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Preface

Nepal with all its pristine nature, but so vulnerable for the wreaths of climate change. To see the en-
durance in the eyes from the Nepali people, and the way they are adapting to the changing nature,
gives you the idea that we can overcome climate change as humanity. Even the slightest contribu-
tion to understanding the phenomenon that are happening in these mountain ranges, gave me a deep
sense of fulfilment. It is there that I figured out, that in the upcoming years I want to contribute to the
academic field.

The work in front of you is the final product of 8 years of studying. I had the incredible opportunity to
commit myself for 8 months on this inspiring topic. This thesis contributes in better understanding the
drivers behind extreme discharge events in the Karnali River Basin. It emphasizes that only a slight
change in temperature, will alter the timing and magnitude of extreme events. Created by the melting
processes of snow accumulation on high mountain ranges.

One of professors ones told me, to keep being inspired you have to surround yourself with people
that know more then you. That is when you truly grow. That is precisely how I felt the last months.

I want to thank the ‘Save the Tiger, Save the Grasslands! Save the Water’ project for making this
thesis possible. Keep continuing all the incredible work you are doing for Nepal. My gratitude to the
extremely helpful supervision I got from my committee. It was truly inspiring to work closely together
with people that have so much passion for what they are doing. One of the reasons I would like to
continue working in this field.

I want to thank my fieldwork buddies for our beautiful campaign in Nepal and all the hilarious mo-
ments we had. Where you really showed me the love you have for your country.

To all the friends I made in the last 8 years, I feel like a rich man and will cherish my student time for
the rest of my life. I want to give special words of gratitude to all my friends living at t’ Duintje. Where
home really feels like home. You were there for me, every step of the way.

I want to thank my beautiful family, who taught me among many thinks, to separate essentials from
shadows and dust. But most of all, for there undying support in whatever I choose to do in life.

This thesis is in memorial from my dearest grandmother, who was and will always be, a source of
inspiration for me.

Bart Jan Sebastiaan Bravenboer
Delft, August 2024
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Abstract

The Karnali River Basin, one of Nepal’s major watersheds, faces significant challenges due to climate
change, which is expected to intensify temperature fluctuations and alter precipitation patterns. Re-
search has shown that snow mass in this region is highly sensitive to even minor temperature fluctu-
ations, making it a critical factor in hydrological dynamics. This study aims to investigate how snow
accumulation across different elevation ranges, combined with temperature fluctuations, influences
river discharge in the Karnali Basin, with a particular focus on identifying the drivers of extreme flood-
ing events.

Using the SPHY hydrological model, forced with high-resolution ERA5 climate data, this study mod-
eled river discharge and, with the aid of a custom Python code based on SPHY’s snow module logic,
analyzed how snow is accumulating across various elevation bands within 111 delineated sub-basins
in the Karnali Basin. The analysis was further refined using a RandomForestClassifier to identify key
relationships between snow accumulation, temperature fluctuations, and extreme discharge events.

The study revealed that snow accumulation at elevations between 4000 and 5000meters, combined
with temperature increases 5 to 15 days prior to an event, are critical predictors of extreme discharge
in the Humla Karnali and Mugu Karnali rivers. The Flow Duration Curves (FDCs) indicated a 41%
increase in high-flow segments under snow-dominated scenarios, underscoring the significant role of
snowmelt in driving extreme flooding events. Additionally, the machine learning model predicted with
up to 96% accuracy when the discharge would exceed critical thresholds, particularly in key indicator
regions within the Upper Karnali.

The findings highlight the critical importance of monitoring snow accumulation and temperature
trends in the Karnali Basin, as their interplay is a significant driver of extreme hydrological events. This
study contributes to a better understanding of the factors driving extreme discharge events in snow-
fed river systems, providing valuable insights for improving flood prediction and water resource man-
agement in the region. Future research should focus on refining predictive models and incorporating
additional climatic variables to enhance accuracy under changing climate conditions.
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1
Introduction

1.1. Research area
The KRB, with a surface of more then 46,100 km², is located in western Nepal between 28°20’ and
30°41’ north latitude and 80°33’ and 83°40’ east longitude (Khatiwada & Pandey, 2019).

The KRB, one of Nepal’s three major basins alongside the Gandaki and Koshi basins to the central
and east, features the Karnali River entering from the Humla-Karnali near Khojarnath, with its primarily
snow-fed tributaries (Khatiwada et al., 2016). The basin further divides into five significant watersheds:
West Seti, Humla Karnali, Mugu Karnali, Tila, and Bheri, with all except the Humla Karnali, which
originates in China, being sourced within Nepal (Khatiwada et al., 2016). Unlike most Nepali rivers that
flow north to south, the Mugu Karnali flows east to west, and the Humla Karnali flows west to east. The
Karnali River traverses western Nepal before joining the Mahakali River in India, where it continues as
the Ghaghara River in India’s lower reaches. (Khatiwada et al., 2016).

Figure 1.1: Geographical position KRB in Nepal. Illustrating the heterogeneous elevation distribution.
The Karnali River Basin configures at Chisapani, crossing the border into India. Where is flows into

the Ghaghara River eventually emerging into the Ganges River.
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1.2. Climate
The climate of the KRB is shaped by its complex topography and the interplay between monsoonal and
westerly wind systems. The towering Mahabharata range, with elevations between 1,500 and 2,700
meters, plays a critical role in disrupting the flow of monsoon winds within the basin. As these moist
winds from the Indian Ocean ascend the southern slopes of the Himalayas, they cool and condense,
releasing most of their moisture as precipitation on the southern flanks (Bookhagen & Burbank, 2006).
This process, known as orographic precipitation, is responsible for the significant rainfall observed
in the southern regions of the basin during the summer monsoon season, which lasts from June to
September. During this period, Nepal receives about 80% of its annual rainfall, with an average of
1,530 mm (Shrestha, 2000).

Figure 1.2: Illustrates rain shadow effect and the heterogeneous distribution of cumulative precipitation due to
orthographic lifting by the Mahabharata range.

However, the impact of the orographic barrier results in a stark contrast in precipitation between
the southern and northern regions of the KRB. The northern areas, situated in the rain shadow of the
Himalayas, receive significantly less precipitation. As the monsoon winds lose much of their moisture
before crossing the high peaks, the northern regions experience a marked reduction in rainfall, with
annual totals often falling below 600 mm (Palazzi et al., 2013). This rain shadow effect, combined
with the high elevation and the complex interaction between monsoonal and westerly wind systems,
contributes to the arid conditions observed in these northern parts (Anders et al., 2006) (Treichler et al.,
2019).

In contrast, localized pockets within the mountainous areas can receive over 2,400 mm of rainfall
annually, due to the orographic relief that enhances precipitation in certain areas (Palazzi et al., 2013).
Overall, river discharge within the KRB is primarily driven by summer monsoon precipitation, but is also
supplemented by baseflow and the melt of snow and glaciers during the winter, when westerly winds
play a more significant role in the region’s climate (Dahal et al., 2020). This complex climatic pattern
underscores the diverse hydrological responses observed across the basin.
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1.3. Basin characteristics
Snow-fed sub-basins
Humla Karnali and Mugu Karnali
These sub-basins are primarily fed by snowmelt from the high-altitude regions of the Himalayas. The
discharge in these rivers typically peaks in late spring to early summer (April to June) as tempera-
tures rise and snowmelt accelerates. Historically, these sub-basins have exhibited relatively stable
flow patterns with moderate seasonal fluctuations. However, there has been a slight increase in vari-
ability due to changes in snowmelt timing, influenced by rising temperatures over the past few decades
(Budhathoki et al., 2023).

Rainfall-fed sub-basins
Bheri and Seti
These sub-basins are more directly influenced by the monsoonal rainfall, with discharge patterns char-
acterized by pronounced seasonal variability. Peak flows occur during the monsoon season, particu-
larly in August, when intense rainfall causes significant increases in river discharge. For instance, the
Bheri River contributes about 439 m³/s and the Seti around 302 m³/s to the overall flow at Chisapani
during this period . These high-flow events are often followed by much lower discharges during the dry
season (winter months), with flows dropping as low as 335 m³/s in February (Lamichhane et al., 2024).

Figure 1.3: Different sub-basins find their outlet points downstream and converge together at
Chisapani.

High flow and low flow patterns
High Flow (Monsoon Season)
The monsoon season (June to September) dominates the hydrology of the KRB, particularly in the
rainfall-fed sub-basins. The intensity of the monsoonal rainfall can lead to rapid increases in river dis-
charge, often resulting in peak flows that are several times higher than the baseflow observed during
the dry season. The highest recorded discharge occurs in August, a direct response to the concen-
trated rainfall during the monsoon. This pattern is critical for water resources, agriculture, and flood
management in the region.

Low Flow (Dry Season)
During the dry season (November to March), the flow in the rivers across the KRB significantly dimin-
ishes. The snow-fed rivers, such as the Humla Karnali and Mugu Karnali, maintain a relatively steady
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baseflow during this period due to the gradual melting of glacial ice and snow. However, the rainfall-
fed rivers like the Bheri and Seti exhibit much lower discharges during these months, reflecting the
lack of significant precipitation. The low-flow periods are critical for understanding water availability for
drinking, irrigation, and ecological sustainability in the region.

Observed changes over the past decades
Over the past three decades, the KRB has experienced a noticeable increase in the extremity of its
flow regimes. The frequency and magnitude of high-flow events during the monsoon have risen, partly
due to more intense and erratic rainfall patterns. Meanwhile, the low-flow periods have also shown
increased variability, with some years experiencing significantly lower discharges during the dry sea-
son. These changes have been attributed to broader climatic shifts, including rising temperatures and
changes in precipitation patterns, which have altered both the timing and volume of snowmelt and rain-
fall (Lamichhane et al., 2024). In summary, the KRB hydrology is characterized by marked seasonal
variability, with distinct high-flow and low-flow periods influenced by the interaction of snowmelt and
monsoonal rainfall.

1.4. Introduction to hydrological modeling in the KRB
Modeling the hydrological processes in the KRB is crucial for understanding and managing the water
resources in this complex region. The basin’s diverse topography, climate, and hydrological dynamics
necessitate the use of sophisticated models that can capture the variability in water flow and storage
across different sub-basins. Hydrological models used in this context can be broadly categorized into
three types: lumped models, distributed models, and flood models. Each of these models is founded
on different principles and is suited to specific aspects of hydrological simulation.

1. Lumped Models
Lumped models simplify the representation of a watershed by treating it as a single or aggregated set
of units, without spatial differentiation within the watershed. The model inputs, such as precipitation
and temperature, are averaged across the entire basin or sub-basin, and the outputs, such as runoff,
are also aggregated.

• Fundamental Principles
Lumped models are based on empirical relationships between inputs and outputs. They often
rely on calibrated parameters to simulate hydrological processes, without detailed spatial repre-
sentation.

• Application in Tamakoshi basin, eastern Nepal
An example of a lumped model used in the KRB is the Snowmelt Runoff Model (SRM), which
has been applied to predict snowmelt-driven runoff in the Himalayan regions, including the KRB.
SRM simplifies the complex snowmelt processes into basin-wide averages, making it practical
for large-scale, data-scarce environments (Budhathoki et al., 2023).

2. Flood Models
Flood models are specialized tools designed to simulate the dynamics of flood events, including the
movement, extent, and timing of floodwaters. These models can be either lumped or distributed but
are specifically tailored to predict flooding risks.

• Fundamental Principles
Flood models incorporate detailed hydraulic simulations, often using high-resolution Digital Ele-
vation Model (DEM) and hydrodynamic equations to predict how floodwaters will spread across
the landscape. They also integrate real-time meteorological data to simulate the progression of
flood events.

• Application in KRB
In the KRB, the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model has
been widely applied for flood hazard mapping and risk assessment. The model was used to
simulate flood events of varying return periods, ranging from 2-year to 1000-year floods. For
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instance, a study conducted on a 38 km segment of the Karnali River downstream from Chisapani
used HEC-RAS to model flood scenarios based on historical discharge data. The study found that
flood depths could reach up to 23 meters at Chisapani bridge during extreme events like the 1000-
year return period flood, with significant impacts on both infrastructure and agricultural lands. The
simulation of the 2014 flood, which was one of the most severe in the basin’s history, showed that
the floodwaters inundated critical infrastructure, including schools, health facilities, roads, and an
airport, highlighting the model’s importance in flood risk management and emergency planning.
(Aryal et al., 2020).

3. Distributed Models
Distributed models provide a detailed spatial representation of the watershed by dividing it into smaller
grid cells or units, each with its own set of hydrological parameters. Thesemodels account for variations
in topography, land use, soil properties, and climatic conditions across the basin.

• Fundamental Principles
Distributed models are based on physically-based equations that describe the movement of wa-
ter through the landscape. They integrate spatial data, such as DEM, to simulate hydrological
processes at a fine scale.

• Application in KRB
An example of a distributed model used in the KRB is SPHY (Spatial Processes in Hydrology)
model, specifically the version calibrated by P. Pokhrel. This research is part of a larger project
”Save the Tiger, Save the Grasslands, Save the Water”. Recognizing the intricate link between
climate change, land use, river dynamics, and tiger populations, the Save the Tiger project seeks
to gain a comprehensive understanding of the complex factors affecting Himalayan grasslands.
Their focus includes examining the impact of changing weather patterns, analyzing water flow
within the Himalayas, investigating potential changes in river behavior due to climate change,
and studying factors like groundwater availability and floodplain dynamics in the plains. By study-
ing these combined influences on vegetation and deer populations, the project aims to identify
the conditions most conducive to thriving tiger populations. This knowledge will be instrumental
in developing effective conservation strategies for both tigers and their critical grassland habitat
in the face of a changing climate. Additionally, this knowledge will aim to improve effective and
sustainable water management in the KRB

SPHY is particularly well-suited for the KRB due to its ability to capture the spatial variability
in hydrological processes such as snowmelt, infiltration, and runoff. By dividing the basin into
smaller grid cells, SPHY accounts for the differences in topography, land cover, and climatic
conditions across the basin. This detailed spatial representation allows for a more nuanced and
accurate simulation of the basin’s hydrological dynamics, making it an ideal tool for studying
complex regions like the KRB.

