ∀x ∈ X, ∀u ∈ Gx ∼ N

(
µ, σ2

)}
(10)

where x is a membership value with the domain X; u is a membership value belonging to
the membership function Gx, and Gx is a Gaussian distribution with the mean µ and the
variance σ2.

An IT2FS is defined by its lower membership function (LMF) and upper member-
ship function (UMF), and the area between all upper and lower membership functions
constitutes the footprint of uncertainty (FOU) [29]:

UMF =
{
((x, ux)) | ∀x ∈ X, ∀u ∈ Gx ∼ N

(
µu, σ2

u

)}
(11)
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LMF =
{
((x, lx)) | ∀x ∈ X, ∀l ∈ Gx ∼ N

(
µl , σ2

l

)}
(12)

FOU =
⋃

x∈X
x × [lx, ux] (13)

where x is a membership value with the domain X; ux is the UMF belonging to a Gaussian
distribution Gx with the mean µu and the variance σ2

u ; and lx is the UMF belonging to a
Gaussian distribution Gx with the mean µl and the variance σ2

l .

4.2.2. Multi-Dimensional Feature Similarity Fuzzification

To achieve variable fuzzification, multi-dimensional feature similarities with precise
values in the point–track similarity model were mapped to a fuzzy set defined by the
domain of fuzzy reasoning [13].

Spatiotemporal fuzzy similarity Ap: This combines the spatial and temporal feature
similarities. Specifically, it refers to the distance between the location coordinates pj (latitude
and longitude) of the ship target in the RS image and the spatial position pt

i of the track
point obtained via interpolation at time t. Distance is measured by the Euclidean distance
in meters as calculated in Equation (14):

Ap(pt
i , pj) =

√(
pt

i .loni − pj.lonj)2 +
(

pt
i .lati − pj.latj)2 (14)

where loni and lati are the longitude and latitude of the track point, and lonj and latj are
the longitude and latitude of the ship target point, respectively.

Since “near and far” are common vague terms used to describe the magnitude of
distance, the fuzzy similarity Ap can be defined as Near, Medium, or Far. As shown in
Figure 8, the value range of the Euclidean distance is restricted to [0, 3000] according to
the interpolation results. The maximum distance is determined based on the interpolation
results of the trajectory. Due to fluctuations in trajectory data, the calculated distance may
have exceeded 2500 m in the preliminary experiments. Therefore, 3000 was chosen as the
maximum limit. When the Euclidean distance exceeded 3000 m, it was determined to be
irrelevant without the requirement for fuzzy inference. Here, the membership function of
spatiotemporal fuzzy similarity adopts a Gaussian membership degree. Since the existence
of fluctuations in trajectory data, it is not comprehensive to simply judge whether it is far
or near based on the distance, so the membership functions of each variable were designed
in an overlapping manner. The standard deviation center and standard deviation spread
of the variables Near and Far were 750 and 100, and the standard deviation center and
standard deviation spread of the variable Medium were 375 and 100. The value range of
the membership functions was normalized to [0, 1].

Course fuzzy similarity Ac: Ac is defined as Close or Differ to describe the difference
in the course. As seen in Figure 9, since course feature similarity is the cosine value of the
angle between the course of the target point and the course of the ship track, its value range
is [0, 1]. Based on the calculated cosine value, the course similarity can be transferred to
the fuzzy set using an overlapping Gaussian membership function, and the value range of
Ac is also [0, 1], since the smaller the angle, the smaller the deviation of the heading, the
higher the cosine value and Ac. This study adjusted the center and spread of the standard
deviation to ensure the larger cosine value fell within the range of Close. Therefore, the
standard deviation center and standard deviation spread of the variable Close were 0.125
and 0.05, and the standard deviation center and standard deviation spread of the variable
Differ were 0.3 and 0.05.
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Attribute fuzzy similarity Aa: Aa is defined as Consistent or Inconsistent. In Section 4.1.4,
the attribute feature similarity (AFS) is expressed by an exponential function with the
domain [0, 1]. As seen in Figure 10, according to the calculated exponential value, AFS can
be projected to Aa’s membership function. The bigger the exponential value, the higher the
AFS, and the larger the Aa. Then, it can be further transferred into the fuzzy set Consistent
and Inconsistent. Similar to the course fuzzy similarity, the standard deviation center of
the variable Consistent was further adjusted because the confidence of attribute fuzzy
similarity was higher. The standard deviation center and standard deviation spread of
the variable Consistent were 0.1 and 0.05, and the standard deviation center and standard
deviation spread of the variable Inconsistent were 0.3 and 0.05.
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Figure 10. Membership function of attribute fuzzy similarity.

