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Freezing-Thawing of Porous Media: an Extended Finite

Element Approach for Soil Freezing and Thawing

Mehdi Musivand Arzanfudi* and Rafid Al-Khoury

Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft,
The Netherlands

Abstract

This paper introduces a thermo-hydro-mechanical computational model for freezing and thawing in
porous media domains, with focus on freezing and thawing in soil. The model is formulated based on
the averaging theory and discretized using a mixed discretization scheme, where the standard and
extended finite element methods are simultaneously employed. It is capable of capturing the strong
coupling between all important phenomena and processes occurring during relatively high freezing-
thawing rates in porous media. Solid and fluid compressibility, buoyancy, phase change,
thermomechanical behavior, water volume change, pores expansion, cryogenic suction, melting point
depression and water migration to the freezing zone are all considered in the model. The cryogenic
suction, in particular, is central to the occurrence of many of these phenomena and processes, and thus
treated as a primary state variable, and discretized using the partition of unity method to make sure
that it can be captured accurately. The paper presents detailed formulation of the governing equations
and the numerical discretization. Verification and numerical examples are given to demonstrate the
accuracy and computational capability of the model in describing the behavior of a soil mass subjected
to boundary conditions resembling those occurring in the vicinity of an energy pile. The numerical
examples show that the model is effectively mesh-independent and can simulate all important
phenomena using relatively coarse meshes.

Keywords: freezing-thawing in soil, energy pile, cryogenic suction, cryosuction, THM model, melting
point depression, ice lens.

1 Introduction

Freezing of water in porous media is a natural phenomenon which is of interest in a wide range of
engineering applications, including geotechnical engineering, environmental engineering, soil physics,
food industry and biomechanics, just to hame a few. This paper focuses on freezing and thawing in
soil, though the model is generic and can readily be adopted for other applications. In particular, it
focuses on freezing and thawing of soil in the vicinity of energy piles (Anstett et al. 2005). The energy
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pile is a new shallow geothermal technology thdizes the foundation piles as heat exchangers for
heating and cooling of buildings. Normally, usefghis technology are restricted by operating the
energy system to temperatures well above waterifrggpoint to ensure that no thermally-induced
damages occur to the piles and the soil-pile iotema. However, this restriction would significantl
limit the amount of energy that can be extractedhfthe earth. The goal of this work is to exteral th
operational limits of the system by studying thergrios that might occur due to freezing and thgwin
of the soil mass and their consequences on thegritk provide the criteria for operating the energy
piles at temperatures below the freezing points faper is a step towards this goal. It introdwuces
computational model describing freezing and thavitng soil mass subjected to boundary conditions
resembling those occurring in energy pile applarati

Water freezing in porous media has been extensistlgied experimentally and theoretically.
Experimental studies have demonstrated that ponwaterials at temperatures well below freezing
point preserve significant amount of unfrozen Idjwvater in their pores. This characteristic is
hypothesized to be attributed to two mechanismgerficial premelting and curvature-induced
premelting (Wettlaufer and Worster 2006). The fifateial premelting gives rise to an unfrozen thin
film of liquid water at the contact surface betwetbe ice crystals and the solid particles. The
curvature-induced premelting generates supercoobed water arising from the crystal ice surface
curvature. Normally, the premelting mechanismsragligible in many applications, but, in soil, as
the specific surface area can be remarkably high the surface curvature can be small, these
mechanisms can sum up to a significant amount fstbman water, leading to what is known as the
melting point depression.

The melting point depression in porous media i®&@ased with the development of thermally-
induced negative pore pressure, known as cryogemiton (Williams and Smith 1991), also denoted
as cryosuction. Negative pore pressure of 11 tath? generates from every degree Celsius below
zero. The cryogenic suction gives rise to waterratign from the unfrozen region to the frozen
region. The migrated water can create pockets wiliter@malgamates to form ice lens. This
phenomenon is important in permafrost regions Wgetic and Antarctic, but for an energy pile
application it is of minor significance. Howeveabbratory experiments on soil samples have shown
that segregated ice lenses are generated in thenfrone (Ming et al. 2016; Steiner et al. 2017).
Formation of the ice lenses and migration of watehe frozen region lead to expansion of porosity,
giving rise to frost heaving. The amount of frostfiing in a porous domain depends, among others,
on the temperature gradient, overburden pressailestdfness and the thermodynamic properties of
water. Water, in particular, exhibits some unigumamalities; its specific volume aboveC4
decreases with decreasing temperature dowiiGpbelow which, unlike other materials, its specific
volume increases with decreasing temperature.

Apparently, soil freezing is a complicated phenoamerwhich encompasses highly coupled
processes associating premelting to generationryagenic suction to expansion of porosity to
formation of ice lenses to frost heaving. Upon timgwthese processes undergo reversing action



manifested by the diminishing of cryogenic suctioetreating of water to its initial equilibrium
condition and reversing the frost heaving to becdahewing settlement. Evidently, this strong
coupling between thermal, hydraulic and mechariigdlavior in response to freezing and thawing
necessitates considering all aforementioned presassthe model. Besides, the significance of these
processes is considerably affected by the geonudttite problem, the gravitational forces and the
material characteristics, and hence, the use opegoraonstitutive relationships and advanced
numerical discretization schemes are essential.

Attempts to model freezing and thawing in soil dsn categorized into three types of models:
thermo-hydraulic (TH) models; thermo-mechanical {Tkhodels; and thermo-hydro-mechanical
(THM) models. The TH models are formulated basedtlmn conservation of mass and energy
equations, with no regard given to the linear mamm@n(equilibrium) equation of the solid matrix.
Models introduced by Harlan (1973), Guymon and kut{i974), Takagi (1979), Gilpin (1980),
O'Neill and Miller (1985), Konrad and Duquennoi 889, and Sheng et al. (1995) are among the TH
category. The TM models are formulated based orctimservation of energy and linear momentum
equations, with no regard given to the fluid masaservation equation. The model introduced by
Kruschwitz and Bluhm (2005), for instance, is amtimg TM category. Models of this category ignore
the cryogenic suction and its associated water magstion to the frozen zone. The THM models are
formulated based on the conservation of mass, gnangl linear momentum equations. Models
introduced by Mikkola and Hartikainen (2001), Nishira et al. (2008), Thomas et al. (2009), and
Ming et al. (2016) are among this category. Thesdats simulate soil freezing with different levél o
complexities, with a noteworthy work given by Zhaod Meschke (2013), who introduced a THM
model based on the theory of thermo-poro-elastioftCoussy (2005) and the theory of premelting
dynamics of Wettlaufer and Worster (2006). The esseof this work is in the use of entropy for
deriving the constitutive relationships of the mitls.

The aforementioned models have been formulateddb@s¢he finite difference, finite volume and
finite element methods. The focus was on simulativegphysics of the problem, and mainly standard
discretization procedures have been employed taritbes the primary state variables. As a
conseqguence, these models entail the use of fidg, gnainly if the freezing rate is high and the
cryogenic suction is of interest. Nevertheless.emécworks on soil freezing focus also on the
numerical procedure. Bekele et al. (2017) presemtedisogeometric finite element model for
modeling artificial ground freezing. This technigoeakes use of the computer-aided design (CAD)
basis functions to formulate the finite elementfjol characteristically have better capabilities in
describing the geometry. Na and Sun (2017) intredwu stabilized finite element model for freezing
and thawing of an elasto-plastic porous domainyTddopt a stabilization technique to counteract the
lack of two-fold inf-sup condition and ill-conditiing due to using primary state variables of ddfer
nature to prevent the likely occurrences of spwiascillations. Recently, Amiri et al. (2018)
introduced a TH model using the extended finitenelet method (XFEM) to model the temperature
discontinuity at the ice/water interface.



