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ABSTRACT
Software reuse in the form of dependencies has become widespread
in software development. However, dependencies have the potential
to suffer from vulnerabilities, thereby potentially putting depend-
ing projects at risk. Dependency analysis software can be used to
manage vulnerable dependencies, such as Dependabot. Yet, such
programs are generally inaccurate as a result of false positives, due
to the limitations of package-level analysis.

In the case of a false positive vulnerability recommendation, a
software project imports a vulnerable dependency, but does not
use any of its vulnerable functions. While most developers already
do not pay enough attention to using vulnerable dependencies,
false positives can only make this worse. Instead, function-level
vulnerability analysis has the capability to eliminate package-level
false positives.

In this paper, research is performed to gain quantitative insight
in the improvement of function-level over package-level analysis
in terms of recommendation correctness. A package-level analysis
simulation in combination with a function-level analysis was per-
formed, built with the FASTEN framework. The latter uses RTA call
graph generation and method tracing to remove package-level false
positives. In total, 4071 open-source repositories were analyzed
with 393 open-source vulnerabilities, of which 259 projects had
positive recommendations. Comparison shows that 85% of package-
level recommendations are false positives, which are removed by
performing function-level analysis instead. This indicates signifi-
cant improvement by function-level analysis. Research on greater
data sets would be needed for further insight in this improvement.

1 INTRODUCTION
Vulnerabilities and False Positives. Java programmers often use build
automation tools, such as Apache Maven, Apache Ant, or Gradle.
Among other things, these tools can make external projects usable
within the project in the form of packages, while the programmer
only has to declare used libraries in a specified file.1 External li-
braries used in a project this way are called the dependencies of the
project.

Dependencies allow programmers to reuse each other’s code.
However, the dependencies could have vulnerabilities, possibly
leaving depending projects vulnerable as well. Exploitation of these
unattended vulnerabilities by malicious persons or organizations
can lead to dire consequences. One striking example of this was
the Equifax data breach in 2017, where failure to update a vulnera-
ble dependency resulted in sensitive personal information of 143
million Americans being stolen [4]. With the continuous rise in

1https://maven.apache.org/what-is-maven.html

overall cyber-attacks [9], the risk of vulnerability exploitation is
here to stay.

To fight such inheriting of vulnerabilities from dependencies,
vulnerability analysis software has been developed to track down
and report vulnerable dependencies in projects in the form of rec-
ommendations. One such analysis tool is Dependabot.2 Dependabot
analyzes dependencies on a package-level. This means that a de-
pendency is flagged as a vulnerability when one of its methods is
known to be vulnerable. Note that this is independent of whether
the method is used or not.

However, when none of the vulnerable methods of a flagged
vulnerability is directly or indirectly called by the project, such a
vulnerability warning becomes a false positive. In that case, there
is a vulnerable method inside one of the project’s dependencies,
but it is not used by the analyzed project and therefore not a direct
vulnerability. To that end, Dependabot is capable of giving many
such false positive warnings. How many is not certain, but it is very
likely that false positive warnings waste the time of developers and
annoy them, as they are counterproductive.

When warnings are regarded as mostly false positives, correct
vulnerability warnings might be discarded, leaving the project and
dependents vulnerable, acting as a crying wolf [2]. Furthermore, the
importance of increased awareness on dependency vulnerability
is emphasized by the fact that 69% of developers are not aware
of vulnerable dependencies in their products, and 81.5% do not
care about updating dependencies at all [8]. This is even further
emphasized by Synopsys’ OSSRA report, which stated that 84% of
1,546 scanned commercial codebases contained at least one open
source vulnerability [10].

Fine-Grained Analysis and Related Work. Instead of package-level,
methods are researched to perform vulnerability analysis on a more
fine-grained function-level [2, 5]. This means that a dependency is
only flagged vulnerable when a vulnerable method in that depen-
dency is called by the dependent project. However, this form of
analysis is more complex. In order to check whether a vulnerable
external method is called, a call graph (CG) must be constructed for
the project. Call graphs describe which methods call each other, and
thus whether the vulnerable dependency method has been called.