Output: feature correlation degree As: As describes the point–track association degree.
It combines spatiotemporal fuzzy similarity, course fuzzy similarity, and attribute fuzzy
similarity, so the value range is [0, 3], and the value range of the membership function is
normalized to [0, 1]. As shown in Figure 11, the fuzzy set of As was set as Low, Medium,
and High. The feature correlation degree is the result of fuzzy calculation, Low and
High correlation degrees can be directly divided according to the median value without
considering fluctuations as in Figure 8. So, the membership function has no intersection
between Low and High. All the variables’ standard deviation center and standard deviation
spread were set as 0.4 and 0.15. In intuitive cognition, when the sum of the three similarities
is lower than 0.75, it is considered that the point–track association degree is low, but in this
study, As was obtained based on fuzzy association rules rather than by adding the three
values directly.
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4.2.3. Fuzzy Association Rules for Point-Track Matching

The fuzzy inference model uses fuzzy semantic rules to describe inference relation-
ships [30]. Based on the fuzzy processing of the input and output variables, this study uses
the common-sense reasoning of the intuitive empirical method to construct fuzzy rules for
the relationship between points and traces. Because the spatiotemporal fuzzy similarity Ap
and course fuzzy similarity Ac are applicable to any ship trajectory and target ship in the RS
image, and the attribute fuzzy similarity Aa may have missing data, the association can be
divided into two steps. The first step is to correlate the fuzzy similarity of spatiotemporal
and course features to obtain the basic correlation A′

s. In the second step, based on the basic
correlation A′

s, the attribute of fuzzy similarity is added for further association, and the
point–track association is ultimately obtained as the degree As.

In the first step, the fuzzy inference rule for basic associations is described as follows:

A′
s = Low, i f Ac is di f f er or Ap is f ar

A′
s = Medium, i f Ac is close and Ap is medium

A′
s = High, i f Ac is close and Ap is near

(15)

where Ap is the spatiotemporal fuzzy similarity and Ac is the course fuzzy similarity. The
fuzzy inference rules consider the basic correlation A′

s between two fuzzy similarities in
different states.

In the second step, by combining the obtained A′
s with the attribute of fuzzy similarity

Aa, the fuzzy inference rule of the point–track correlation degree is described as follows:

As = Low, i f A′
s is Low

As = Low, i f A′
s is Medium and Aa is inconsistent

As = Medium, i f A′
s is High and Aa is inconsistent

As = High, i f A′
s is Medium and Aa is consistent

As = High, i f A′
s is High and Aa is consistent

(16)

where As is the point–track correlation degree and its value relates to the different states of
the basic correlation A′

s and the attribute fuzzy similarity Aa.

4.2.4. Spatiotemporal Association of Multi-Source Ship Locations

To achieve the fuzzification of variables, similarities with precise values in the point–
track similarity model were mapped to the fuzzy set defined by the discourse universe
of fuzzy reasoning. Assuming that the ship target set extracted from the RS image is
S(t) = [S1, . . . , Sm], m is the number of ships extracted from the current image, and t
is the RS image capture time. The trajectory set in the spatial extent of the image is
T(t) = [T1, . . . , Tn], with n being the number of trajectories queried around the image
capture time. The spatiotemporal association of multi-source ship locations individually
matches the extracted ship targets with the queried trajectories. The matching process has
three steps, as detailed below.

Step 1: Calculate the fuzzy correlation degree matrix. For the ship trajectory Ti and
ship position Sj, the feature correlation degree Ai,j

s is calculated by applying the point–trace
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correlation fuzzy inference module above. For m ship targets in S(t) and n tracks in the
trajectory set T(t), the fuzzy correlation degree matrix As(t) can be calculated as:

As(t) =

 A1,1
s · · · A1,n

s
...

. . .
...

Am,1
s · · · Am,n

s

 (17)

Step 2: Generate the cost matrix G(t). In As(t), the value range of Ai,j
s is [0, 3].

The larger the value, the higher the similarity. When the value is lower than the thresh-
old σ (σ = 1 in this study), it can be directly considered to have no related relationship,
as follows:

Ai,j
s = 0, ifAi,j

s < σ (18)

If all the elements of a row are 0, the image ship corresponding to this row does
not have a correct matching track, so it is removed from the matrix to reduce matching
operations. After normalization, for m targets and n tracks after filtering, the cost matrix
G(t) is defined as:

G(t) = 1 − As(t) (19)

In G(t), the value range is still [0, 1]; a smaller value indicates a lower cost and higher
matching degree.