In this work, focus is placed on both, the physitshe problem and the computational efficiency
of the model. Compared to all existing works, thigrk is distinct by three main features: 1) the
comprehensive mathematical formulation of the ptgsiand the generic employment of the
constitutive relationships; 2) the choice of themarry state variables; and 3) the use of the pamtibf
unity to discretize the cryogenic suction. Thesduees and their novelty are highlighted in Sec#ion
In Section 3, details of the governing equationsjuding the conservation equations, constitutive
relationships, and initial and boundary conditi@re given. A step-by-step mixed finite element
discretization scheme is presented in Section fpaial verification exercise describing the model
accuracy in simulating a numerical thawing benclkease is given in Section 5. Section 6 presents a
numerical example, highlighting the complete feasuof the model. The conclusions of this work are
outlined in Section 7. Appendices A-C provide aiddial details, including the water equation of stat
(EOS), the linearized equations, and the completeponents of finite element matrices and vectors.

2 Modeling approach

Developing an accurate, efficient and effectivelgsimindependent model for freezing and thawing in
deformable porous media requires a well-designattemual model, a descriptive mathematical
formulation, a good choice of the primary statdatales and a well-suited numerical method.

We undertake a conceptual model that comprisestwrased, three-phase deformable porous
medium domain subjected to relatively high freezimgwing rates boundary conditions. The porous
domain constitutes a solid phase (porous matrig)vaater, which can be in a liquid phase, ice phase,
or a mixture. The conceptual model incorporates ialportant physical and thermodynamic
phenomena and processes occurring during freemddghawing in porous media, including solid and
fluid compressibility, buoyancy, phase change, tftenechanical behavior, pore volume expansion,
water volume change, cryogenic suction, meltingnpdepression and water migration to the freezing
zone.

The balance equations are formulated based onepeesentative elementary volume (REV)
averaging theory (Lewis and Schrefler 1998). Phaemmiogical constitutive relationships and
equations of state are employed for the solid amdemwphases. The solid phase is considered
temperature-dependent elastic, with its moduluglasticity being a function of temperature. The
water equation of state is adopted from the Intewnal Association for the Properties of Water and
Steam (IAPWS 2007). The water and ice thermal esipanheat conductivity and dynamic viscosity
are considered functions of temperature. The QlauSlapeyron relation, describing the
thermodynamic equilibrium between the frozen anfilazen water contents in the porous domain, is
utilized to describe the cryogenic suction. An emopl relationship describing the melting point
depression is formulated. Water flow is governedycy’s law, and the relative permeability of the
liquid water is described using the Brooks and €¢1®64) relationship.

Appropriate choice of the primary state variabteseary important for obtaining a stable numerical
scheme. As indicated above, the conceptual mod=ingpasses all important features involved in



freezing and thawing of a porous domain constituéirsolid phase, liquid water phase, ice phaseaand
water mixture. As it will be apparent later on tipaper, the governing equations contain 21
mechanical and thermodynamic state variables dmsgrihe thermo-hydro-mechanical behavior of
the domain and its constitutive relationships. As freezing and thawing processes in nature are
relatively slow, the state variables are smootlegpkfor the cryogenic suction, which exhibit arpha
increase (jump) for every degree Celsius below.z8sa consequence, the cryogenic suction is
considered here a primary state variable, to hiagigdctly computed from solving the finite element
equations, rather than been calculated in the posessing. However, its magnitude is restrained by
the Clausius-Clapeyron relation. Accordingly, thedal is formulated based on displacement-
pressure-enthalpy-cryosuction formulation, with ghisnary state variables: solid phase displacement
u, water mixture pressurg,,, water mixture specific enthalpy,,, solid specific enthalpy, and
cryousuctions.. The other 16 variables are dependent and defiiyetheir relevant constitutive
relationships.

The numerical solution is conducted using a mixadef element discretization scheme in which
state variables exhibiting continuous nature aserdtized using the standard Galerkin finite elamen
method (SG) and those exhibiting high gradient diseretized using the extended finite element
method (XFEM). The mixed discretization schemeingilar to the well-known mixed finite element
method in that it allows using different primanatet variables (such as pore pressure and solid
displacement) but differs in its discretization eggeh. In the mixed finite element method all priyna
state variables are discretized using a singleratigation scheme (such as SG) but in the mixed
discretization scheme, the primary state variabdes be discretized in different ways, depending on
their physical nature (Al-Khoury and Sluys 2007;zanfudi and Al-Khoury 2017). XFEM is an
enhanced finite element scheme based on the partifiunity principles to model discontinuities and
high gradient fields, regardless of the finite edetnmesh. It enables using structured and fixed
meshes. In this work, the solid phase displacemenvater mixture pressurg,,, water mixture
specific enthalpyh,,,, and solid specific enthalpi, are discretized using SG, and the cryogenic
suctions, is discretized using XFEM.

3 Governing Equations

The representative elementary volume (REV) avetpgieory is utilized to formulate the governing
equations (Lewis and Schrefler 1998). For a mustighsystem, the averaging theory entails that each
phase is assumed occupying the whole volume of REBWY is distributed continuously over it,
regardless of its detailed heterogeneity. The phase distinct from each other by their physical
properties and velocities, and their mass and veltractions within REV. The size of REV must be
significantly larger than the size of heterogeneitfhe matter, but much smaller than the sizehef t
bulk material.

The porous domain is assumed saturated, isotropican-isothermal with local thermal equilibrium.
It constitutes a solid matrix and water, with tledics matrix exhibiting deformation due to coupling



between water freezing, pore expansion and cryogsuition, and the water exhibiting thermally-
induced phase change from liquid to solid ice aod versa. The three phases (solid, liquid watdr an
ice) might interact physically with each other aaxthange mass, momentum and energy at their
contact interfacial areas.

As mentioned in Section 2, the model contains 2itesvariables, divided into 5 primary state
variables and 16 dependent variables. The paiffakehtial equations describing the conservatibn o
momentum, mass and energy in a multiphase porodéumedomain are expressed in terms of the
primary state variablesu, p,,, h,, hs, S¢ ), as given below in Sections 3.1-3.3. Sectiond&gdgcribes

the relevant constitutive relationships for the dépendent variables. These two sets of equations,
together with the initial and boundary conditioBg¢tion 3.5) formulate the governing field equadion
which are numerically solved in Section 4.