Reasons to change to function-level analysis are mainly improve-
ments on the before mentioned inefficiency of package-level analy-
sis, and the resulting annoyance and (indirectly) reduced vulner-
ability awareness. Keeping in mind the increased complexity and
difficulties of function-level analysis on ecosystem-scale, actionable
dependency management resulting from function-level analysis is
considered a big step [5]. All this is only amplified by the immense

2https://dependabot.com/
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size of code repositories and their releases. In addition, impact anal-
ysis for JavaScript dependencies by Decan et al. [3] shows that
for every vulnerable package version, there are more than ten-
fold depending packages at risk on package-level. This shows that
implementation of a working function-level analysis software is
meaningful and can realize significant impact.

To realize function-level dependency management, the FASTEN
Project3 is TU Delft led project that has built a framework to per-
form Fine-Grained Call Graph (FGCG) vulnerability analysis on
software ecosystems in Java, Python, and C. The framework is
still in active development though and not yet easily usable or re-
garded as stable by its developers. Still, with the help of the FASTEN
Project and access to its database and code, this research was able
to perform function-level vulnerability analysis.

Research Question. Ref. [2, 5] provide insight on how function-
level analysis improves package-level analysis on a theoretical level.
However, no research has been yet done on this improvement in
practice. No numbers are available on the amount of false posi-
tives generated by package-level vulnerability analysis on publicly
hosted projects. The difference might be significant or negligible.

The aim of this work is to fill this gap and provide quantita-
tive insight in the improvement in recommendation correctness
that fine-grained function-level analysis has over coarse-grained
package-level analysis by elimination of false positives. This will be
investigated by taking the difference in the amount of package-level
and function-level recommendations, resulting in the amount and
ratio of false positive recommendations produced by package-level
analysis. Recommendations will be generated for a set of reposito-
ries on function-level and package-level using the framework of
the FASTEN Project.

This research found that 85.3% of the package-level recommen-
dations are false positive. This shows the significant improvement
of function-level analysis over package-level analysis in correctness.
On the other hand, this result also shows the lack of relevance of
package-level recommendations.

However, consideration should be given to the research scope
and limitations. The research makes use of a relatively small sub-
set of open-source Java repositories hosted on GitHub4 and open-
source vulnerabilities.5 In addition, the RTA CG generation algo-
rithm whose limitations [6] are to be considered. Still, this paper
hopes that the results are relatively representative to larger sets of
repositories and vulnerabilities.

Structure. Section 2 offers background information to help under-
stand the concepts in this paper. Section 3 lays out the overall
methodology used to gather the sample repositories, to perform
package-level and function-level analysis, and to compare the vul-
nerability warnings. Section 4 gives exact details on the experimen-
tal setup used to generate the recommendations. Section 5 perform
the comparison of recommendations and presents the results. Sec-
tion 6 will describe considerations on ethics and reproducibility
during the performed research and writing of this paper. Section 7
will discuss results in consideration with found shortcomings of the

3https://www.fasten-project.eu/
4https://github.com/
5https://github.com/fasten-project/fasten/wiki/Vulnerability-Analyzer

methodology and limitations of implementation. Finally, section 8
will provide the conclusion of this paper.

2 BACKGROUND
This section provides background information on call graphs, and
package-level and function-level vulnerabilities. Due to only Java
projects being analyzed, function-level analysis will from now on
also be called method-level analysis.

2.1 Call Graphs
A simplified view of a call graph of a project is a directed graph
𝐺 = (𝑉 , 𝐸). Here, nodes 𝑉 = 𝑉𝑖𝑛𝑡 ∩𝑉𝑒𝑥𝑡 , containing all nodes rep-
resenting methods internal and external to the analyzed project.
Edges 𝐸 ⊆ 𝑉 ×𝑉 represent the performed method calls between
methods [2]. The notion of stitching external nodes to internal
nodes, as described in detail in the aforementioned paper, is as-
sumed to already have happened and instead 𝑉𝑒𝑥𝑡 simply means
all methods contained in dependencies of the analyzed project.

Call graphs can be generated either statically or dynamically.
For this project, static generation was chosen. However, static call
graphs are neither complete nor sound [2]. Static call graph gen-
eration can miss method calls by dynamic dispatch. When this
happens to a vulnerable method, this would lead to a false negative
vulnerability recommendation. Alternatively, the static call graph
can identify execution paths that (are designed to) never occur
during runtime, potentially causing a dynamic false positive [2].

Finally, there are multiple call graph generation algorithms avail-
able, most notable Class Hierarchy Analysis (CHA) and Rapid Type
Analysis (RTA). RTA produces a more precise call graph that con-
tains less false negatives, while CHA is faster to generate [1, 6]. So,
if possible, RTA generation is preferred.