Assumptions and Challenges
The SPHY model is based on the principle of mass conservation, ensuring that the total amount
of water entering, leaving, and being stored within a system is accurately accounted for—a con-
cept often referred to as the water balance. The model defines dominant hydrological processes
through specific equations and parameters, and it employs a subgrid variability approach to rep-
resent these processes with precision at finer spatial scales. Each grid cell can vary in glacier
cover and land use, affecting key processes like interception, effective precipitation, and potential
evaporation. This detailed approach allows SPHY to effectively model the complex interactions
and variations in the hydrological cycle across diverse landscapes.
However, SPHY also operates under key assumptions that can impact its accuracy. One such
assumption is the lumped parameter approach, which implies that parameters are uniformly dis-
tributed within each model element. While this simplifies the modeling process, it can introduce
inaccuracies due to the natural heterogeneity of catchments. Additionally, the model assumes
a deterministic nature of processes, presuming that physical processes can be represented in
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a predictable manner given specific initial conditions. The inherent complexity and variability of
real-world catchments can challenge these assumptions, potentially affecting the model’s overall
accuracy. (Budhathoki et al., 2023; Lamichhane et al., 2024).

Calibrated SPHY model by P.Pokhrel
The Pearson correlation coefficients across different exceedance intervals in the KRB demon-
strate the strong performance of the SPHY model in simulating discharge. With correlations
consistently high, particularly around a mean of 0.98, the model effectively captures the over-
all hydrological behavior of the basin. Even at the extreme ends, where the correlation slightly
decreases, the SPHY model still shows considerable robustness. This slight dip at the highest
exceedance intervals is a common challenge for distributed models and does not detract from
the model’s overall accuracy and reliability in predicting discharge. The results affirm that SPHY
is well-suited for hydrological simulations in the KRB, with only minor adjustments needed to
enhance its performance in extreme high-flow events.

Figure 1.4: The observed discharge at Chisapani is shown in green, overlaid with the SPHY-simulated discharge
for the same location.

Figure 1.5: Pearson correlation coefficient comparing the SPHY-simulated discharge with the observed discharge
at Chisapani for the different exceedence intervals.



2
Problem statement

2.1. Climate change and jeopardizing water resources
The Himalayan region, widely recognized as one of the most vulnerable areas on Earth to climate
change, is experiencing significant warming that surpasses the global average (Bhutiyani et al., 2007).
This warming is accompanied by pronounced fluctuations in precipitation (Palazzi et al., 2013), which
include an increase in extreme weather events (Goswami et al., 2006) and accelerated glacial retreat
(Bolch et al., 2011). These ongoing trends, observed over recent decades, have had substantial conse-
quences for Himalayan glaciers and water resources (Immerzeel, 2010). Studies suggest that climate
change will significantly impact annual water supplies, with even more pronounced effects on seasonal
availability (Singh & Bengtsson, 2004). The resulting alterations in river discharge from Himalayan
rivers have profound and long-term implications for water resources, which directly affect the liveli-
hoods of both resident and downstream populations (Akhtar et al., 2008). This potential threat extends
beyond water scarcity, posing significant risks to food and energy security, increasing the likelihood
of natural hazards, and degrading environmental quality, ultimately impacting overall livelihoods and
quality of life (Rasul, 2014).

Future climate change scenarios for the Himalayas present a complex picture of precipitation pat-
terns, posing significant challenges for managing water resources in the region. Studies by (Eklabya
P, 2009) and others highlight a concerning trend of decreasing minimum river flows, which are crucial
for maintaining water availability during dry periods. This decline in base flow is further compounded
by projected disruptions to established precipitation patterns. While overall summer precipitation in the
Himalayas is expected to increase, this trend comes with two key features:

1. Increased Intensity
The frequency of extreme precipitation events and the overall intensity of daily precipitation are
projected to rise. This implies shorter bursts of heavier rainfall, which can lead to flash floods and
increased erosion, while doing little to replenish water reserves effectively.

2. Fewer rainy days
Paradoxically, even with the projected increase in total summer precipitation (an average increase
of 0.8 to 1.2 mm per day between 2006 and 2100 under Representative Concentration path-
way (RCP) 8.5), the number of rainy days is expected to decrease (approximately 8 days over
the same period). This translates to longer intervals of dry weather interspersed with intense
downpours, creating a more unpredictable and potentially less reliable water supply.

Recent research (Lamichhane et al., 2024) introduces critical new insights into the growing threat of
increased flooding and more pronounced temperature fluctuations in the region. These findings build
upon the existing understanding of climate change effects on the Himalayan region, particularly within
the context of water resource management. This study also highlights a significant rise in both precipita-
tion and temperatures under future climate scenarios. Specifically, (Lamichhane et al., 2024) projects
a substantial increase in river discharge under the Shared Socioeconomic pathway (SSP)—which are
scenarios used to model future climate impacts. Under SSP245, which represents a moderate climate
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change scenario, extreme discharge events are expected to increase by 27.12% to 54.88%. Even
more alarming is the projection under SSP585, a scenario representing more extreme climate change,
where extreme discharge events could rise by 45.4% to 93.3%.

This increase in discharge directly correlates with heightened flood risks, as more intense and fre-
quent precipitation events are likely to overwhelm river systems, leading to more frequent and severe
flooding. Moreover, the study emphasizes the rapid rise in temperature, particularly minimum temper-
atures, which are expected to increase by 0.049°C to 0.97°C per year under SSP245, and by 0.057°C
to 0.187°C per year under SSP585 across different future periods. These elevated temperature fluctu-
ations contribute to accelerated snowmelt and glacial retreat, further exacerbating the risk of flooding,
especially during the monsoon season when precipitation is already at its peak.

Given the projected increase in temperature fluctuations due to climate change, as highlighted in
recent studies, it becomes crucial to understand the relationship between snow accumulation in the
KRB, temperature variations, and river discharge. Recents studies (Pandey et al., 2024) underscore
the significance of snowmelt as a critical component of river discharge, particularly in regions like the
Himalayas where snowmelt can contribute significantly to annual water flow. In the context of the KRB,
where snowmelt already plays a vital role in the hydrological cycle, the increased temperature fluctu-
ations anticipated under future climate scenarios pose a significant risk. Large snow accumulations,
combined with sudden temperature spikes, could lead to rapid snowmelt, thereby overwhelming river
systems and causing extreme flooding events. This is particularly concerning during the pre-monsoon
and early monsoon seasons, when snowmelt is a major contributor to river discharge. Studies by
(Pandey et al., 2024) reveals that even slight changes in temperature can significantly alter the tim-
ing and volume of snowmelt, potentially leading to a mismatch between peak snowmelt and rainfall,
which could exacerbate flood risks. The KRB, with its heavy reliance on snowmelt for river discharge,
is especially vulnerable to such dynamics. Therefore, understanding the interplay between snow ac-
cumulation, temperature fluctuations, and river discharge is critical for predicting and mitigating flood
risks in the region.

In conclusion, as climate change intensifies temperature fluctuations, the potential for spontaneous
and extreme flooding due to rapid snowmelt in the KRB increases. This necessitates a deeper ex-
ploration of snow accumulation patterns, temperature variations, and their combined impact on river
discharge, to better inform flood management and water resource strategies in the region.



3
Objectives and Research questions

Overarching goal
The primary objective of this study is to gain a better understanding of the interplay between snow accu-
mulation, temperature fluctuations, and river discharge in the KRB. This research aims to investigate
both the spatial and temporal dynamics of snow accumulation across various elevation ranges. Specif-
ically, the study seeks to predict how discharge patterns will change in response to different levels of
snow accumulation in specific areas of the KRB under varying temperature scenarios. By achieving
this, the study will provide insights into the conditions under which snow accumulation and temperature
changes lead to significant alterations in river discharge, thereby enhancing our understanding into the
drivers of extreme flooding events.

Research questions
Main Research Question:
How do snow accumulation, temperature fluctuations, and their interplay influence river discharge in
the KRB, particularly in understanding the drivers of extreme flooding events?

Sub-Questions:

• How can snow accumulation across different elevation ranges in the pre-monsoon period be
effectively modeled and visually represented to identify snow-dominated scenarios?

• How do the FDC) of the KRB vary under different combinations of snow-dominated and rain-
dominated scenarios compared to the climatological baseline?

• What is the relationship between snow accumulation at various elevation ranges, lagged temper-
ature, and river discharge in the KRB, as identified by the RandomForestClassifier model?

• Can specific areas within the KRB be identified as indicator regions for extreme discharge events,
and can the trained machine learning model generate probabilities of exceedance based on snow
accumulation at certain elevations, combined with lagged temperature conditions prior to these
events?

9



4
Methodology

This study uses a structured methodological approach to investigate the hydrological responses of the
KRB under extreme weather conditions. The primary aim is to analyze how the basin reacts to these
extremes, thereby gaining a deeper understanding of the key climatological parameters influencing
these responses.

The study focuses on understanding the interplay between snow accumulation, lagged temperature,
and extreme discharge events. After provoking these reactions in the basin, the study further explores
whether predictions can be made about when critical thresholds of accumulated snow, combined with
elevated temperatures, might lead to extreme discharge, thereby enhancing our understanding of these
complex dynamics. Each research question is addressed through specific analytical approaches.

Research Question 1: How can snow accumulation across different elevation ranges in the pre-
monsoon period be effectively modeled and visually represented to identify snow-dominated
scenarios?
To answer this question, the study utilizes the ERA5 dataset, which provides high-resolution climate
data across different elevation ranges in the KRB. During the pre-monsoon period (February to May),
the dataset is reshuffled to create a proxy for years with high snow accumulation. This data is then
processed using a custom interactive Python code, developed specifically for this study, to model and
visually represent snow accumulation across various elevation ranges. The calibrated SPHY model is
subsequently employed to simulate these dynamics, producing detailed visual and quantitative outputs
that identify snow-dominated scenarios within the basin.

Research Question 2: How do the FDC of the KRB vary under different combinations of snow-
dominated and rain-dominated scenarios compared to the climatological baseline?
This question is addressed by generating and comparing FDC on a yearly temporal scale for the KRB
under different extreme weather conditions. Using the ERA5 dataset and the SPHY model, the study
simulates both snow-dominated and rain-dominated scenarios. These scenarios are then used to
create FDC, which graphically depict the frequency and magnitude of river discharge under various flow
conditions. By comparing these curves to a climatological baseline, the study identifies how different
combinations of snowmelt and rainfall influence discharge patterns, offering insights into the basin’s
hydrological behavior under extreme conditions.

Research Question 3: What is the relationship between snow accumulation at various elevation
ranges, lagged temperature, and river discharge in the KRB, as identified by the RandomForest-
Classifier model?
In this phase, the study expands its scope by dividing the KRB into 111 delineated areas, allowing for
a more granular analysis of snow accumulation across all elevation ranges. The interactive Python
code developed for Research Question 1 is again utilized to model snow accumulation in these newly
delineated areas. This snow accumulation data, along with lagged temperature data, is analyzed us-
ing the RandomForestClassifier, a machine learning algorithm. This approach helps to understand
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the relationship between snow accumulation at different elevations, preceding temperature variations,
and subsequent river discharge, thereby enhancing our understanding of how these factors interact to
influence hydrological outcomes.

Research Question 4: Can specific areas within the KRB be identified as indicator regions for
extreme discharge events, and can the trained machine learning model generate probabilities
of exceedance based on snow accumulation at certain elevations, combined with lagged tem-
perature conditions prior to these events?
Building on the previous analysis, the study identifies key sub-basins within the 111 delineated areas
that significantly contribute to extreme discharge events. The RandomForestClassifier model is applied
to snow accumulation and temperature data across these areas, with a focus on identifying those
regions most strongly associated with high discharge events. The model is then used to generate
probabilities of exceedance, based on snow accumulation and lagged temperature conditions, thereby
pinpointing specific indicator regions that can serve as early warnings for potential flooding.
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Figure 4.1: Flowchart answering research question one and two
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Figure 4.2: Flowchart answering research question three and four
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4.1. Fase 1: ERA5 Dataset
 Process
The ERA5 dataset, produced by the EuropeanCentre for Medium-RangeWeather Forecasts (ECMWF),
provides global climate and weather data at a high temporal resolution. This dataset integrates obser-
vations from various sources using advanced data assimilation systems and offers data at an hourly
time step with a spatial resolution of approximately 31 km (0.25 degrees), making it highly valuable
for regional and local-scale climate studies. ERA5 includes parameters such as precipitation, mini-
mum temperature, and maximum temperature. For this study, the ERA5 data will be utilized on an
averaged daily scale, with daily average temperature measured in degrees Celsius and daily average
precipitation measured in mm/day. It is important to note that these are not basin-wide averages but
are specific to each 31 km² cell within the basin, with the ECMWF assigning average values to each cell.

The data is available as NetCDF (Network Common Data Form) files, which are commonly used for
array-oriented scientific data. To illustrate the type of data we are dealing with, figure 4.3 demonstrates
the spatial distribution of precipitation and average daily temperature across the KRB for a specific date,
July 6, 1991. This figure serves as an example of how the data is structured and input into the model,
showing the spatial resolution and daily values assigned to each cell.

Figure 4.3: left figure: showing the spatial distribution from the ERA5 precipitation data on the 6th of July, 1991.
Rigth figure: showing the spatial distribution from the ERA5 average temperature data on the 6th of July, 1991

Additionally, we use a DEM to account for the topographical variation within the basin. The DEM has
an extent ranging from 454,534.611 to 767,034.611 in the x-direction and from 993,300 to 993,962 in
the y-direction. The map has a width of 625 pixels and a height of 555 pixels. The data type is Float32,
a thirty-two bit floating point. The map uses the PCRaster Raster File format. Band 1 of the map shows
various statistics: the maximum elevation is 8,165.9419 meters, the mean elevation is 3,451.2985 me-
ters above Mean Sea level (MSL), the minimum elevation is 132.0146 meters above MSL, and the
standard deviation is 1,760.0297 meters. The valid data percentage for Band 1 is 99.66%. The pixel
size is 500 by 500 meters.

This DEM is divided into elevation ranges to facilitate the analysis of climatic variables across dif-
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ferent topographical features. By segmenting the basin according to these elevation ranges using the
DEM Raster Calculator in QGIS, we can better understand how different elevations impact climatic and
hydrological processes within the basin.