3.1 Momentum balance equation
The averaged macroscopic linear momentum balancieq of a multiphase domain constituting a
solid phase, a liquid water phase and an ice plasksubjected to thermo-hydro-mechanical forces

can be expressed in an incremental form as

ou 1 aT. ops | 0P
O0Dy|L—-=mB.—= |-ma—= |+ =0 1
EET( at 3ﬁsatj at} ot 9 @)

whereu is the displacement vectol is the porous matrix temperatuil®; is the tangential solid
stiffness matrix B, is the solid volumetric thermal expansion coeffitj « is Biot’s coefficient,g is
the gravitational vectom = [1,1,1,0,0,0]7, andpeff andp, are the effective mass density and the

pressure exerted by the water phase on the sdisepldefined as

Peft = (1_¢)ps + @S cePice t PSwOW

()
Ps = SwPw t ScePice

andL is a differential operator, given by

9gox 0 0 9@y O a/oz]
L=| 0 d/dy O 9/ox 8/oz O 3)
0 0 a/0z 0 9/dy 9/ox

in which ¢ is the porosity,ps, p;», andp;.. are the mass density of solid, liquid water angl ic
respectively, and;,, andS;., are the liquid water and ice saturations.

The dependent variables in Eq. (1) are functionthefprimary state variables, such that= T, (h),

Ds = Ds®@m> hm, Sc), and pesr = pesr(Om, k), With the subscriptn denoting the water mixture
(liquid water and ice). Using the chain rule, theidatives of these dependent variables can then be
expressed as
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wherec,; is the specific heat capacity of the solid phasgis the water mixture specific enthalgy,

is the solid specific enthalpy, asgdis the cryosuction.

Substituting Egs. (4)-(6) into Eq. (1), gives

0o LY —1mp L9 | [ 9Ps O | OPs 9Pm | OPs 0%
lTat 3 Py ot oh, 0t dpy Ot s, ot
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0
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By this derivation, the momentum balance equatitu, (1), is formulated in terms of the primary
state variables, p,,, h,,, hg ands..

3.2 Mass balance equation
The averaged macroscopic mass balance equatiotkef@olid phase, liquid water phase, ice phase
and the mixtures are:

Solid matrix phase
The mass balance equation for the solid phase eaxfiressed as

(1-¢)dps 94,

o Ot ot (-g)mTL G =0 ®

ot

The constitutive relationship for the solid masesiy can be described as (Lewis and Schrefler 1998

1ops _ 1 [, . 1dps ., 0T .\ 7 du
L0 L (o g) L % pfa-0) -1y 2 ©

in which K is the bulk modulus of the solid grains.

Substituting Egs. (4)-(5) into Eq. (9) gives
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(10)



Substituting Eq. (10) into Eq. (8) and rearrangiyiglds

yza—qé(aps ohy , 9ps P +%6_SCJ_
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s m Pm S (11)
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which indicates that the porosity is a functioreathalpy, pore pressure, cryosuction and solidiratr
displacement.
Liquid water phase

The mass balance equation for the liquid water glsas be written as

6¢+ [ aﬂw+ [ aSw_,_ 1 0 ou _ My jce
9,9 2 PrViy) +omTL 2 =~ Mweice (12)
O Ay Ot Sy Ot SwAw aww) O SuOw

in which vy, is the mass averaged velocity of liquid water, ang_,;.. is the mass exchange rate
between liquid water and ice, arising from the ghasange.

Inserting Eq. (11) into Eq. (12), yields

a—¢(aps Oh, , 9ps Opry +%6_scj_ﬂs(a_¢)i%
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Applying the chain rule to the liquid water densityd saturation, gives
0P w - 0Pw 9Pm + 0w Ohm (14)
ot dp, ot oh, ot
aSW - aSW apm + aSW ahm (15)
ot oJpy, ot oh, ot
Substituting Egs. (14)-(15) into Eq. (13), and mexaging, results in
a-¢ ops + a:OIW 0Sw |9Pm
( Ks SW Wapm ¢SW apm ¢ Wap at
aps a:OIW 0Sw ahm
[ S1W:0Iw +Sw— o, 00w oh, ) at (16)
La- 0 6 1 ou
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I ce phase

Similar to liquid water, the mass balance equatibthe ice phase can readily be derived to give
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wherev,., is the mass averaged velocity of ice.

Water mixture (liquid water and ice)

Consider the following identities:

S1W +See =1
= SwPhw * ScePice
a:qw OSW alolce 0Sce
W on o, e gn  Ace g
(Swplw) + (Slceplce)
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Summing Eqgs. (16) and (17), and using Eqg. (18)gjitae mass balance equation of the water mixture,
as

(a—¢pmaps+¢apmjapm+(a—¢p ops ¢apmjahm

Ks obm 0Py ) Ot Ks oh, = ohy,
a-¢  0ps 0 1 ohg T, Ou

+ ——=+ap,m L— 19
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The ice velocity is negligible and can be ignoreg..(= 0), and the liquid water velocity can be
described using Darcy’s law, as

=Kkw (L, + 90) (20)

in which k,.;,,, andy,,,, are the relative permeability and dynamic visgosftthe liquid water.

The water mixture pressupe, in Eq. (19) can be expressed as

Pm=Pw*t& (21)



which indicates that before freezing, = 0, and hence, the mixture pressure is equal toitjusdl
pressurep,,,; but upon freezing, the cryogenic suction builglsamnd rapidly becomes much higher
than the liquid pressure, leading to the mixturespure to be nearly equal to the ice pressyge

Inserting Eq. (21) into Eq. (20), gives

o= (O 4 O, + 0) (22)

lw

Substituting Eqg. (22) into Eq. (19) results in
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As for the momentum balance equation, the massbalequation, Eq. (23), is formulated in terms of
the primary state variables.

3.3 Energy balance equation
The averaged macroscopic energy balance equati@nrfuultiphase domain exhibiting local thermal

equilibrium can be expressed as

%[(1—¢)pshs + P ~ (L= #)P% ~ ¢ ]

(25)
ou
+ ¢:0mhmmT|— ot +0 mﬂwhwvlw) +0 [q_;veff D]:’Ts) =0
whereh,,, is the specific enthalpy of liquid water;, is the mean effective stress, and
Aett :(1_ ¢)7“s +PSceice T PSwhiw (26)

is the effective thermal conductivity of the poral@nain, with4g, 4,;, and4,.. denoting the thermal
conductivity of the porous solid, liquid water aicd, respectively.

The temperature gradient can be described as

o7, = (O—Tj Thy = Ohy 27)
oh /g Cps

10



Substituting Eqgs. (20) and (27) into Eq. (25), arganding the time derivatives, results in
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Applying the chain rule to the mixture mass densithe derivative, gives
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Substituting Eq. (10), Eq. (11) and Eq. (29) ir28)(leads to
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in which K; is the bulk modulus of the solid skeleton. Eq.)(8) the energy balance equation
formulated in terms of the primary state variables.

Since the specific enthalpies of water and solidsgls are primary state variables, the local thermal
equilibrium can only be satisfied by imposing tbanstraint:

Ts—-Ty =0 (32)

in whichT,, is the water mixture temperature. Using Eq. (87} equation can be written as

ihs -Tp =0 (33)
Cps

11



3.4 Constitutiverelationships

3.4.1 Porous matrix

The stiffness matrix of a three-dimensional, ispirasolid is described as

1-vg Vg Vs 0 0 0
1-vg Vs 0 0 0
1-vg 0 0 0
_ &M 122 0 (34)
T 7 (1+ve) (- 2s) 2
. 1-2

Symmetric 5 5 0

1-

L 2 ]

wherev; is Poisson’s ratio, ankl-(T) is a temperature-dependent elastic modulus, dkfimere, as

Er (T) = Ege (1570 (35)

whereEj is the Young’s modulus at a reference temperdigrandb is a material parameter.