2.2 Package-Level Vulnerabilities
It is important to note that a limited form of package-level analysis
is used in this research. As Boldi et al. [2] explain, vulnerability
analysis is done on resolved source call graphs, that recursively and
uniquely contain all dependencies, including those of all dependen-
cies themselves. However, the scope of this research only includes
projects with vulnerable dependencies for which developers are
able to update the dependencies and resolve the associated vulner-
ability. This way, the results from performed vulnerability analysis
could be used as recommendations to a developer. Therefore, only

Figure 1: Direct package-level vulnerability
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Figure 2: Direct method-level vulnerability

direct dependencies that are included in the project dependency
file of a project are analyzed.

Situation B of Figure 1 illustrates a package-level vulnerability
as used in this research. If a direct vulnerable dependency version
is present, then the project is concluded as at risk, and bots would
report the vulnerable dependencies to the developers of the project
as recommendations to update. In this case the vulnerability applies
to the project on a package-level.

2.3 Method-Level Vulnerabilities
A project is vulnerable on method-level when its call graph contains
a path from a vulnerable external method to an internal method.
Again should be noted, that this is a limited form, because only the
call graph of the project with direct dependencies is considered.
Normally, the path could go through multiple dependencies.

Similar to how Boldi et al. [2] illustrate it, Figure 2 shows a sim-
plified method-level analysis of package-level vulnerable situation
B from Figure 1. Note here that in both situations, dependency1 and
dependency2 are vulnerable on a package-level like in Figure 1 In
situation C, there is no path from the vulnerablemethod3 to internal
method1. Therefore, the project is not at risk and the package-level
recommendation would be a false positive. As is the case in situa-
tion D, when method tracing results in a path being present from
vulnerable method3 to internal method1, the project is at risk at
method-level.

3 METHODOLOGY
This section will expand on the steps taken to generate and an-
alyze results of the two vulnerability analysis methods. Each fol-
lowing subsection represents one step of the process. In overview,
first projects are selected and vulnerability information is acquired.
With this information, package-level analysis is performed first,
generating the package-level vulnerability recommendations for
a subset of selected repositories. Then, method-level analysis is
performed on this repository subset, resulting in method-level vul-
nerability recommendations. Finally, both sets of recommendations
are compared for false positives and analyzed in further detail.

3.1 Project Selection and Vulnerabilities
Acquisition

Firstly, before the recommendations of the two analysis methods
can be generated, a set of projects is needed to generate them for.

GitHub hosts over 128 million public repositories [7]. To narrow the
project selection down, the FASTEN Project database was queried
for GitHub hosted projects that have been known to have method-
level vulnerable dependencies in past releases on the Maven Central
Repository.6

Although the FASTEN Project already has a method-level vulner-
ability analysis procedure available for the research to use, another
procedure was written that analyzes the most recent project repos-
itory code. This is done, because FASTEN’s analyzer relies on the
latest release of a project, which may be months ago. Therefore,
a vulnerability in a repository could have already been resolved
in the current state of the default branch of the project repository.
The written procedure instead downloads the most recent version
of the project repository’s default branch.

Secondly, vulnerabilities (also called advisories) need to be ac-
quired to perform analysis against. In order to perform this package-
level and method-level comparison, at the very least vulnerabilities
need to have some form of identification to distinguish them, a list
of vulnerable dependency versions, and a list of vulnerable meth-
ods affected for each version. This vulnerability information was
queried from available data on the FASTEN Project server.

3.2 Package-Level Vulnerability Analysis
To generate package-level vulnerability recommendations, the de-
pendency file of each project is analyzed on the presence of any
vulnerable package versions acquired during the previous step. Al-
though this analysis done for thousands of projects, it only takes a
few seconds to execute. If a vulnerable package version is present,
it should be logged together with its associated vulnerability. From
whatwas observed, one vulnerability is associatedwith one package
version per project. Hence, this is also the definition of a package-
level recommendation during this research.

This research did not use external package-level analysis soft-
ware, but simulates it instead. Normally, package-level vulnerability
analysis is performed by vulnerability analysis software bots such
as Dependabot. However, for this research it was possible to sim-
ulate package-level analysis by such tools in Java code, with help
of the vulnerability information provided by the FASTEN Project.
Equal recommendations were produced with a simulation written7
using the Ruby source code of Dependabot, which is publicly hosted
on Github.89 Therefore, the Java-based simulation recommenda-
tions are assumed as representative of other package-level analysis
software.