Importance of Elevation Ranges
In this study, the diverse topography of the KRB, which ranges from lowland areas to high moun-

tainous regions, requires careful consideration of different elevation ranges. This heterogeneity signifi-
cantly affects climatic conditions within the basin. Higher elevations typically experience more snowfall,
impacting snow accumulation and melt processes, while lower elevations are more prone to rainfall.
The temperature gradient across these elevations also influences runoff patterns and the overall hy-
drological response. Thus, accurately capturing these variations is essential for understanding the
basin’s response to different climatic scenarios. This approach is supported by studies such as those
by (Viviroli et al., 2007) (Garbrecht & Schneider, 2008) The elevation ranges used in this study (0-1000,
1000-2000, ..., 7000-8000 meters) are consistent with classifications used in similar research, confirm-
ing their appropriateness for evaluating climatic and hydrological responses (Painter et al., 2010).

 Output
1. A NetCDF file with a spatial resolution of 31 km², which assigns average daily values for precipi-

tation (P ) and temperature to each cell. This dataset spans 30 years (1991-2022), with P given
in mm/day and temperature (Tavg, Tmin, Tmax ) in degrees Celsius (°C).

2. The basin is divided into different elevation ranges based on the input DEMmap, facilitating further
analysis.

4.2. Fase 2: Clipping and Aggregating ERA5 Data
 Input
ERA5 dataset and DEM segmented by elevation ranges

 Process
The ERA5 dataset with a spatial resolution of 31 km² is processed to assign each cell to its correspond-
ing elevation range based on the DEM segmentation. Once the cells are categorized by elevation
range, the data within each range is averaged. This results in a single average value of temperature
and a single average value of precipitation for each elevation range and for each day. Specifically, the
process involves:

1. Assigning Cells to Elevation Ranges
Each 31 km² cell from the ERA5 dataset is assigned to an elevation range: 0-1000m, 1000-2000m,
2000-3000m, 3000-4000m, 4000-5000m, 5000-6000m, 6000-7000m, 7000-8000m above MSL
based on the DEM. This categorization is done by comparing the cell’s location with the seg-
mented DEM elevation ranges.

2. Averaging Data Within Each Elevation Range
The process is facilitated by a custom code executed in Scientific PYthon Development Environ-
ment (SPYDER), which reads the ERA5 data and performs zonal statistics to compute mean
values for each elevation range. The temperature data (Tavg, Tmin, Tmax ) is similarly averaged for
all cells within each elevation range. The specific code used for this process can be found in the
Appendix.

3. Producing Daily Average Values
The daily average values for temperature and precipitation for each elevation range are computed
for the period from January 1, 1991, to December 31, 2022.
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 Output
The output is a set of processed datasets that include daily averaged temperature (Tmin, Tavg, Tmax)
and precipitation for each elevation range. These datasets provide one average value for tempera-
ture and one for precipitation for each elevation range and each day, prepared for further analysis in
subsequent steps. Additionally, the basin is divided into different elevation ranges based on the input
DEM. This detailed segmentation allows for a precise analysis of the climatic variables across different
topographical features.

Figure 4.4: Left figure: clipped elevation ranges KRB on basis of DEM. Right figure: clipped precipitation by
elevation range [4000-5000 m MSL] on 6th of July, 1991

4.3. Fase 3: Snow module
 Input
The input for the snow module is derived from the previously processed datasets, which provide daily
average temperature and precipitation data for each elevation range. These datasets form the basis
for further analysis and modeling of snow accumulation and melt processes within the study area.

 Process
The Snow Module consists of eight components: the determination of the snow/rain threshold value,
precipitation solid/liquid, potential snow melt, actual snowmelt, snow store update, refrozen water, total
snow storage and elevation range scaling.

1. Snow/rain threshold value
The snow/rain threshold value is a critical parameter used to distinguish precipitation falling as
either snow or rain. This threshold is determined based on the average daily temperature. In
the calibrated SPHY model for the KRB, the threshold is set at 2◦C, aligning with findings in the
literature (Rajagopal & Harpold, 2016). The threshold value directly influences the timing and
amount of snowmelt. If the threshold is set too high, precipitation that should be classified as
snow may be incorrectly classified as rain, leading to underestimation of the snowpack and pre-
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mature snowmelt predictions. Conversely, a threshold set too low may result in overestimation
of the snowpack and delayed snowmelt predictions (Wen et al., 2013).

Maps of precipitation and snow borders for March 18, 1993, and May 29, 1993, illustrate signif-
icant inter-seasonal temperature differences within the basin, highlighting its heterogeneity. By
the monsoon season, precipitation levels increase across the basin, particularly in the southern
and central regions. The changes in the snow border reflect seasonal warming and the rise in the
snow/rain threshold, showing substantial differences in snow coverage between the beginning
and end of the monsoon period. While these maps are snapshots in time, similar patterns are ob-
served when comparing other years. Literature suggests this pattern is likely due to topography,
as moist air masses are uplifted by the Mahabharata range (1500–2700 m.a.s.l), causing high
precipitation in localized areas due to orthographic effects

Figure 4.5: Left figure: Rain border comparison 18 th of February vs. 29th of May changing due to the average daily
temperature. Right figure: spatial distribute precipitation on the 18th of February vs. 29th of May.

The module classifies precipitation as snow or rain based on the average temperature (Tavg). If
Tavg is below a certain threshold (e.g., 2°C), the precipitation is classified as snow; otherwise, it
is classified as rain.

2. Precipitation solid and liquid
Columns for solid precipitation (Ps,t) and liquid precipitation (Pl,t) are created based on the tem-
perature threshold.

Ps,t =

{
Pet, if Tavg,t ≤ Tcrit

0, if Tavg,t > Tcrit

Pl,t =

{
Pet, if Tavg,t > Tcrit

0, if Tavg,t ≤ Tcrit

3. Potential snow melt (Apot)
The potential snow melt is calculated for days when the average temperature is above 0°C, using
the following formula:

M(t) = M(t− 1) · ek·(T−Tthreshold)

where:

• M(t) is the snow mass at time t (km3),
• M(t− 1) is the snow mass at the previous time step (km3),
• k is the degree-day factor (°C−1),
• T is the daily average temperature (°C),
• Tthreshold is the threshold temperature (°C) above which snowmelt starts.
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This formula incorporates several critical factors that influence the snowmelt process. The degree-
day factor (k) correlates air temperature with the rate of snowmelt, typically expressed in mm/day
per degree Celsius. Adjusting the k value allows for the calibration of the model to accurately
simulate snowmelt under varying conditions. For instance, during a warm period followed by
snowfall, the ground releases heat, accelerating the melting of newly fallen snow, thus requiring
an increased k value. Conversely, during a cold period followed by snowfall, minimal ground heat
flux results in more stable snowpack, maintaining a standard k value.

Figure 4.6: Snow melt over time at different temperatures with a sensitivity parameter [k] = 0.002

Temperature (T ) is directly input into the snow melt formula, typically using a rolling mean of daily
average temperatures from the moment snow falls to the end date of the calculation, which can
be variably set. The threshold temperature (Tthreshold) is set at 2◦C, a scientifically grounded
choice that effectively represents the transition between snow and rain in various climatic condi-
tions (Braun, 1993)(Hock, 2003)

4. Actual snow melt (Aact)
The actual snow melt is computed by taking the minimum of the potential snow melt and the
previous day’s snow store.

Aact,t = min(Apot,t, SSt−1)

5. Snow store (SS) update
The snow store is updated daily based on the solid precipitation and actual snow melt.

SSt =

{
SSt−1 + Ps,t + SSWt−1, if Tavg,t < 0

SSt−1 + Ps,t −Aact,t, if Tavg,t ≥ 0

6. Refrozen water (SSW ) calculation
The maximum refrozen water is determined using a snow storage capacity coefficient (SSC), and
the actual refrozen water is calculated accordingly.

SSWmax,t = SSC × SSt

SSWt =

{
0, if Tavg,t < 0

min(SSWmax,t, SSWt−1 + Pl,t +Aact,t), if Tavg,t ≥ 0



4.3. Fase 3: Snow module 19

7. Total snow storage (SST )
This is the sum of the snow store and the melt water that has refrozen within it.

SSTt = (SSt + SSWt)

8. Snow accumulation (km³)
This scaling process, conducted in QGIS, uses vectorized elevation ranges as an overlay for the
DEM. The results provide area-scaled elevation ranges, allowing for the determination of snow
or rain volumes accumulating at different elevations. The majority of the surface lies within the
0-6000 meters above MSL range, with higher elevations having progressively narrower ranges
due to the tapering of mountain slopes.

Figure 4.7: Surface areas for different elevation ranges

Finally, the snow accumulation is calculated by converting the total snow storage to cubic kilome-
ters, adjusted for the area of the region.

Snow_accumulation (km³) =
(

SST

1, 000, 000

)
× Area

 Output
For each elevation range, an average temperature value for a specific day is scaled by area and input
into the melt module, where the output is the initial snow mass minus the melted quantity. This process
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can be applied to any start and end dates, providing flexibility in the analysis period. The output of the
snow module is the snow accumulation per elevation range on a given date.

4.4. Fase 4: Scenario selection
 Input
The input for this stage is a function designed to calculate snow accumulation in the KRB between
two specified dates. This function leverages the ERA5 dataset and the outputs from previous steps to
compute the necessary metrics, taking both dates and elevation ranges as inputs.

 Process
The process involves establishing criteria for ranking the years based on three metrics: rain amount,
snow accumulation, and rain intensity. A custom Python script, developed for this thesis, processes
these metrics as follows:

1. Input handling
The script takes two dates and elevation ranges as inputs to define the analysis period. The
chosen periods are February to May for the pre-monsoon season and June to September for the
monsoon season. While these periods are not rigid and can vary yearly, they are fixed in this
study for comparative purposes.The chosen periods align with standard climatological seasons
recognized in the region. According to research, the pre-monsoon season in India spans from
March to May, and the monsoon season extends from June to September (Roxy et al., 2017).
This segmentation allows for consistent comparison across years, despite natural variability in
season onset and duration.

2. Data processing
The script reads the ERA5 dataset, applies classification logic to distinguish between rain and
snow, implements the snow module for every day in each elevation range. It visualizes these
ranges, providing insights into the periods of the year when most precipitation occurs at different
elevations.

3. Calculation of metrics

• Rain amount
Aggregates rainfall over the specified period and scales it by surface area to compute the
volume in km³.

• Snow accumulation
Calculates the total snow accumulated over the period, including initial and end-date accu-
mulations.

• Rain intensity
Computes the average daily rainfall intensity in mm/day.

Additionally, the script identifies the top 20 precipitation events to provide insights into extreme
weather patterns. This information will be valuable in interpreting the FDC after integrating the data
into the SPHY model.

 Output
The output consists of three scenarios designed for further analysis:

• High snow accumulation scenario
Identifies the top four years with the highest snow accumulation in the pre-monsoon period.

• High rain amount scenario
Identifies the top three years with the highest total rain amount during the monsoon period.
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• Rain-on-snow scenario
Identifies two years with significant snow accumulation followed by two years with intense mon-
soon rainfall.

These scenarios will be used in subsequent steps to analyze their impact on runoff and water dis-
charge in the basin, providing a comprehensive understanding of extreme events and their implications.

4.5. Fase: 5 Reprocessing ERA5 data for scenario analysis
 Input
The input for this stage consists of four-year sequences derived from different scenarios. Before these
sequences can be used to force the SPHY model, they need to be preprocessed to be ready for the
three scenario runs.

 Process
The preprocessing involves consolidating ERA5 data, which serves as the forcing data for SPHY. This
includes precipitation (P ) , minimum temperature (Tmin), average temperature (Tavg), and maximum
temperature (Tmax). The entire dataset needs to be organized into 1460 individual Network Common
Data Form (NetCDF) files, corresponding to 365 days for each of the four years, sequentially numbered
from 1 to 1460. The Python code developed for this thesis outlines the following steps in the process:

1. File Extraction

• The script begins by extracting the relevant files for each of the specified years from the ERA5
dataset. This is done by iterating over each row in a DataFrame that lists filenames and
constructing a filename pattern based on the specified parameter (e.g. P , for precipitation).

• The script checks if each file exists in the source directory and, if found, copies it to the
destination directory. This ensures that all necessary data files are available for further pro-
cessing.

2. File renaming

• Once the files are extracted, they need to be renamed according to a specific pattern. This
renaming is crucial for ensuring that the files are correctly recognized and processed during
the SPHY model runs.

• The script uses regular expressions to match the old filename pattern and then constructs
new filenames. This involves incrementing a counter and adjusting the filename components
to adhere to the required format. The new filenames are sequentially numbered from 1 to
1460.

3. Consolidation into individual NetCDF files

• Each renamed file represents a single day of data. These files are stored as individual
NetCDF files, ready to be used as input for the SPHY model runs.The Python code for these
steps can be found in the Appendix.

 Output
The output of this stage is the restructured ERA5 data, ready for use in the three different scenarios in
the SPHY model.

4.6. Fase 6: Forcing ERA5 Data in the calibrated SPHY Model
 Input
The input for this stage consists of the preprocessed NetCDF files from the previous stage, specifically
1460 files each for P , tmin, tavg, and tmax. These files serve as the forcing data for the SPHY model.
Additionally, various area characteristics need to be loaded to get the model running, including DEM,
slope maps, local drain direction (Idd) map, sub-basin outlines, and stations maps.
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 Process
The SPHY model, developed by FutureWater and calibrated for the KRB by P. Pokhrel, is a spatially
distributed, leaky bucket type model applied on a cell-by-cell basis. It does not include energy bal-
ance calculations, focusing instead on water balance to minimize complexity and runtime. This lumped
conceptual hydrological model treats the entire catchment as a single unit, assuming homogeneity in
the hydrological response. This simplification allows for ease of use and lower computational demand,
making lumped models ideal for regions with limited data availability.

A key feature of SPHY is its modular structure, allowing users to toggle modules on or off depending
on the specific requirements of the study. This adaptability makes SPHY a versatile tool for various
hydrological applications. The following modules are being implemented in the calibrated model SPHY
model for the KRB.

Key Modules in SPHY
1. Snow Module

The snow module simulates snow accumulation and melt processes on a daily basis. It uses
a degree-day approach where potential snowmelt is proportional to the temperature above a
specific threshold. The model also accounts for refreezing of meltwater within the snowpack, in-
fluencing overall snow storage and runoff.

