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Summary 
Smallholder farmers cultivate more than 75% of the available agricultural land in 
Africa and therefore this form of agriculture is crucial to the global food supply. At 
present, little is known about these smallholder agricultural and related irrigation 
practices, yet the increasing availability and accessibility of remotely sensed data 
provides significant opportunities to assess the status quo of these practices. 
However, these characteristic agricultural landscapes can create complexity in 
identifying land use with the help of remote sensing. The cultivated plots are small 
and consist of intercropping systems with dynamic spatio-temporal practices 
concerning planting, irrigation and harvesting. 
 
This research aims to provide insight into the usefulness of remotely sensed passive 
Sentinel-2 Level-1C and active Sentinel-1 SAR data for land use classification of these 
complex landscapes with a focus on irrigated agriculture, using a case study in 
Central Mozambique. For this purpose, an open source-code is written that uses 
open-source satellite data from Google Earth Engine to execute the supervised image 
classification methodology, using confusion matrices as an assessment method. 
 
The results of this research appear to show that a nonparametric RF classifier (  = 
88.0%) is preferred over a parametric ML classifier (  = 85.0%) for processing the 
data that is high in variability, in which classifications based on the chlorophyll 
sensitive Red Edge and SWIR bands provide the highest overall accuracies (>88.0%). 
However, the classifier overestimates the amount of irrigated areas by a factor of 1.5 
in the first and a factor of 3 in the second irrigation season. The opportunistic 
sampling method appears to cause inflated accuracy outcomes and an optimistic 
bias towards classification of the main class in training. Spectral analysis of the 
temporal behavior of various S-2 bandwidths does not provide insight into the 
underlying mechanisms on which the algorithm performs classification. Although it 
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appears that irrigated agriculture with S-2 data can be identified on the basis of an 
increase in vegetation biomass and that the classifier benefits from more information 
through the use of multiple bands. 
Research into the use of Sentinel-1 SAR data appears to have potential for 
identifying irrigation. Time series of the VV backscatter signal show a difference 
between the irrigation class and the classes non irrigated and light seasonal 
vegetation in irrigation season 2. However, high standard deviations do reflect the 
high intra variability of the data, and classification accuracies in this period, do not 
exceed an overall accuracy of 64.1%. The main confusion as identified by the 
confusion matrices, comes from classes that are often identified as irrigated, whereas 
they are not, overestimating the amount of irrigated areas as with the use of S-2 data.

The results of this research show that the used method and data collections do not 
provide accurate information for the intended classification goal. This research 
demonstrates in several ways the complexity of supervised image classification in 
complex agricultural landscapes: the unbalanced and variable reference data of 
different land uses, which often consist of only a few satellite pixels, make it difficult 
to identify characteristics of land classes, from which the classifier can derive 
information. In which Sentinel-1 as added and used in this research, offers no 
additional insights. 

Therefore, in order to improve the identification of farmer-led irrigated agriculture in 
Manica, other technologies for smart agriculture can be explored in addition to 
deploying satellite data, such as citizen science. Further research is recommended on 
the field of using S-1 and S-2 data for classification of complex agricultural 
landscapes. This may include more advanced methods of performing image 
classification and accuracy assessement with imbalance datasets, such as:  the use of 
a weighted confusion matrix for accuracy assessment or exploring the use of spatial-
spectral instead of pixelwise random forest algorithms. These algorithms seem to be 
better at handling spatial dependencies and intrinstic heterogeneity which is 
characteristic of these complex agricultural landscapes. Lastly, it is strongly 
recommended to assess the use of speckle filters when using SAR data for small 
target objects. These filters make use of a buffer zone, consisting of a few pixels in 
size and about the same size of the target object. The main challenge with be to 
balance the need of speckle reduction and class specific information preservation. 
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Figure I. Furrow irrigation in the case study area (Hollander, 2018).



 
 
1. Introduction 

1.1. Background 
Forty percent of the food we consume is produced on irrigated land which means 
that 70 percent of the freswater withdrawals are used for agriculture (Ozdogen et al., 
2010). In addition, the world’s population has grown from 6.7 billion in 2007 to 7.7 
billion in 2019 and is expected to reach almost 10 billion by 2050 (UN World 
population prospects 2019). The increase in population has already put a great deal 
of pressure on the current global food and water resources. In the upcoming 30 
years, it is expected that the increase in food demand means that 20% more irrigation 
water is needed (Chakraborty & Newton, 2011; Godfray et al., 2011; Karthikeyan et 
al., 2020). 

Sub Saharan Africa will account for most of the population growth (UN World 
population prospects 2019). Food supply in this region is mainly provided by 
smallholder farmers and conducted on a local scale (Funk & Brown, 2009).  Together, 
these smallholder farmers account for more than 50% of the total agricultural sector 
(Beekman et al., 2014; Burney & Naylor, 2012; De Fraiture & Giordano, 2014). 
International development policy has recognised this form of agriculture as crucial 
to achieving the food security objectives sought (Burney & Naylor, 2012; Turral et al., 
2011). At present, the extent of smallholder farming in Sub Saharan Africa is mostly 
unknown. Accurate information on the status quo of these practices are essential for 
water-resources management regarding food security (Droogers & Aerts, 2005; 
Vörösmarty & Sahagian, 2000).

The increasing availability and accessibility of remotely sensed data offers significant 
opportunities to examine the status of smallholder agricultural practices.  Remote 
sensing provides efficient means to monitor agriculture and its related practices at 
multiple spatial and temporal scales, using either electromagnetic solar radiation 
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(passive remote sensing) or radiation from the satellite itself (active remote sensing). 
The objective of this research is to gain more insight into the mapping of smallholder 
agriculture using remotely sensed data using a case study in Sub Saharan Africa, in 
Central Mozambique. 

1.2. The case study 
The landscape of Central Mozambique consists mainly of farmer-led irrigated 
agriculture. Hereby, irrigation is initiated and established by the farmer him- or 
herself, without little or no external support. Cultivated fields are often no larger 
than 0.2 hectares and irrigation is mainly done by channel diverging from small 
streams to perform furrow irrigation (figure I). These practices are under rapid 
development, increase agricultural production and contribute to food security and 
economic growth in the region. The actual extent of this type of irrigation is 
currently unknown, due to its informal character (Beekman et al., 2014). The current 
perception in Central Mozambique is that a large part of the land is not in use and 
therefore holds potential for agricultural expansion. However, a large part of this 
land is already in use by smallholder farmers. Therefore, a reliable estimation of the 
current spatio-temporal extent of this type of agriculture is important to understand 
and manage the food and water balance (Beekman et al., 2014; Hollander, 2018). 
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Figure 1.1. Channel diverging from small streams, location Manica 
(Hollander, 2018).



1.3. Previous research 
The previous study attempted to identify and map irrigation practices in the area 
using passive remotely sensed data from the Sentinel-2 satellite. After ground data 
collection serving as training and validation data, a classification based on images 
from the first and second irrigation season is performed. This is done with a 
parametric maximum likelihood classifier, using various combinations of bands and 
data sets. The results of the classifications of this study are inconsistent, mainly 
caused by a similar spectral response of irrigated fields and light vegetation. This 
low inter-class seperability is a result of the heterogeneity and agricultural flexibility 
of the landscape (Hollander, 2018).  

1.4. Knowledge gap 
These characteristic landscapes can create complexity in identifying land use. The 
cultivated plots are small and consist of intercropping systems with dynamic spatio-
temporal practices concerning planting, irrigation and harvesting (Bégué et al., 2018; 
Ozdogen et al., 2010). It is therefore difficult to identify and define the typical 
characteristics of the different land classes on which the classifications are based. 
Although common irrigation mapping studies based on passive remote sensing data 
show promising results, these studies are difficult to transfer to complex areas due to 
site-specific conditions (Bégué et al., 2018; Ozdogan et al., 2010). In addition, the 
passive Sentinel-2 product is often hindered by clouds, and therefore crucial 
information may be missed in order to detect farmer-led irrigated agriculture.

The availability of active remotely sensed data from the Sentinel-1 satellite offers 
new opportunities to map irrigation under all weather conditions. It can provide a 
consistent flow of information on vegetation biomass and water content, 
fundamental indicators of irrigated agriculture. Recently, attempts have been made 
to create a classification framework for irrigation mapping using active signals, 
showing promising results (Karthikeyan et al., 2020; Useya & Chen, 2019; Bazzi et al. 
2019; Bousbih et al., 2018; Gao et al., 2018). These studies are carried out on large 
agricultural fields in which monocropping predominates, or on smaller fields that lie 
in dry landscapes, where there is a big difference between the irrigated agricultural 
land and the surrounding land covers. This study is conducted in a heterogeneous 
landscape, with small and dynamic cultivated agricultural fields. 
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1.5. Research objective 
This research aims to get insight in the potential of using Sentinel-1 and Sentinel-2 
data to map farmer-led irrigated agriculture with machine learning. For this 
purpose, a new model is first created to perform the methodological research, using 
open-source data and an open-source interface. After, this model is compared with 
the old analysis technique (Hollander, 2018) to which different, non parametric 
advanced machine learning algorithms are compared to eachother. Last, the 
possibility of active remotely sensed Sentinel-1 data is examined. This attempts to 
answer the following sub-questions: 
 

What is the performance of the new model, compared to the old method 
(Hollander, 2018) 

What is the  potential of Sentinel-2 data using a Random Forest classifier 
to identify smallholder irrigation in Manica, Mozambique? 

 
What is the  potential of Sentinel-1 data using a Random Forest classifier 
to identify smallholder irrigation in Manica, Mozambique?

This study is part of an extensive research project concerning farmer-led irrigated 
agriculture, performed by the Dutch company Resilience B.V., Wageningen 
University and Research Centre and the national irrigation institute of Mozambique 
(INIR). 

1.6. Outline 
Chapter 2, Theory, consists of exploratory research, describing the concept behind 
the techniques used, based on the literature. Chapter 3, Data and Methods, provides 
insight in the study area, adresses the systematic and targeted approach for 
collecting, analysing and interpreting the data and explains the structured 
methodology to perform the research . Chapter 4. Results, presents the outcome of 
the study. In chapter 5, Discussion, the key findings of the results are interpreted and 
explained, as well as the main limitations of this research and the resulting 
implications. In chapter 6 the main conclusions & recommendations of the study are 
presented The conclusions answer the research question and the recommendations 
present how to improve the endproduct for the intended classification goal, and 
proposals for a new scientific study.
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2. Theory 
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Figure 2.1.  
Agricultural development as  
seen from space: palm trees in 
Indonesia in 1992 (left) and 2006 
(right), retreived from Google 
Earth. 



2.1. Introduction 
Of all our five human senses, three work remotely: it is possible to collect 
information about a target without being in direct contact with it. This concept is 
widely applied in the field of remote sensing, where satellites are commonly used as 
a sensor to provide data. Satellite remote sensing uses either electromagnetic 
radiation from the sun (passive) or radiation from the satellite itself (active). The 
radiated signals are reflecting, absorbing and transmitting to earth’s surface, 
providing information about the ongoing terrestrial processes at overpass time, for 
polar satellites. Satellites orbiting the earth can therefore provide a consistent and 
rich flow of data for multiple applications (Karthikeyan et al, 2020).

One means of converting this data into information is machine learning. Machine 
learning models are able to learn from prior experiences without being extensively 
programmed.  These models have the potential to evolve into real-time management 
systems that can handle large amounts of remotely sensed data, and can assist 
human decision making on a wide range of topics (Virnodkar et al., 2020).

2.2. Agriculture 
One of the frequently used applications for remotely sensed data is identifying 
irrigated agriculture. Irrigation is the partial or complete application of freshwater 
from surface water bodies and groundwater sources,  and needed to compensate for 
the deficit between potential evaporation, effective precipitation and change in soil 
moisture content (Ozdogan et al., 2010).  The need for water is highly crop specific  
and irrigated and non-irrigated crops can grow under the same climatic conditions 
(Ihuoma & Madramootoo, 2017). However, irrigation will provide more active 
vegetation, resulting in higher degrees of greenness and biomass compared to non 
irrigated agriculture (Ozdogan et al., 2010). The latter will suffer more water stress 
and lower the vegetation water content (Agurla et al., 2018). As a result, the natural 
growing cycle of irrigated and rainfed crops will differ (Pageot et al., 2020). 