3.3 Method-Level Vulnerability Analysis
Method-level vulnerability recommendations are generated in sev-
eral steps. First, one merged call graph is generated of both the
projects and the vulnerable dependency in question. This genera-
tion makes use of the RTA algorithm. Afterwards, the call graph
is checked for the presence of vulnerable methods part of the de-
pendency. Finally, when such a method is present, method tracing
checks for the presence of calling methods internal to the analyzed
6https://search.maven.org/
7https://github.com/jakub014/CG-dependency-analyzer/blob/master/scripts/depbot-
script/security-script.rb
8https://github.com/dependabot/dependabot-core
9https://github.com/dependabot/dependabot-script
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project. These internal methods are at risk of the associated vul-
nerability. During this research, one method-level vulnerability
recommendation is defined as the set of all internal methods at risk
to one vulnerability.

Fine-grainedmethod-level analysis is, however, costly to perform
on a large amount of projects. Luckily, as vulnerable methods are
always part of a vulnerable dependency, all method-level vulnerable
projects must also be vulnerable at package-level. Therefore, the
resulting vulnerable projects from package-level analysis will serve
as input to method-level analysis.

Call Graph Generation. All call graphs are generated statically, due
to dynamic analysis being out of the scope of this project, and due
to limited time and resources. Program analysis in general can be
done statically or dynamically, and the same holds for call graph
generation. However, the FASTEN Project fine-grained analysis
framework that is used in this research is based on static analysis.
Therefore, dynamic analysis is out of the scope of this research. Fur-
thermore, dynamic call graph generation is more complex and time
consuming, while static call graph generation is already complex
and can cause heap space errors on desktop computers. Due to these
reasons, the amount of projects and limited research time, static call
graph generation is chosen as generation method. Still, the short-
comings of static call graphs should be taken into consideration
when interpreting the results.

3.4 Recommendation Analysis
Recommendations on method-level can be seen as a subset of rec-
ommendations on package-level, which makes false positive cal-
culation simple. Taking the difference between method-level and
package-level recommendations results in false positive package-
level recommendations. This way, method-level analysis functions
as a validation of package-level analysis, as one can conclude from
previous explanation of both analysis methods. The resulting ra-
tio of false positive recommendations to the total (package-level)
recommendations is what is of interest to this research.

In order to create the conditions of a fair comparison between
both recommendations, only package-level recommendations will
be compared if their repositories also completed method-level anal-
ysis. In the event that repositories did not complete method-level
analysis, but do suffer from package-level recommendations, these
recommendations would automatically become false positives. This,
because there are no method-level recommendations to compare
against. As a result, the false positive ratio would become higher
than might be the case in reality.

To help interpreting results and giving insight into the reliability
of results, additional statistics have also been gathered on performed
project analysis, such as the amount of at-risk internal methods
(also called impact points versus originating vulnerable dependency
methods, and spread of false positives over projects.

4 EXPERIMENTAL SETUP
This section clarifies in detail the experimental setup used for gath-
ering repository and vulnerability data, and for generating recom-
mendations.

4.1 Data Collection
Repository Selection. The project repository URLs are queried from
metadata database of the FASTEN Project. The repository URL
resides in the repository field in the packages table.10 In this query,
it is important that projects have the vulnerabilities JSON field
defined in the metadata field in the package_versions table, such
that the query includes:

metadata -> 'vulnerabilities ' IS NOT NULL

The resulting 7,638 repository URLs are the individually matched
with regular expressions to extract the GitHub username and the
repository name. Together, they form a combination "username/repos-
itory" that can be used to download dependency files and generate
a standardized GitHub URL to download the complete repository.
This generated repository URL was then queried over the GitHub
API11. If it returned repository information, the URL was assumed
as valid. This resulted in 6,717 of such combinations.

Vulnerability Acquisition. The FASTEN Project stores found vulner-
ability data from multiple sources in the form of JSON files called
Vulnerability Object Definitions (VODs),12 which also contain the
generalized information record of the vulnerability called CVE. This
includes the CVE identifier, a brief description of the vulnerability,
and any pertinent references.13 This information is useful to get
more information on the vulnerability.