Step 3: Match the point and track. According to the results of the fuzzy correlation
degree matrix Ai,j

s , the degree of correlation between the same ship and multiple trajec-
tories may be greater than the threshold σ, and the point–track matching problem can
be converted into a matching problem for weighted bipartite graphs. The Hungarian
algorithm [31] is used to determine the optimal match.

For m ship targets in S(t) and n tracks in T(t), assume that S1 can match with T1 and
T2, and A1,1

s > A1,2
s . First, the algorithm matches T1 with S1 according to the principle

of the highest degree of correlation, and S1 → T1 is called the matching edge. Then,
turning to finding the matching edge of S2, assuming that S2 can only match with T1, then
S2 → T1 → S1 → T2 is called an augmented path. The augmented path starts from an
unmatched ship target (S2), passes through a non-matching edge ( S2 → T1 ), matching
edge ( T1 → S1 ), and non-matching edge ( S1 → T2 ), and ends at another unmatched track
(T2). The core of the Hungarian algorithm is to find all augmented paths of each ship target
until there is no new augmented path. Algorithm 1 presents the recursive process for
determining the augmenting path.

Algorithm 1. Hungarian algorithm

Input : A m ×
n cos t matrix G(t), including m ship targets in S(t) and n tracks in trajectory set T(t).
Output: The matching pairs between ship trajectory sets and ship targets

1. while (the ship target Si have a matching track Tj) do

2. if
(

the track Tj is not in the augmenting path) then

3. add Tj into the augmenting path;

4. if
(

Tj is a non −
matching point or it′s able to find another augmenting path starting from Tj) then

5. change the matching edge as Si → Tj ;
6. return true;
7. end if
8. end if
9. return false
10. end while
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4.3. Ship Detection and Evaluation Indicators

The application of the object detection models can help easily obtain the position
and bounding box of the ship in RS images, and then apply these to achieve similarity
extraction as in Section 4.1. Deep learning techniques, such as oriented R-CNN, have
proven to be effective for ship detection. We performed detection based on a pretrained
model trained on the HRSC2016 dataset [32]. The original GF1 and GF2 images were
cropped into 1024 × 1024 patches for detection. The prediction bounding boxes of the
ship were expressed in terms of confidence, and we retained the prediction results with
confidence larger than 0.8 for filtering. At this time, the intersection over union (IoU) of the
model result is the highest, that is, the coincidence between the detection result and the
ship position is optimal. Figure 12 presents the results of ship detection using the oriented
R-CNN algorithm.
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We first outline a method for evaluating trajectory matching results. As shown in
Figure 13, for each ship to be verified, we obtained its bounding box from the RS image and
measured the length and width using ArcGIS. Based on the trajectory matching results, we
retrieved the MMSI number, allowing us to query ship size information from the archives.
If the difference between the two size measurements was below the threshold of 3 m,
the matching result was deemed correct. In this study, manual visual interpretation was
employed to verify the matching results between ship entities and AIS trajectories, yielding
31 and 37 correctly matched entities in GF1 and GF2 images, respectively.
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5. Analysis of Experimental Results
5.1. FOU Evaluation

The results of the model were determined by UMF and LMF. FOU characterizes the un-
certain information of fuzzy sets. We evaluated different FOU sizes by adjusting the range
of [lx, ux] in formula 13 to obtain the optimal parameter results. As shown in Figure 14,
(a–f) are membership functions at different FOU sizes, and (g) is the corresponding model
result. We used the F1 value as a comprehensive evaluation indicator. Since the resolutions
of GF1 and GF2 were different, we counted the matching results for GF1 and GF2. The FOU
size “±5%, ±10%, ±20%, ±30%, ±40%, ±50%” inferred the F1 scores of 0.6957, 0.6970,
0.7188, 0.7188, 0.7302, and 0.7213, respectively, in GF1 images, and 0.8049, 0.8571, 0.8533,
0.8611, 0.8732, and 0.8732, respectively, in GF2 images. The model achieved the best result
when the FOU size was ±40%.

5.2. Accuracy Evaluation

We experimented and verified the point–track similarity matching model using GF1
and GF2 images. Table 1 presents the experimental results for GF1 and GF2 within the
correlation degree range of 0.4 to 0.8, as extremes may suppress potential matches.