If these two types of agriculture interact with the satellite signal, the difference in 
phenology will cause a distinct reflectance (Thenkabail et al., 2005). This is the 
underlying concept on which irrigation mapping with remote sensing is based, i.e. 
the difference in reflectance of irrigated areas in relation to non irrigated areas 
(Karthikeyan et al., 2020). 
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2.3. Remote sensing 
Satellite sensors typically measure the reflected signals of the following spectra: the 
visible/optical spectrum (0.4-0.7 μm); the infrared spectrum consisting of near 
infrared (NIR) (0.7-1.3 μm; mid infrared (MIR); (1.3–3.0 μm); thermal infrared (TIR) 
(3.0–14 μm), and the microwave spectrum (1 mm- 1m) (Karthikeyan et al. 2020). 

2.3.1. Passive remote sensing
Methods using passive remotely sensed data for measuring spectral responses from 
the visual and infrared spectrum are widely used  for irrigation mapping. Spectral 
indices such as the Normalized Difference Vegetation Index (NDVI)  are derived 
from these spectra, and able to reveal healthy vegetation, having the ability to obtain 
a considerable difference between irrigated and non-irrigated areas (Ambika et al., 
2016; Ozdogan et al. 2010). However, these passive remote sensing methods are 
highly dependent on weather conditions and can solely be attainned with solar 
radiation. Optical satellite  products are therefore severely limited in their use in 
cloud rich areas. Active low-frequency microwaves from active satellite products do 
have the ability to penetrate clouds.  

2.3.2. Active remote sensing
The availability of active remotely sensed radar data offers therefore new 
opportunities to map irrigation under all weather conditions (Gao et al. 2018). The 
independence of solar radiation ensures a consistent flow of information that can be 
obtained during the day, night and in all weather conditions. Since the microwaves 
are actively transmitted, it is also known what the radar signal consists of. Complex 
and changing targets such as vegetation dynamics can be interpreted in relation to 
this constant signal, which is an additional advantage (Steele-Dunne et al., 2017; 
Bush & Ulaby 1978).  Many recent studies have shown that backscatter data from C-
band Sentinel-1 satellite sensors contain much more information about phenology 
and crop dynamics than is currently being used (Steele-Dunne et al., 2017). 

Radiation backscatter exists of active microwave radar signals reflecting back from 
surfaces. If the signal interferes with vegetation, the reflected backscatter signal 
consists of several components; from the vegetation itself,  the underlying soil and a 
part due to interactions between its canopy and the subsurface (Ulaby et al., 1996; 
Kim et al., 2005). How precisely the radar signal interacts with the vegetation is 
influenced by both the system and its target. The radar is referred to as the system 
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and obtains information with a certain wavelength and polarization which are 
transmitted under a particular incident and azimuth angle (Balenzano et al., 2010;  
Joseph et al., 2010; Ulaby, 1975). 

Microwaves interacting with the canopy are affected by the size, shape, orientation, 
roughness and dielectric properties of individual scatter components, such as leaves 
and stems, and their distribution throughout the canopy (McDonald et al., 2000; 
Hoekman & Bouman, 1993; Karam et al., 1992; Yueh et al., 1992; Karam & Fung, 
1989; Sarabandi et al., 1988; Senior et al., 1987). Since radar data can provide 
information on vegetation density and soil moisture, it has great potential to map 
irrigation targets (Karthikeyan et al., 2020; Bazzi et al. 2019; Useya et al., 2019; 
Bousbih et al., 2018; Gao et al., 2018).

2.4. Machine learning 
Computers can be of assistance to process and interpret both optical and radar data. 
The information flow from satellites can be delivered to the computer in two forms. 
In pixel based methods, data is obtained per grid cell and is then linked to a certain 
land cover or land use (Vogels, 2019).  Another method is object based image 
analysis, which groups objects or pixels together based on spectral similarities 
(Blaschke et al., 2014). Machine learning techniques help to classify the unknown 
pixels. 

Within these techniques, a distinction can be made between supervised and 
unsupervised learning methods (Warner et al., 2009). Supervised methods create a 
classification of unknown pixels using characteristics of known pixels. These 
predefined pixels are called classes and are referred to as training data (Cawley & 
Talbot, 2010). Unsupervised classification groups pixels together based on similar 
characteristics. These characteristics are not predefined and need to be interpreted 
after the seperation process (Enderle & Weih, 2005). The computer does not have an 
intuitive mechanism for segregating information and must therefore apply statistical 
methods for data seperation, in order to classify different land uses and land covers. 
The classified land cover map needs to be subjected to accuracy assessment to 
determine its accuracy. If sufficient, it can be used to obtain a status quo of the area, 
in order to apply informed decision-making for agricultural water management. 
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3. Data & Methods  
 

9Figure 3.0.1. Manica, in Mozambique, Sub-Saharan Africa, depicted by the white dot.



Introduction 
The main method applied in this study is supervised land use classification. 
Supervised classification consist of five phases: 1. class definition, 2. pre-processing, 
3. training, 4. (automated) pixel assignment and 5. accuracy assessment (Warner et 
al., 2009). First, the study area will be discussed briefly. The data section elaborates 
on the process of class definition and associated construction of training data. The 
various satellite products and preparation of their data are defined under satellite 
data & pre-processing.  The methodology is depicted in the conceptual framework in 
figure 3.0.2. and explains the data collection components and the training, 
classification and accury assessment steps.

 

10

Bands:
VIS, IR, RE

Classifier:
• RF
• CART
• SVM

Confusion 
matrix

Classifier:
• RF

Polarizations:
VV, VH

Confusion 
matrix

M 
E 
T 
H 
O 
D 
S

3. training

4. pixel 
assignment

5. accuracy  
assessement

6 land classes

Potential of 
Sentinel-1

Potential of  
Sentinel-2

Figure 3.0.2. Conceptual framework of the methodology. The classifiers used are: Support Vector 
Machine (SVM), Classification and Regression Trees (CART) and Random Forest (RF).
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3.1. Study area 
This research focuses on a region of interest (ROI) in Manica, a province of 
Mozambique situated in the central part of the country and bordering Zimbabwe to 
the west. The total area of Manica is more than 60.000 km . In Manica, agriculture is 
practiced extensively due to the favorable conditions: fertile soils, different 
microclimates and suitable natural advantages enables the cultivation of a variety of 
crops. Temperature ranges between 22 to 28 ˚C and precipitation takes place from 
November to March, and is approximately 800-1000 mm per year (Jansen et al., 
2008). 

 
3.1.1. Irrigation

The unequal distribution of rainfall results in wet summers and dry winters and 
influences the planting, cultivating and harvesting of crops.  Most crops have a 
growing cycle of three to four months which allows three agricultural seasons per 
year. Based on these growing cycles and the amount of rainfall, the following 
seasons can be distinguished:  
The wet season (WS): here, rainfed crops such as sorghum and maize are grown. 
This period starts at the end of November and lasts till April. The vast majority of 

2

11

Figure 3.1.1. Illustration of a true color composite and the height map with the overlaying ROI. 
The area spans from -18.902910289818745 to -18.965261597553866 latitude and 33.09339685375451 to 

33.14935846264123 longtitude

Region Of Interest

2 km



agricultural practices take places during this period.  
Irrigation season 1 (IS1): this is the dry season, although there is sufficient water 
from streams available for the farmers to irrigated their land. This period is 
approximately from May to July.  Agricultural practices are present to a lesser extent 
than in the wet season, but a large part of the study area is still used for cultivation.
Irrigation season 2 (IS2): a dry season characterised by water scarcity.  In general, 
irrigation is possible in the mid-and upstream part of the area. Downstream, there is 
often not enough water available for irrigation. This period lasts from August till 
November.  Agricultural activities are present in a lesser extent than irrigation season 
1 and the wet season, and mainly limited by the availability of water.

These three different seasons are an approximation. A strict agricultural agenda with 
fixed planting, harvesting or irrigation periods is non existing. The farmers 
determine their own schedule, timing differs per season and per field. Agricultural 
practices are dynamic and flexible, and situations change rapidly (Hollander, 2018;  
Beekman et al., 2014).

 
3.1.2. Meteorological data

12

IS-2 WS

183 638 322 142 28 25 14 17 14 10 39 132

JanDec Feb Mar Apr May Jun Jul Aug Sep Oct Nov

IS-1

Figure 3.1.2. Mean monthly precipitation  in the year 2017 shown in mm. These values are obtained 
with the CHIRPS pentad data in Google Earth Engine. The WS: wet season, IS-1: irrigation season 1 

and IS-2: irrigation season 2, as indicated by (Hollander 2018).

Mean monthly precipitation in study area [mm]
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Reference data 
1. Class definition

Fieldwork has been executed in the region between 03 October 2017 and 08 
December 2017 by (Hollander, 2018). A total of 300 locations were visited with 58 
famers interviewed, to obtain expert knowledge about the area and its irrigation 
practices. The main land covers and land uses that could be identified are rocks, 
dense evergreen vegetation, houses, irrigated agricultural fields, non-irrigated 
agricultural fields and light seasonal vegetation. The latter three are dominant in the 
region and also exhibit phenological similarities.

3.2.1. Training data
The classification goal is to distinguish irrigated land use of smallholder farmers  in 
an area where other land covers are also present. The first step of supervised 
classification is to identify the different classes and collect a dataset from them, that 
can be used as training data for the model. A large, high-quality training set is 
required as input for the algorithm, in order to understand the linkage between 
pattern and series that cause a specific outcome (Shi et al, 2020). Training data 
consists of  in-situ examples of different land uses and covers and is used to 
construct knowledge, that will serve as input for the classifier that performs the 
classification. This study works with secondary training data; land classes have 
already been identified and collected in a previous study (Hollander, 2018).  
The spatial outlines of the land classes are collected to be used as training data in the 
form of polygons. Collection of these polygons is based on the process of 
opportunistic sampling,  whereby as much data as possible of a certain class is 
collected. These data are available in shape files that can be imported to the 
algorithm and prepared for the classification procedure. The data was first imported 
in QGIS to add a unique value column of each land use, and then imported to 
Geemap, where the polygons are scaled to the required WGS 84 (EPSG 4326) spatial 
reference system. 
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3.2.2. Characteristics of the fields data
The identified land uses and their charactieristics are depicted in figure 3.2.1.:

Land classes and their characteristics

Land class # LU Characteristics

Irrigated 
fields 146 0

Located near small streams, where irrigation is mainly 
applied by furrow irrigation. Tomatoes, beans, onions, 
cabbage and chilies are cultivated in rows. 

Non-
irrigated 

fields
30 1

Consist mostly of maize and in a smaller quantity 
sorghum. Location is not restriced by the presence of an 
open water body. In the dry season, these areas are often 
overgrown with natural vegetation. 

Light 
seasonal 

vegetation
12 2

Shrubs, grasses and small bushes are mostly present in this 
land class. In the dry season this land class  becomes less 
green and less abundant. A mix of natural vegetation and 
agriculture is also frequently present. 

Dense 
evergreen 
vegetation

13 3

Often occurs upstream in the mountains of the study area 
where the currents originate, or near downstream currents. 
These land classes retain their vegetation density and 
greenness all throughout the year. 

Houses 28 4
There are no large villages present, only houses clustered 
in small settlements. These houses and agricultural fields 
can only be reached via unpaved roads. 

Rocks 5 5
A couple of areas in the northern part and some places 
nearby the ridge consist of permanently bare ground and 
rocks.

Table 3.2.1. Land classes, amount of class polygons and their characteristic as identified and 
sampled from 03/10/2017 to 08/12/2017 (Hollander, 2018), each with a unique land use value (LU).
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3.2.3. Required spatial and temporal scale
The average size of the irrigated fields used as training data is 0.2 hectares,  or 2000 
m . Polygons of other land covers are not much larger, scattered throughout the area 
and irregularly shaped. The intra variability in a specific class is high while the inter 
variability between classes is low: there is no monoculture in terms of crop 
cultivation. This results in a heterogeneous and therefore complex agricultural 
landscape, where agricultural and irrigation practices are dynamic and situations 
change rapidly (Hollander, 2018;  Beekman et al., 2014). 

As reference, many classification studies with the aim of identifying irrigation have 
been carried out in desert areas in the United States. These are often center pivots 
that consist of one type of crop, and, as in this example, covers an area of 550000 m  , 
almost 275 times as much as the average irrigated field in Manica, Mozambique. In 
addition, the agricultural landscape is designed orderly with a strict cultivation 
agenda which makes it easy to distinguish land uses (Ozdogan et al., 2010). In order 
to detect the rapid changes in the small and complex landscape, satellite data with 
the highest possible spatial and temporal resolution is used.