To be able to perform vulnerability analysis of repositories, the
data contained in following fields of the VOD are required:
• vulnerable_purls: Package coordinates of vulnerable pack-
ages, in the form of standardized package URLs.14 Just like
the URL found in the Metadata Database, package URLs con-
tain the "username/repository" combination, in addition to
the version.
• vulnerable_fasten_uris:Vulnerable callables (also calledmeth-
ods), listed using FASTEN URI format.12 This is a unique
identifier generated by the FASTEN Project fine-grained anal-
ysis framework for vulnerable methods of a specific package
version.

A script was constructed in the Python programming language
to gather VODs having a non-empty vulnerable_fasten_uris field,
which also guarantees that the vulnerable_purls is non-empty. This
resulted in 393 VODs found spread over 211 dependencies.

Dependency File Extraction. To perform package-level vulnerability
analysis on a project, its dependency file needs to be analyzed.
During the first few weeks of research, the complete repository was
downloaded to perform this analysis, while only the dependency
file was needed. As stated in section 2.3, all method-level vulnerable
projects must first be package-level vulnerable. As a consequence,
the repository only needs to be completely downloaded for method-
level vulnerability analysis once vulnerable dependencies have been
found inside its pre-extracted dependency file. This saves timewhen
analyzing thousands of projects.

10https://github.com/fasten-project/fasten/wiki/Metadata-Database-Schema
11https://docs.github.com/en/rest
12https://github.com/fasten-project/fasten/wiki/Vulnerability-Analyzer
13https://cve.mitre.org/cve/identifiers/index.html#defined
14https://github.com/package-url/purl-spec
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A dependency file can reside in the root directory or a child
directory of the repository. For the collected projects, a consider-
able portion of dependency files resided in a child directory. Only
requesting dependency files in the root folder over the GitHub API
would, thus, skip over child directory project dependency files.

Therefore, the open source Dependabot demonstration Ruby
script,15 which makes use Dependabot source code, is altered to
return all dependency files present in the repository with the associ-
ated relative file path. This way, each child directory project can be
analyzed separately, making sure that no projects are lost. The script
results in 17,142 Maven POM files and 2,855 Gradle dependency
files (which were converted to a simple username/repository$version
format for ease of dependency extraction).

4.2 Vulnerability Analysis
A program is constructed in the Java programming language to
perform package-level vulnerability analysis, and on method-level
as well with the use of the fine-grained analysis framework of the
FASTEN Project.16

Each project has its dependency file analyzed on package-level
vulnerabilities, by parsing out used dependency package versions
and intersecting them with known vulnerable package versions
present in package URLs in the previously acquired VODs. This is
inefficiently done on a line-by-line basis; all vulnerable package
versions were checked for each line of the dependency file. For each
project, found vulnerable packages are then logged . Due to this
inefficiency, the associated CVE code is linked to the vulnerability
only after method-level analysis. Finally, this results in the par-
tial package-level vulnerability recommendations for that project,
completed after fine-grained analysis.

Once vulnerable dependencies have been confirmed in a project’s
dependency file, fine-grained analysis is performed on it.

First, the project repository is downloaded from GitHub. Then it
is built from the root folder, normally resulting in all child projects
being built as well. The building process stores resulting JAR files
in the target directory in corresponding child directories. Then, the
target directory is analyzed for the existence of the corresponding
project child directory.

Once the project JAR is built and found, a call graph is generated.
This is done with help of the FASTEN OPAL plugin17 which in
turn uses the OPAL static analysis platform.18 More specifically,
CG generation is done using the ExtendedRevisionJavaCallGraph
class, making use of the RTA algorithm. This algorithm is supplied
as algorithm parameter to the CallGraphConstructor class.

Then, for each of the vulnerable dependencies found, the vul-
nerable dependency JAR are retrieved from the Maven repository,
and each has its call graph generated as well, again using RTA. The
resulting two of call graphs of both the project and vulnerable de-
pendency are then merged by the LocalMerger class into one larger
call graph, containing the FASTEN URIs of both the project and
the vulnerable dependency. Note, therefore, that this process and
following steps are done separately for each vulnerable dependency.

