Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

A study on Privacy-Preserving Federated
Learning and enhancement through Transfer
Learning

Robert Minea! Kaitai Liang? Rui Wang?
TU Delft
r.minea@student.tudelft.nl, kaitai.liang@tudelft.nl, r.wang-8@tudelft.nl

27th of June 2021

Abstract

Privacy in today’s world is a very important topic and all the more important when
sizeable amounts of data are needed in Neural Network processing models. Federated
Learning is a technique which aims to decentralize the training process in order to al-
low the clients to maintain their privacy, while also contributing to a broader learning
process. In order to allow parties that undertake similar tasks to share data between
them, even if they don’t follow the same feature representation or domain distribution,
Transfer Learning is also used in order to augment the learning by sharing knowledge
with the contributing parties. The name of this combination of techniques is Federated
Transfer Learning. This paper aims to showcase the strengths and weaknesses of Fed-
erated Learning through a simple implementation while comparing different Federated
Transfer Learning frameworks that can be used in order to enhance the capabilities of
a simple federation of clients that are contributing towards the learning of a similar
task.

Keywords— Federated Learning, Privacy-Preserving, Neural Networks, Transfer Learning,
Knowledge Distillation, Decentralized Learning, Differential Privacy, Homomorphic Encryption,
Secure Multi Party Computing, Artificial Intelligence

1 Introduction

Problems in the contemporary setting are becoming increasingly complex, and in order to facilitate
answers to such a diverse palette of problems and questions, more intricate Artificial Intelligence
algorithms had to be developed. This is how strategies such as Neural Networks [1| appeared, in
which the algorithm learns how to solve flexible problems by itself. In order to do so, plenty of
training data must be used in the learning process, and sometimes problems such as government
regulations and policies might stand in the way of attaining a diverse enough training dataset. |2]

Federated Learning provides a feasible solution by decentralizing the sample data and involves
many parties in the learning process, each contributing in this development, while keeping the data
private.|3] One of the techniques that is used in order to mould the model and datasets such that
knowledge can be reused by other parties involved in this process is Transfer Learning, fusing into
a powerful combined strategy called Federated Transfer Learning. [4]

Even though Federated Learning provides a way of preventing communication overhead by not
moving large datasets between the clients through decentralized learning, it also presents itself with
many facets that can be exploited by adversaries whose goals are malicious with respect to the
performance and security of the final trained model.

In order to properly emphasize the facets of Federated Transfer Learning, its advantages, possible
weaknesses and implementation strategies, this work will be organized as follows. Section [2] will
present the main research methods that were used in order to achieve a proper understanding of
the multi-sided Federated Transfer Learning environment. Section [3| will go through the simulation
of an algorithm implementing a basic version of a federation. In close link to the simulation, the
results will follow in Section [4] together with an analysis of the frameworks that enhance Federated
Learning through Transfer Learning techniques. Since careful consideration should be given to
the integrity of the research process, Section [f] contains important mentions about Responsible
Research and responsible techniques used in general. Section [6] will focus on discussions on various
topics regarding Federated Transfer Learning. The final chapter is the conclusion in which the final
statements following the research project will be made, together with possible future work or ideas
that can be applied.

2 Methodology and Background Knowledge

Since following the horizontal iterative process of slowly discovering and understanding more about
a subject is a recommended way of approaching a novel subject, this section will follow the progress
that was undertaken in order to understand the topic of Federated Transfer Learning.