2. Routing Module
The routing module calculates water flow from each cell to its downstream neighbor using a flow
accumulation scheme. For cells without lakes, the accumulated flow includes contributions from
the cell itself and upstream cells. If lakes are present, a fractional flow accumulation scheme
adjusts the lake storage available for routing based on its actual storage.

3. Groundwater Module
This module simulates water movement through different soil layers and the groundwater reser-
voir. It includes three compartments: the root zone, sub-soil, and groundwater store. Water
balance equations simulate interactions among these compartments, including surface runoff,
lateral flow, percolation, and base flow.

Area characteristics Required
To run the SPHY model, several static input maps and parameters need to be specified:

• DEM
Represents the elevation of each cell and is crucial for generating other maps like slope and ldd.

• Slope map
Created from the DEM to determine the steepness of each cell.

• Idd map
Indicates the flow direction from each cell to its steepest downslope neighbor, essential for routing.

• Sub-basins map
Divides the basin into smaller areas for detailed hydrological analysis.

• Stations map
Identifies locations for reporting time-series data of various model fluxes. For this fase the coor-
dinates from Chisapani will be used.

• Climate variable forcing data
Include precipitation, tavg, tmin, and tmax NetCDF files.

• Soil and land use maps
Define the soil hydraulic properties and land use characteristics affecting infiltration and evapo-
transpiration.

SPHY reports back on a wide range of parameters, including those related to the snow module.
However, it does not provide snow accumulation data per elevation range, which is essential for our in-
depth analysis of the correlation between snow accumulation at specific ranges and extreme discharge
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events. Therefore, we developed our own code to calculate these metrics.

The logic of the snow module in SPHY is consistent with the logic implemented in our custom code
to maintain coherence. This ensures that we can draw clear correlations between snow accumulation
in our model and discharge data from the SPHY model.

 Output
The output of this stage is the calculated discharge at the Chisapani outlet point, derived from the
processed ERA5 data using the SPHY model. This discharge data will be crucial for analyzing the
hydrological response of the basin under different scenarios.

4.7. Fase 7: Analyzing Trends and Creating FDC
 Input
The input for this stage is the discharge data output from the previous chapter, specifically at the Chis-
apani outlet point.

 Process
A FDC is a graphical representation of stream flow variability within a specific period at a given location.
It plots the percentage of time that discharge values are equaled or exceeded, offering insights into
the flow regime’s variability and the frequency of different flow magnitudes. FDC are widely used in
hydrology for water resource management, environmental flow assessments, hydro power potential
estimation, and flood and drought analysis. They provide a comprehensive overview of the river flow
characteristics, allowing for effective planning and management of water resources (Ridolfi et al., 2020)
(Smakhtin, 2001).

The custom Python code, developed specifically for this purpose, performs several steps to gener-
ate an FDC and analyze its characteristics for a specified year.

1. Validation and data loading
The function FDC_plot(year) begins by verifying that the input year is an integer. It then opens
an Excel file containing discharge data and checks if the specified year is present as a sheet. The
discharge data for the specified year is read from the Excel sheet.

2. Data sorting and preparation
The discharge data is sorted in descending order, and the index is reset to ensure a sequential in-
dex. The total number of data points is calculated, and a new column for percentage exceedence
is created, representing the percentage of time a particular discharge is exceeded.

3. Discharge binning and frequency analysis
The discharge data is divided into bins, and the frequency of discharge values within each bin
is calculated. The bin with the highest frequency is identified, and the minimum, maximum, and
average discharge values for this bin are computed. The cumulative sum of counts for each bin
is calculated to determine the exceedence probability for the minimum and maximum discharge
values.

4. Statistical measures
The mean, median, and mode of the discharge data are calculated. Indices corresponding to
these values are identified to extract the percentage exceedence values for each.

5. Plotting the FDC
The FDC is plotted, showing the relationship between discharge and percentage exceedence.
Statistical measures such as mean, median, and mode are represented as lines on the plot.
Shaded areas highlight specific exceedence ranges (0-1% and 1-10%), providing a visual repre-
sentation of the variability in discharge.
On the x-axis, the FDCshows the percentage of time that a specific discharge value is exceeded.
This gives an idea of the flow duration or frequency of different flow magnitudes. On the y-axis,
it displays the discharge values (in cubic meters per second), indicating the flow rate at different
exceedance probabilities.
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 Output
The output is a flexible Python function capable of generating FDC for any given year within the 30-year
period, along with key statistical characteristics such as mean, median, and mode discharges. This
allows for a comprehensive analysis of discharge trends and their variability over time.

4.8. Fase 8: Outlet Points
 Input
FDC

 Process
Building on the insights gained from the analysis of the FDC, the next step involves identifying extreme
discharge events at key outlet points within the basin. Outlet points are positioned at the end of sub-
basins, including Upper Karnali, Seti, and Bheri. Additionally, we maintain the outlet point at Chisapani
to understand the timing and magnitude of discharges from various sub-basins in correlation with ex-
treme events at Chisapani. We are particularly interested in understanding which tributaries contribute
significantly to these high discharge rates, the timing of these discharges, and whether the various
sub-basins exhibit synchronous behavior with extreme events observed at Chisapani.

Figure 4.8: Outlet points Seti, Bheri, Upper Karnali and Chisapani

By rerunning the scenarios with this integrated outlet map, we can focus on the behavior of the
different outlet points at the end of the sub-basins under various conditions. This analysis will help
determine the specific contributions of each sub-basin to the overall discharge during extreme events.

 Output
Discharge data for sub-basins (Upper Karnali, Bheri, Seti, Tila)
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4.9. Fase 9: RandomForestClassifier
 Input
Discharge data from outlet points

 Process
The next step in the methodology involves implementing a RandomForestClassifier to analyze the
lagged discharge data from various sub-basins. RandomForestClassifier is an ensemble learning
method that constructs multiple decision trees during training and outputs the mode of the classes
for classification tasks (Cutler et al., 2012). This approach begins by generating a multitude of deci-
sion trees, each trained on a different subset of the dataset. These subsets are created through a
process called bootstrapping, where random samples are taken from the original data, allowing some
data points to be repeated while others are omitted. This variation ensures that each decision tree sees
a slightly different view of the data, promoting diversity among the trees.

Figure 4.9: Example from a decision tree generated by the RandomForestClassifier machine learning model.
Building a path from the root to the leaves that represents the decision-making process of the model.

In a decision tree, there are three main components: Root Node, Decision Node, and Leaf Node.

1. Root Node
The root node is the topmost node in a decision tree. It represents the first feature that is used
to split the data. In this tree, the root node is ”Upper Karnali 7 day lag <= 1465 m³/s.” This node
splits the entire dataset based on whether the Upper Karnali 7-day lagged discharge is less than
or equal to 1465 m³/s.

2. Decision Node
Decision nodes are points where the data is further split based on different features. These nodes
represent decisions or tests on the features that divide the data into smaller subsets. In the dia-
gram, decision nodes are shown in blue. For example, ”Seti 5 day lag <= 1603 m³/s” is a decision
node that splits the subset of data where the Upper Karnali 7-day lag is less than or equal to 1465
m³/s.

3. Leaf Node
Leaf nodes, shown in red, are the endpoints of the tree where no further splitting occurs. These
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nodes represent the final decision or outcome based on the features. Each leaf node provides
a classification or a target value. For example, the leaf node at the bottom right with ”Gini = 0,
Samples = 0.9%, Target = 1” indicates that for the given path through the tree, the outcome is
predicted with a certain level of purity (Gini impurity of 0).

These nodes work together to classify or predict outcomes based on the input features, building a path
from the root to the leaves that represents the decision-making process of the model.

Each decision tree in the forest independently makes a prediction based on the input data. In a
classification context, these trees will classify the input into one of the possible categories. The Ran-
domForestClassifier aggregates these individual predictions to make a final decision. It does this by
taking a majority vote among all the trees: the class that receives the most votes from the individual
trees becomes the final output of the forest. This voting mechanism enhances the robustness and
accuracy of the model by mitigating the risk of overfitting, which can occur when relying on a single
decision tree that might capture noise or anomalies in the data.

Moreover, RandomForestClassifier also provides a measure of feature importance. During the train-
ing process, it evaluates the contribution of each feature to the model predictive power by analyzing
how the inclusion or exclusion of specific features affects the accuracy of the trees. Features that con-
sistently improve the decision trees’ accuracy are deemed more important. This ability to rank features
by importance is valuable for understanding the underlying data patterns and for making informed de-
cisions about which features are most relevant for the classification task.

Random forests are also effective in handling large datasets with higher dimensionality. According
to (Biau & Scornet, 2016), the method ensemble nature allows it to efficiently manage and process large
volumes of data while maintaining high predictive accuracy. The algorithm’s robustness and flexibility
make it suitable for various applications, from image classification to medical diagnosis. Furthermore,
studies (Strobl et al., 2007) highlight that random forests can handle missing values and maintain per-
formance with imbalanced datasets, which are common challenges in real-world data scenarios. These
attributes underscore the versatility and reliability of RandomForestClassifier in diverse fields of study.

In this context, we will use the RandomForestClassifier to determine how the discharge data from
different sub-basins 1, 5, and 10 days prior to an extreme event correlate with discharge events exceed-
ing 8000 m³/s at Chisapani. This analysis will help us understand the contribution of each sub-basin to
extreme discharge events and whether there are synchronous patterns in their behavior leading up to
significant events.

 Output
A detailed understanding of the lagged discharge from the various sub-basins in relation to extreme
events at Chisapani. This will provide insights into how the sub-basins behave in the days leading up to
significant discharge events, helping to clarify the dynamics of high discharge occurrences in the KRB.
Additionally, we will attempt to identify threshold data for 1, 5, and 10 days prior to the event and their
standard deviations. This will provide insight into the accuracy of the prediction and how well these
thresholds can function as indicators. A lower standard deviation indicates a better threshold value
because it reflects less variability and higher reliability in predicting extreme discharge events, making
it a more consistent and dependable predictor.

4.10. Fase 10: Delineation Basin
 Process
Based on the work of Pandey (2020), the KRBwas delineated into 111 sub-basins using ArcGIS Soil and
Water Assessment 2012 (ArcSWAT2012). A threshold area of 3000 hectares was defined to generate
the river network. The variation in sub-basin sizes, ranging from 44 to 3182 square kilometers, arises
due to several factors.
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• Topographical Features
The natural topography of the basin, including mountains, valleys, and plains, influences how the
land is divided. Steeper areas may require smaller sub-basins to accurately capture the rapid
changes in elevation and flow direction (Zomer et al., 2008).

• Hydrological Connectivity
Sub-basins are delineated to ensure hydrological connectivity, meaning that they are defined by
natural drainage patterns. This ensures that each sub-basin drains into a specific point in the
river network, maintaining the integrity of the watershed. (Kennard et al., 2007).

• Threshold Area for Stream Delineation
The threshold area, set at 3000 hectares, determines the minimum drainage area required to
form a stream. This value is used to initiate the river network and influences the number and
size of sub-basins. Areas with higher drainage density may have smaller sub-basins, while flatter
regions with less drainage density might have larger sub-basins (Kennard et al., 2007).

• Spatial Heterogeneity
To accurately model the diverse hydrological processes within the basin, the delineation process
accounts for spatial heterogeneity. This means that regions with varying land use, soil types,
and climatic conditions are divided into appropriately sized sub-basins to ensure that each area’s
unique characteristics are adequately represented in the model (Zomer et al., 2008).

After delineating the 111 sub-basins, the DEM Raster Calculator in QGIS, integrated with a Python
code, was used to further subdivide these areas into different elevation ranges. The same tool was
also employed to scale the areas according to their specific elevations, ensuring precise categorization
and assignment of areas. This processed and stored data provides detailed information for subsequent
analysis.

 Output
111 delineated areas with distinct elevation bands. Each area is subdivided into elevation ranges and
scaled according to the surface area present at each elevation. Given the substantial elevation het-
erogeneity within the basin, each delineated area has been further divided into eight elevation ranges:
0-1000 meters, 1000-2000 m, 2000-3000 m, 3000-4000 m, 4000-5000 m, 5000-6000 m, 6000-7000
m, and 7000-8000 meters above MSL. This ensures that the data is ready for the next step. Figure 1
shows one of these delineated areas in detail.
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Figure 4.10: Showing one of the 111 delineated areas within the KRB

4.11. Fase 11: Resampling ERA5 Data
 Input
111 delineated areas

 Process
The next step in the methodology involves resampling ERA5 data to generate cumulative rainfall and
lagged temperature data for different elevation bands. This process is crucial for identifying indicators
of extreme discharge events within the KRB. The use of cumulative rainfall and lagged temperature as
predictors is supported by extensive research in hydrology and climatology.

Justification for Cumulative Rainfall
• Hydrological responses to rainfall
Research has shown that cumulative rainfall is a critical factor in triggering extreme discharge
events. The total amount of rainfall over a period significantly influences the soil moisture and
saturation levels, which in turn affect the runoff and river discharge. Discussed by literature (Smith
et al., 2015) is the concept of contributing areas and how rainfall accumulation affects runoff and
discharge. By incorporating cumulative rainfall data, we can better understand and predict peak
discharge events.

• Event-based rainfall-runoff modeling
Studies have utilized event-based models to predict peak discharge based on cumulative rain-
fall. These models take into account the temporal distribution of rainfall and its accumulation
to forecast river discharge during extreme weather events. Literature (Smith et al., 2015) pro-
vides an overview of rainfall-runoff relationships and the impact of cumulative rainfall on extreme
discharge.

Justification for lagged temperature
• Temperature influence on snowmelt and runoff
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In regions where snowmelt significantly contributes to river discharge, lagged temperature (tem-
peratures from previous days or weeks) plays an important role in determining the timing and
magnitude of snowmelt. This, in turn, affects river discharge. Studies (Kang & Lee, 2014) high-
light the importance of temperature patterns preceding sno wmelt events and their effect on runoff.