15https://github.com/dependabot/dependabot-script
16Source code of the vulnerability analysis program written for this research can be
found at: https://github.com/jakub014/CG-dependency-analyzer
17https://github.com/fasten-project/javacg-opal
18https://www.opal-project.de/

Algorithm 1:Method-Level Analysis Procedure
Data: vulnDeps: vulnerable project dependencies,
CG: complete project call graph
Result: Project methods affected by vulnerable methods of

provided vulnerable dependencies
1 𝑀 ← ∅
2 foreach 𝑣𝑢𝑙𝑛𝐷𝑒𝑝 ∈ 𝑣𝑢𝑙𝑛𝐷𝑒𝑝𝑠 do
3 𝑉𝑂𝐷𝑠 ← getVODs(𝑣𝑢𝑙𝑛𝐷𝑒𝑝)

4 foreach 𝑉𝑂𝐷 ∈ 𝑉𝑂𝐷𝑠 do
5 𝑈𝑅𝐼𝑠 ← getURIs(VOD)
6 foreach𝑈𝑅𝐼 ∈ 𝑈𝑅𝐼𝑠 do
7 if 𝑈𝑅𝐼 ∈ 𝐶𝐺 then
8 𝑀 ←𝑀 ∩ getAffectedMethods(𝑈𝑅𝐼,𝐶𝐺)

9 end
10 end
11 end
12 end
13 return𝑀

This is done, for efficiency and to prevent exceptions being raised
during call graph generation as much as possible.

To finally find out whether the project is vulnerable on a method-
level (and to complete the partial package-level recommendations),
Algorithm 1 is performed:

(1) For each dependency, get all associated VODs (line 1-2). In
the currently used process, this is always one vulnerable
dependency.

(2) For each VOD, get all associated vulnerable FASTEN URIs
stored inside the vulnerable_fasten_uris field (line 3-4).

Algorithm 2:Method Tracing
Data: URI : vulnerable fasten URI,
CG: complete project call graph
Result: Project methods affected by the provided

vulnerable method
1 𝐴← ∅
2 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝑞𝑢𝑒𝑢𝑒 ← 𝑈𝑅𝐼

3 while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do
4 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑡ℎ𝑜𝑑 ← poll(𝑞𝑢𝑒𝑢𝑒)

5 𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ← getCallers(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑡ℎ𝑜𝑑)

6 foreach 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ 𝑐𝑎𝑙𝑙𝑒𝑟𝑠 do
7 if 𝑐𝑎𝑙𝑙𝑒𝑟 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
8 if 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ 𝐶𝐺𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 then
9 𝐴← 𝐴 ∩ 𝑐𝑎𝑙𝑙𝑒𝑟

10 else
11 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∩ 𝑐𝑎𝑙𝑙𝑒𝑟
12 𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒 ∩ 𝑐𝑎𝑙𝑙𝑒𝑟
13 end
14 end
15 end
16 end
17 return 𝐴
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(3) For each vulnerable FASTEN URI, perform an algorithm to
find other methods calling this vulnerable method (line 5-7).

The method tracing function that is called getAffectedMethods
on line 8 is performs an algorithm similar to breadth first search,
and it is also akin to the impact analysis algorithm shown at page
3 of Ref. [5]. This results in Algorithm 2:

(4) Continue tracing through the vulnerable methods calls in the
graph until either the current method is part of the analyzed
project (instead of an external method part of the vulnerable
dependency) or no more calls are made to this method.

(5) Return the resulting set of vulnerable internal project meth-
ods and the originating dependency method.

When the returned set of vulnerable internal methods is non-
empty, the project is vulnerable on a method-level. In addition, all
CVE codes are added to package-level recommendations for which
the project has completed method-level analysis, completing both
sets of recommendations.

5 RESULTS
Each run of the combined package-level andmethod-level algorithm
ran for around 4 hours on 4 desktop computers. The build process
of Gradle projects, although successfully automated, took too much
time to perform for this number of projects. Therefore, Gradle
projects were discarded.

After getting as many projects to successfully complete package-
level analysis, out of 4071 distinct Maven repositories that com-
pleted, 580 contained at least one POM file with a package-level vul-
nerability. Out of these 580 repositories, 259 inner Maven projects
with a package-level vulnerable POM file were successfully ana-
lyzed on method-level, including call graph generation and method
tracing. A majority of the projects failed method-level analysis
mostly due to unsuccessful local building.