2.1 Federated Learning

The first step of understanding the main concepts of Federated Learning was browsing through
scientific and internet articles in order to grasp the focus of this subject. One of the most widely
known sources in the field was published on the Google AI blog [3]. In this article which treats
the Federated Learning concept |5, the Google Keyboard is presented, and the mechanism behind
it is explained. As mentioned in the introduction on the topic, the training of the keyboard is
decentralized, relying on the data stored on each of the devices, without sharing it. The model
training is done on each device and after every round of training the central server garners all the
trained models and aggregates the result into a new global model. This model will be sent back to
the clients for the cycle to repeat, as showed in Figures |l and

ger menu
ger
7N
A\@ G umamibur |
« @® O] e Y
& gqwertyuiop
Figure 2: Image of a project imple-
Figure 1: The continuous learning menting the federated mechanism,
process using the data on the user the Google Keyboard (or Gboard).
devices. [3] 13l

2.2 Data-Dependent Types of Learning

As expected, the datasets which are used in the learning process can be very different, either in the
feature or sample space. Taking in consideration these differences the following divisions of learning
can be made:

e Horizontal Federated Learning: This learning technique requires the users of the network
to share the same feature space. The learning model is sent by all users to a central server
which aggregates the result and returns the new aggregated model to all the users in the
network for the next round of learning.

e Vertical Federated Learning: This kind of learning is used when the parties contain
samples about the same subject but with different features. Only the common samples from
all the parties are going to be treated in the learning process of the remote clients.

e Federated Transfer Learning: Another kind of Federated Learning which involves "Trans-
fer Learning" techniques is based on training the model on some samples, "transferring" the
knowledge extracted from these samples and applying it on other samples from parties which
are considering a different feature space and data distribution in their dataset. [4] Formally,
transfer learning aims to improve the efficiency of executing the target task 77, which con-
tains an already existing training dataset Dr through usage of the knowledge learned in the
source task Tg by the use of the dataset Dg (where Ds # Dr and Ts # Tr). [6]

2.3 Security and Privacy

As the federated context introduces a brand new method of training Neural Networks, satisfying
the privacy issues that come with current regulations about user privacy is of great importance.
Federated Learning is a technique which can be attacked from different surfaces than a centralized
Neural Network. For a regular Neural Network, the focus of the attacks is to find the limits of
the trained model in the inference phase, while in the federated context, a malicious user seeks to
corrupt the network mainly during the training phase. |7] Two types of adversaries can be discerned
in the federated setting:

e Semi-Honest Adversaries: This kind of users do not stray from the protocol given by the
system that they are part of, but they are curious, and by wanting to know more they try to
reach information which is not always made transparent by the protocol.

e Malicious users: The malicious users might not even have any benefit from approaching
the protocol in a malevolent way, this is why they are very dangerous since they might desire
only the promotion of chaos, if not backed by ill-natured motives. [§|

Some of the following attacks can be made on the network [9] [10]:

e Model Corruption: As mentioned above, when the context of learning is a federation of
clients connected to a central server, we can encounter this type of attack in which an ill-
intentioned user can change learning parameters that will affect the performance of the final
data model.

e Data Poisoning: This kind of attacks have the training dataset as target. A malicious user
can either change the labels of some of the training samples, or it can insert watermarks into
multiple samples in order to generate triggers for specific behaviour, which only the attacker
is aware of.

e Data Privacy Attacks: The advantage of having a federation of learning clients is that the
dataset is not passed, thus many privacy regulations are being respected, but recent research
[11] shows that certain details about the training dataset can be extracted from a trained
model that memorizes some key features from the training dataset, compromising the data
privacy in cases where it should actually not be disclosed. Data Privacy attacks are further
split into attacks such as, Model Inversion and Reconstruction attacks which aim to discover

the training set through access to the model and Membership-inference attacks which can
also pose a problem to data privacy, they aim to discover which samples are part of a dataset
through inference using a black-box model.