2
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Figure 3.2.2. Polygons of the training data in the research area, 
compared to a reference study in Kansas, U.S.A. The white square 

depicts a 10 10  resolution pixel. x m2
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Satellite data 
2. Pre-processing

The choice of satellites is limited given the spatial and temporal resolution required 
for the intended classification goal. The Copernicus Program provided by the 
European Space Agency, which launched the Sentinel-1 (S-1) and Sentinel-2 (S-2) 
satellite missions in 2014, do meet the requirements.  
 
S-2 is a multispectral instrument consisting of twin polar orbiting satellites moving 
in the same orbit, phased at 180 degrees to each other. The mission has a revisit time 
of 5 days at the equator under cloud free conditions. S-2 works with a passive sensor 
and needs therefore radiation from the sun to obtain information about the earth 
(ESA, 2013). 

S-1 sensors collect data from a dual-polarization C-band Synthetic Aperture Radar 
(SAR) instrument which operates at a central frequency of 5.405 GHz. The mission is 
composed of a constellation of two satellites that operate in a sun synchronous, near-
polar orbit with a 12-day revisit time each and a 6 day repeat cycle at the equator as 
constellation. S-1’s active sensor can observe earth’s surface at any time of the day 
and night,  regardless meteorological conditions (ESA, 2013).  

This research makes use of the Sentinel-2 Level-1C orthorectified top-of-atmosphere 
reflectance data ‘ee.ImageCollection(“COPERNICUS/S2”)’ for exploring the 
performance of different non-parametric machine learning classifiers such as 
Random Forest. Thereafter, the possibility for Sentinel-1 SAR GRD: 
C-band Synthetic Aperture Radar Ground Range Detected,  log scaling 
‘ee.ImageCollection(‘COPERNICUS/S1_GRD’)' data to detect irrigation of 
smallholder farmers  is investigated.

Sentinel-2 
3.3.1. Bands

Sentinel-2 data is a multi-spectral imaging instrument that obtains data in a wide-
swath, high-resolution mode in 16 different spectral bands that represent that top of 
atmosphere reflectance scaled by 10000. The name of S-2 bands, its corresponding 
pixel size and wavelength and description of the band is depicted in table 3.3.1.
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Sentinel-2 pre-processing steps 
3.3.2. Cloud filter

The signal that optical sensors receive is not able to penetrate through clouds. 
Therefore, pre-processing of optical data consists of a large part of filtering these 
clouds and filling information gaps arising from the presence of these clouds. A 
cloud filter removes images that contain a certain amount of cloud coverage. The 
threshold of the maximum allowed cloud cover can be set manually. During this 
research, tests have been carried  out using cloud filters with a 5,10,20,40,60 and 80% 
cloud coverage threshold, to investigate the effect of different threshold values on 
the amount of output images which led to a choice of 20%.

Band names, pixel size, wavelength and description of Sentinel-2

Pixel size [m]
Wavelength [nm]  

S-2A/S-2B Description

B1 60 443.9 / 442.3 Aerosols

B2 10 496.6 / 492.1 Blue

B3 10 560 / 559 Green

B4 10 664.5 / 665 Red

B5 20 703.9 / 703.8 Red Edge 1

B6 20 740.2 / 739.1 Red Edge 2

B7 20 782.5 / 779.7 Red Edge 3

B8 10 835.1 /833 NIR

B8A 20 864.8 /864 Red Edge 4

B9 60 945 / 943.2 Water vapor

B10 60 1373.5 /1376.9 Cirrus

B11 20 1613.7 /1610.4 SWIR 1

B12 20 2202.4 / 2185.7 SWIR 2

Table 3.3.1. Name of spectral bands of Sentinel-2, pixel size in meters, wavelength of the S-2A and 

S-2B in nanometers instruments and descripton of the bands. 
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3.3.3. Cloud mask
The classifier may misidentify the clouds as a particular land class and thereby 
distort the outcome. A cloud mask will change cloudy pixels in an image to a pixel 
with ‘no-data’. The S-2 collection in GEE has a built-in Quality Assessment (QA) 
band which contains cloud cover information to apply a cloud-mask. The level-1C 
mask function uses reflectance threshold from the visible (B1,B2) and SWIR bands 
(B10, B11 and B12). The function uses an algorithm to create the QA60 band, that is 
used to remaining dense and cirrus clouds (Coluzzi et al., 2018).

Sentinel-1 
3.3.4. Polarization modes

S-1 data is obtained with a number of different instrument modes, resolutions and 
band combinations in both ascending and descending orbits. The options for the 
instrument modes are stripmap (S), interferometric wide swath (IW), extra-wide 
swath (EW) and wave mode (WV). Images can be obtained in either 10, 25 or 40 
meter resolutions.  The dual polarization SAR system actively transmits microwave 
signals to the earth with horizontal (H) or vertical (V) polarizations which are then 
received in both H and V polarizations. This received polarization signal  is a portion 
of the transmitted energy, received by the satellite as backscatter from the ground. 
The sensor retrieves the backscatter shortly after and at a slightly different location 
than the emitted signal as the satellite continues its path along the orbit. The phase 
information and brightness amplitude of the received signal is collected and used to 
construct an image of the situation on the ground (ESA, 2013). Table 3.3.2. depicts the 
polarization name, pixel size, wavelength and description of the Sentinel-1 product.

Polarization name, pixel size, wavelength and description of Sentinel-1

Pixel size [m] Wl [GHz] Description

HH 10 5.405 Single co-polarization

HV 10 5.405 Dual-band cross-polarization

VV 10 5.405 Single co-polarization

VH 10 5.405 Dual-band cross-polarization

Table 3.3.2. Band names including polarization modes of Sentinel-1, pixel size in meters, 
wavelength in gigahertz and descripton of the polarizations.
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Sentinel-1 pre-processing steps 
3.3.5. Acquisition dates

The Sentinel-1 data is filtered to location and time-period to only obtain images of 
the Region Of Interest and within 01/01/2017 and 01/01/2018. From this, 
information is obtained from the time moments as shown in table 3.3.3. 

3.3.6. Pre-processing by Google Earth Engine
The Ground Range Detected (GRD) scenes in Google Earth Engine (GEE) are 
processed to backscatter coefficients ( ), in the decibel units (dB). The backscatter 
shows if the radiated terrain scatters the incident microwave signal primarily 
towards the sensor (dB > 0) or away (dB < 0) . The retrieved backscatter coefficient is 
the backscatter area per unit ground area and can vary several orders of magnitude. 
Therefore the backscatter coefficient ( ) is converted to (dB) as . The 
intensity of the backscatter is mainly dependent on the physical characteristics of the 
terrain: the geometry of the target and its electromagnetic properties. The following 
pre-processing steps have been carried out, applicable to the data used for this 
research, as implemented by the S-1 toolbox. This, to obtain the backscatter 
coefficient of each pixel, which may show irrigation and vegetation dynamics:

• Orbit file application: the satellite flying orbit track is detected by many sensors. 
This step filters the orbit metadata with a restituted orbit to obtain the precise orbit 
data for improved geocoding.

• Thermal noise removal: for acquisition of scenes in multi-swath modes, this 
process removes additive noise that appears in sub-swaths in order to decrease 
discrepancies between these sub-swaths. 

Acquistion dates of Sentinel-1 images

1 2 3 4 5 6 7 8 9 10 11 12

x 21 5 10 4 9 3 8 1 10 12 6

x x 17 22 16 21 15 20 13 19 24 18

x x 29 x 28 x 27 x 25 31 x 30

Table 3.3.3. Acquistion dates of Sentinel-1 images, the top represent the number of the month with 
the corresponding image obtained at that date in the year 2017. 

σ0

σ0 10 * log10σ0
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• Radiometric calibration: this calibration uses sensor calibration parameters to 
construct backscatter intensities from GRD metadata.

3.3.7. Metadata filtering
To generate a homogenous subset of S-1 data as used for this research, the collection 
is also filtered by the following metadata properties:

• Transmitter receiver modes: [‘VV’], [‘HH’], [‘VV’ + ‘VH’].
• Instrument mode: ‘IW’ .
• Orbit properties passs: for the ROI, data is only available in ‘DESCENDING’ mode. 
• Resolution in meters: as the target has narrow dimensions, the highest resolution 

of 10 meters is chosen. 
• Resolution High or Medium: the selected pixel spacing of 10 meters and 

Interferometric Wide Swath mode corresponds  to a ‘H’ (High) resolution of 
level-1C GRD scenes (ESA, 2013).

3.3.8. Speckle filtering
One of the difficulties in handling SAR data is the presence of speckle effects that 
make visual interpretation challenging. In pictures, the speckle effect appears as 
random noise but is in fact a consequence of the coherent nature of the radar signal. 
To reduce this effect, various filters can be applied such as the Frost filter, a Median 
filter and a Refined lee filter.

GEE uses multi look images. Multi-look processing is done by averaging adjacent 
pixels for the purpose of reducing the effect of speckle and to compress the data. As 
these images are already suitable for achieving the intended effect of reducing 
speckle, this study does not use an additional filter.  Another motivation for this 
decision is that most filters make use of a buffer zone that include the surrounding 
behaviour of the pixel in determining the pixels’ backscatter intensity. In view of the 
small area to be irrigated, this additional buffer zone may contain information that is 
incorrectly attributed to a particular class and therefore only complicates the process.
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Methods 
After the class definition and pre-processing steps have been carried out, these 
components  have been kept constant for the rest of the study. 

Performances of different classifiers
This research works with open source GEE data and the open source Python based 
interface Geemap. No specific affordable or downloadable software is required 
which is useful for the final product to be delivered. The self-written code is used as 
a model and capable of performing all the desired calculations. Table 3.4.1. shows the 
main similarities and differences between the other analysis method (Hollander, 
2018) and the new model. The main differences are the number of images obtained 
and the classifiers used. 

3.4. Machine learning methods

3.4.1. Maximum likelihood

Digital image classification algorithms may use parametric conditions based on a 
normal distributions of the data, nonparametric conditions which does not assume 
normal data distributions, and nonmetric conditions (Timothy et al., 2009). The 
previous study (Hollander, 2018) uses a maximum likelihood classifier, which 
assumes that the statistics of the land classes are normally distributed. This 
algorithm constructs equiprobability contours around the statistical means of the 
land classes, and assigns unknown pixels to a class with the highest probability, 
based on their placement in the contours (Lavender & Lavender, 2015). The 
examined classifiers used for this study are all nonparametric.  

3.4.2. Classification and Regression Trees (CART)
Decision trees are a commonly used algorithm for predictive modeling with machine 
learning. A decision trees can be depicted as an upside down tree where the roots 
show the start of the process. The leaves represent specific classes, and the branches 
the relationship between the characteristics of that class. The decision tree takes the 
entire package of information from the training set as input; applies several cut-offs 
in terms of node-splitting based on certain criteria; and continious this process until 
the branch of the tree is reached;  where it generates an output. Classification trees 
are predicting a discrete class and thus generate a categorical output. Regression 
trees are used for predicting a continuous quantity to construct a numerical output.  
Disadvantage of this classifier is that it is relatively sensitive to overfitting. 
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Similarities and differences between the old method and new model

Wl [GHz]
Other analysis methods 

(Hollander, 2018) New model

Classes Amount 4 4

Number 
of 

polygons

Irrigated fields 142 146

Non-irrigated fields 0 0

Light seasonal vegetation 20 13

Dense evergreen vegetation 25 12

Houses and rocks 32 33

Total 219 204

Data 
And 
Pre- 

processing

Data Sentinel-2 TOA Sentinel-2 TOA 

Data provider Copernicus open acces hub Google Earth Engine

Pre-processing Sen2Cor Google Earth Engine

Program QGIS & GRASS GEEmap

Images 
obtained

Irrigation season 1
08/06/2017 13/06/2017 08/06/2017 13/06/2017

28/06/2017 23/07/2017 28/06/2017 23/07/2017

Irrigation season 2

17/08/2017 17/08/2017 22/08/2017

27/08/2017 01/09/2017

06/09/2017 11/09/2017

26/09/2017 16/09/2017 26/09/2017

01/10/2017 01/10/2017 06/10/2017

11/10/2017 16/10/2017 16/10/2017

26/10/2017 20/11/2017 26/10/2017 20/11/2017

Aggregation Mosaic Mosaic

Bands

VIS 2, 3, 4, 8 2, 3, 4, 8

IR 4, 8, 11, 12 4, 8, 11, 12

RE 4, 5, 6, 7, 8, 8A, 11, 12 4, 5, 6, 7, 8, 8A, 11, 12

Classifier Machine learning 
method Maximum likelihood

CART

Random Forest

Support Vector Machine

Accuracy Training / testing  [%] 80 20 80 20

Table 3.4.1. Similarities and differences between the old and new method (Hollander, 2018)



Overfitting occurs when the model learns from outliers and noise in the training 
data to such an extent that is negatively affects its accuracy in adding new data. 
Training sets with low variability between the classes might be less suitable for this 
classifier, due to its inability to discriminate between marginal cases.  Datasets with 
high variability are also less effective for training the classifiers.  