As shown in Table 1, in GF1 images, the F1 score remains at a high level of 0.7302
when the correlation degree was 0.5. The F1 score decreases sharply at higher thresholds.
According to the fuzzy association rules, if the feature similarity results fall within the
medium range, it is considered a true match. Under these conditions, the requirements
for point–trace matching are relatively low, resulting in higher accuracy and recall. As
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the threshold increases, the fuzzy correlation degree becomes higher, leading to stricter
matching criteria. Consequently, the number of successful matches in the medium range
decreases, resulting in a sharp drop in recall, while accuracy remains largely unchanged.
These findings indicate that a high fuzzy correlation degree can effectively ensure the
correctness of matching results.

In Table 1, it can be seen that for the GF2 images, the matching model guarantees
a higher F1 score of 0.9189 when the correlation degree is set to 0.5. In the case of low
resolution, the ship sizes in the GF1 images are less than half that in the GF2 images (2 m
for GF1 and 0.8 m for GF2). This reduced size makes it challenging to identify ships under
sailing conditions. In contrast, stationary ships, such as those moored at sea or in ports,
are easier to detect. During manual verification, nearly half of the entities in the detection
results of the GF1 images were ships docked in ports. The proximity to shore contributes
to more false detections, while the AIS track points for moored ships can be affected by
waves and positioning inaccuracies, leading to irregular point clusters that complicate
course feature utilization. Consequently, these factors contribute to poor matching results.
With improved resolution in GF2 images, the recognition of ships is markedly enhanced,
making it easier to identify vessels in a sailing state. As a result, the point–trace matching
performance in GF2 significantly outperforms that of GF1.
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Table 1. Matching results in Gaofen-1 and Gaofen-2 images among different correlation degrees. The
maximum value is in bold.

Dataset Correlation Degree Total Match True Match Accuracy Recall F1

GF1

0.4 32 23 0.7188 0.7419 0.7302
0.5 32 23 0.7188 0.7419 0.7302
0.6 19 14 0.7368 0.4516 0.5600
0.7 19 14 0.7368 0.4516 0.5600
0.8 11 8 0.7273 0.2581 0.3810

GF2

0.4 37 34 0.9189 0.9189 0.9189
0.5 37 34 0.9189 0.9189 0.9189
0.6 36 33 0.9167 0.8919 0.9041
0.7 36 33 0.9167 0.8919 0.9041
0.8 33 32 0.9697 0.8649 0.9143

Figure 15 shows the matching results obtained using the proposed model. The num-
bers are the MMSI numbers of the corresponding ships. For example, the MMSI number of
the ship matched by the trajectory corresponding to the yellow line in (a) in the figure is
431,000,841.
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5.3. Performance Comparison

In this study, the ablation and compared experiments were designed to verify the
effectiveness of the proposed method. We compared the point–track correlation results
using multi-feature combinations on images of different resolutions (GF1 and GF2). The
ablation experiment was divided into three groups, and the parameters of the model
were kept consistent or default. The first group was the spatiotemporal fuzzy similarity
with the combination of time and space. The second group was the spatiotemporal fuzzy
similarity and course fuzzy similarity. The third group was the proposed method with all
the fuzzy similarities. The comparison experiment was performed by multi-factor fuzzy
comprehensive decision-making (MFCD) and classification and regression trees (CART);
the correlation degree was set as 0.5. Both MFCD and CART use multi-dimensional
feature similarities. To apply the CART algorithm, we constructed 81 ship-matching
samples for training according to feature similarities following the organizational format
of the Iris dataset. Tables 2 and 3 show the accuracy and recall of matching for the GF1
and GF2 images.
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Table 2. Matching results in Gaofen-1 images. The maximum value is in bold.

Algorithm Total Match True Match Accuracy Recall F1

Spatiotemporal 15 12 0.8000 0.3871 0.5217
Spatiotemporal + Course 20 13 0.6500 0.4194 0.5098

MFCD 30 20 0.6667 0.6452 0.6557
CART 30 18 0.6000 0.5806 0.5902

Proposed method 32 23 0.7188 0.7419 0.7302

Table 3. Matching results in Gaofen-2 images. The maximum value is in bold.

Algorithm Total Match True Match Accuracy Recall F1

Spatiotemporal 35 25 0.7143 0.6757 0.6944
Spatiotemporal + Course 41 32 0.7805 0.8649 0.8205

MFCD 30 24 0.8000 0.6486 0.7164
CART 38 32 0.8421 0.8649 0.8533

Proposed method 37 34 0.9189 0.9189 0.9189

Table 2 lists the ablation and comparison experimental results for the GF1 images.
The proposed method achieves the best F1 score of 0.7302, which is greater than those of
MFCD and CART. At the same time, the performance of the first two groups is relatively
poor. When only spatiotemporal fuzzy similarity is applied, the accuracy of point–trace
matching reaches a peak of 0.8; however, the recall rate is very low, indicating that while
spatiotemporal positioning can serve as a foundation for matching, its effectiveness is
limited. Adding course fuzzy similarity does not significantly improve accuracy or recall,
which aligns with previous observations about the low resolution of GF1 images, where
most ships are docked near the port, making course features challenging to utilize. In
contrast, the proposed method, which incorporates attribute fuzzy similarity, enhances the
confidence of the matching results. This addition helps to compensate for the limitations
posed by low resolution and the difficulties in using course features, leading to more
reliable matching outcomes.