In order to protect the federation against possible breaches in security and privacy, various tech-
niques have been devised in order to counteract or alleviate the possible attacks, as Federated
Learning allows for a wider range of breaches since communication must be present between the
parties, thus giving possibly malicious third-parties more surfaces from which an attack can be
executed.

e Secure Multi-Party Computing: As the title of the security technique already infers,
multi-party computing is a technique which involves the computation in parts of a final
function f, in which each participant holds a secret part of the input. The result is of form
f(z1,z2..2) = Y1, Y2..Yn, in which each client holds a secret share of the final result. Multiple
implementations of multi-party computation have been proposed, among those are Oblivious
Transfer [12], which uses encryption and seeks to allow an exchange of parts of information
from one party, while keeping the sending party and receiving party unaware of the parts
of the message that they are processing. The usage of Beaver triples [13] also allows the
execution of secret sharing, an offline generator must be created to generate random tuples
that are used in the secret sharing process by the parties.

e Homomorphic Encryption: The main principle of homomorphic encryption is to allow
computation on encrypted data such that the final decryption returns the same result as if
the operation has been done on the plaintext, not on the cyphertext. Multiple techniques
have been implemented along the years, like the one proposed by G. Craig |14], which allows
unlimited additions and multiplications on the cyphertext. The flexibility of the encryption
technique usually comes with an unwanted additional computation overhead which compro-
mises the performance of the algorithms. Three groups of homomorphic encryption can be
distinguished based on their capabilities. Partial homomophic encryption allows either addi-
tion or multiplication for an unlimited number of times. Somewhat homomorphic encryption
allows for both addition and multiplication for a limited number of times. Due to noise being
added in order to ensure security at every iteration, an upper sensitivity level is reached in
which the cyphertext can not be decrypted correctly anymore. The final type is fully ho-
momorphic encryption which allows unlimited additions and multiplications at the cost of
expensive computation. According to the formal definition of Homomorphic Encryption, any
type of encryption whose property allows Enc(mi *a m2) < Enc(mi) xc Enc(msz) can be
called homomorphic. In this definition, <— shows that the left part can be computed from
the right part without any necessary intermediate decryption.

e Differential Privacy: Differential Privacy relies on a simple principle, not allowing an out-
side party to find out specific information about database samples by introducing a small
random factor in either the dataset samples, the model weights or during the training pro-
cess. Differential privacy is a technique that ensures protection against membership-inference
attacks and backdoor model poisoning attacks, since the final result of the calculations does
not reveal sensitive information about one of the samples used in the calculation |15]. Unfor-
tunately this technique displays quite a sizeable issue, as increasing the noise added to the
data will ensure better privacy at the cost of final calculation accuracy. Thus a model in
which differential noise is added will take longer to train, and the final result will probably
not reach the same level of accuracy as normal training.

In order to check a new framework, the information from this section was used in order to
understand the techniques used by the network, and determine the weaknesses and strengths of
each Federated Transfer Learning Framework.

3 Implementation

In order to experience the benefits of decentralized learning, an implementation of a federation has
been made according to the standard presented in . The implementation was used to simulate
how a federation works on a very small scale, and has been written according to a course on
Federated Learning . Creating the implementation of a Neural Network from the ground up
is a time-consuming task, so in order to streamline the development process, the PyTorch
library for Machine Learning has been used, together with the PySyft library from OpenMined
7 that facilitates the application of Federated Learning among the Neural Networks present on
each machine.

Moreover, another implementation has been created in order to demonstrate the accuracy and
performance sacrifices that must be made when implementing Differential Privacy. The Opacus
library has been used in order to add random noise during the backpropagation process of a
Convolutional Neural Network trained on the entire MNIST dataset.

3.1 Architecture

Virtual machines have been created in the Google Cloud environment for both the central server
and the clients participating in the learning federation. Each machine runs an instance of a Jupyter
Notebook that uses the Duet library of the PySyft service in order to create connections between
the notebooks. The Convolutional Neural Network distributed on each of the client machines is
built according to the model used in the PyTorch MNIST example, and includes two bidimensional
convolutional layers, two fully connected layers, rectified linear units as activation function and two
dropout layers used in regularization. A step function is used to reduce the learning rate by by 5%
every epoch, starting from n=1.