It is worth noting, though, that the assumptioradiemperature-dependent linear elastic behavior of
the solid matrix might be reasonable during fregzibut upon thawing and repetitive freezing-
thawing cycles, the behavior might become non-lirasto-plastic. Modeling such a behavior will be
treated in a follow up work.

3.4.2 Water equation of state (EOS)

The thermodynamic state variables and propedidble liquid water, ice and the water mixtupeg,,
Tins Pices Piws Sices Stws Aices Aiws Ui @re obtained from the equation of state of watdopted from
IAPWS (2007) and other relevant literature, giveippendix A.

3.4.3 Melting point depression

Pore liquids in porous media freeze at temperatweds below their bulk freezing (melting) points.
The melting point is inversely proportional to there size, as given by the Gibbs—Thomson equation.
The use of this equation for porous media requikswledge of the pore geometry, solid-liquid
interface energy and the wetting angle inside tbeeq quantities which are normally difficult to
measure, especially for geoscience applicatiorstedd, several empirical relationships have been
obtained from experimental measurements of macpis@pecimens, or from assuming the similarity
between the soil water curves (SWC), describingrétationship between the capillary pressure and
the moisture content, and the soil freezing cu(&#=C), describing the relationship between the sub-
zero temperatures and the unfrozen water conteuatylyk and Watanabe (2013) presented an
interesting review describing different forms ottRlapeyron equation and empirical methods for
describing the SFC relationships. Here, we adogb@onential function of the form:
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sW=§+@—§)§ﬁ””) (36)

in whichS* is the residual unfrozen water content at a nedditicold condition7 is the bulk freezing
temperature, and is a material constant. This kind of constitutie&ationships are easy to implement
and can readily be obtained from relatively simialgoratory experiments on the type of soil under
study. Nevertheless, the proposed model is geraamit any other constitutive relationship can be
considered.

3.4.4 Cryogenic suction
As indicated in Section 2, the cryogenic suctign,exhibits a jump at every degree Celsius below
zero. As a consequence, the cryogenic suctionnsidered here a primary state variable, to have it
directly computed from solving the finite elemequations (see Eq. (69)), rather than been calallate
in the post processing. However, the computed gydms to satisfy the Clausius-Clapeyron relation
(Lewis and Schrefler 1998):
Tm

T, (37)

S = "PiceLt In

whereLy is the latent heat of fusion of water. To satifis condition, the following constraint is

imposed:

T
~Picel 1 InT_m_sc =0 (38)
f

which, for simplicity of notation, can be writtes a

fe =5 =0 (39)

3.4.5 Relative permeability

Even though the domain is fully saturated, the wabehibits phase change during freezing and
thawing, giving rise to a quasi-partially saturateddition within the water phase. As for the [lyi
saturated conditions, calculating this effect neitates the use of the relative permeability coefit,

as given in Eq. (20). Here, the relative permegbdf liquid water is described based on the Brooks
and Corey relationship (Brooks and Corey 1964):

w

wheren is a material constant.

3.5 Initial and boundary conditions

Initially, att = 0, the primary state variables are expressed as

9(x,0)=go(x) (41)
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where g can be any of the primary state variablespy,, hy, hs, or ..

The Dirichlet boundary conditions might be desalibs
i(t)=i(t) onry (42)

wherer}, is the Dirichlet boundary anglcan be any of the primary state variables.

The Neumann boundary conditions for the mechaniegdiraulic and conductive and convective
thermal boundary conditions might be describedhaetvely, as

t=ch

Qw = AwViw

~ on Fq
Qcond = ~Aest UTs [

Qeonv = AwhwViw

(43)

wherel, is the Neumann boundaryis the prescribed tractiof)j,, is the prescribed mass flow rate of

liquid water; andQ.onq and Qs,, are the prescribed conductive and convective lieaes,
respectively.

4 Finite element mixed discretization

The model encompasses state variables of significdifferent nature, describing highly coupled
thermo-hydro-mechanical processes. It comprisesysomatrix deformation and heat and fluid flow
occurring due to gravity, buoyancy, thermal expamsand cryogenic suction. Discretizing such a
system using standard finite element method casecapurious oscillations and requires extensive
CPU time and capacity. Importantly, the standanitdielement method fails to capture the jump in
the cryogenic suction, as it will be highlightedtfire numerical example in Section 6.

Here, a mixed finite element discretization schésngtilized for modeling relatively high freezing-
thawing rates in porous media. The primary stat@bbes that represent relatively smooth, contirsuou
fields, namely the displacement, enthalpy and pressare discretized using the standard finite
element method, and the cryogenic suction is dizer using the partition of unity method withireth
framework of the extended finite element methodix&d and structured finite element discretization
scheme is adopted.

4.1 Weak form formulation
The weighted residual method is utilized to forneilghe finite element equations. In total, five
equations are discretized: three conservation amsatmomentum (Eqgs.(7)), mass (Eqg. (23)) and
energy (Eq. (30)); a local thermal equilibrium cwamt equation (Eg. (33)); and a cryosuction
constraint equation (Eq. (39)).

Appling the standard weighted residual discretaratprocedure to Eqgs. (7), (23), (30), and (33)
yields:

14



Momentum balance:

—J. LTwD L—dQ+I LTWD m,Bs 1 ahSdQ j LTwmcraps Oty dQ

Q °3 ey o, ot

j LTwma —= 9ps apm dQ+ j LTwmcraps 0%, dQ (44)
opy O 0s. ot

9 9
+J‘ wﬂ%ng+J‘ wPeit OPm i 4 j w—dr 0
o o, ot o op, ot

Mass balance:

_[ wa 2Pm g0 +_[ wd, M g +J'
Q ot Q ot

Wd3%d9+j WdJnTLa—udQ+J. Wela—SCdQ
Q ot Q ot Q

(45)
—J' O C{~c; 0Py - €505 +Gl)dQ+_[ W, dl =0
Q r
q
Energy balance:
j wdS%dmI de%dmj Wd7ap—mdQ+j wdgnTLa—”dmj we, 2% 4o
Q ot Q ot Q ot Q ot Q ot (46)
_J-QDW[G_CSme_(MDSC_CSDhs"'GZ)dQ"'Ir Wéad\gr"'J-r Wéconﬁlrzo
q q
Local thermal equilibrium constraint:
1 hdo- j WT,dQ =0 (47)

QCps

Appling the partition of unity weighted residuakdietization procedure to the cryosuction constrain
equation, Eqg. (39), yields

Cryosuction constraint:

Continuous:
j Wi .dQ - j ws.dQ =0 (48)
Q Q
Enhanced:
j W fSCdQ—I W s.dQ =0 (49)
Q Q

wherew andw™* are the standard and enhanced weighting functions.

4.2 Linearization
The Newton-Raphson method is utilized to lineatimeproblem. The primary state variables and their

time derivatives and gradients are linearized as
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yr+1 — yr +5y
S+l o r + O\ . = h- h 0
y _y y ’ y_ulpm! m: 31% (5 )
Dyr +1_ Dyr + 0y
wherer + 1 denotes the current iteration, ahds the associated variation in the variable.