• Thermal Dynamics and River Discharge
Temperature variations influence evapotranspiration rates, soil moisture dynamics, and subse-
quently, river discharge. Understanding the lagged effects of temperature helps in predicting
the hydrological response of a basin to changing thermal conditions. Literature (Viviroli & Wein-
gartner, 2004) discusses the impact of temperature on hydrological processes in alpine regions,
providing insights into how lagged temperature data can be used as a predictor for extreme dis-
charge events.
By resampling ERA5 data, we can generate cumulative rainfall and lagged temperature data for
the 111 delineated areas, categorized by different elevation bands. This detailed dataset enables
us to analyze the spatial and temporal patterns in these indicators, enhancing our ability to predict
extreme discharge events using the RandomForestClassifier.

Temperature variations influence evapotranspiration rates, soil moisture dynamics, and subsequently,
river discharge. Understanding the lagged effects of temperature helps in predicting the hydrological
response of a basin to changing thermal conditions. The impact of temperature on hydrological pro-
cesses in alpine regions, particularly how lagged temperature data can be used as a predictor for
extreme discharge events, has been discussed extensively in the literature (D. Viviroli Weingartner,
2004).

By resampling ERA5 data, we can generate cumulative rainfall and lagged temperature data for
the 111 delineated areas, categorized by different elevation bands. This detailed dataset enables us to
analyze the spatial and temporal patterns in these indicators, enhancing our ability to predict extreme
discharge events using the RandomForestClassifier. Specifically, we examine lagged temperature
and cumulative precipitation over varying time windows, ranging from 1 to 20 days prior to each ex-
treme discharge event. The selection of this range is based on the understanding that hydrological
responses to temperature and precipitation can vary significantly depending on the duration of these
antecedent conditions. For instance, shorter lag times (1-5 days) may capture immediate responses
such as snowmelt or rapid runoff, while longer lag times (15-20 days) are critical for identifying slower
processes like soil saturation and gradual snowmelt contributions. By incorporating this range of tem-
poral scales, we can extract and examine both spatial and temporal patterns, allowing us to identify
critical thresholds and relationships that may act as indicators of impending extreme discharge events.
These three elements—cumulative precipitation over various windows, lagged temperature over the
same windows, and the extreme discharge events at the Chisapani bridge—are then integrated into
the RandomForestClassifier model. This model will be used to uncover key predictors and their inter-
actions, ultimately enhancing our ability to forecast extreme discharge events within the Karnali River
Basin.

 Output
Cumulative rainfall and lagged temperature data for 111 areas on a daily scale. This dataset will serve
as the input for subsequent analyses, allowing us to identify correlations between these indicators and
extreme discharge events.

4.12. Fase 12: RandomForestClassifier (Feature Importance Analy-
sis)

 Input
Cumulative rainfall and lagged temperature
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 Process
The next step involves using the RandomForestClassifier to analyze cumulative rainfall and lagged
temperature data for the 111 delineated areas within the KRB. This analysis focuses on determining
the significance of these two predictors in forecasting extreme discharge events in each region.

 Output
In a hypothetical analysis, the RandomForestClassifier is expected to identify lagged temperature, par-
ticularly the average temperature (tavg), as a potentially significant feature for predicting extreme dis-
charge events in the Upper Karnali region. This is anticipated because the Upper Karnali is predom-
inantly snow-fed. Conversely, for the Bheri and Seti regions, which are primarily rain-fed, cumulative
precipitation is likely to emerge as a key feature.

By establishing this hypothetical distinction, the methodology can proceed with a focused approach:

• For the Upper Karnali, subsequent analysis will hypothetically concentrate on lagged temperature
data in combination with snow accumulation.

• For the Bheri and Seti regions, the analysis will likely emphasize cumulative rainfall data.

This proposed bifurcation in the methodology aims to enable tailored predictive modeling, which
should hypothetically enhance the accuracy and relevance of predictions for each specific region.

4.13. Fase 13: Snow Module SPHY Logic implemented for delineated
areas

 Input
Lagged temperature data for Upper Karnali

 Process
The entire process described in fase 3 will be repeated for the 48 delineated areas within the Upper
Karnali. The process is performed in a Python code developed for this master thesis.

 Output
Snow accumulation data for 47 regions in Upper Karnali across different elevation ranges on a daily
scale for the snow scenario making use from the logic described in the SPHY modules.

4.14. Fase 14: Upper Karnali: Coupling Snow Accumulation, lagged
temperature and Discharge Outlets

 Input
Snow accumulation data and discharge data from SPHY (at the different outlet points) and lagged tem-
perature for the individual delineated areas

 Process
The next step involves analyzing the relationship between snow accumulation, lagged temperature,
and discharge across different elevation ranges in the Upper KRB. The snow accumulation data for 47
regions in Upper Karnali, categorized by different elevation ranges and scenarios (rain/snow/rain-on-
snow), will be used. This data is coupled with discharge data from the 47 outlet points generated in the
SPHY model outlet map.

Each of these outlet points is strategically placed at the end of each sub-basin, providing a com-
prehensive overview of the discharge patterns. The discharge data is generated by forcing the ERA5
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snow-scenario into the calibrated SPHY model for the KRB. This process aims to find the best cor-
relation between snow accumulation, lagged temperature, and discharge at the sub-basin level. The
coupling process in the RandomForestClassifier involves correlating the snow accumulation and lagged
temperature at each elevation range within each region with the discharge generated at the correspond-
ing outlet point.

Figure 4.11: Different outlet points from the 47 delineated areas within the Upper Karnali. To calculate their individual
contribution to the extreme event at the main outlet downstream.

The objective is to identify which combinations of snow accumulation, lagged temperature, and
discharge patterns are most predictive of the overall discharge observed at the main outlet point down-
stream in the Upper Karnali. This analysis aims to find the best predictors for discharge events at the
main outlet point by investigating the discharge contributions from various sub-basins.

Steps
1. Data preprocessing

Combine snow accumulation data, discharge data, and lagged temperature data into a single
dataset for analysis. Ensure that the data is aligned by date and elevation range.

2. Feature selection
Use the RandomForestClassifier to determine which snow accumulation features (e.g., specific
elevation ranges) and lagged temperature data are most strongly correlated with the discharge
data.

3. Correlation analysis
Analyze the relationships between snow accumulation, lagged temperature, and discharge for
each elevation range and sub-basin.

4. Model training
Train the RandomForestClassifier on the combined dataset to identify patterns and make predic-
tions about discharge based on snow accumulation and lagged temperature.

5. Identification of key areas
Determine which of the 47 regions show the strongest correlation between snow accumulation,
lagged temperature, and discharge patterns, and identify five areas that closely align with the
overall discharge trends at the main outlet point.
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 Output
Identification of five areas that closely correlate with discharge patterns. These areas will provide
insights into the regions within the Upper KRB that are most influential in predicting discharge events,
contributing to a better understanding of how extreme events are generated.

4.15. Fase 15: Upper Karnali: Detailed Analysis of the Five Areas
 Input
Five identified areas, each with a time frame of average snow accumulation before an extreme event
and a time frame of average lagged temperature, serving as the best indicators for predicting high dis-
charge.

 Process
Building on the results from the previous step, which identified the best indicators and key regions for
predicting extreme discharge events, this step aims to further refine the analysis by focusing on the five
most indicative areas. The previous analysis identified snow accumulation and lagged temperature
as significant predictors, with specific time periods showing strong correlations. In this step, we will
investigate the exact values of snow accumulation and lagged temperature required to predict the
probability of exceeding discharge thresholds at the main outlet point. We will conduct an examination
of snow accumulation across various elevation ranges and its correlation with extreme discharge events
downstream in the Upper Karnali. Specifically, we will quantify the probability of exceeding specific
discharge thresholds based on the constructed snow accumulation and lagged temperature data from
these key areas.

Steps
1. Data collection

Construct snow accumulation and lagged temperature data for the different elevation ranges from
the five identified key areas. This is done by resampling the ERA5 data and implementing the
snow module, as described in the previous steps. The data will include values over various
specified periods, such as 10-15 days or 25-35 days before an event for snow accumulation, and
5-10 days or 10-20 days for lagged temperature, depending on the findings from the previous
step.

2. Statistical analysis
Conduct a statistical analysis to establish correlations between snow accumulation, lagged tem-
perature, and discharge events exceeding 2000 m³/s at the main outlet. This step involves using
the RandomForestClassifier to quantify these relationships and determine the probability of ex-
ceeding the discharge threshold.

3. Probability calculation
Calculate the probability of discharge exceeding 2000 m³/s based on the snow accumulation and
lagged temperature patterns observed in the various elevation ranges. This can be done by us-
ing the trained model, where we input hypothetical snow accumulation values for the different
elevation ranges of the high indicator areas, along with their lagged temperature. The trained ma-
chine learning model (RandomForestClassifier) will provide the probability of exceedance based
on historical correlations.

 Output
The expected outcome is a trained model where hypothetical snow accumulation values for different
elevation ranges in high indicator areas can be inputted, providing the probability of exceedance for a
specified discharge downstream at the Main outlet of the Upper Karnali.
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Results

5.1. General application code
The Python code developed for this thesis offers tools for analyzing snow mass and melt patterns. It
allows for flexible comparisons between any two dates within the 1991-2022 period, enabling a detailed
examination of temporal changes. Additionally, the code quantifies where the most significant melting
has occurred and identifies the elevations with the most snow accumulation. It also determines the
snow/rain boundary, providing important insights into where snowfall transitions to rainfall.
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Figure 5.1: Average snow mass and melt distribution during the pre-monsoon period,
illustrating the proportion of rapid versus gradual snowmelt.

In addition to temporal analysis, the code generates spatial distributions of snow accumulation,
as shown in the provided figure. These spatial outputs can be easily integrated into GIS platforms
like QGIS, facilitating detailed mapping and analysis of snow storage across different regions. This

33
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combination of temporal and spatial capabilities makes the code a valuable tool for exploring the factors
that influence snow mass and melt, supporting the broader research objectives of the thesis.

Figure 5.2: Automatically generate QGIS map after implementing interactive python
code to visualize snow accumulation in pre-monsoon period

Comparison snow mass pre-monsoon versus monsoon

During the monsoon pe-
riod, there is a notable shift
in both average snow mass
and melt patterns com-
pared to the pre-monsoon
season. Over the period
from 1991 to 2022, the
data consistently shows
a significant decrease in
average snow mass during
the monsoon, indicating
substantial melting driven
by the season’s elevated
temperatures and rainfall.
While the short-term melt
remains similar to that ob-
served in the pre-monsoon
period, the long-term
melt becomes more pro-
nounced, accounting for
the majority of the total
melt. This results in a
considerably higher overall
melt volume during the
monsoon.
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Figure 5.3: Average snow mass and melt distribution during the pre-monsoon period,
illustrating the proportion of rapid versus gradual snowmelt.

In addition to the broader trends observed across different elevations, the data for the monsoon
period indicates a significant increase in themelting process at altitudes between 4000 and 5000meters
above MSL. Here, the melt rate increases by 500%, meaning the snow mass at these elevations
decreases to one-fifth of its initial volume during the monsoon. This reduction is reflected in the snow
accumulation, which starts at approximately 1.8 km³ and decreases to 0.3 km³ by the end of the period.
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This notable decrease highlights the pronounced ablation processes at these lower elevations during
the monsoon, emphasizing the susceptibility of snow reserves in this altitude range to seasonal climatic
conditions.

Comparison rain volume/intensity pre-monsoon versus monsoon

The analysis of the
figures, spanning 1991 to
2022, reveals that during
the pre-monsoon period,
a larger proportion of total
rainfall is concentrated
in the top 20 events,
highlighting the season’s
intense rainfall episodes.
In contrast, the monsoon
period shows a significant
increase in overall rainfall,
with a higher percentage of
total precipitation occurring
at higher elevations during
these top events. This
suggests that at greater
altitudes, rainfall becomes
increasingly dependent
on a few heavy events,
contributing significantly to
the overall precipitation and
runoff during the monsoon
season. Additionally, the
rain/snow boundary during
the monsoon is identified
around 3000 meters, where
precipitation transitions
from rainfall to snowfall.
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Figure 5.4: Average rainfall distribution during the pre-monsoon period (1991-2022),
highlighting total rainfall and the contribution of the top 20 rainfall events to the overall

volume.
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Figure 5.5: Average rainfall distribution during the monsoon period (1991-2022),
illustrating the significantly higher total rainfall and the influence of the top 20 rainfall

events on the total precipitation volume.

These patterns, verified by literature, indicate that the increased rainfall volume and intensity during
the monsoon are primary drivers of accelerated runoff, leading to heightened discharge and potential
flooding (Ougahi, 2024). The spatial distribution further underscores the role of elevation in influenc-
ing hydrological responses, where lower elevations receive direct rainfall, and higher elevations con-
tribute through snowmelt (Clemenzi et al., 2023). The amplified runoff due to intense monsoon events
highlights the need for hydrological models to account for both rainfall volume and intensity to predict
extreme discharge events effectively (Ougahi, 2024).

5.2. Scenario selection
Based on the flowchart, scenario selection involves evaluating and categorizing climatic data to identify
years with extreme snow and rain events. This systematic approach ensures that we capture the most
significant variations in hydrological responses, providing a comprehensive understanding of how the
system reacts to different stressors. To achieve this, we used the output from the interactive Python
code, which analyzed the ERA5 dataset to rank years based on snow accumulation and rainfall volume.
The highest-ranked years were selected to create distinct scenarios for further study.
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Scenario 1: Snow-dominated scenario
In the first scenario, we focus on the years with the highest accumulated pre-monsoon snow accumu-
lation. By selecting the four years with the highest snow volumes, we aim to observe the amplified
effects of prolonged snow accumulation. Literature suggests that consecutive years with high snow
accumulation can lead to a saturated hydrological system, making it more sensitive to temperature
shifts. For instance, Viviroli et al. (2007) highlight that repeated high snow years increase the vulner-
ability of the hydrological system to temperature variations, potentially leading to more extreme runoff
events. This scenario was designed to investigate the hydrological system’s response to consecutive
high-snow years and understand how it influences sensitivity to temperature changes. The selected
years are:

Year Snow Storage (km³) Rank
2021 8.4 (pre-monsoon) 1
1991 8.1(pre-monsoon) 2
2007 7.9 (pre-monsoon) 3
2017 7.5 (pre-monsoon) 4

Table 5.1: Top snow storage values for pre-monsoon periods ranked by year.