3.4.3. Random forest
Random forest is an algorithm that is constructed from an ensemble of decision trees, 
applicable to both classification and regression. The design of RF is nearly the same 
as CART, though RF takes only a subset of the available data as input. During node-
splitting, RF searches for the best feature to distinguish a key indicator of a specific 
class, among the random subset of features, instead of searching for the most 
important feature. Many decision trees can be constructed from different random 
subsets of data. To construct a final output, the RF assembles the output from all the 
decision trees in the forest to make a prediction. The addition of randomness in an 
RF makes the model more robust and less prone to overfitting than CART 
algorithms. The adverse effect is the complication of interpretation. What happens 
during the construction of different trees is not simple to determine, which 
complicates the interpretation and explanation of the model outcomes. 

3.4.4. Support vector machine
The goal of the SVM is to construct a hyperplane in an N dimensional space, 
whereby N depicts he number of features,  that seperates the data points.  Many 
hyperplanes can be constructed, but the objective is to find a hyperplane that has the 
maximum distance between data points of two classes, in case of a two dimensional 
space. The hyperplane operates as a decision boundary for new data points. Data 
points falling on a certain side can be attributed to a class, if there are only two 
distinguishable classes and data characteristics are unfamiliar.

3.5. Accuracy assessment 
Since each machine learning  method has its own way of separating the training data 
and classifying new pixels, the final classification maps will also differ. Qualitative 
analysis can be performed with the classification map produced. To evaluate the 
performance of the model quantitatively, accuracy assessment is performed. This not 
only gives insight in the overall performance, it also exposes the underlying 
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mechanisms of the model. This will help to identify which field characteristics, in 
combination with the model used, influence the final results.

3.5.1. Confusion matrix
There are various methods to assess the quality of the classification. One of the most 
commonly used methods is accuracy assessment via a confusion matrix. The 
confusion matrix shows how the  classification model is confused when making 
predictions. Table 3.5.1. shows an example of a confusion matrix, that calculates the 
following statistics:

• OA: the overall accuracy  = (# pixels correctly classified) / (total # of pixels) and 
shows the percentage of correctly classified points. This number adds the classified 
pixels in the main diagonal and divides them through the total amount of pixels, to 
obtain a value in %.

• PA: the producers accuracy (irrigation) = (# of pixels correctly classified a 
irrigation) / (# ground reference pixels of irrigation). This accuracy evaluates the 
classification accuracy from the producer’s point of view, the mapmaker. This is 
related to the Omission Error = 1- producers accuracy and portrays the number of 
times a pixel should have been included in that specific class. This is the sum of 
pixels in a column, the main diagonal exluded. 

• UA: the users accuracy (irrgation) = (# of pixels correctly classified as irrigation) / 
(total # of pixels classified as irrigation). This value indicates the classification 

Confusion matrix example

0 1 2 PA%

0 1682 5 1 99.6

1 39 1542 8 97.0

2 1 35 581 94.1

UA% 97.7 97.3 98.1 OA%

Table 3.5.1. example of a confusion matrix 
consisting of 3 classes. 
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accuracy from the user’s point of view, the mapviewer. The outcome represents the 
probability of a pixel that is being classified into a class that is actually that pixel. 
From this, the Comission Error can be calculated as  1 - users accuracy. This 
represents the number of times that a pixel of a class is included, when it should be 
excluded. It is the sum within a row without the main diagonal.

3.5.2. Kappa coefficient
The kappa coefficient, or  is  a number that represents the relative performance of 
the classification, compared to a random classification. It is therefore a reliable way 
to determine the accuracy of the analysis, since it take into account the probability of 
a truthful result based on chance.  In the field of image classification,  ranges from 0 
to 1 in general, where an outcome of  1 depicts a perfect classification. A zero shows 
that the outcome is no better than a random classification

3.5.3. Training and testing set
After generation of the training set, it is divided into two datasets: one for training 
the model and one for accuracy assessment. The training dataset is used to construct 
a confusion matrix indicating the training accuracy, which gives and indication of 
the generalization error.  With the validation or testing subset, the confusion matrix 
is created that depicts the testing accuracy.  A large difference in testing and training 
accuracy indicates that the model is prone to overfitting. The classifications were 
performed with a fixed split of 80% training and 20% testing as in the previous 
research (Hollander, 2018).  To evaluate the robustness of the model, experiments 
were conducted with different ratios and subsets of training and testing.  

3.6. Irrigation estimation  
The final classification map shows the distribution of the predicted irrigation, and 
the accuracy assessment an indication of its validity. Following this,  the amount of 
irrigation can be determined by counting the amount of pixels per prediction. This 
contributes to the intended classification goal of identifying and quantifying 
smallholder irrigation in Manica, Mozambique. To compare the different 
classification methods qualitatively, the different classification maps can be 
compared to reference images of the area from 12/31/2017, provided by Google 
Earth Pro. This allows for qualitative assessment of whether the maps obtained are 
truthful in terms of quantity and distribution of classified land covers.  

κ

κ
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3.7. Spectral analysis of Sentinel-2 
The non-paramatric classifiers group the land classes based on differences and 
similarities in spectral responses. Analysis of these responses can provide insight 
into the model's classification process, as well as their usability to identify irrigation. 
It examines how the classes respond to different bands and indices, in order to 
extract a specific irrigation signal. In addition, the mean and standard deviation can 
determine the degree of variability within and between classes.  This provides an 
indication of the quality of the training data set, and therefore the reliability of the 
classification outcome. This research makes use of the same combination of bands as 
used in the previous study, based on the frequently used combinations as depicted in 
table 3.7.1.

The steps described so far carry out the quality control of the new model. It shows 
how well the three non parametric classifiers are able to make an accurate prediction 
of new pixels, based on the same three band combinations and two time periods as 

Frequently used spectral band combinations for agriculture

Name B Sensitivity

Color
infrared

B3
B4
B8

This band combination places emphasis on vegetation health. The 
near-infrared band 8 in particular is sensitive to chlorophyll, and 
therefore dense vegetation will show up red in a color infrared, 
and urban areas in white. 

Short
wave

 infrared

B12
 B8A

B4

In using this combination of shortwave infrared, near-infrared 
and red-edge, vegetation appears in different shades of green. 
Dense vegetation is generally characterized by darker shades of 
green and brown colors indicate rocks and urban areas.

Agriculture
B11
B8
 B2

This band combination of  shortwave infrared, near-infrared and 
blue is also used for observing vegetation health. B11 and B8A are 
mainly suitable for indicating dense vegetation, that appears in 
darker shades of green. 

Table 3.7.1. The frequently used spectral bands are depicted in the table, on which the band 
combinations of this research are based, namely: Visible (VIS), visible and near-infrared bands: B2, 
B3, B4, B8.  Infrared (IR), red, near-infrared and shortwave infrared bands: B4, B8, B11, B12. Red-
edge (RE), red, near-infrared, shortwave infrared and red-edge bands: B4, B5, B6, B7, B8, B8A, B11, 
B12.
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in the previous study. This supports the choice of the non-parametric classifier with 
which to proceed. The sensitivity of the model is determined by testing different 
ratios and subsets of training and validation data.  Next, the six classifications 
produced are analyzed both qualitatively and quantitatively. The classification map s 
give an indication of the distribution of the different land uses. In addition, the 
percentages of these land uses reflect the size of a predicted class. Spectral analysis of 
various band combinations and indices provide insight into the model's 
classification process. Finally, it determines how irrigation can best be seen in this 
training data , using S-2 data. 

3.8. The potential of Sentinel-1 data 
This study attempts to reduce the problem of low inter-class spectral separability as 
indicated before (Hollander, 2018) by using ingenious non-parametric machine 
learning techniques for classification. The problem is caused in particular by the 
similarity between irrigated fields and light seasonal vegetation on field scale. It is 
examined whether S-1 SAR data is able to provide additional insight into the 
temporal behavior of these, and other land uses. This, to potentially add additional 
information to the model , or create a new model based solely on S-1 SAR data. 

3.8.1. Aggregation method 
Sentinel-2 data allows spectral signatures of vegetation to be seen. SAR interacts 
with the land cover and land use through the polarization signals that the product 
emits. In contrast to S-2 data, there is an important difference with S-1 data. The 
backscatter intensity of the different polarizations of the SAR data is expressed in a 
logarithmic scale [dB]. Therefore, the temporal statistics of S-1 are not fully 
consistent with the mathematical average and standard deviation of the linearly 
scaled S-2 data. To be able to compare the temporal statistics of the spectral 
responses and backscatter intensities of different land classes, expressing the 
standard deviation and mean of both datasets have been used. To construct this 
figure, it is examined how a difference in aggregation method affects the temporal 
statistics. For this purpose, boxplots were made based on a mean and median 
aggregation method. From this it can be seen how the aggregation method 
influences the minimum, first quartile, median, third quartile, and maximum of the 
VV and VH polarization in interaction with the land classes. After this, a choice can 
be made, which aggregation method can best be used for this dataset. 
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3.8.2. Intra and inter class variability
By investigating the mean and standard deviation of the interaction of the VV and 
VH polarizations with the different land uses over time, both the intra and inter class 
variability are examined. 

3.8.3. Accuracy assessment
The testing and training data of the classifications of the VV and VH polarizations 
have been assessed in further detail, in order to understand different mechanisms 
behind the model.

3.8.4. Influence of different training sets
To see if and how this could possibly cause confusion, a number of new training sets 
are created where the accuracies are compared to those of a classification with all 
land classes. A subset is created that includes only the 42 largest irrigation polygons. 
In addition, another set was created with only the classes irrigated, non irrigated, 
light seasonal vegetation and dense evergreen vegetation. Finally, a classification 
was done based on the large irrigated fields, and excluding non irrigation.
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4. Results 
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VIS IS1 VIS IS1 VIS IS2 VIS IS2

IR IS1IR IS1 IR IS2
IR IS2

Figure 4.1.1. Illustrative image of predicted amount of irrigated areas, based on VIS, IR, and RE 
bands in IS-1 and IS-2. From left to right and top to bottom: VIS IS-1, VIS IS-1, VIS IS-2, VIS IS-2, IR 

IS-1, IR IS-1, IR IS-2, IR IS-2, RE IS-1, RE IS-1, RE IS-2, RE IS-2



4.1. Introduction 
This chapter shows the main results which are relevant to the research questions. 
First of all, the performances of the new model compared to the previous study 
(Hollander, 2018) are presented. This, along with the performances of different non-
parametric machine learning techniques. The potential of both Sentinel-2 and 
Sentinel-1 data to identify irrigated agriculture in Manica is then  discussed. 

4.2. Performances of different classifiers 
To compare the performances of the old with the new model, the  accuracies of the 
six classifications are shown in table 4.2.1.  The  gives an objective estimate of the 
model performance and the reability of its outcome. The number, on a scale from 0 to 
1, represents how well the classification corresponds to the ground data, split from 
the training subset for validation. The  indices are calculated from the validation 
subset. The values from the new model, represent the average outcome based on a 
10-fold cross validation.

κ
κ

κ

Kappa accuracies of the old analysis method (Hollander, 2018) and 
the new model

New

VIS IS1 0.62 0.45 0.53 0.63

VIS IS2 0.85 x 0.54 0.66

IR IS1 0.59 0.43 0.70 0.77

IR IS2 0.80 0.26 0.64 0.74

RE IS1 0.60 0.44 0.81 0.87

RE IS2 0.79 0.32 0.79 0.88

Table 4.2.1.  Comparison of kappa accuracies of the old analysis method (Hollander, 
2018) and the new model. The  indices are calculated from the validation subset. The 
values from the new model, represent the average outcome of a 10-fold cross 
validation. Based on a classification of 4 different land classes containing 204 polygons. 
Data is based on Sentinel-2 data in IS-1 and IS-2 using VIS, IR, and RE bands and a 
80%/20 % split in training and validation data. 

κ

 
RF
κ

ML
κ  

SVM
κ  

CART
κ
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4.2.1. Maximum likelihood
Section 3.5.2.  explains that the closer the  approaches 1, the better the classification 
succeeded according to the accuracy assessment. The kappas obtained from the 
maximum likelihood classification  of the previous study show the highest values for 
all band combinations in the second irrigation season.  Respectively:  0.23 for the 
visual band combination, 0.21 for the infrared band combination and 0.19 for the 
red-edge band combination.  The highest accuracy is achieved through the visual 
band combination in irrigation season 2 with a  of 0.85. 