Table 3 shows the ablation experiment results and comparison experiment results for
GF2 images. As the number of features increases, the accuracy of the proposed model also
improves, with the F1 score reaching 0.9189 when all features are utilized. Notably, the
highest recall rate is achieved with the second feature combination, attributed to the greater
number of ships in a sailing state in the GF2 images. Unlike GF1, the course feature in
GF2 is more accurate and effectively utilized. However, the recognition of sailing ships
can be influenced by wakes, which affect attribute information extraction as discussed in
Section 4.1.4. Although some corrections are applied, errors persist, leading to a slight
decrease in recall when all similarities are employed. Nevertheless, the inclusion of attribute
similarity significantly filters out incorrect matches, resulting in a 13% increase in accuracy.

In general, the incorporation of feature similarities significantly enhances point–track
matching results. The proposed method achieves optimal performance with all fuzzy
similarities across different resolutions, demonstrating that a higher image resolution
correlates with improved outcomes. This underscores that the proposed model, based on
multi-feature combinations, effectively facilitates point–track associations.

5.4. Efficiency Comparison

We evaluated the efficiency of the methods in both ablation and comparative exper-
iments by measuring their running times across different resolutions. The average time
consumed by each method for all GF images is summarized in Table 4. It is important
to note that this experiment utilized the ClickHouse database to retrieve AIS data during
execution, requiring the traversal of all tracks within the image range, with a time span of
5 min before and after the image capture. Consequently, running time is proportional to the
number of trajectories; more tracks lead to increased running times. Thus, the basic time
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consumption for using only spatiotemporal fuzzy similarity is notably high. As the number
of similarities increases, the running time of the proposed model also rises gradually, but
the increase is relatively small. This suggests that adding similarity features does not
significantly escalate the computational burden. However, the time consumption of the pro-
posed method is longer than that of the multi-factor fuzzy comprehensive decision-making
(MFCD) method, indicating that while the use of IT2FS may sacrifice some efficiency, it
results in higher matching accuracy.

Table 4. Matching results in Gaofen images. The minimum value is in bold.

Algorithm Time(s)

Images
GF1 GF2

Spatiotemporal 326.5 824.7
Spatiotemporal + Course 370.5 863.3

Proposed method 381 895
MFCD 382.5 627

6. Conclusions

There are more specific areas, such as port approaches, critical infrastructure, and
fishing areas, where AIS data alone are not reliable and other methods for ship observation
and detection have to be applied. Matching automatic identification system data and
remote sensing images is one of the opportunities for interested parties to perform their
job properly. This study introduces a multi-feature-based point–track association method
that integrates AIS trajectory data with RS images, utilizing the Interval Type-2 Fuzzy Sets
(IT2FS) approach for fuzzy point–track association. The experiments conducted using the
GF1 and GF2 images demonstrate that while the proposed method sacrifices some efficiency,
it achieves optimal performance, with F1 scores of 0.7302 for GF1 and 0.9189 for GF2,
indicating better association results at higher resolutions. This study’s contributions include
the comprehensive utilization of four characteristics—space, time, course, and attribute—to
extract relationships between ships and their trajectories, as well as the development of
a similarity modeling method for multi-dimensional features. Additionally, a feature
fuzzification method and fuzzy matching rules were designed, with fuzzy mathematics
employed to construct the relationship between ambiguity and similarity. Ultimately,
point–track matching is accomplished using the Hungarian algorithm.

However, the proposed method has certain limitations. First, its application scenario is
primarily suited for ship trajectory matching in the sailing state. In the mooring state, course
features are less effectively utilized, which can restrict the model’s accuracy. Secondly, the
accuracy of the attribute features depends on the ship recognition results. Higher model
recognition accuracy leads to better attribute feature accuracy. Additionally, the speed
threshold is determined not by the algorithm itself but through empirical experiments and
expert insights. Therefore, in future research, we will distinguish and extract ship features
under sailing and berthing states to improve the model’s generalization, and consider
realizing the automatic extraction of ship speed based on deep learning technology to better
deal with these distortions.
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