The dependent variabled;, = Ty, (Pm, ), Pefr = peff(pm:hm)v fse = fs¢(Pm, hm) and ps =
s (Pm, i, S¢), @nd their derivatives are linearized as

r r
0X 0x
Xr+1=xf+[_j +£_J Jp i XETH, O ,f (51)
ahm Jhm apm m m Feff » Isc
r r
oper ¥ (0ot | [ 0%0at 0Dt
[—j = + > | Ot OPm (52)
ohm, ohn, oh, 0hm0Pm,
r r
[_ape” jm _ (apeff Jr | 2P Oty + et op (53)
9Pm OPm 0Ppmdhm 6pm2 "
r r r
r+1_ 1 [ OPs ops aps
= —= | J o — | 0 54
Ps Ps +(ahmj hm"'(apmj pm"'[ascj S (54)
r+l r r r r
.39 5 Y Oy + s 5pm+ 0°ps O%; (55)
d d oh, 2 Mdp ) | Odse
r+l r r r r
(%j _ [%J L[ _9%ps o + 9%ps Spn + 92ps 55, (56)
Pm Pm 0PmOhm 6pm2 0PmIS;
r+l r r r r
(%) - (%j W 0P | g [ 0% | s [0 s (57)
0% 0% 05:0hp, 05:0Pm 05

The coefficients in Egs. (23) and (30)d;,dy,dg,d7,dge1€2=9 (P &) and

d3,d4,ds,€1,C2,3C 4€ 5G 1G & ] Om hy ) are linearized as

r r r
g™t=g' +(—J Jhrn{a—gj me{g—ij 0% ; Qg=dy,dy,dgdydgee; (58)

RN RN
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The evolution of porosity, Eq. (11), and the tenapare-dependent elastic modulus, Eq. (35), are
treated explicitly by updating their values at gviééme step.

Substituting Egs. (50)-(59) into Egs. (45)-(47)jmehating the high order differentials, and
rearranging, yields the linearized weak form finllement equations for the mass balance, energy
balance, local thermal equilibrium constraint, ghd cryosuction constraint. These equations are
listed in Appendix B.

4.3 Mixed FE formulation

Using the Galerkin finite element method, the sdlisblacement, mixture pressure, mixture specific
enthalpy, and solid phase specific enthalpy arerelized as

u(x,t) =Ny (x)u(t) (60)

P (X,t) =N(X)Ppm () (61)

hm (X,t) =N (x)hp, (t) (62)

hs (x,t) =N(x)hg(t) (63)
Using the partition of unity, the cryogenic suctisrdiscretized as

s (%) =N(X) g (t) + N (x)5 () (64)
in which the barred values are the nodal valNeis, the standard finite element shape functionorect
and

N" (x) =N (x)g(x) (65)

is the enhanced shape function, wijtlthe partition of unity enhancement function, ddxext here as

k)
w(x)=e ‘c (66)

in whichx* is the normal projection of on the freezing boundafy, and?, is a characteristic length,

which can be a property of the porous matrix.

The weight functions in Egs. (44)-(49) are defiasd

W* = N* (68)

Substituting Egs. (60)-(68) into the linearized &tipns in Appendix B gives the finite element
equations, which can be described in a compact &&m

K X +CoX =f -K X" —CX" (69)
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XT=(@ B A BL ¥ &)
T
f:(fl f2 f3 f4 f5 f6)

The coefficients of the matrices and vectors of (8§) are given in Appendix C.

Eq. (69) is a semi-discrete system of equationshvban be solved using any of the time integration
schemes. Here, we use a fully implicit finite diface time integration scheme.

5 Model verification

Verifying the accuracy of the model against expental work or numerical codes is not readily
accessible, as either the experimental set-upsareecessarily designed to examine all features of
the model, or the numerical codes are not appralyiaerified, validated or designed to be utilizd

a reference case. Nevertheless, recently, an ianocbmparison exercise is devised to numerically
validate the accuracy and performance of TH nurakdodes, introduced by Grenier et al. (2018).
Thirteen numerical codes with different numericppbmaches, spatial and temporal discretization
schemes and computational efficiency were testedexamine two-dimensional (2D) thawing
benchmark cases.

Here we make use of this exercise to partially fyethe introduced THM model. A thawing
benchmark case, termed TH2 in Grenier et al. (2&l8)mulated. This benchmark case examines heat
and fluid flow in a 2D porous medium domain, 3 rh R, initially at 5 °C, and includes a 0.333 m X
0.333 m initially frozen zone at *6. The domain is closed at the top and bottom baues! and
insulated against conduction from the top, bottamd @ight boundaries, but subjected to a head
difference of 0.03 m/m from the left boundary. Figshows the geometry and initial and boundary
conditions of this benchmark case. The analysisoisducted by letting the frozen zone to thaw
naturally for approximately 55 hr.

The analysis is conducted using the full featuréviTidodel, but to eliminate the effect of solid phase
deformation, the elastic modulus is made relativdiyh (= 10 GPa). The material parameters and
constitutive relationships as given by Grenierlef2018) are implemented, except for the water and
ice properties, for which we utilized the wateuatijon of state given in Appendix A. The water and
ice properties in the reference benchmark areddess constants.
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1m Io.aaam

Prescribed head Hy+AH
Prescribed head H,

Y
L d
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Zero conductive flux

2 Ty=
Tu=5'C T,=5°C

Zero conductive flux

Zero conductive flux

Fig. 1 Geometry and initial and boundary conditiohthe TH2 benchmark case.

The finite element domain is discretized using Biedr, quadrilateral finite elements. The analisis
conducted on half of the domain, using two meskssi874 and 1134 elements. Fig. 2 shows the
computational results at 22,860 s and later, obthfrom both meshes. It would have been ideakf th
digital file of the reference benchmark had beeresasible, but comparing Fig. 2 at 22,860 s to Hig.

(P. 200 of Grenier et al. (2018)), it can readigyrimticed that the two results are very close. srhall
difference, however, can be attributed to the Weyite and water properties are defined. Alsoatit ¢

be noticed that the coarse mesh (374 elements) igdkier close results to the finer mesh (1134
elements), indicating that the model is effectivelgsh-independent. Both meshes, however, are much
smaller than those utilized in solving the refeezhenchmark.

374 elements 1134 elements
e ' N - ' - -
. SO
60’000 ’ '“ '
. fF~aa N
80’000 ’ - -
|

+1.0

.+2.0

T (°C)
+5.0
+4.0
+3.0
0.0
-1.0
-2.0

Fig. 2 Temperature evolution at different timesigsd74 and 1134 elements.



Fig. 3 shows the evolution of the minimum tempetuith time. Comparing this figure to Fig. 9a (P.
207 of Grenier et al. (2018)) reveals that the results are very close and, as mentioned above, the
small difference in the results can be attributethe difference in ice and water properties. Tdraes

can be observed in comparing the evolution of theewvolume with time, given in Fig. 4, with that

in Fig. 9b (P. 207 of Grenier et al. (2018)).

Temperature Minimum (°C)

0.0E+00 4.0E+04 8.0E+04 1.2E+05 1.6E+05 2.0E+05
Time (s)

Fig. 3 Evolution of the minimum temperature witmé using 1134 elements.