Table 1 shows the results found for the 259 analyzed Maven
projects. Package-level analysis resulted in 517 vulnerability recom-
mendations in 259 projects, while method-level analysis resulted in
100 recommendations in 78 projects. Taking the difference between
the two, this results in 417 false positive package-level vulnerability
recommendations spread over 181 projects. The percentage after
each recommendation amount indicates the size of the vulnerability
type compared to that of package-level vulnerability recommenda-
tions.

Table 1: Package-level and method-level analysis results

Vulnerability type Projects Recommendations
Package-level 259 680 (100%)
Method-level 78 100 (14.7%)
False positive 239 580 (85.3%)

False positive only 181 417 (61.3%)

Finally, over all analyzed projects this results in a false positive
ratio of 85.3%. This ratio is well above the expected ratio of 67%.
This high false positive ratio of 85.3% shows for the relatively small
sample of projects analyzed in this research, that fine-grained vul-
nerability analysis on a method-level has significant improvement
over package-level analysis.

Figure 3: Dot density Venn diagram of generated recommen-
dations

The dot density Venn diagram in Figure 3 illustrates this ratio
by showing all individually found vulnerability recommendations
into an intuitive picture, emphasizing the vast amount of false
positive recommendations generated by package-level vulnerability
analysis. The graph was generated with the script available at Ref.
[11]. The area of the circles has the same ratio as the false positives.

Figure 4 shows the distribution of false positive package-level vul-
nerability recommendations over the 239 projects. A mean of 2.41
was observed and a standard deviation of 1.80 false positives. There-
fore, although a vast majority of package-level recommendations
are false positives, projects that contain false positive vulnerable
dependencies mostly contain only 1 to 3 of them. This means that
the 580 false positive vulnerable dependencies were evenly spread
among the 239 containing projects, which makes these results more
reliable.

Figure 4: Projects per number of false positive recommenda-
tions
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Figure 5: Projects per number of internal methods at risk

Figure 5 shows the distribution of impact points of vulnerable
methods inside method-level vulnerable projects, being the number
of internal method calls at risk by having a direct path to a vulner-
able method. Note here that two outliers with above 10,000 impact
points are left out for clarity. Excluding these, a mean of 346.49
impact points was observed and a median of 44. In fact, calculation
results in 67% of projects suffering from method-level vulnerability
recommendations having at most 100 internal method calls at risk.

On average there are 74.67 vulnerable URIs in a CVE, however,
as Figure 6 illustrates, projects are affected by only 4.67 distinct
vulnerable external methods on average, excluding one outlier of
418. Combined with the observation that 74 out of 78 projects
vulnerable on a method-level (94.9%) only had one vulnerability
recommendation, the previously determined number of internal
methods at risk is high per external vulnerable method. Assuming

Figure 6: Projects per number of distinct external vulnerable
method used

a lenient prediction of 100 internal methods at risk per external
vulnerable method used, the following is observed. Although only a
small number of external vulnerable methods are used in a project
on average, over 21 fold as many internal methods are at risk.
Interpreted from the perspective of applying fine-grained analysis;
for every vulnerable method caught by fine-grained analysis, over
21 compromised internal methods are likely to be caught as well
according to the found data.

6 RESPONSIBLE RESEARCH
With regards to the ethical aspects of this research, attention was
given to disclose neither repository names nor their vulnerabilities.
Although the projects as well as all vulnerabilities are open source,
it would still put projects in unnecessary danger of the exploitation
of these vulnerabilities. In addition, care has been taken not to leave
data out unless a valid reason is given, such as obvious outliers.

As is important in all research, reproducibility has also been
considered throughout the duration of this work. One concern of
reproducibility is the starting set of vulnerable repositories, which
is obtained by querying the PostgreSQL metadata database hosted
by the FASTEN Project. However, access to this database is private
and was granted to this research. Anyone with access to it is able
to rerun all queries performed by this research. In addition, the
database is accessible through the REST API endpoints19 such that
one would be able to reproduce the queries in API calls. Finally
and as mentioned in section 4.2, all scripts and programs written
to generate given results are published at GitHub, and some of the
written programs are also provided in pseudocode in this paper.

7 DISCUSSION
Limitations. The limited size of the repository and vulnerability
set must be taken into account when interpreting the results. 680
vulnerability recommendations found over 259 projects cannot
possibly represent all 128 million GitHub repositories, and this
is not the goal of this paper. Instead, with the means that were
possible and the lack of previous research in these quantities of
false positives, these results are to be taken as a first insight in the
level of improvement of fine-grained vulnerability analysis. Further
insight can be obtained by performing similar research on a larger
data set.