4.2.2. Support vector machine
Examing the kappas of the new model, it is noticeable that the outcomes of the SVM 
classification are significantly lower than those classifications with other classifiers. 
They all do not exceed 0.45. Section 3.4.4. describes that the SVM classifier seperates 
the data points by means of a constructed hyperplane. However, the model is not 
able to construct multiple hyperplanes and therefore distinguishes between more 
than two classes.  Because this model wants to predict 4 classes, this could be a cause 
of the low scores. 

4.2.3. Classification and Regression Trees and Random Forest
The  accuracies of the CART and RF classification methods show much higher  
values than those of the SVM. Outcomes between 0.53 and 0.88 are achieved and in 
each case, the RF scores between 0.12 and 0.06 are higher than the CART. Both of 
these machine learning techniques are based on the same decision tree principle, but 
the RF has a more advanced way of predicting based on building multiple trees.

In contrast to the previous study, the CART and RF classification results do not 
always show higher outcomes in the second irrigation season. Here, the selection of 
band combinations is more related to a higher outcome than irrigation season.  For 
both CART and RF,  the highest results are obtained in both irrigation seasons with 
the RE band combination.  Then comes the IR combination and finally the VIS band 
combination. These red bands are sensitive to greenness, which could be an indicator 
for vegetation biomass. As it seems, the new model can distinguish the classes based 
on this information.

Since the random forest classifier is the only technique to reach the USGS standard 
limit of 85%, further research with this classifier is continued.

κ

κ

κ κ
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4.3. Irrigation estimation 
The  accuracies in table 4.3.1. give an indication of the model performance, based on 
four land uses, three different band combinations and two irrigation seasons. Table 
4.3.1. shows the predicted amount of irrigated areas per classification in percentage. 
The amount of predicted irrigated area by the new model is based on six land uses. 

Regarding the amount of predicted irrigated area, the only corresponding value 
between the old and the new method is that of 33% percent of the RE IS-2. In the first 
irrigation season the values are also close, they differ by only 1% at this band 
combination. The other band combinations show no corresponding outcomes. In 
IS-1, the new model predicts almost 3x more irrigated area for the VIS combination, 
and almost 2x more for the IR classification. In the IS-2 the predictions of the VIS and 
IR band combinations from the new model are both 1,3 higher. During fieldwork, it 
was identified that approximately 10-15% of the total area was irrigated. The new 
model overestimates this amount in all classifications. The estimated irrigated area 
of 16% based on the RE bands in IS-1 corresponds most to the situation on the 
ground.

κ

Predicted irrigated area per classification, old versus new model [%]

Old New

VIS-IS1 8 23

VIS-IS2 27 35

IR-IS1 9 17

IR-IS2 26 34

RE-IS1 15 16

RE-IS2 33 33

Table 4.3.1. shows the predicted amount of irrigated areas per classification in %, for the old analysis 
method (Hollander, 2018) and the new model. The old technique used the 4 land classes: irrigated 

fields, light seasonal vegetation, dense evergreen vegetation and bare ground and houses. The new 
model uses the 6 land classes: irrigated fields, non irrigated fields, light seasonal vegetation, dense 

evergreen vegetation, houses, and rocks.  Data is based on Sentinel-2 data in Irrigation season 1 
(08/06/2017 to 23/07/2017) and Irrigation season 2 (17/08/2017 to 20/11/2017) and visible (VIS: 
2,3,4,8), infrared (IR: 4,8,11,12) and red-edge (RE: 4,5,6,7,8,8A,11,12) band with a 80%/20 % split in 

training and validation data. 
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4.4. Outcomes of different classifications  
To analyze the results quantitatively, the classification maps are reviewed to evaluate 
how well the prediction matches the ground situation. The following sections show  
the predicted quantity and distribution of 6 land uses, based on 6 classifcations, from 
2 irrigation seasons using 3 different band combinations. 

4.4.1. VIS IS-1
The dominant land use in this area is dark evergreen vegetation, mainly presented at 
the ridge, and in smaller quantities through the remaining area. This seems to be a 
good reflection of the situation on the ground in both quantity and location. The 
positioning of the light seasonal vegetation also seems realistic, especially on the 
ridge, where it follows the tributaries of the catchment. This prediction indicates that 
about 28% of the area consists of non irrigated fields. This percentage appears quite 
high, and it is fragmented throughout the area, not presentable for the ground 
situation. The predicted irrigation does seem to match the irrigated fields used as 
training data. However, the classified percentage appears to be overestimated.   

4.4.2. IR IS-1
From this prediction, the vast majority of the area consists of dark evergreen 
vegetation and non irrigated fields. Mainly the amount of non-irrigated area seems 
rather over-classified and often seems to be confused with light seasonal vegetation. 
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23.37%

28.42%

12.64%

35.13%

0.22%

0.22%

Irrigated fields

Non irrigated fields

Light seasonal veg. 

Dark evergreen veg.

Houses

Rocks
2 km

Figure 4.4.1. Classification map showing estimated land use for the visual (VIS: 2,3,4,8)  band 
combination in irrigation season 1 (08/06/2017 to 23/07/2017). 

VIS IS-1



4.4.3. RE IS-1
This classification exhibits similar outcomes both in quantity and distribution as that 
of IR in IS-2, it also shows dark evergreen vegetation and non irrigated fields as 
dominant land classes. However, this RE prediction shows the irrigated fields more 
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Irrigated fields

Non irrigated fields

Light seasonal veg. 

Dark evergreen veg.
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RE IS-1

16.19%

37.77%

6.06%

39.50%

0.04%

0.44%

Figure 4.4.3. Classification map showing estimated land use for the red-edge (RE: 
4,5,6,7,8,8A,11,12)  band combination in irrigation season 1 (08/06/2017 to 23/07/2017). 
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17.03%
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38.62%

0.15%

0.35%

Figure 4.4.2. Classification map showing estimated land use for the infrared (IR: 4,8,11,12  
band combination in irrigation season 1 (08/06/2017 to 23/07/2017). 



clustered in the landscape. Also, this band combination classifies irrigated fields, 
where that of IR classifies this as houses or rocks. This can be seen mainly at the top 
of the area, and at the bottom left. 

4.4.4. VIS IS-2
In the second irrigation season, the main predicted land use is irrigation, which at 
35.16%, would cover more than one-third of the area. In terms of distribution, this is 
mainly seen in the lower river area, and on the edge of the ridge. The latter is a 
reflection of the expected situation. Though, the total amount of irrigated areas is 
sincerely overestimated compared to the ground situation. This also seems to be the 
case with the land class houses. There are also some larger urban areas classified 
throughout the area, which not correspond to the real situation. The quantity and 
location of dark evergreen vegetation seems similar to the situation on the ground, 
like the classes non irrigated fields and light seasonal vegetation.

4.4.5. IR IS-2
This prediction seems to show similar outcomes as that of VIS IS-2 in terms of 
dominant land classes and their distribution. However, this classification shows far 
fewer urban areas and more rocky areas, which also not correspond to the situation 
on the ground. 
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Irrigated fields

Non irrigated fields

Light seasonal veg. 

Dark evergreen veg.
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VIS IS-2

35.16%

15.84%

15.35%

31.12%

1.61%

0.92%

Figure 4.4.4. Classification map showing estimated land use for the visual (VIS: 2,3,4,8)  band 
combination in irrigation season 2 (17/08/2017 to 20/11/2017).



4.4.6. RE IS-2
This classification also sincerly overestimates the amount of irrigated areas, as well 
as the land covers houses and rocks. The map shows that part of the large bushy are 
on the ridge is also classified as light vegetation, which actually reflects the real 
situation.  
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Figure 4.4.5. Classification map showing estimated land use for the infrared (IR: 4,8,11,12  
band combination in irrigation season 2 (17/08/2017 to 20/11/2017).
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Figure 4.4.6. Classification map showing estimated land use for the red-edge (RE: 
4,5,6,7,8,8A,11,12)  band combination in irrigation season 2 (17/08/2017 to 20/11/2017).



In conclusion, the different classification maps show inconsistent resuls. The first 
irrigation season shows a big difference between the predictions of de VIS band 
combination and those of IR and RE. For irrigated fields, it predicts 23.37%, to 
17.03% and 16.19% respectively. For non irrigated fields, 28.42%, relative to 38.03% 
and 37.77% for the IR and RE bands, and for light seaonal vegetation, 12.64% to 
7.82% and 6.06%. The situations that seem to be most similar in terms of ground 
truth are those of the IR and RE band combinations. All band combinations in the 
second irrigation season predict about equal percentages of the different land classes, 
although the percentage of irrigated areas is about 3 times the expected value for all 
these classifications. 

4.5. Accuracy assessment 
To understand the underlying processes leading to the creation op these maps, and 
to evaluate the performance of the classification algorithm, accuracy assessment is 
performed. This is done for the classification with the highest  accuracies achieved. 
Namely, for the red-edge band combination in both irrigation seasons using a 
random forest algorithm with 100 trees. The producers, users and overall accuracy of 
the training matrix from IS-1 using a 80% training split is depicted in table 4.5.1., and 
the validation matrix for the same classification in table 4.5.2. The same figures based 
on information from the second season are shown in figure 4.5.3. and the validation 
matrix in fiugure 4.5.4. The complete training matrices are in Appendix C. 

4.5.1. Training matrix irrigation season 1 
A score of nearly a 100% OA on the training matrix leaves little margin for confusion 
between the different classes. The only class that achieves 100% on both the PA and 
CA is rocks, this is also the class that consists of the fewest polygons (5). The PA of 
LSV is 93.3% and means that this class is often excluded, when it should not be.

κ

Training PA, CU and OA of irrigation season 1 red-edge 

IF NIF LSV DEV H R OA%

PA% 99.4 97.6 93.3 99.7 98.1 100
98.2

UA% 97.7 96.9 98.8 99.9 100 100

Table 4.5.1. Training accuracy of RF (100) based on RE bands, from 
irrigation seaon 1,  is 97.6%.κ
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4.5.2. Testing matrix irrigation season 1 
The PA of houses of 50.9% is one of the most noticeable values of the testing matrix 
from the first irrigation season. This shows that this class is often not classified as 
being houses, when in fact it should be. The light seasonal vegetation class is often 
misclassified as both irrigated and non irrigated fields. In addition, the PA of non 
irrigated fields is 7% higher than its CA and this means that it is more often not 
included in the classification than it is. A large difference between PA (80.6%) and CA 
(100%) can also be found in the land class rocks, but the small size of this class makes 
it sensitive to change, and therefore sensitive to chance. 

4.5.3. Training matrix irrigation season 2
As with the training PA, CU and OA of irrigation season 1, an overall accuracy of 
98.1% leaves little margin for confusion between the different classes. Again, most 
confusion arises in the light seasonal vegetation class, with a PA of 93.3%.

Testing matrix irrigation season 1 red-edge bands

IF NIF LSV DV H R PA%

IF 392 36 7 4 1 0 85.3

NIF 38 334 13 4 0 0 87.4

LSV 11 17 116 4 0 0 84.5

DEV 4 2 1 244 0 0 95.9

H 6 3 2 0 33 0 50.9

R 1 1 0 0 0 18 80.6

UA% 87.2 80.4 83.5 94.8 97.9 100 88.0

Table 4.5.2.  Testing accuracy of RF (100) based on RE bands, from 
irrigation seaon 1,  is 81.7%.κ
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4.5.4. Testing matrix irrigation season 2
The testing matrix of IS-2 shows similarities with that of the first irrigation season. 
Here, a PA of 52.4%  from the class houses, is eminently the lowest score. Here, the 
class dense vegetation is often underclassified, due to a higher PA than CU, of 5,6%.

Training PA, CU and OA of irrigation season 2 red-edge 

IF NIF LSV DEV H R OA%

PA% 99.5 97.1 93.3 99.8 98.6 100

98.1
UA% 97.7 97.3 98.1 99.9 100 100

Table 4.5.3. Training accuracy of RF (100) based on RE bands, from 
irrigation seaon 2,  is 97.5%.κ

Testing matrix irrigation season 2 red-edge bands

IF NIF LSV DEV H R PA%

IF 351 31 2 10 3 0 86.2

NIF 26 346 10 5 1 0 84.1

LSV 13 16 109 2 0 0 81.4

DEV 8 2 2 239 0 0 95.3

H 7 3 1 1 32 0 52.4

R 2 0 0 0 1 21 95.7

UA% 83.0 81.8 85.9 89.7 96.5 100 88.3

Table 4.5.2.  Testing accuracy of RF (100) based on RE bands, from 
irrigation season 2,  is 84.1%.κ
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4.6. Spectral signatures 
Although the overall accuracy assessment of the quantitative analysis gives 
promising results, qualitative evaluation of the maps show inconsistency of 
classifications. Spectral signatures of the different land classes are analyzed to 
understand the differences on which the classifier distinguishes. The results 
presented are limited to irrigated fields, non irrigated fields and light seasonal 
vegetation, because of the interest to this study and their similarities on both field 
and data level. The spectral signatures of these land classes are presented by band 
combination on which the classifications are based. 