In the next step this consecutive years will be used as forcing data in the calibrated SPHY model
for the KRB to observe the effects on the discharge cycle.

Scenario 2: Rain-dominated scenario
The second scenario examines the hydrological response to years with the highest accumulated mon-
soon rainfall. We sequence the four years with the highest rainfall volumes to observe their amplified
effects. Studies suggest that multiple years of high rainfall can saturate the hydrological system, in-
creasing its sensitivity to additional rainfall. Consecutive high rainfall years can enhance the system’s
vulnerability to runoff events, potentially causing more extreme flooding. This scenario aims to inves-
tigate the hydrological system’s response to consecutive high-rainfall years and understand how it
influences sensitivity to extreme rainfall events (Fang, 2021). The selected years are:

Year Rain Volume (km³) Rank
2018 43.3 (monsoon) 1
2013 41.3 (monsoon) 2
2010 40.1 (monsoon) 3
2007 39.7 (monsoon) 4

Table 5.2: Top rain volumes for monsoon periods ranked by year.

Scenario 3: Rain-on-snow scenario
To broaden our understanding, we also create an rain-on-snow scenario that combines two years of
the highest snow accumulation with two years of the highest monsoon rainfall. This scenario uses the
rank 1 and 2 years for both snow and rain to provide insights into the combined effects of extreme snow
and rainfall on the hydrological system. By evaluating these combined scenarios, we aim to understand
how the hydrological system responds to simultaneous snow and rain extremes, offering a more holistic
view of the potential impacts on the system. The selected years are:

Year Snow Storage (km³) Snow Rank Rain Volume (km³) Rain Rank
2021 8.4 (pre-monsoon) 1 35.8 (monsoon) 9
1991 8.1 (pre-monsoon) 2 27.7 (monsoon) 31
2018 2.1 (pre-monsoon) 30 43.3 (monsoon) 1
2013 1.9 (pre-monsoon) 32 41.3 (monsoon) 2

Table 5.3: Comparison of snow storage and rain volume for selected years, ranked by year.
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FDC
The manipulated ERA5 dataset, now differentiated into high rain volumes and large snowfall scenarios,
is used to analyze these changes. By artificially generating high discharge events through the strategic
alignment of climatological phenomena, themodel examines how different precipitation scenarios affect
the FDC at Chisapani bridge. Chisapani bridge is selected as the outlet point since it is where the five
sub-basins converge; this is illustrated in figure .

Figure 5.6: Average snow mass and melt distribution during
the pre-monsoon period, illustrating the proportion of rapid

versus gradual snowmelt.

Figure 5.7: On the x-axis the percentage of exceedence versus discharge on the y-axis. The FDCis based on the outcome from the
calibrated SPHY model while forces with ERA5 data resampled for the rain-dominated (red line), snow-dominated (blue line) and

rain-on-snow scenario (purple line).

1. High flow segment (1-10% Exceedence Range)

• The rain-dominated scenario shows the highest increase in high flows, with 41% for high
flow mean and 41% for high flow top 1%. This is followed by the snow-dominated scenario
with a 26% increase in high flow mean and a 41% increase in high flow top 1%. The rain-
on-snow scenario, while also showing a significant increase, is slightly lower with 33% and
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38%. The primary reason for the highest increase in the rain-dominated scenario is the direct
impact of intense and frequent rainfall events, which cause rapid runoff and peak discharges.
The snow-dominated scenario benefits from significant snowmelt, but this is more gradual
compared to the immediate impact of rainfall.

2. Mid range segment (10-90% Exceedence Range)

• The rain-on-snow scenario shows the highest increase in mid-range flows, with 27% for the
mid-range mean and 34% for the mid-range top 1%. This is followed by the snow-dominated
scenario with 22% and 25%, and then the rain-dominated scenario with 20% and 37%. The
combined effects of snowmelt and rainfall in the rain-on-snow scenario provide a more stable
and sustained flow, ensuring consistent discharge levels. This balance is less pronounced
when only one factor (snow or rain) is dominant.

3. Low flow segment (90-100% Exceedence Range)

• The rain-on-snow scenario exhibits the highest increase in low flow values, with 32% for the
low flow mean and 27% for the low flow top 1%. This is more significant than the increases
seen in either the snow-dominated or rain-dominated scenarios. The snow-dominated sce-
nario shows a 15% increase in the low flow mean and an 11% increase in the low flow top
1%, while the rain-dominated scenario shows a 10% increase in the low flow mean and an
9% increase in the low flow top 1%. The rain-on-snow scenario benefits from continuous
contributions from both snowmelt and rainfall, preventing the river from reaching very low
discharge levels and ensuring higher baseflow during typically dry periods.

5.3. RandomForestClassifier
The RandomForestClassifier model identified key features contributing to extreme discharge events
at Chisapani. By analyzing the mean discharge from different sub-basins, it became evident that the
Upper Karnali sub-basin demonstrated a more stable mean discharge with a lower standard deviation
compared to others. This stability, combined with lower variability, indicated that the Upper Karnali
sub-basin is a better predictor of extreme events, making it a crucial area for further analysis.

Density Plot for Upper Karnali
for the 10 day discharge lag in pre-
dicting an extreme discharge event
at Chisapani [>8000 m³/s]. The
blue area indicates ’Target 0’, mean-
ing that 10 days later at Chisapani
there is no extreme discharge event
above 8000 m³/s, and ’Target 1’
meaning that 10 days later at Chis-
apani there will be an extreme dis-
charge event above 8000 m³/s.

Table 5.4: Mean and Standard Deviations for the lagged discharge days [1, 5, and 10] at Upper Karnali and Seti. This table
highlights the differences in variability between the snow-fed Upper Karnali and the rain-fed Seti.

River Lag Day Mean (m³/s) Standard
Deviation (m³/s)

Upper Karnali
10 1606 291
5 1772 242
1 1910 242

Seti
10 990 650
5 1747 630
1 2348 330
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Density Plot for Seti with a dis-
charge lag of 10 days before the
extreme event at Chisapani (above
8000 m³/s). The blue area indicates
’Target 0’, meaning that 10 days
later at Chisapani there is no ex-
treme discharge event above 8000
m³/s, and ’Target 1’ meaning that 10
days later at Chisapani there will be
an extreme discharge event above
8000 m³/s.

Focus on upper Karnali: lagged temperature as a predictor
Upon further analysis, we identified that the most influential climatological parameter for predicting ex-
treme events in the Upper Karnali is lagged temperature. The model highlighted that average temper-
ature, especially when lagged, serves as a critical indicator for forecasting high discharge events. This
finding aligns with the hydrological characteristics of the Upper Karnali, where temperature variations
significantly affect snowmelt timing and magnitude.

Figure 5.8: Top 20 feature importance generated by the machine learning model for the Upper Karnali. The model assigns
high feature importance to lagged temperature variables, particularly lagged tmin, making it a strong predictor of discharge

trends in this snow-fed river.

Figure 5.9: Top 20 feature importance generated by the machine learning model for the Bheri. The model assigns high feature
importance to cumulative precipitation, which aligns with Bheri’s characteristics as a rain-fed river, where rainfall directly

influences discharge patterns.
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Following the identification of lagged temperature as a key predictor in the Upper Karnali, our analy-
sis then shifted focus to the Bheri River, a rain-fed system where different climatic factors are expected
to influence discharge patterns. Given its reliance on direct rainfall, we anticipated that cumulative
precipitation would play a more significant role in predicting extreme discharge events. To validate this
hypothesis, we applied the same machine learning model to assess the relative importance of various
climatological parameters in forecasting high discharge events in the Bheri River.

Having established that lagged temperature, particularly average temperature, is a critical predictor
for extreme events in the Upper Karnali, we now turn our attention to identifying specific areas within
the basin that are most indicative of these events. By analyzing the spatial distribution of snow accumu-
lation and melt across the delineated sub-basins, we aim to determine whether certain regions exhibit
stronger correlations with extreme discharge events. This detailed examination will help pinpoint the
top five areas that not only align closely with the extreme conditions observed but also offer valuable
insights into the localized hydrological responses within the Upper Karnali.

5.4. Detailed analysis top 5 indicating areas
After completing phases 12, 13, 14, and 15, we identified five key areas that closely correlate with ex-
treme downstream discharge events at the Upper Karnali. These regions, shown in the accompanying
maps, provide critical insights into the spatial distribution of snow accumulation and melt, which are
significant predictors of high discharge events.

Figure 5.10: This figure illustrates the average snow accumulation during the period of 25-35 days before an event where the
Upper Karnali at outlet F (downstream) exceeds a discharge value of 2000 m³/s. Additionally, the two figures on the right show

the average snow melt occurring in the weeks preceding the high discharge event.
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We observed five identical patterns across the key areas:

1. Pattern 1
Consistent snow accumulation trends
are seen across different elevation
ranges, with significant snow accumu-
lation observed 25-35 days before the
high discharge event. The snow vol-
umes steadily increase, reaching their
peak just before the discharge event.

2. Pattern 2
Lagged temperature data shows a
rise in average temperatures 10-20
days before the event. This tempera-
ture increase coincides with the onset
of snow melt, indicating a strong cor-
relation between rising temperatures
and subsequent discharge events.

3. Pattern 3
The snow melt predominantly occurs
in the elevation range of 4000-5000
meters. This elevation range consis-
tently shows the highest volumes of
snow melt, which directly contributes
to the downstream discharge.

4. Pattern 4
The relationship between snow melt
and discharge is evident in all five
plots. As the snow melts at higher
elevations, the discharge at outlet F
increases, highlighting the impact of
snow melt on river discharge levels.

5. Pattern 5
Each plot demonstrates a clear tempo-
ral sequence where snow accumula-
tion peaks first, followed by rising tem-
peratures and snow melt, ultimately
leading to increased river discharge.
This sequence is consistent across all
five areas, underscoring the reliability
of these indicators in predicting high
discharge events.

Figure 5.11: Figure top: x-axis average values from 04-01 till 05-08
versus temperature in °C for 4000-5000 meter MSL elevation range
and 5000-6000 meter MSL elevation range. Middel figure: x-axis
average values from 04-01 till 05-08 versus snow accumulation in

km3 for 4000-5000 meter MSL elevation range and 5000-6000 meter
MSL elevation range. Bottom figure: x-axis average values from

04-01 till 05-08 versus discharge in m3/s at the outlet points from the
delineated areas.

Probability Density Functions
The combined analysis of snow accumulation and temperature reveals critical insights into the condi-
tions that lead to high discharge events in the Upper Karnali basin. Specifically, within the 4000-5000
meter elevation range, the probability of high discharge (exceeding 2000 m³/s) is strongly influenced by
both factors, as illustrated by the following findings.The first set of figures demonstrates the predictive
power of snow accumulation within this range. The probability density functions clearly show that when
the average snow accumulation 35-25 days prior to the event exceeds certain thresholds, the likelihood
of high discharge events increases significantly. These areas fall within the >90% prediction interval,
emphasizing their importance as predictors.

However, snow accumulation alone is not sufficient to trigger these extreme events. The accompa-
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nying temperature plot for the same elevation range shows that high discharge events are only probable
when the average temperature 10-20 days before the event also falls within the critical >90% range.
Specifically, temperatures above 2°C significantly increase the probability of high discharge, as shown
by the density contours. These findings underscore the necessity of monitoring both snow accumula-
tion and temperature data in the 4000-5000 meter range. Only when both conditions align within their
respective >90% ranges does the probability of high discharge exceed 90%, making these areas par-
ticularly vulnerable to extreme events. This highlights the need for integrated monitoring and modeling
efforts to effectively predict and manage flood risks in the Upper Karnali basin.

Figure 5.12: Area 1, 4000-5000 m: Snow accumulation
in this range significantly increases high discharge
probability, nearing 90% at 0.75 km³. The top curve
shows most cases lead to over 50% discharge

probability.

Figure 5.13: Area 1, 5000-6000 m: Here, snow
accumulation is a weaker predictor, with discharge

probability maxing out around 45%. The flatter top curve
indicates fewer instances exceed 50% probability.

Figure 5.14: High discharge probability increases sharply when the average temperature 10-20 days prior exceeds 2°C, with a
>90% probability of extreme discharge events.
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Evaluation of machine learning model performance and predictive accuracy
The evaluation of the machine learning model’s predictive performance when forecasting whether the
river discharge will exceed 2000 m³/s downstream at the Upper Karnali, based on snow accumulation,
demonstrates significant insights into both its strengths and limitations.

Precision, recall, and F1-score analysis
The performance metrics indicate a high overall accuracy of 97%, showcasing the model’s strong ability
to correctly predict the outcomes. However, when delving into the specific metrics for each class, the
distinction becomes evident:

Table 5.5: Classification report for high discharge prediction

Metric Class 0 (No High
Discharge)

Class 1 (High
Discharge)

Precision 0.99 0.81
Recall 0.98 0.91

F1-Score 0.98 0.86
Support 366 instances 43 instances

The model shows excellent precision and recall for Class 0, meaning it is highly effective at predict-
ing when the discharge will not exceed 2000 m³/s. This indicates that the model is highly reliable in not
over-predicting extreme events, thus minimizing false alarms, which is crucial in operational settings
where unnecessary flood warnings can lead to public distrust and operational inefficiencies.

For Class 1, the model exhibits a slightly lower precision of 0.81, suggesting that when it predicts a
high discharge event, it is correct 81% of the time. The recall of 0.91 is strong, indicating that the model
successfully identifies 91% of actual high discharge events, though it does miss a small percentage
of such events. The F1-score of 0.86 provides a balanced view of precision and recall, confirming the
model’s robustness but also highlighting areas for improvement, particularly in reducing false positives
(where the model predicts a high discharge that does not occur).
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Discussion

The study of the hydrological responses of the KRB under extreme weather conditions has relied on
the use of the SPHY (Spatial Processes in Hydrology) model and the machine learing model Ran-
domForestClassifier. These tools, supported by the ERA5 reanalysis dataset, have facilitated detailed
simulations and predictions. However, several methodological and technical challenges must be ac-
knowledged to fully understand the limitations and implications of the findings.

6.1. ERA5 Data
The ERA5 dataset, which underpins much of the modeling in this study, offers high temporal resolution
and comprehensive coverage. However, its spatial resolution of 31 km poses significant challenges for
accurately capturing localized climatic phenomena. This coarse resolution may obscure microclimatic
variations that are crucial for detailed hydrological modeling, particularly in the heterogeneous terrain
of the KRB. The generalization required at this resolution can lead to the averaging out of important
climatic variables, thereby reducing the accuracy of predictions.