However, data set limitations are not the only imperfection of
this research. Upon manual inspection of vulnerability information
(VODs) provided by the FASTEN Project database, many VODs
appeared to include unaffected versions of the vulnerable package.
Manually inspection resulted in 47 out of 100 generated method-
level recommendations containing an actually vulnerable version
of the dependency.

In addition, manual inspection of method-tracings found non-
existent edges from internal methods to the vulnerable dependency.
Upon closer inspection, the majority of these errors resulted from
merging both the project and dependency call graph, specifically
with the LocalMerger class in the FASTEN core repository.20 How-
ever, the exact cause of this inside the method was not investigated.
Some of the non-existent edges were also generated by the RTA

19https://github.com/fasten-project/fasten/wiki/API-endpoints-for-Maven-projects
20https://github.com/fasten-project/fasten/tree/develop/core
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CG generation algorithm. This probably happened due its limita-
tions compared to dynamic generation algorithms and potentially
inaccuracies.

These non-existent edges resulted in only 30 out of 47 method-
level recommendations actually calling the reported vulnerable
method. Therefore, results have to be interpreted with the inaccu-
rate RTA algorithm and merger method in consideration. Due to
the amount of method-level recommendations becoming smaller
with these inaccuracies, the false positive ratio climbs. As a result,
one can expect only more impact of method-level analysis over
package-level analysis. On the contrary, the elimination of false
negatives would increase method-level recommendations. However,
this was not possible to investigate, as this would require dynamic
CG generation.

Improvements. Something to improve in the code implementation
of the package-level analysis, is the inefficient line-by-line check-
ing of dependency files against vulnerable package versions. The
vulnerability data is already in an efficient JSON format to make
this improvement. For this research, this improvement would not
change the recommendations in any way, and execution of package-
level analysis for all 4071 repositories was already finished in sec-
onds. Still, it would result in the CVE codes already being logged
for during package-level instead of after method-level analysis.

Another improvement would be the inclusion of Gradle projects.
A specific Gradle version was downloaded for nearly every Gradle
project. On the other hand, many Gradle project builds seemed
to hang up, without error logs. This caused Gradle project analy-
sis to take too long, and this issue could not be resolved in time.
Only 16.7% of extracted dependency files were of Gradle type, so
discarding them could be afforded.

8 CONCLUSIONS AND FUTUREWORK
In this research, the recommendations of two methods of depen-
dency vulnerability analysis have been compared. The first is a
written Java simulation of coarse-grained, package-level vulnerabil-
ity analysis, observed as representative as the analysis performed
by bots such as Dependabot. The second is a written Java execu-
tion of fine-grained, method-level vulnerability analysis, includ-
ing call graph generation and method tracing. This was possible
with the help of the FASTEN Project’s framework. Package-level
vulnerability analysis is known to be bugged with false positive
vulnerability recommendations, but it was not clear by how much.
Consequently, it was not known by how much method-level analy-
sis would improve correctness of recommendations. By comparing
package-level recommendations to method-level recommendations,
the number of eliminated false positives is found. This way, this pa-
per contributed in providing quantitative insight into the improve-
ment in recommendation correctness of function-level analysis
compared to package-level analysis.

The main contributions of this paper are as follows. The resulting
recommendations for both methods, that have been generated for a
limited set of open-source projects and vulnerabilities, show that a
false positive ratio of 85.3% is present in package-level recommen-
dations compared to method-level recommendations over the same
data set. In addition, every vulnerable external method puts around
21 internal methods at risk, which shows the significance of using

only a single vulnerable method to a project. The combination of
both these results shows that function-level vulnerability analysis
has more than significant improvement on correctness of vulnera-
bility recommendations compared to package-level analysis.

Although not all false positives could be removed from method-
level analysis, and false negatives are an inherent risk to a static call
graph generation algorithm, the results still show significant im-
provement of method-level analysis. And as a result, a first insight
is given in the potential impact of function-level analysis. These
findings hopefully motivate the continued development of method-
level vulnerability analysis software, specifically the elimination
of method-level false positives. For future research, further insight
can be obtained by performing similar research on a larger data
set. Finally, this research shows that a promising analysis tool is in
sight, able to raise software security to a higher level.
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