4.6.1.Visual bands B2, B3, B4, B8
In general, there are no noticeable differences between the signals of the four band 
combinations. The non-irrigated fields signal shows a smoother transition between 
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Figure 4.6.1. Mean spectral responses of the land classes irrigated fields (IF), non irrigated fields 
(NIF) and light seasonal vegetation (LSV), interacting with the visible (VIS: 2,3,4,8) bands.  Data is 

based on Sentinel-2 images from 08/06/2017 to 20/11/2017 with a cloud threshold of 20%. 

Spectral signatures of visual band combination  B2, B3, B4, B8



IS-1 and IS-2. After October, the B8 signal of this land class decreases, while that of 
the other land classes for this signal increases.

4.6.2. Infrared B4, B8, B11, B12
With this collection of spectral bands, some differences are detectable in the signal of 
B11 and B12. The light seasonal vegetation B11 and B12 shows a more gradual course 
in the second irrigation season. 

4.6.3. Red-edge B4, B5, B6, B7, B8, B8A, B11, B12
B5, B6 and B7 are also included in this band combination. These combinations are 
also not able to provide insight into spectral differences on which the classifier could 
distinguish. 
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Figure 4.6.2. Mean spectral responses of the land classes irrigated fields (IF), non irrigated fields 
(NIF) and light seasonal vegetation (LSV), interacting with the infrared (IR: 4,8,11,12) bands.  Data is 

based on Sentinel-2 images from 08/06/2017 to 20/11/2017 with a cloud threshold of 20%. 

Spectral signatures of infrared band combination B4, B8, B11, B12



The figures show are very low variability between the different land uses, as 
expected. As a result, it cannot be understood what spectral distinctions the classifier 
sees, in order to perform the classification. Only a small difference can be seen on B8, 
B11 and B12 and that could explain the highest accuries achieved with a 
classification based on red-edge bands. However, these results are too insignificant 
to make an informed statement on this. 
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Figure 4.6.3. Mean spectral responses of the land classes irrigated fields (IF), non irrigated fields 
(NIF) and light seasonal vegetation (LSV), interacting with the red-edge (RE: 4,5,6,7,8,8A,11,12) 

bands.  Data is based on Sentinel-2 images from 08/06/2017 to 20/11/2017 with a cloud threshold 
of 20%. 

Spectral signatures of red-edge band combination  
B4, B5, B6, B7, B8, B8A, B11, B12



4.7. Potential of SAR Sentinel-1 data 
This study attempts to reduce the problem of low inter-class spectral separability as 
indicated before by using ingenious non-parametric machine learning techniques for 
classification. The problem is caused in particular by the similarity between irrigated 
fields and light seasonal vegetation on field scale. It is examined whether S-1 SAR 
data is able to provide additional insight into the temporal behavior of these, and 
other land uses.

4.7.1. Intra class variability 
The mean and standard deviations of the VV and VH backscatter intensities are 
depicted in figure 4.7.1., 4.7.2. and 4.7.3. The figures are construced using median 
aggregation, to account for the apparent effect of outliers of the logarithmically 
scaled dataset. When all figures are considered together, it can be seen that the 
variation within the dataset is greater than the variation between the different 
classes. The standard deviations become larger as the two irrigation seasons begin, 
for all classes and both polarizations.

 
Irrigated fields
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Figure 4.7.1. Temporal behavior of the VV and VH polarizations with the class irrigated fields (IF), 
expressed as the mean and standard deviation (STD) of the median aggregated Sentinel-1 dataset, 

images from 08/06/2017 to 20/11/2017

VV & VH mean and STD irrigated fields



The mean of the first irrigation season of the VV signal is around -10.5 dB, and 
around -11.5 dB in the IS-2. For the VH signal, it is about -17 dB in IS-1, and -19 dB in 
IS-2.  Both signals decrease again at the end of the second season, and show 
similarities in their course in general. 

Non irrigated fields
In the first irrigation season, the mean of the VV signal is around -11 dB, and -12.5 dB 
in IS-2. For the VH signal, it is about -16 dB in the first half of IS-1, and -17 dB in the 
second half of IS-1. In irrigation season 2, the signal is about -17 dB. 

Light seasonal vegetation
For this land class, the mean of the first irrigation season of the VV signal is around 
-12 dB, and -13 dB in the IS-2. For the VH signal, it is about -17 dB in the first half of 
IS-1, and -18 dB in the second half of IS-1. In irrigation season 2 , the signal shows 
almost -20 dB. 
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Figure 4.7.2. Temporal behavior of the VV and VH polarizations with the class non irrigated fields 
(NIF), expressed as the mean and standard deviation (STD) of the median aggregated Sentinel-1 

dataset, images from 08/06/2017 to 20/11/2017

VV & VH mean and STD non irrigated fields



4.7.2. Inter class variability
Figure 4.7.4. shows the mean backscatter intensities in decibel of the VV and VH 
polarizations signal interacting with the classes irrigated fields, non irrigated fields 
and light seasonal vegetation, derived from all available information from the year 
2017. This is to understand patterns on which the classifier could perform the 
classification. 

The VV irrigation and non irrigation lines follow a similar pattern until September, 
as the second irrigation season begins. The light seasonal vegetation signal deviates 
from the two others earlier in the year, and begins to increase as of June. This signal  
continues to differ from that of IF and NIF until August, where the signals all 
converge and peak, showing a decrease in backscatter intensity at this time.

From the second irrigation season onwards, the VV polarizations of the different 
land classes diverge even further than in the first. During this period, the non 
irrigation signal is also approaching the signal of light seasonal vegetation. The NIF 
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Figure 4.7.3. Temporal behavior of the VV and VH polarizations with the class light seasonal 
vegetation (LSV), expressed as the mean and standard deviation (STD) of the median aggregated 

Sentinel-1 dataset, images from 08/06/2017 to 20/11/2017

VV & VH mean and STD light seasonal vegetation



and LSV signal overlap a few times a year.  The VV signal of irrigated fields, with the 
exception of early April, always remains above that of the others two classes. 

All VH polarization signals follow a similar pattern to that of VV, only the difference 
between the signals is smaller.  A final notable difference from the VV is that, the 
non- irrigation signal is above that of irrigation in the first irrigation season, while in 
the second irrigation season it is reversed.  

The most distinctive period for separating the signals irrigated fields and light 
seasonal vegetation is with the VV polarization in the second irrigation season.
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Figure 4.7.4. Temporal behavior of the VV and VH polarizations with the classes 
irrigated fields (IF), non irrigated fields (NIF) and light seasonal vegetation(LSV) 

expressed as the mean of the median aggregated Sentinel-1 dataset, images from all 
available information from 2017.

Inter class variability of VV and VH backscatter of IF, NIF, LSV



4.8. Accuracy assessment

Signal analysis shows that the problem of inter-class spectral separability of irrigated 
fields and light seasonal vegetation can best be overcome by using information from 
the VV polarization in irrigation season 2.  How the model classifies based on this 
information can be evaluated by table 4.8.1. and table 4.8.2., the training and testing 
matrix of this classification, and the classification map shown in figure 4.8.3. 

 
4.8.1. Training matrix

An overall accuracy of 94.5%  is mainly caused by confusion between several classes. 
The lowest score consists of that of a PA of 88.7% in the light vegetation class, while 
its UA is 7% higher. The irrigated field class shows an inverse pattern, its PA is 5% 
higher than its UA. Pixels in this class are included in the classification, while those 
of light seasonal vegetation often should have been included. The pixels of these 
classes are most often confused with those of non irrigated fields. 

Training matrix 08/06 -11/21 Sentinel-1 VV

IF NIF LSV DEV H R PA%

IF 1638 34 3 10 0 0 97.2

NIF 84 1469 12 5 0 3 93.4

LSV 13 50 536 3 0 2 88.7

DEV 37 14 5 1062 1 0 94.9

H 4 4 3 3 185 0 92.9

R 1 1 1 0 0 105 97.2

UA% 92.2 93.4 95.7 98.1 99.5 95.5 94.5

Table 4.8.1. Training accuracy matrix of random forest classification with  
100 trees based on VV polarizations from IS-2. The  of the training set is 

92.6%.
κ
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4.8.2. Testing matrix
With an overall accuracy of 64.6%, this testing matrix scores almost 30% lower than 
its training matrix. In particular, the class houses causes much confusion, with a UA 
of 44.9% and a PA of 36.1%. Furthermore, the UA of the light seasonal vegetation 
class is with 68.3% much higher than its PA of 55.2%. This means, that it is often 
incorrectly included in the classification. The light seasonal vegetation class is often 
confused with non irrigated fields, this also applies to the irrigated fields class. It is 
also most often confused with non irrigated fields. However, this method seems to 
be capable to some extent of distinguishing these classes from each other.  But in 
general, the outcomes of the testing matrix are inconsistent and the PA and UA 
scores are too low, in order to be able to peform a reliable classification.
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Testing matrix 08/06 -11/21

IF NIF LSV DEV H R PA%

IF 302 62 14 55 10 1 68.0

NIF 80 263 18 12 9 10 67.1

LSV 21 40 95 11 3 2 55.2

DEV 56 22 3 182 5 1 67.7

H 10 18 6 5 22 0 36.1

R 1 2 3 2 0 15 65.2

UA% 64.3 64.6 68.3 68.2 44.9 51.7 64.6

Table 4.8.2. Testing accuracy matrix of random forest classification with  
100 trees based on VV polarizations, from IS-2. The  of the testing set is 

52.6%.
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Classification map
The inconsistent results of the confusion matrices are also qualitatively shown on the 
classification map in figure 4.8.3.The results are fragmented and do not reflect the 
ground situation by any means. All land classes are intermingled and do not show 
characteristic landscape patterns. On the right side of the ridge, according to this 
classification, many rocks occur, while this part mainly consists of dense evergreen 
vegetation. 
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Irrigated fields

Non irrigated fields

Light seasonal veg. 

Dark evergreen veg.

Houses

Rocks

1 km

Figure 4.8.3. Classification map showing estimated land uses of a random forest 
classification with  100 trees based on VV polarizations from IS-2. 



4.8.4. Accuracies of different training data sets
Both the quantitative and qualitative analyses show inconsistent results. From the 
hypotheses proposed and the results generated, a number of factors were identified 
that most likely contribute to this inconsistency. These are: 
• The confusion which causes the class houses, as can be seen in the confusion 

matrix. 
• The confusion which causes the class rocks, as can mainly be seen in the 

classification map. 
• The relative large amount of polygons from the class irrigated fields, relative to the 

other land classes. 
• The small size of the polygons of the class irrigated fields, compared to the size of 

the polygons of other land classes, as can be seen in Appendix A. 
• The confusion in identification that might be caused by irrigated fields, which are 

adjacent to non irrigated fields. 

To examine if these parameters have some effect on the classification, table 4.8.4. is 
created showing the PA and CA of six different classifications, and their training and 
testing  accuracies. These classifications are all done based on a random forest 
classification with 100 trees with imagery from 09/01/2017 to 11/24/2017, using the 
following subsets of training data, consisting of:
• All polygons  from all classes, using VV polarization mode. 
• All polygons from all classes, using VH polarization mode.
• All polygons  from all classes, using VV and VH polarization mode.
• Polygons from irrigated fields, non irrigated fields, light seasonal vegetation and 

dark seasonal vegetation, using VV polarization mode.
• The 42 out of 146 largest polygons of irrigated fields, using VV polarization mode. 
• The 42 out of 146 largest polygons of irrigated fields, light seasonal vegetation, 

dark evergreen vegetation, houses and rocks using VV polarization mode.