1.1 /

1.09 A /

1.08 { /

Total Water Volume (m?3)

1.07 T r - - -
0.0E+00 4.0E+04 8.0E+04 1.2E+05 1.6E+05 2.0E+05
Time (s)

Fig. 4 Evolution of the total water with time usihi@34 elements.

Thus, it can be concluded that the introduced THbUeh is capable of handling cases which are
considered to be computationally challenging. Hosvethis verification exercise does not reflect all

features of the model, and in order to highlighe dtomplete features, a more involved numerical
example is given in the next section.

6 Numerical example

A numerical example demonstrating the capabilitiethe model to simulate a freezing and thawing
cycle in soil is presented. The geometry is deseghto resemble a soil mass surrounding an energy

20



pile. An axial symmetric soil mass, 24.5 m diameted 12 m deep, subjected to a 10 m long and 0.5
m diameter cylindrical heat source, is simulatete Tieat source represents an energy pile coinciding
along the symmetrical axis of the soil, as showRigq 5.

Initial and boundary conditions:

Initially, the temperature in the soil mass is assd 5°C, the pressure is hydrostatic, and the
horizontal effective stress is equal to overlyiog mass.

Thermal, mechanical and hydraulic boundary conaitiare imposed. The right-hand side boundary is
prescribed by: 1) a constant temperature of 5 J@n2overburden pressure equal to the weight of the
soil mass, and 3) made hydraulically open for gdwater flow. The top and bottom boundaries are
considered thermally insulated and hydraulicalysed. The left and bottom boundaries are supported
by rollers to restrict the normal displacementshese boundaries. At the contact surface between th
soil mass and the heat sourc&auchy boundary condition, describing a heat fiusirgg due to their
thermal interaction, is imposed as

Q=b(Ts-Tp) (71)

in which b is the thermal interaction coefficient, affigl is a prescribed heat source temperature,

simulating a 28 days freezing-thawing cycle, shawhig. 6.

A
v

Physical Domain

10 m
12 m i

Computational

Domain

Fig. 5 Physical and computational domains.
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Time (Day)
Fig. 6 Pile temperature.
Material parameters and constitutive relationships:

Table 1 lists the physical and thermomechanicgbgniies of the materials.

Fig. 7 shows the soil elastic modulus versus teatpeg, as given by Eg. (35), and the soil freezing
curve (SFC), as given by Eq. (36).

Table 1 Model parameters

Parameter Value
Solid matrix
Reference elastic modulugg (MPa), Eq. (35) 5.0
Elastic modulus constarh, (K1), Eq. (35) 0.1
Poisson’s ratioy; (-) 0.25
Bulk modulus of soil grain&; (MPa) 500.0
Density,p, (kg m~3%) 1600.0
Permeability k (m?) 1.0 x 10715
Initial porosity,¢ (-) 0.3
Relative permeability parametey (-), Eq. (40) 7.5
Heat capacityg,s ( kg* K™) 900.0
Thermal conductivityd, (W m~2 K1) 1.0
SFC constanig (K~1), Eq. (36) 0.03
SFC residual unfrozen wate, (-), Eq. (36) 0.0
Thermal expansion coefficierf,, (K1) 5.0x10°°
Characteristic lengtt,. (m), Eq. (66) 0.05
Water
Liquid water and ice properties Appendix A
Pile
Thermal interaction coefficiedt (W m~2 K1) 20.0
10 = 11
2
W
- 1
£
S5
‘“ 0.9 -
0 6:8
-5 0 5 -5 0 5
T(0) T(°C)
(a) (b)

Fig. 7 (a) Solil elastic modulus, (b) Soil freezmgve (SFC).
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Finite element analysis:

The finite element domain is discretized using #068ar quadrilateral axisymmetric finite elements.
The axial symmetric finite element is formulated dnjlving the finite element system of equations,
Eq. (69), in the cylindrical coordinate systeiz).

Fig. 8 shows the computational results for tempeeatcryogenic suction, porosity expansion and
deformed mesh at three instants in time: just leefoeezing { = 5 days); during freezing { =
14 days); and just after freezingt & 19 days). Fig. 8a shows that as the temperature is above
freezing point, there is no sign of cryogenic suttand the porosity expansion and solid matrix
heaving are minimal. Fig. 8b shows that upon freggzihe cryogenic suction arises, associated with
porosity expansion and frost heaving. Fig. 8c shihat by thawing, the cryogenic suction disappears,

and the porosity and heaving are decreased.

u
Scale -
30:1 -
;\_ 'y LELELEL B
= B
T Scale
; 30:1 |
i1
Imnn
\,\'t\ TTTTT
3:5; u ]
i Scale -
301

(©)
Fig. 8 Computational results for temperatures, geyac suctions, porosities, and deformed meshugapefore
freezing € = 5 days), (b) during freezingt(= 14 days), (c) just after freezingt(= 19 days).
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Fig. 9 shows the temporal evolution of temperatergpgenic suction, porosity and heaving at
point A(r = 0.25m, z = 0.0 m), shown in Fig. 5, at the surface. Fig. 9a showes akiolution of
temperature, which reaches its minimum value-df9°C after 14 days, followed by an increase in
response to the temperature increase in the heatesoFig. 9b shows the evolution of cryogenic
suction with its value reaches its maximum of 5.BaV55 bar) after 14 days, in association with the
minimum temperature. Fig. 9c shows the evolutioparbsity, which closely follows the evolution of
cryogenic suction. The maximum reached porosity # 0.35, an increase af7% of its initial value
of 0.3. With thawing, the porosity reduces 033 after 19 days, keeping some of the migrated
moisture, but, after 28 days, it becon®e3005, almost contracted to its initial value. Fig. 9tbw/s
the frost heaving at point A. It shows that it ess in association with the onset of cryosuctiod an
pore expansion. Upon freezing, it reachad, = 0.052 m, but during thawing most of the heave has
been reversed and the remaining heave after 19 ida@9033 m and after 28 days is 0.002 m.
Apparently, the nearly full reverse of the heavdus to the use of an elastic constitutive modettfe
solid phase. Caicedo (2017) has shown experimgntiadit during thawing, the fine sand exhibits
nearly full reversal of heave, but the silt is ueesible, leaving a considerable residual heavés Th
difference in behavior among different soil matisrinecessitates the use of a proper elasto-plastic
model to simulate accurately the behavior unddeudifit freezing and thawing boundary conditions.

Fig. 10 shows the water flow vectors after 5 dgyst(before freezing) and after 14 days (at the
peak of freezing). The figure shows that beforeZieg, the water migrates from the cold regiorht t
warm region due to its volumetric expansion, buthey onset of freezing, the water flows back to the
frozen region due to cryogenic suction.

6 6.E+06

— ©
2o £3 406
~ »’
0 21 28
Time (Day)
6 0.E+00
0 7 14 21 28
Time (Day)
(a) (b)
0.35 0.06
= .
5 0.325 g—o,oa
e =
e
0.3 0
0 7 .14 21 28 0 7 14 21 28
Time (Day) Time (Day)
() (d)

Fig. 9 Time histories: (a) soil temperature, (b)ogenic suction, (c) porosity, (d) vertical disgatent.
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During freezing
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Fig. 10 Water mass flow vectors: (a) t = 5 day}t (b 14 days.