Additionally, ERA5 is a reanalysis product that integrates various observational datasets and model
outputs. While this process improves data consistency, it also introduces uncertainties related to the
quality and representativeness of the underlying observations. These uncertainties can propagate
through the hydrological modeling process, affecting the reliability of the results. The generalization
inherent in the ERA5 data may not fully capture the complexity of the climatic drivers in the region,
potentially leading to inaccuracies in the SPHY model simulations and the Random Forest Classifier
predictions.

6.2. SPHY
The SPHY model simulation of snow accumulation and melt dynamics is central to understanding
the basin’s hydrological behavior. The degree-day approach, while effective in modeling temperature-
driven snowmelt, has notable limitations. The fixed temperature threshold used to distinguish between
snow and rain may oversimplify the complex conditions that dictate precipitation type (Kienzle, 2008).
Additionally, other critical factors like atmospheric pressure, wind speed, and solar radiation are not
incorporated into the snowmelt calculations. This exclusion could lead to inaccuracies, particularly in
regions where these factors have a significant impact on the rate and timing of snowmelt (Lee et al.,
2023).

Moreover, the model approach to flow routing, which calculates water movement across the basin
terrain, simplifies the hydrodynamic processes that occur in reality. While the model successfully sim-
ulates general flow patterns, it may fail to capture the nuances of water flow in areas with complex
topography. For instance, the interaction between channel flow and floodplain dynamics is not fully
represented, which could result in underestimations or overestimations of peak flows during extreme
weather events.

44
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The process of area scaling within the SPHY model is crucial for estimating snow and rain volumes
across different elevation ranges. However, this method introduces several assumptions that can im-
pact the accuracy of the model’s predictions. The two-dimensional area scaling approach assumes that
snow accumulation and precipitation are uniformly distributed across each elevation band, regardless
of terrain heterogeneity. This assumption overlooks the significant influence of topographic features
such as slope, aspect, and surface roughness on snow distribution and retention (Lee et al., 2023).

In mountainous regions like the KRB, steeper slopes often retain less snow compared to flatter
areas, where snow can accumulate more readily. Additionally, the aspect of a slope—its orientation
relative to the sun—can affect the amount of solar radiation it receives, further influencing snowmelt
rates. The simplified area scaling method used in SPHY does not fully account for these variations,
potentially leading to inaccuracies in the estimation of snow water equivalent (SWE) and, subsequently,
river discharge.

Research indicates that more advanced scaling methods, which incorporate three-dimensional ter-
rain characteristics, can provide a more accurate representation of snow distribution. However, imple-
menting such methods requires more detailed topographic data and increases the complexity of the
model. While the current approach in SPHY is practical for broad-scale analysis, it may not capture the
detailed spatial variability needed for precise hydrological predictions, especially in regions with highly
varied terrain.

Predicting the future based on the past
The methodology of predicting future hydrological responses based on historical data is inherently lim-
ited by the assumption that the factors influencing river discharge remain constant over time. This
assumption is increasingly problematic in the context of climate change, where shifts in precipitation
patterns, temperature trends, and land use practices can significantly alter the hydrological character-
istics of a basin. The potential for such changes to invalidate historical data as a reliable predictor of
future conditions is a critical concern that limits the applicability of the current models.

The use of a fixed temperature threshold for snowmelt, the assumption of uniform soil properties
in the groundwater module, and the reliance on historical flow data for generating FDC all contribute
to an oversimplified understanding of the basin’s hydrological processes. While these approaches are
necessary to operationalize themodels, they introduce significant uncertainties that must be considered
when interpreting the results.

Pre-monsoon and monsoon date selection
The pre-monsoon period in this study was defined from February to May (beginning of February to end
of May), and the monsoon period from June to September (beginning of June to end of September).
This definition is based on general climatic patterns observed in Nepal, where the monsoon season
typically starts around June 13 and ends around September 23, bringing about 80% of the annual rain-
fall.

While the chosen periods are practical for delineation, alternative definitions could provide more
precise insights into climatic impacts on snow accumulation and melt processes. For instance, the
monsoon could be defined based on the percentage of total annual rainfall received. Another method
could involve identifying the monsoon onset when rainfall exceeds a certain threshold over several con-
secutive days. These approaches might better capture the variability and onset of monsoon conditions,
potentially leading to more accurate modeling of hydrological responses.

The current assumption that pre-monsoon snow accumulation is only considered up to the end of
May may overlook significant events. It is possible that substantial snow accumulation could occur in
early June, which can still heavily influence monsoon dynamics. This oversight could result in missing
critical years where high snow accumulation in June could trigger intense monsoon reactions. There-
fore, incorporating a more dynamic and responsive definition of the monsoon period might enhance
the accuracy of the study’s predictions. The climatic data indicates that monsoon variability and onset
can significantly affect hydrological processes. Research shows that the onset and intensity of the
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monsoon are critical factors in determining the water availability and snowmelt dynamics in Himalayan
regions. According to literature (Nepal & Shrestha, 2015), monsoon onset variability can lead to sig-
nificant differences in water resource management outcomes. Similarly, a delayed or early onset of
the monsoon season can substantially impact snowmelt and river discharge patterns. This has been
highlighted in previous studies. (Jain & Singh, 2020).

6.3. FDC
When classifying flow regimes using exceedance percentages such as 1% exceedance (high flows),
mid-range, and low-range exceedance (low flows), several limitations and discussion points arise.

• Representation of flow variability
FDC provide a simplified but strong representation of flow variability by plotting the percentage of
time specific discharges are equaled or exceeded. However, they do not account for the timing
and sequence of flows, which can be critical in understanding hydrological and ecological dy-
namics. For instance, high flows that occur consecutively versus sporadically can have different
impacts on riverine ecosystems and water resource management.

• Impact of data length and quality
The accuracy of an FDC is highly dependent on the length and quality of the historical flow data
used. Shorter datasets or those with gaps can lead to less reliable FDC, potentially misrepresent-
ing the true flow characteristics of the river. This can be particularly problematic in regions with
limited hydrological monitoring data (Pumo et al., 2018) (Liucci et al., 2014).

• Climate and land use changes
FDC often use historical data to predict future flow regimes. However, changes in climate and
land use can significantly alter these regimes, making historical FDC less reliable for future pre-
dictions. As climate change progresses, alterations in precipitation patterns, snow melt timings,
and evapotranspiration rates can all impact river flows in ways that historical data may not fully
capture (Langat et al., 2019).

• Climate and land use changes
Human activities such as dam construction, water withdrawals, and land use changes can signifi-
cantly alter natural flow regimes. FDC constructed from historical data may not accurately reflect
these anthropogenic impacts, leading to potential misinterpretations of flow conditions and their
ecological consequences (Langat et al., 2019).

6.4. RandomForestClassifier
The RandomForestClassifier, employed to predict high discharge events, is a powerful tool for han-
dling large datasets and capturing complex relationships between variables. However, its application
in this study comes with challenges. The model’s reliance on historical data assumes that future con-
ditions will closely mirror past patterns—a premise that may not hold true given the dynamic nature of
climate and land-use changes. The limited temporal span of the dataset (30 years) further constrains
the model’s ability to generalize to future scenarios, potentially limiting its effectiveness in predicting
extreme events.

Another significant limitation of the RandomForestClassifier is its ”black-box” nature, which makes
it difficult to interpret the decision-making process behind its predictions. Although techniques such
as decision tree visualization can provide some insight, the overall opacity of the model reduces the
transparency of the results, which is a critical issue in scientific research where interpretability is often
as important as predictive power. Moreover, the model purely focuses on identifying patterns in data
without considering the underlying physical processes. For instance, when analyzing cumulative pre-
cipitation, the model might find a strong correlation with a 20-day lag, even if the maximum time it takes
for rainfall to impact discharge at Chisapani is only 10 days. The model does not have the capability
to recognize the physical impossibility of such correlations; it solely identifies statistical relationships.
Therefore, it is crucial to complement the model’s findings with a strong understanding of the physi-
cal processes involved to ensure that the predictions are not only statistically valid but also physically
plausible.
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Final remarks discussion
The combination of SPHY and the Random Forest Classifier offers valuable tools for modeling and
predicting the hydrological responses of the KRB under extreme weather conditions. However, the
limitations discussed highlight the need for cautious interpretation of the results. The assumptions em-
bedded in the models, the coarse spatial resolution of the input data, and the reliance on historical
scenarios all contribute to uncertainties that must be acknowledged. The area scaling approach, while
practical, may oversimplify the complex interactions between topography and snow distribution, lead-
ing to potential inaccuracies. Future research should aim to address these limitations by incorporating
higher-resolution data, extending the temporal span of the datasets, and exploring more complex in-
teractions between climatic variables. Such efforts would enhance the reliability and applicability of
hydrological predictions in this and similar regions.



7
Conclusion

Main research question: How do snow accumulation, temperature fluctuations,
and their interplay influence river discharge in the KRB, particularly in under-
standing the drivers of extreme flooding events?
When the model was forced with snow-dominated scenarios, the FDC showed significantly more ex-
treme behavior compared to the climatological baseline. The high-flow segments, particularly within
the top 1% of discharge values, increased by 41%, demonstrating how rapid snow melt driven by rising
temperatures can lead to extreme peaks in river discharge. This underscores the critical role of snow
dynamics in shaping the basin’s hydrological response during years of significant snow accumulation.

Further analysis revealed that snow accumulation and temperature fluctuations are pivotal in influ-
encing river discharge, especially in the context of extreme flooding events. In snow-fed rivers like the
Humla Karnali and Mugu Karnali, snow accumulation at elevations between 4000 and 5000 meters,
followed by significant temperature increases, were identified as key predictors of extreme discharge
events. This elevation range is crucial because it is where snow accumulates during the pre-monsoon
period and melts during the monsoon, directly contributing to river discharge. The absence of the rain-
shadow effect at this altitude allows for substantial snow accumulation, making it a reliable indicator for
potential flooding.

The study also demonstrated that these factors interact dynamically, with snow accumulation provid-
ing a baseline for potential discharge and temperature fluctuations serving as the trigger for converting
stored snow into runoff. This interplay was particularly evident in years dominated by snow accumula-
tion, where lagged temperature increases drove rapid snowmelt, leading to extreme river discharges.
The machine learning model, incorporating these elements, was able to predict with 90% accuracy
whether the river discharge would exceed the critical threshold of 2000 m³/s downstream at the Karnali
river. When snow accumulation in identified predictor areas exceeded individual thresholds, coupled
with prolonged temperature increases, the model’s accuracy rose to 96%.

These findings underline the importance of closely monitoring snow accumulation and temperature
trends in the KRB, as their interplay is a significant driver of extreme hydrological events. The main
research question—how snow accumulation, temperature fluctuations, and their interplay influence
river discharge in the KRB—has been effectively addressed through the following four sub-questions.

1. How can snow accumulation across different elevation ranges in the pre-monsoon period
be effectively modeled and visually represented to identify snow-dominated scenarios?
The visual representation of snow accumulation across different elevations provided valuable
insights into the spatial distribution of snow and its potential impact on downstream hydrology.
The modeling showed that snow accumulation was not uniform across the basin, with higher
elevations experiencing more significant snowpack, which in turn influenced the timing and mag-
nitude of snowmelt and subsequent river flow. An inverse relationship was observed between
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snow accumulation and subsequent monsoon rainfall: in years with high pre-monsoon snow ac-
cumulation (2021 and 1991), monsoon rainfall was relatively low, whereas in years with extreme
monsoon rainfall (2018 and 2013), pre-monsoon snow accumulation was notably lower. This in-
verse relationship likely arises because high snow accumulation is often associated with cooler
and more stable atmospheric conditions, which can limit the convective activity needed for in-
tense monsoon rains. Conversely, years with lower snow accumulation may experience warmer
pre-monsoon conditions, which can enhance atmospheric instability and lead to stronger mon-
soon rainfall. The Python code developed for this analysis was subsequently used to address
the other sub-questions in the study.

2. How do the FDC of the KRB vary under different combinations of snow-dominated and
rain-dominated scenarios compared to the climatological baseline?
The FDC of the KRB reveal distinct variations when comparing snow-dominated, rain-dominated,
and rain-on-snow scenarios to the climatological baseline. These variations were derived from
hydrological simulations conducted using the SPHY model, driven by ERA5 climate data, which
included daily averages of temperature (tavg, tmin, tmax) and precipitation (prec). The scenarios
were constructed using selected years—2021, 1991, 2007, and 2017 for the snow-dominated
scenario; 2018, 2013, 2010, and 2007 for the rain-dominated scenario; and 2021, 1991, 2018,
and 2013 for the rain-on-snow scenario—based on earlier analyses that identified the years with
the most extreme conditions of snow accumulation and precipitation patterns. These scenarios
provided a clear basis for comparing the hydrological impacts of varying weather patterns on the
KRB.

The rain-dominated scenario demonstrated a 41% increase in high-flow values, indicative of the
intense and often unpredictable nature of rainfall events in the region. These events resulted in
high surface runoff, as precipitation exceeded the soil’s infiltration capacity, leading to rapid and
significant peaks in river discharge. The steep initial slope of the FDC reflects the basin’s quick
hydrological response to extreme rainfall events, underscoring the challenges in managing water
resources and the heightened flood risks during such periods.

Similarly, the snow-dominated scenario revealed a marked increase in river discharge, partic-
ularly in the higher flow segments. The mean discharge within the 1-10% exceedance range
increased by 26%, with the top 1% of discharge values rising by 41% compared to the baseline.
This sharp increase is attributed to rapid snowmelt during the early monsoon period, driven by
rising temperatures. The steep slope of the FDC indicates a quick decline in discharge follow-
ing the peak snowmelt period, emphasizing the critical role that snowmelt plays in shaping river
discharge during years with significant snow accumulation. This scenario highlights the implica-
tions for flood risk, water resource management, and ecosystem health in snow-dominated years.