The only subset that scored higher than the examined one is the one using large 
irrigated fields and without non irrigated fields, which reaches an accuracy of 67.1%.
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Accuracies of different training sets

Classes IF NIF LSV DEV H R

IF - NIF - 
LSV - 

DEV - H- 
R

VV
64.1 64.9 50.6 68.1 33.1 55.2 64.1 PA%

64.7 63.4 52.6 72.1 44.4 72.2 51.9 CA%

IF - NIF - 
LSV - 

DEV - H- 
R

VH
63.2 76.4 48.4 76.1 32.4 48.3 63.4 PA%

61.9 64.8 52.4 71.6 52.2 53.8 51.1 CA%

IF - NIF - 
LSV - 

DEV - H- 
R

VV 
VH

69.9 60.5 39.5 70.2 15.8 56.3 60.9 PA%

62.8 55.7 52.4 70.2 37.5 72.0 47.5 CA%

IF - NIF 
 - LSV - 

DEV
VV

69.1 64.1 56.3 71.4 60.5 PA%

66.2 67.6 60.2 68.5 52.9 CA%

LARGE IF 
- NIF - 
LSV - 

DEV - H- 
R

VV
63.1 64.5 51.0 71.6 27.5 56.3 62.4 PA%

56.8 64.9 52.0 76.4 28.8 56.3 50.4 CA%

LARGE IF 
- LSV - 

DEV - H- 
R

VV
69.3 65.0 74.4 34.5 48.3 67.1 PA%

69.3 62.2 73.6 40.4 56.0 53.9 CA%

Table 4.8.4. Accuracies of different test data sets, from images with dates: 09/01, 09/13, 09/25, 
10/07, 10/19, 10/31, 11/12, 11/24. Constructed of median reduced SAR data with an incidence 

angle of 40.1 degrees. Based on a RF (100) classifier and a split of 80/20 in training and testing data. 
The large irrigated field class consists of the 42 out of 146 largest polygons.
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5. Discussion

The discussion consists of two parts. Section 5.1. reviews the broader context of this 
research. Section 5.2. discusses several assumptions and decisions that were made 
during the research, and might affect the results obtained. 

5.1. Using S-1 and S-2 data to map farmer-led irrigated agriculture 
This research aims to provide insight into the usefulness of remotely sensed passive 
Sentinel-2 Level-1C and active Sentinel-1 SAR data for automatic detection of 
farmer-led irrigated agriculture in Central Mozambique. For this purpose, an open 
source-code is written, in the form of a model, that uses open-source satellite data 
from Google Earth Engine to execute the methodology developed. Research in the 
specific case study area contributes to developing a tool for identifying smallholder 
irrigation using satellite data, that can be scaled to the required national level. In 
addition, it contributes to the fundamental research on supervised image 
classification of complex agricultural landscapes, with optical and radar remotely 
sensed data and machine learning.

What is the performance of the new model, compared to the old method (Hollander, 2018) 
The main classification challenge in this area is working with training data that has a 
high degree of intra variability and in which there is little variability between the 
land classes, not at all those of irrigated fields and light seasonal vegetation. The 
results of this research seem to confirm the hypothesis that a nonparametric classifier 
is more suitable to handle the highly variable data than a parametric one, since it 
does not assume that the statistics of the land classes are normally distributed. The 
nonparametric random forest classifier provides a little higher  accuracy (88.0%) 
than the parametric maximum likelihood classifier (85.0%) as used by Hollander 
(2018), where both ’s are based on classifications with Sentinel-2’s Red-Edge and 
SWIR bands: 4,5,6,7,8,8A,11,12 using images from irrigation season 2.
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What is the  potential of Sentinel-2 data using a Random Forest classifier to identify 
smallholder irrigation in Manica, Mozambique?
Random forest classifications, constructing 100 trees with information from RE band 
combinations, reach OA’s of (88.0%) in IS-1 and (88.3%) in IS-2. According to this 
chosen accuracy assessment method using a confusion matrix, this would 
quantitatively mean that the classification was reasonably successful. However, 
classification maps do not show realistic outcomes in terms of quantity of predicted 
land covers and their distribution throughout the area. The estimated irrigated area 
based on classifications with RE bands is 16% and 33%, in IS-1 and IS-2 respectively 
and therefore lower than the predicted area based on VIS (23% and 35%) and IR 
(17% and 34%) bands. However, it was identified by Hollander (2018) that 
approximately 10-15% of the total area was irrigated, and all classifications with the 
RF classifier overestimate this amount significantly. 

To gain insight into the underlying mechanisms of the classification algorithm, 
spectral analysis of the various bandwidths is performed. The temporal spectral 
signatures of the land classes show low variability between classes and high 
variability in terms of standard deviation within the classes, which provides no 
further information. The accuracies of the classifications based on chlorophyll 
sensitive Red Edge and SWIR bands provide the highest values: 0.77% for the IR and
0.87% for the RE band combination, in IS-1. These values are respectively 0.74% and 
0.88% in the second irrigation season. Both classifications make us of bands B4, B8, 
B11, B12 and the RE band combination additionally uses B5, B6, B7 and B8A .

Therefore, it could be that irrigated agriculture with Sentinel-2 data can be identified 
on the basis of an increase in vegetation biomass or that the classifier benefits from 
more information through the use of multiple bands. Yet, this is not reflected in the 
spectral response behavior and as a consequence, it is unclear on the basis of which 
spectral distinction the model seperates the data, which lead to these results. 

What is the potential of Sentinel-1 data using a Random Forest classifier to identify 
smallholder irrigation in Manica, Mozambique?
Research on Sentinel-1's potential do seem to provide differences in response 
behavior of the backscatter intensities, when considering the mean behavior of the 
polygons of the land classes irrigated fields, non irrigated fields and light seasonal 
vegetation. Time series of the VV backscatter intensities do show a signal difference 
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between the irrigation class and the classes non irrigated and light seasonal 
vegetation in irrigation season two. However, high standard deviations do reflect the 
high intra variability of the data, and classification accuracies in this period do not 
exceed an overall accuracy of 64.1%. The main confusion as identified by the 
confusion matrices, comes from classes that are often identified as irrigation, 
whereas they are not, overestimating the amount of irrigated areas as with the use of 
S-2 data. When testing with different data subsets, only the tests that used the 25% 
largest polygons of irrigated fields yield a higher OA of 67.7%. However, this 
difference is too insignificant to explain the cause of confusion and does not offer 
further insight into the model's decision processes.

5.2. Reflection of results 
This research appears to show that the used method and data collections do not 
provide accurate information for the intended classification goal. However, the 
research method is based on several assumptions that influence the classification 
outcomes. In this section, these assumptions are critically discussed and compared to 
literature.

5.2.1. Sentinel-1 & Sentinel-2 data for image classification in complex landscapes
The main debatabale issue of this research is whether the phenomenon being studied 
is spatio-temporal compatible with the context in which it is being studied. 

Many studies have highlighted this issue on the complexity of using remote sensing 
for mapping parcel-level agricultural practices of smallholder farmers (Onojeghuo et 
al., 2018; Alganci et al., 2013). This complexity lies mainly in the small area of the 
croplands, with heterogenous cultivation and irrigation practices due to 
decentralized management (Lebourgeois et al., 2017; Piiroinen et al., 2015).  These 
factors can greatly influence the variability of spectral signatures, which makes it 
difficult to assign specific characteristics to certain land classes (Onojeghuo et al., 
2018). In addition, the size of a normal cropland in these complex agricultural 
landscapes is often greater than or the same as the pixel size of coarse-resolution 
satellite data, and therefore prone to misclassification (Wu et al., 2017).

Although this study uses medium-resolution satellite data (10-20 m), the intended 
classification object is often only a few pixels in size. This allows the classifier to 
obtain only a few pixels of class specific information from a single polygon. This 
increases the likelihood of both high variability of information and confusion with 
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surrounding classes, which makes the construction of a comprehensive knowledge 
base more unreliable, given the spatial scale on which this research is conducted. 

The temporal variation of spectral signatures on which the classifications are based, 
complicate the classification process as well. Figures 4.6.1., 4.6.2. and 4.6.3. show 
variable and inconsistent signatures, which makes it difficult to assign specific 
characteristics to a certain land class. 

5.2.2. Pre-processing 
Cloud filter of Sentinel-2 data

Sentinel-2 data as used in the previous study uses Top-of-Atmospere data that is 
converted to Bottom-of-Atmosphere images with Sen2Cor (Hollander, 2018; SNAP, 
2018; Müller-Wilm, 2016). This research makes use of Sentinel-2 Level-1C 
orthorectified top-of-atmosphere reflectance data. The TOA product has proven its 
reliability on image classification from various studies, since relative spectral 
differences are the key aspect (Song et al., 2001).  

This however, in combination with the cloud filter and cloud mask used could 
explain the differences in overall  accuracies of the classifications achieved (table 
4.2.1), compared to those of the maximum likelihood classifier as used in the 
previous research (Hollander, 2018).  The  accuracies of Hollander (2018) do not 
show corresponding outcomes with the support vector machine, classification and 
regression trees and random forest classifiers as used in this research. There is no 
pattern to be seen, as well in irrigation season as in used band combinations. 

Hollander (2018) makes use of cloud-free imagery, which results in less images 
available to the machine learning model in irrigation season 2 (7 instead of 13). 
Because mosaicing is used as aggregation method, spatially overlapping datasets are 
combined into a spatially continious image. This therefore results in more data 
available to the machine learning model in this research, from which more 
information can be extracted to assign specific characteristics to a land class. 

Speckle filter of Sentinel-1
One of the difficulties in handling SAR data is the presence of speckle effects, which 
is caused by the interference of backscatter between adjacent retrievels (Goodman, 
1976). This speckle effect provides a random granular texture on images, making 
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visual interpretation challenging. S-1 data retreived from GEE is multi-look 
processed, for the purpose of correcting standard noise and reducing the effect of 
speckle (Jin et al., 2019).

Since this study uses GEE multi-look processed S-1 data, it was therefore decided not 
to apply an additional speckle filter. This might explain the following result, also 
noted by Jin et al. (2019): large-scale distinguishable features can by seen on images 
that are affected by speckle-noise; they can be severely compromised on a smaller 
scale.  On figure 4.7.4., in the VV polarization signal there seems to be a difference in 
IS-2 between the different land classes irrigated fields, non irrigated fields and light 
seasonal vegetation when all polygons of a given class are viewed together. 
Classification accuracies in this period, however, do not exceed an overall accuracy 
of 64.1%, making the classification unreliable. 

5.2.3. Use of data for classification
The supervised image classification method used requires the collection of training 
and validation data (Foody, 2004). Regardless of the used classifier, accuracy 
assessment is performed to determine the quality of the classification outcome, and 
various factors affect this accuracy assessment.

Quantity of reference data
When training and validation data is not obtained using a randomly distributed 
sampling strategy, the data can no longer be assumed to be independent. Which, 
according to several studies (Zhen et al., 2013; Friedl et al., 2000; Hammond et 
al.,1996), has led to optimistic bias towards classification and inflated accuracy 
outcomes (Hammond et al.,1996). In addition, machine learning algorithms may also 
be biased if the distribution of training and validation data is unequal or imbalanced 
relative to the actual situation on the ground. If so, the classification outcome may 
favour the main class in the training data (Breidenbach et al., 2010; He & Garcia, 
2009; Foody & Mathur, 2004).

This research makes use of an opportunistic sampling method, in which as much 
information as possible was obtained from the land class irrigated fields, where the 
most interest is. As a result, there are about 10 times as many polygons of this land 
class (IF 146) than of, for instance, light seasonal vegetation (12). Furthermore, the 
OA of 88.0% seems optimistically biased, since qualitative assessement of the ground 
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situation does not show reliable classification outcomes. Additionally, the amount of 
irrigated agriculture is more than 3 times as much as expected in the area, making 
the model appear to be biased toward this most sampled land class. 

Feature selection of the classifier
This study makes use of the random forest classifier that works as a black box model 
(Breiman, 2001). Since an ensemble of decision trees are built, it is not easy to 
illustrate how the predictions are made (Horning, 2010). To illustrate the selection 
process, all trees should be drawn and analyzed individually, and this was not done 
in this study. It is therefore unclear on the basis of which information the classifier 
categorizes the different land classes. 

It is assumed that classification is based on differences in spectral and backscatter 
reponses when interacting with different land classes. However, in both the temporal 
signals of the spectral signatures (figures 4.6.1.; 4.6.2.; 4.6.3) and backscatter reponses 
(4.7.1.; 4.7.2.; 4.7.3) no clear difference can be demonstrated between the classes 
irrigated fields, non irrigated fields and light seasonal vegetation. Nonetheless, these 
figures show low variability between classes and high variability in terms of 
standard deviation within the classes.

Since the classification based on the chlorophyll sensitive Red Edge and SWIR bands, 
provides the highest overall accuracies, it appears that irrigated agriculture with 
Sentinel-2 data can best be distinguished on the basis of an increase in vegetation 
biomass. However, this study offers too little evidence to conclude this with 
certainty. 
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6. Conclusions & 
recommendations

This research aims to provide insight into the usefulness of remotely sensed passive 
Sentinel-2 Level-1C and active Sentinel-1 SAR data for automatic detection of 
farmer-led irrigated agriculture in Central Mozambique, using nonparametric 
machine learning techniques. 