Fig. 11 shows the spatial distribution of tempematicryogenic suction, porosity, frost heaving, ice
saturation, and liquid water pressure, computeédeaboundary along the heat source on six instants
times:t = 0,5,7,8,14,19 days, wheret = 0 represents the initial condition= 5 days represents
the time just before freezing,= 7 — 14 days represents the time during freezing and 19 days
represents the time just after thawing. The figdeanonstrates the strong coupling between the
involved phenomena, which follow firmly the evoluti of temperature. An interesting observation
can be noticed in Fig. 11a where, during freezimgdays 7 and 8, there is a time lag in the
advancement of freezing at the upper side of theailo as compared to the lower side. This can be
attributed to the substantial expansion of porosityhis area, as shown in Fig. 11c. The porosity
expansion is associated with the migration of wrdrowater from the warm region to the frozen
region due to cryosuction, giving rise to a wariteenperature. Another interesting observation can be
seen in Fig. 11d, where it shows that there iswrakheaving point at around= 7m. Above this
point, the soil exhibits heaving due to the coupleffect between porosity expansion, water volume
expansion and the increase of water contents dweytsuction. Below this point, the soil exhibits
contraction due to the overburden pressure. Fifi.shbws that before freezing, the liquid water
pressure is hydrostatic, but after freezing, itdmees negative due to the cryogenic suction.

Examining the computational results reveals thattiodel is capable of capturing the strong coupling
between thermo-hydro-mechanical phenomena occudiming freezing and thawing in soil. A
noteworthy feature of the model is the capturinghefjump in the cryogenic suction and its assediat
porosity expansion and frost heaving. Capturindhsabehavior using a relatively coarse mesh was
feasible by two main attributes. The first attribblis the choice of the primary state variables,
especially the inclusion of the cryosuctighamong them. And the second attribute is the ugbeof
mixed discretization scheme, wheges discretized using the partition of unity methtdise is made

of the standard finite element method, the jumghia cryogenic suction would not be possible to
capture and its value would be underestimated. Ehishown in Fig. 12 where all primary state
variables are discretized using the standard Galériite element method. The figure shows thagmaft
14 days of freezing, there is no jump in the cryogesuction, as compared to Fig. 8b, and its
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maximum magnitude is 3.6 MPa. Theoretically, as [ggr (37), the cryogenic suction a#4.9°C

should b&.5 MPa = 55 bar.
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Fig. 11 Field variables along the boundary withe¢hergy pile: (a) soil temperature, (b) cryogenict®n, (c)
porosity, (d) vertical displacement, (e) ice sdiora (f) liquid water pressure.

Fig. 12 Standard FEM with 400 elements. CryosuctipDay 14.
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7 Conclusions

This paper presents a computational model capdbinalating the strong coupling between all
important thermo-hydro-mechanical phenomena oamyrduring freezing and thawing of a porous
domain resembling a soil mass surrounding an engilgy The model is formulated based on the
averaging theory and discretized using the finigenent method.

Three features make the proposed model distinch fothers: the mathematical formulation of the
physics, the choice of the primary state varialsled the discretization scheme. A comprehensive
mathematical formulation is employed to descrilbbéngbortant phenomena and processes in freezing-
thawing of porous media, including solid and fluempressibility, buoyancy, phase change,
thermomechanical behavior, water volume changesgpexrpansion, cryogenic suction, melting point
depression and water migration to the freezing zdhe use of fundamental balance equations within
the framework of the averaging theory, togethehwlite equations of state of water and generic ice-
water constitutive relationships make the modelegsigs rather wide-ranging.

In current THM models, the primary state varialdes typically solid displacement, pore pressure and
temperature. The use of these variables might bguade for slow freezing rates, which is the case i
nature, but for a relatively high freezing ratectsuas in artificial ground freezing or shallow
geothermal systems, this choice of state varialblesld most probably cause critical spurious
oscillations, unless treated properly. Na and Q1 7) thoroughly discussed this issue, and asserted
that the performance of their model was improvelg after employing a stabilization technique in the
weighted-residuals of the mass and energy balaquatiens. In this work, we demonstrated that
treating the cryogenic suction as a primary starégable alleviates this problem, and in this casme
the standard Galerkin finite element method (SG) kandle relatively high freezing-thawing rate
problems. However, as discussed in Section 5 aoarsin Fig. 12, SG falls short from capturing the
rapid rise of the cryogenic suction, but tends rteear it. We tackled this issue by discretizing the
cryogenic suction using the partition of unity nah The governing equations are solved using a
mixed finite element discretization scheme, whaeedontinuous and smooth primary state variables,
namely, the solid phase displacement, water mixpuessure, water mixture specific enthalpy, and
solid specific enthalpy are discretized using ttendard Galerkin finite element method, and the
cryogenic suction is discretized using the partitmf unity within the framework of XFEM. This
combination has enabled the simulation of a retfitivhigh freezing-thawing rate problem, and
resulted into an accurate, robust and effectivedgmindependent numerical scheme.
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Appendix A: Water equations of state

The water equations of state (EOS) for subcoolgdidi water, supercooled water and ice are
formulated from relevant references, given below.

Subcooled liquid water:
Foecific heat capacity (|APWS 2007):

v 02y
Cp = —Ru20Tn?
p Ry20Tn aprnZ

in which Ry, is specific gas constant for wategy, = pm/16.53< 16, T, =1386.0 /T, and
P 2 « \li Ji
y(Pin.T) = 3 (7.0- )" (T - 1.223
i=1
wheren;, I; andj; are material constants.

Density (IAPWS 2007):

Pm
P=—"" 7,
. 0
RHZOTm pm 7{/
0pn

Viscosity (Cooper and Dooley 2008):
_ ooy 7,006 eﬁg(iﬁf%‘@ > 5555 e00ssr
i=0 [T i
0( %47.093

whereY, H; andH;; are material constants.

u

Heat conductivity (Ramires et al. 1994):

2
A =0.6068 — 1.48445% 4.122 2TL - 1.63 66Tm—
298.15 298.1

Super cooled liquid water:

Soecific heat capacity (Tombari et al. 1999):

1 T 28
P S 0.044(—"‘— 1) + 74.
18.0152& 16f 222

Density (Hare and Sorensen 1987):
p=-0.0224T, - 273.15 - 0.1116,,— 27316 99

Viscosity (Hallett 1963):
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{=5.0x10%(T,,— 273.15 - 38 10(T,— 273)]5 0.0(

Heat conductivity (Benchikh et al. 1985):

A=0.0017T, - 273.1p+ 0.55¢

| ce:

Soecific heat capacity (Fukusako 1990):

cp =185.0+6.89T,, — 273.1F
Density (Fukusako 1990):

p=917. 1- 1L1% 10(T,— 273.)b
Heat conductivity (Fukusako 1990):

A=11619% 866 10(T,~ 273)5 287 4T~ 2737

29



Appendix B: Linearized balance equations

The linearized balance equations from Section &2 a
Momentum balance:

—J' LTWDSLurdQ—I LTwD L du dQ+I LTstlmﬁsih;de' LTWD, ~mp,—L ohdQ
Q Q Q 3 Cps Q 3 Cos

+:QLTwma ZLH:J h(ndQ+I LTwma[gEzJ 5I%dQ+J. LTwma( o J h" oh.dQ

. 2
+| LTwma 0° P
Jo o op..