The rain-on-snow scenario, which combines the effects of snowmelt and direct rainfall, resulted
in FDC that produced significant peaks in discharge, especially in the high-flow segments. The
heavy snow accumulation during 2021 and 1991, followed by the intense monsoon rains of 2018
and 2013, led to substantial river discharge. These years were selected based on significant rain-
on-snow events, where heavy rainfall occurred on top of an existing snowpack, leading to rapid
snowmelt and substantial river discharge. When rain falls on snow, it not only contributes directly
to runoff but also accelerates snowmelt by increasing the energy available to melt snow. The
ground, often saturated or frozen during these events, had reduced infiltration capacity, further
amplifying surface runoff. The steep curve at the beginning of the FDC for this scenario indicates
that a small percentage of time corresponds to very high discharge levels, typical of the rapid
onset of high flows during rain-on-snow events. This scenario underscores the potential for ex-
treme discharge events that are much higher than what would be expected from either snowmelt
or rainfall alone. By maintaining the natural seasonal cycles, this analysis provides a crucial un-
derstanding of potential flood risks in regions where both significant snowfall and strong monsoon
rainfall are common, even when these factors do not coincide within the same year.
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3. What is the relationship between snow accumulation at various elevation ranges, lagged
temperature, and river discharge in the KRB, as identified by the Random Forest Classifier
model?
The analysis revealed that, for the Humla Karnali and Mugu Karnali rivers, snow accumulation at
elevations between 4000 and 5000 meters above a certain threshold, occurring 35 to 25 days be-
fore an event, coupled with a significant increase in temperature 5 to 15 days prior, proved to be
key indicators of extreme discharge, defined as combined flows exceeding 2000 m³/s. These cor-
relations are particularly relevant for these two rivers because they are primarily snow-fed, making
snow dynamics and temperature variations critical in predicting extreme discharge events. This
finding aligns with existing literature, which emphasizes the snow-fed nature of the Humla Kar-
nali and Mugu Karnali rivers, confirming the importance of snow accumulation and temperature
fluctuations in driving their hydrological responses.

The elevation range of 4000 to 5000 meters is particularly significant because it is where snow
typically accumulates during the pre-monsoon period and melts during the monsoon, directly con-
tributing to river discharge. This altitude is still low enough to avoid the significant impact of the
rain-shadow effect, which can limit precipitation at higher elevations. In contrast, at elevations
between 5000 and 6000 meters, temperatures generally remain above the melting threshold,
making these higher altitudes less relevant for predicting significant discharge events. Therefore,
the 4000-5000 meter range is crucial for understanding and forecasting the hydrological behavior
of these snow-fed rivers.

Conversely, in areas where cumulative precipitation was the highest, the most reliable predictors
of extreme events were found in the Bheri and Seti rivers. This observation is consistent with
the hydrological nature of these rivers, which are primarily rain-fed, meaning that cumulative pre-
cipitation plays a more significant role in driving extreme discharge. These findings highlight the
necessity of considering the distinct hydrological characteristics of each sub-basin when predict-
ing extreme hydrological events in the KRB.

4. Can specific areas within the KRB be identified as indicator regions for extreme discharge
events, and can the trained machine learning model generate probabilities of exceedance
based on snow accumulation at certain elevations, combined with lagged temperature con-
ditions prior to these events?
To explore this, we calculated snow accumulation over time using the code developed in response
to Research Question 1, focusing on the 48 delineated areas within the Upper Karnali for the
snow-dominated scenario (years 2021, 1991, 2004, and 2007). We then examined snow ac-
cumulation in the 4000-5000 meter and 5000-6000 meter elevation ranges across these areas,
analyzing how these accumulations correlated with downstream discharge from the Karnali River.
This analysis was done in conjunction with ERA5 temperature data, specifically clipped for these
individual areas, to assess their predictive power.

The results revealed that five of these areas, which coincidentally had the highest snow accumu-
lations, showed trends that closely matched the discharge patterns downstream. The machine
learning model, trained to provide probabilities of exceedance, used average snow accumulation
from 35 to 25 days prior to the event and average lagged temperature from 5 to 15 days before the
event as inputs. With these factors, the model was able to predict with 90% certainty whether the
2000 m³/s discharge threshold would be exceeded downstream in the Karnali River. Furthermore,
when these five predicting areas exceeded their individual snow accumulation thresholds, com-
bined with a prolonged period of lagged temperature increase, the model’s accuracy improved
even further, correctly predicting in 96% of cases whether the 2000 m³/s threshold would be sur-
passed.

These outcomes underscore the effectiveness of identifying specific sub-regions within the basin
that can serve as strong predictors of extreme discharge events, offering valuable insights for
flood forecasting and water resource management.
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Final remarks conclusion
This study provides a nuanced understanding of the hydrological dynamics of the KRB under extreme
weather conditions. By integrating the SPHYmodel with advancedmachine learning techniques, the re-
search detailed how snow accumulation and temperature trends influence river discharge, particularly
in critical elevation ranges. The findings emphasize the importance of monitoring snow and tempera-
ture patterns, as these factors are significant drivers of hydrological extremes in the basin.

Future research should focus on refining these models, enhancing data resolution, and incorporat-
ing additional climatic variables to improve predictive reliability.
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Appendix

8.1. Appendix A: Supplement scenario analysis
Climatological baseline vs. Snow-dominated scenario

Figure 8.1: On the x-axis the percentage of exceedence versus discharge on the y-axis. The FDCis based on the
outcome from the calibrated SPHY model while forces with ERA5 data resampled for the snow-dominated scenario.
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Figure 8.2: On the x-axis the different flow segments versus the discharge in m³/s in the y-axis. The comparison
was made for the snow-dominated scenario versus the climatological baseline for the high/mid/low flows

1. High Flow Segment (1-10% Exceedence Range)

• The high flow values in the snow-dominated scenario show a notable increase compared
to the climatological baseline. There is a 26% increase in the high flow mean and a 41%
increase in the high flow top 1%. This significant increase is attributed to the extensive
snowmelt contributing to runoff, especially during warmer periods. High snow accumulation
years lead to substantial runoff increases when temperatures rise, due to the large volumes
of stored snow that melt and flow into rivers. This is supported by studies (Viviroli et al.,
2007) and (Hock, 2003).

2. Mid Range Segment (10-90% Exceedence Range)

• The mid-range flows also increase, with a 22% increase in the mid-range mean and a 25%
increase in the mid-range top 1%. The snow-dominated scenario stabilizes the mid-range
flow as the snow melt provides a consistent source of water. Snowmelt provides a reliable
source of water that maintains streamflow during periods where precipitation alone would
not be sufficient (Martinet et al., 2008).

3. Low Flow Segment (90-100% Exceedence Range)

• There is an increase in the low flow values. The low flow mean increases by 15% and the
low flow top 1% increases by 11%. This indicates that during snow-dominated years, the
persistent melting of snow prevents very low discharge levels. The findings are supported by
studies (Braun, 1993) that indicate snowmelt can maintain baseflow levels in rivers, reducing
the frequency of low flow periods.
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Climatological baseline vs. Rain dominated scenario

Figure 8.3: On the x-axis the percentage of exceedence versus discharge on the y-axis. The FDCis based on the
outcome from the calibrated SPHY model while forces with ERA5 data resampled for the rain-dominated scenario.

Figure 8.4: on the x-axis the different flow segments versus the discharge in m³/s in the y-axis. The comparison
was made for the rain-dominated scenario versus the climatological baseline for the high/mid/low flows

1. High Flow Segment (1-10% Exceedence Range)

• The high flow values in the rain-dominated scenario show a significant increase compared
to the climatological baseline. There is a 41% increase in the high flow mean and a 41%
increase in the high flow top 1%. This indicates that intense and frequent rainfall significantly
boosts peak flow events, contributing to higher risks of flooding during these periods. Litera-
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ture is (Ougahi, 2024) confirming that high rainfall volumes and intensities during monsoon
seasons amplify runoff, leading to extreme discharge events.

2. Mid Range Segment (10-90% Exceedence Range)

• The mid-range flows exhibit a 20% increase in the mid-range mean and a 37% increase in
the mid-range top 1%, reflecting the consistent impact of heavy rainfalls on river discharge.
This suggests that during rain-dominated years, rivers maintain higher than usual flow rates,
which can support water supply needs but also indicate a shift in river regime. Studies
(Clemenzi et al., 2023) supports the finding that sustained heavy rainfall impacts typical flow
conditions, often leading to higher baseline flows.

3. Low Flow Segment (90-100% Exceedence Range)

• The low flow values in the rain-dominated scenario also increase, with a 10% increase in
the low flow mean and an 9% increase in the low flow top 1%. This increase suggests
that the constant input from rainfall minimizes periods of low discharge, enhancing water
availability during typically dry periods. Studies indicate that prolonged and intense rainfall
periods reduce the frequency and severity of low flows (Viviroli et al., 2007).

8.2. Appendix B: supplement RandomForestClassifier
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Density plot feature with highest deviation [Seti]
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Density plot [Bheri]
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Density plot [Tilla]



8.2. Appendix B: supplement RandomForestClassifier 62

Sub-basin: Bheri

Sub-basin: Seti

Sub-basin: Tilla
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Density plot Bheri

Density plot Seti
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Density plot Tilla

Density plot Upper Karnali
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Having completed step 1.1, where discharge data for the Bheri, Tilla, Seti, and Upper Karnali sub-basins
was gathered, generated by the SPHYmodel (forced with snow and rain-dominated scenario datasets),
the next step involves analyzing this data using the RandomForestClassifier. The SPHY model was
run with various snow and rain scenarios to simulate high precipitation events. This provided a diverse
set of discharge data under different climatic conditions. With this dataset, the RandomForestClassi-
fier was used to identify the lag periods (ranging from 5 to 20 days) that best correlate with patterns
observed when discharge at Chisapani exceeds 8000 m³/s.

The RandomForestClassifier is reported to be effective in determining which lagged discharges
are most significant in predicting high flow events. By analyzing the discharge data with lag periods
between 5 and 20 days, the classifier identified the specific lags that follow the discharge patterns
leading to extreme events at Chisapani. This analysis revealed the temporal patterns and lag days that
show the strongest correlation with high discharge events. The feature importance analysis, illustrated
in figure 2.15 , highlights the top 10 lagged discharge features. Notably, the Tilla sub-basin shows
the highest feature importance with lags of 15 and 14 days being the most significant. Other important
features include lagged discharges from the Upper Karnali and Bheri sub-basins, with lag periods of 16,
15, and 14 days demonstrating substantial importance. The Seti sub-basin also features significantly
with lags of 16 and 15 days.

Figure 8.5: The most importance feature predictors used by the trained RandomForestClassifier machine learning
model.

Feature importance in a RandomForestClassifier shows how useful each feature is in making ac-
curate predictions. The values on the x-axis indicate how much each feature helps the model. Higher
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values mean that the feature is very important and greatly improves the model’s predictions. In simpler
terms, the more a feature helps the model make correct predictions, the higher its importance score
will be.

This importance is often measured by the decrease in impurity. A decrease in impurity refers to how
well a feature splits the data into correct categories. In decision trees, impurity measures how mixed
the data is in each node, with common measures being entropy and Gini impurity. When a feature is
used to split the data, it reduces impurity by grouping similar data points together, making the nodes
purer. The more a feature reduces impurity, the more important it is. Even though a feature might be
very important overall, it doesn’t necessarily appear at the top of any single decision tree in the forest.
Instead, it can contribute to the prediction in many smaller ways across lots of trees. In a random forest,
hundreds of decision trees are used, and each one might use the feature differently. A feature might
not be the top splitter in any tree, but if it helps improve predictions a little bit in many trees, it ends up
being very important overall. This means the feature is valuable because it consistently helps make
better decisions across the entire forest, even if it doesn’t stand out in just one tree.

Table 8.1: The lowest mean and standard deviations from the different contributing sub-basins while predicting events at
Chisapani above 8000 m³/s

River Lag Day Mean (m³/s) Standard
Deviation (m³/s)

Upper Karnali 5 1773 242

Seti 18 1162 588

Bheri 7 1248 341

Tilla 5 405 87

For the lag days listed below, themean and standard deviations will be further observed to determine
if any visual patterns can be represented. Specifically, the focus will be on the 10-day lag, 5-day lag,
and 1-day lag to see if consistent patterns emerge.
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8.3. Appendix C: Supllement prediction model

Figure 8.6: Area 2, 4000-5000 [m]: In the 4000-5000 m
range, the probability of exceeding the 2000 m³/s
discharge threshold surpasses 90% when snow

accumulation reaches approximately 0.29 km³. The
steep rise in probability and the peak in the top curve

indicate a strong relationship between snow
accumulation and high discharge events in this range.

Figure 8.7: Area 2, 5000-6000 [m]: In the 5000-6000 m
range, although there is a correlation between snow

accumulation and discharge probability, the effect is less
pronounced. The probability does not exceed 40%, as
reflected in the flatter top curve, indicating a weaker

predictive power for snow accumulation at these higher
elevations..



8.3. Appendix C: Supllement prediction model 69

Figure 8.8: Area 5, 4000-5000 [m]: In the 4000-5000 m
range, the figure reveals a strong link between snow

accumulation and the likelihood of high discharge events.
As snow accumulation reaches around 0.35 km³, the
probability of surpassing the 2000 m³/s threshold
approaches 90%. The sharp peak in the top curve
emphasizes this robust predictive relationship.

Figure 8.9: Area 5, 5000-6000 [m]: In contrast, for the
4000-5000 m range, snow accumulation shows a much
weaker correlation with high discharge events. The

probabilities remain low, with the top curve displaying a
flat profile, indicating that snow accumulation at these
higher elevations is not a reliable predictor of extreme

discharge.
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Enriching machine learning model with observed patterns
We can observe that the majority of the melt primarily occurs in the elevation range of 4000-5000 me-
ters. Consequently, we further conducted the analysis to see if we could create a probability density
function using the trained machine learning model. This involved running the model through a series
of time sequences and evaluating its predictions for high discharge events.

The inputs for the model included:

• SnowAccumulation: The average snow accumulation from the five indicator regions 25-35 days
prior to the event, in both the 4000-5000 meter and 5000-6000 meter ranges.

• Lagged Temperature: The average temperature 10-20 days prior to the event.

Based on these inputs, the model predicts the probability of exceeding the discharge threshold at
outlet F. This approach allows us to understand and predict the likelihood of extreme discharge events
based on historical and real-time data inputs.
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