6.1. Conclusions 
What is the potential of using Sentinel-1 and Sentinel-2 data  to map farmer-led irrigated 
agriculture with machine learning? A case study in Central Mozambique 
The results of this research show that the used method and data collections do not 
provide accurate information for the intended classification goal. Various factors 
contribute to this conclusion.

Classifications with the nonparametric random forest classifier provide a little higher 
 accuracy (88.0%) than the parametric maximum likelihood classifier (85.0%) as 

used by Hollander (2018), where both ’s are based on information from S-2 RE 
bands in IS-2. Therefore, it appears that a nonparametric RF classifier is preferred 
over a parametric ML classifier for processing the data that is high in variability, 
since it does not assume a normal distribution of the statistics of the land classes.

However, the apparent improvement of  accuracy is insignificant, and classification 
maps do not show realistic outcomes in terms of quantity and distribution of 
predicted land cover area. The estimated irrigated area is 16% in IS-1, and 33% in 
IS-2, based on RE bands where the overall accuracy is respectively 88.0% and 88.3%. 
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It was identified that ~ 10-15% of the total area is irrigated, and all classifications 
with the RF classifier overestimate this amount. This overestimation of irrigation is 
probably caused by the opportunistic sampling method, causing inflated accuracy 
outcomes and an optimistic bias towards classification of the main class in training.

Spectral analysis of the temporal behavior of various S-2 bandwidths does not 
provide insight into the underlying mechanisms on which the algorithm performs 
classification. The chlorophyll sensitive Red Edge and SWIR bands provide the 
highest  accuracies in IS-1 and IS-2: 0.77% and 0.74% for the IR bands and 0.87% 
and 0.88% for the RE bands. Therefore, it appears that irrigated agriculture with S-2 
data can be identified on the basis of an increase in vegetation biomass and that the 
classifier benefits from more information through the use of multiple bands. 
However, this research provides too little evidence to assume this with certainty. 

Research into the use of Sentinel-1 SAR data appears to have potential for 
identifying irrigation when considering the temporal behavior of the mean 
backscatter intensities of different land uses. Time series of the VV signal show a 
difference between the irrigation class and the classes non irrigated and light 
seasonal vegetation in IS-2. However, high standard deviations do reflect the high 
intra variability of the data, and classification accuracies in this period, do not exceed 
an overall accuracy of 64.1%. The main confusion as identified by the confusion 
matrices, comes from classes that are often identified as irrigated, whereas they are 
not, overestimating the amount of irrigation as with the use of S-2 data. 

In conclusion, random forest classification based on chlorophyll sensitive bands 
reach an OA of more than 88%, in both irrigation seasons. Based on the chosen 
accuracy assessment method, this classifier therefore seems to have sufficient 
potential for the classification product to be developed, which aims to identify 
irrigated agriculture at national level. However, the classifications are not reliable 
compared to the ground situation, overestimating the amount of irrigation by 3. This 
research demonstrates in several ways the complexity of supervised image 
classification of complex agricultural landscapes: the unbalanced and variable 
reference data, which often consist of only a few satellite pixels, make it difficult to 
identify characteristics of land classes, on which classification can be based. In which 
Sentinel-1 as added and used in this study, offers no additional insights. 
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6.2. Recommendations 
Recommendations for identifying farmer-led irrigated agriculture in Central 
Mozambique are therefore given in 3 areas. 6.2.1. Discusses what has been 
researched to design the methodoloy in this study, and which for various reasons 
have been decided do not work. 6.2.2. Proposes a technique to improve the detection 
of irrigation in the specific case study area. 6.2.3. Suggests 2 ways of fundamental 
follow-up research on the field of using S-1 and S-2 data for classification of complex 
agricultural landscapes. 

6.2.1. Development of the methodology
To design the methodology for this study, several things were attempted such as:
Classification based on spectral indices such as the Normalized Difference 
Vegetation Index (NDVI) (Rouse et al., 1974), the Normalized Difference Water Index 
(NDWI) (Gao, 1996) and the Normalized Difference Infrared Index (NDII) (Hardisky 
et al., 1983) and co-polarization ratios (HH/VV) (Nguyen et al., 2016). Canny edge 
detection (Watkins & Van Niekerk, 2019), to delineate fields, change detection based 
on Sentinel-1 imagery (Canty et al., 2020; Canty, 2019; Conradsen et al., 2016; 
Conradsen et al., 2003), and hierarchical classification using both Sentinel-2 and 
Sentinel- 1 data such as in Mahdianpari et al. (2019). These methods have already 
been examined but proved to be ineffective with the reference and satellite data 
used, the model, or due to the complexity of the landscape, or did not produce better 
results than the method presented in this study. It is not recommended to investigate 
the aforementioned methods further in order to improve the classification of this 
specific case study area.

6.2.2. Citizen science
With all that has been tried, it can be concluded that from the signal of the collected 
training data no more can be obtained than has been achieved so far. Therefore, in 
order to improve the identification of farmer-led irrigated agriculture in Manica, 
other technologies for smart agriculture can be explored in addition to deploying 
satellite data, considering the complexity and variability of the landscape. Citizen 
science could engage the smallholder farmers to collect data on their irrigation and 
farming practices. This data can be used to gain large-scale insight into these 
practices, upon which water management can be adjusted. The wealth of 
information also allows to identify trends and challenges, which can be reported to 
individual farmers, allowing tailor made agricultural water management on field 
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level. This may include; an app that allows users to gather data on land use and land 
cover (Mourad et al., 2020), using SMS to provide farm related information (Beza et 
al., 2018) or combining citizen science and remote sensing for irrigation monitoring 
(Corbari et al., 2021). 

6.2.3. Image classification for complex agricultural landscapes
Working with imbalanced data

The dataset used for this study is characterized by the high degree of variability. 
Collecting more or different data may reduce this variability somewhat, but it 
remains characteristic of these landscapes. Better consideration can therefore be 
given to advanced methods of performing image classification and accuracy 
assessement with imbalance datasets. The use of a weighted confusion matrix can be 
explored, that can provide more accurate accuracy assessment than using more 
traditional confusion matrices (Mellor et al., 2015). This research did not reveal on 
what information the classifier classifies, and therefore more research can be done on
learning from imbalanced datasets (He & Garcia, 2009). This may provide more 
insight into the response of smallholder irrigation agriculture relative to other land 
classes, when these interact with different bands, indices, polarization modes and 
ratios of different satellite data, and thus into the underlying mechanisms of the 
algorithm. To better deal with the complexity of the landscape, it is also possible to 
look at spatial random forest algorithms that use spatial-spectral instead of pixelwise 
spectral information that also learn from intrinsic heterogeneity, spatial 
dependencies, and complex spatial patterns. These algorithms seem to be better at 
handling spatial dependencies and intrinstic heterogeneity which is characteristic of 
these complex agricultural landscapes  (Talebi et al., 2021). 

Speckle filters for small target areas
Investigating the use of a more complex speckle filter for using the multi-look 
processed Sentinel-1 GEE data product is strongly recommended. However, these 
speckle filters make use of a buffer zone, consisting of several pixels, like a  pixel 
Boxcar filter or Lee of Refined Lee filter consisting of a  pixel window (Foucher & 
López-Martínez, 2014). Since the intended target object in these landscapes is often 
only a few pixels in size, one can look at the amount and impact of the information 
loss when using such a filter. The main challenge with be to balance the need of 
speckle reduction and class specific information preservation.

3x3
7x7
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Appendix A 
Spatial distribution of training polygons
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Figure A.1. Spatial distribution of training polygons.
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Appendix B 
Google Earth Engine provides level-1 ground range detected (GRD) products are 
multi-looked and ground range detected images that are converted to decibels. The 
mathematical processes to obtain these backscatter signals with the provided 
product are described here.

Single look comple SAR 
The Sentinel-1 dual polarimetric synthetic aperture system emits radar microwaves 
in the C-band. These microwaves consist of one polarization, mainly vertical, and 
recieves both vertical and horizontal reflected polarizatios. Mathematically, this is 
represented as:

The backscatter signal:

 is composed of the following components: the incident and vertically polarized 
radar signal:

 

that is transformed by a complex scattering matrix:

(Eb
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The exponent term accounts for the phase shift which is the consequence of the 
return distance  from the target to the sensor, where  is the wave number 
representing . Two out of four complex scattering matrix elements can be 
derived from measurements of the sensors backscattered radiation. These two 
complex scattering matrix elements can be processed into 2D arrays, consisting of 
the slant range x azimuth and represent the single look complex image.

The single look complex image can be written as a complex vector with the two 
derived elements: 

 .  

The complex transpose  of the vector  is written as  where  stands for 

the complex conjugation. The span image or inner product of S denotes the total 
power: 

The covariance matrix image or the outer productes is denoted as: 

The elements on the diagonal are real numbers. The off-diagonal elements are the 
complex conjugates of each other and depict the relative phases of   and . Since 
the off-diagonal images are not available in GEE, the representation of covariance 
matrix is: 

Written in radar scattering cross sections:

(Svv Svh
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Speckle effects
One of the difficulties in handling SAR data is the presence of speckle effects that 
make visual interpretation challenging. In pictures, the speckle effect appears as 
random noise but is in fact a consequence of the coherent nature of the radar signal. 
The SLC signal, for a single  polarization can be modelled in the form:
 

 Represents the overall amplitude. This is constructed from the signal that is 
scattered from an area of one signal pixel. In this study, a pixel with a size of  

 is used. The phase is set equal to . When the signal interacts with the target in 
the irratiated area, a part of the signal is randomly scattered.  These randomly 
distributed scatterers add coherently and causes a phase change in the received 
signal. This phase change is included in the sum part of the above described 
equation and causes speckle effects. The intensity of these speckle effects varies from 
pixel to pixel. 
The decomposed equation shows the real and the imaginary part: 

 

The  denotes the phase shifts.  Are both randomly and uniformly distributed 
and therefore present the variables  and  the sums of the cosine and sine terms, 
that are identically distributed. 
If these conditions are me and according to the central limit theorem of statistics,  
and  will have a normal distribution with zero mean and a variance of , 
within the limit of a large number of  scatterers. In the expression for covariance of 
 and , the sum of products of the cosine and sine term cancel to . This means that 
 and  are uncorrelated and consequently,  and the SLC signal  has a 

complex normal distribution. The pixel values of the  intensity images are given 
by the square of the amplitude of : 
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Multi look SAR
Multi-look processing is done by averaging adjacent pixels for the purpose of 
reducing the effect of speckle and to compress the data. This averaging takes places 
in the frequency domain and not in the spatial domain. However, the process of 
multi-look averaging is at the expense of the spatial resolution. The spatial resolution 
is a characteristic of the sensor that determines the distance at which he can 
recognise adjacent objects. Pixel spacing indicates the distance in meters between 
neighbouring pixels in an image. 
The Sentinel-1 interferometric wide swath mode consist of pixels of   that 
respresent the azimuth  range. During multi-looking processing, the average of five 
cells is taken in the direction of the range to accomplish a   resolution and 
then resampled to  . 
The formula can also be written as:

 

The latter denotes the sum of the squares of two variables.
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Appendix C  

Confusion matrix of training data set of red-edge bands in IS-2

Training matrix irrigation season 2 red-edge bands

IF NIF LV DV H R PA%

IF 1701 13 0 0 0 0 99.5

NIF 36 1536 12 1 0 0 97.1

LV 2 33 583 0 0 0 93.3

DV 0 0 1 1124 0 0 99.8

H 2 2 0 0 205 0 98.6

R 0 0 0 0 0 105 100

UA% 97.7 97.3 98.1 99.9 100 100 98.1

Table C.1. Training and testing accuracy of RF (100) based on RE bands, 
from both irrigation seaon 2,  is 97.5%.κ
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Confusion matrix of testing data set of red-edge bands in IS-2

Training matrix irrigation season 1 red-edge bands-1

IF NIF LV DV H R PA%

IF 1708 10 1 0 0 0 99.4

NIF 37 1539 1 0 0 0 97.6

LV 1 40 574 0 0 0 93.3

DV 0 1 2 1103 0 0 99.7

H 1 3 0 0 204 0 98.1

R 0 0 0 0 0 100 100

UA% 97.7 96.9 98.8 99.9 100 100 98.2

Table C.2. Training and testing accuracy of RF (100) based on RE bands, 
from both irrigation seaons,  is 97.6%.κ
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