2

r
. 0 p
i) dQ+J. LTwma s

j h'ds.dQ

r r r
- ap, ) . ap. . T 0%p .
+| L"Twma| == rdQ+j LTwma| == | dp.dQ +I L"wma s ' 5h.dQ
Ja apmj P Ja [a m} P Ja apon. | Pm

. a%p °p
+| L"wma| —= o dQ+j LTwma S r 0s.dQ
Jo Wi ap 2} pm pm Wi (ap a%J pm SC

m

+.'Q|_Twma’ (;FS)C} %dQ+J‘ LTwma(ngj 5Sch+j LTwma[aa FljjmJ & oh dQ

~ 62p r 62p r p
+| L"wma s | &5 dQ+J. LTwma S | & o dQ+I et dQ
Jo ascapmJ % Pm Q (asch % o | oh, hm

+.Wapde5mng+j [arf:fme%ngj {
Q

Ja | oh,

- (0o ) 0Pt
+| w effJ prgdQ +J. W[
o | op

r
5p..qdQ
ah3p J MO Pnd

J0 0Pm

ap,oh,

r
ijmng | [ P J pr,0h,0d0
m
* 62 r A
¥ wif} p,’napmgdm_[ widr =0
Ja | apy, r
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Mass balance:

r r
| . ody ) ady )
_[Q wd pldQ + _[Q wdl 3p,dQ + jgw(ar]_lj Bl oh dQ + J‘Q w(ap—lj oL 5P dQ

m m

r r
o[ W 9% p{n(SstmJ‘ wdéhfndfhj wdgfﬂ'%dmj w292 | i an do
Jo (0% Q Q Q (dhy
[ 992
Ja | opm

r r
) od ) ) )
ro dQ+J' w| —2 | hF o dQ+J' wdy fdQ+J' wdtoh.dQ
J hmO P o (asc hmos o 3hs o 30hg

r r
o W 2% hgahmdQ+J' w 23 hgo*pmdmj' wdimTLu' dQ
Jo | dhy Q (0pm Q

r r
+| wdimTLdu dQ+I w| 994 mTLurdl%dQ+J‘ w 2 m'Lu" opdQ
Q Q (0hy, o (9pm

r r
[ r.r I s de | .r de | .r
+ Qwe_LstQ+J.Qwelech+IQw(—am] sca'l%dQ+J‘Qw(—ap J §&0pPndQ

m

r
4 w[a—elj sgo*scdmj Dwmimp{ndmj' Ow(e,d0p,dQ
Q |0 Q Q

r r
o ow 2 Dp{nahmdmj ow2CL Dp{no*pmdmj Owih0s.dQ
Q ohy, Q Pm Q

r r

¥ odc dc

+f owmheo dQ+j w282 DréhmdQ+j owi 22 | 0d 5p-dQ
o 20U a [Eah“] S o P %9 Pm

3G, ) 3G, )
- Dwm;{dQ—J' owi 221 JhmdQ—J' owi 21 mede' W, dl =0
0 0 ohy, Q 0Pm Mq
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Energy balance:

od
Pm

r r
jwdgh;dmj wdgthdQ+J W 5. h;cShmdmj w 2% | R ap do
Q Q Q |dhy, Q

+

Q

Q

Q

Q

Q

Q

wdgh{ndmj wdgdhmdQ+J 9dg hmdhmdQ+j
Q Q o | dhy, Q \dp

r
ade‘J O PrmdQ

m

r r
W 9% | fr 5 do + I wd? pl dQ + j wd P, dQ + I W 97| o sn_do
0 Q Q Q \dhy

ad, ad, )
w| 297 prrné'pmdQ+J. w| %7 p{ndsch+J wdimTLa" dQ
op, Q (0% Q

m

r r
wdimT L 3 dQ+J w| % mTLurdhmdmI W 2% | Lot spdo
Q \ohy Q (0

m

r
odg de, )
W(Kj mTLu JhSdQ+J Wezsch+J wezasch+IQ (aﬁij & h,dQ

m

r r
W 2% £0PndQ +J. W %82 $05.dQ +J. Dw [@50p,dQ
op, Q |05 Q

6C3

Ohm

C3

Dwm:gdmpmdQ+J. DW[E j medh“dQ+J. DW[E o

J 0pfd PmdQ

m

DWE:4DstQ+J Dwmamscdmj DWEE ;':J 08! oh,,dQ

DWEEZC“j Dsgdpmdmj Dw@gmh;dmj OW 50 ThdQ
Q Q

m

DWEEaCE’j DhsdhmdQ+J Dwtﬁa%} DhgépmdQ—J. OwlG5dQ
Q Q

Ohm

m

Dw[ﬁamJ ShdQ - J.DWEE m} medQ+j wQadvdr+I WO o gl =0

Local thermal equilibrium constraint:

1. J‘ 1
w—h.dQ+| w—3Jh.dQ
-[Q Cps s Q Cps s

ijde( J I( JdpmdQO
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Cryosuction constraint:

Continuous:
. o ) oy )
j vvaCdQ+I w| S JhmdQ+J. w 2= | 5pdo
Q Q ahm Q apm
—I WsédQ—j wWos.dQ =0
Q Q
Enhanced:
j W*frdQ+I w | I r5|”|mdQ+j w | s er do
@ % o |\oh, o | 0pn m

- w rdQ—j W 05.dQ =0
Josaa= | vigs

Appendix C: Components of FE matrices and vectors (Eg. (69))

K° submatrices

0 _ 0 0 _ 0 _ 0 _v0 _A . 0 _ —w 0 _
KL1=K2,=K23=K T =K G 5K 360 ; KS K% 5K % 50
Kg_2=j ONT [ 0NdQ K%_5=I ONT @INdQ ; K% g IDNT [ 5N "dQ
Q Q

K9 ,=K% ;=0 ; Kg,fj ONT @'EINDQ 34_I ONT &' EINdQ
Q
T . 0 _ T mar
KO . IDN EONDQ K3_6—j ONT 2,0N"dQ
K31=KG 27K 3 =K% =K % 0 ; j NT—NdQ

0 _k0 _
K81=K3 ,=K% 3=KE =K § &K § 50

0 _,0 _
Ke1=KQ =K% 3=K & =K G &K G g0
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CO submatrices

0
C?—lz‘_[ BTDBdQ ; CP,= j B ma| %P NdQ+j N] OPeti_ gNdQ
Q apm Q apm
Cg_3: B ma 9Ps NdQ+J. NI oL gNdQ
JQ ohy, Q oh.,
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JQ 3 CpS Q asc
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Q
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Cg_6::QNTe5N*dQ ; Co1=C% 2=C% 3=C% #C% sC% 50
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f subvectors
_ T o [ onT T
_—Ir NTEdE  f, IDN GdO - I NT G, dr
q
fa= | ONT B5d0 - [ NTQear - | NTQcon@Ir . 1 &[] NTThao
Q rq rq Q

fsz—j NTfLdQ fﬁz—j N'T £LdQ
Q Q
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K submatrices
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2 r 2 r 2 r
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C submatrices
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