4 Results and Framework Comparisons

In order to check the efficiency boost of Federated Learning with multiple clients against a simple
centralized method, experiments have been made using the Architecture specified in Section [3.]]
with training sets containing 1280 randomly chosen samples on each round of learning from the
MNIST dataset on each client device.

1 2 3 1 o ¥ T b 9 10
Fed | 9.85 | B5.86 | 9229 | 9435 | 94.80 | 95.73 | 96.26 | 96.61 | 9677 | 97.06
Net | 80.14 | 93.11 | 94.47 | 95.08 | 95.58 | 96.44 | DG6.26 | 94.88 | 95.97 | 97.01

Table 1: Table containing the evolution of test set accuracy, for a Federation of 5 clients
(Fed) compared to a single Neural Network (Net).

The graphic shows the evolution of the test accuracy (executed on 10000 MNIST test samples)
for the execution of a single client against a federation of clients. As expected, in the beginning,
the federated algorithm only reaches a small test accuracy due to the averaging of 5 weak models,
but the accuracy boost quickly rises, as each of the clients contributes better models, discovering
exclusive specific features from their individual datasets, which are then aggregated into a single
model. It can be said that a federation can reach a better accuracy than a simple Neural Network, if
it is allowed to run for a sufficient number of rounds, as seen in the plot from FigureE[, the accuracy
is steadily improving, while the performance of the singular model is wavering.

._.
=
=

— One client test accuracy
| Five clients test accuracy

Test accuracy
g & 2 # 8 & & &

2 4 & 8 10
Round number

Figure 4: Graphical evolution of the test accuracy for the models corresponding to Table

Another experiment has been made on a Convolutional Neural Network created to recognize
the digits of the MNIST dataset to check the impact of Differential Privacy (pictured in Figure
5). The advantage of using Differential Privacy lies in better protection against Membership-
Inference, Reconstruction attacks and Backdoor attacks, but it comes at the price of accuracy and
performance. While the regular model reaches an accuracy of 99.2% on the 10000 test samples of
the MNIST dataset, the implementation using Differential Privacy has a very rought accuracy at
the beginning and comes to its roof performance at 91.51% test accuracy. The deviation from the
Gaussian distribution from which noise is added can be changed in order to generate less noise, but
will come at the cost of lower privacy.

100

9

Test accuracy
&

— NN for MNIST dataset
NN using differential privacy for MNIST dataset

o 10 20 30 40 50
Epoch number

Figure 5: Graphical evolution of the test accuracy for a Neural Network with and without
Differential Privacy noise added.

4.1 Transfer enhancement using the studied framework techniques

The implementation follows a case of learning in which all the samples’ feature vectors are of the
same length and are representations of the pixel values of the images from the MNIST dataset. This
is an ideal case, but in a real world scenario, in which different companies from the same field are
part of a learning federation, the domain distribution, feature representation or client models might
be very different, requiring the use of Transfer Learning. Thus different papers present various
frameworks for Federated Transfer Learning in order to solve the above mentioned issues. Firstly
we will talk about the time-complexity of Neural Network training, followed by a brief introduc-
tion of the first paper proposing the Federated Learning framework and a sequence of papers that

introduce various techniques to improve the federation through transfer mechanisms. To finalize, a
general comparison between the frameworks is presented.

Time-complexity calculation: After looking into the showcased papers’ algorithms, time com-
plexities for the algorithms have also been calculated, not taking in consideration the transmission
times as it is heavily dependant on the network architecture. In order to facilitate shorter com-
plexity formulas, we are going to shorten the training and inference complexities by saying that
they are dependent on the local model, thus being O(train) and O(infer). The true complexity for
the mentioned short versions of the inference and training are dependent on the number of layers
and their number of nodes. Since a forward pass by one layer can be implemented through matrix
multiplication, we have the following complexity calculation:

Fj =W I (1)
Ay = f(Fy) (2)

Since Wj; is the matrix representing i weights and j neurons, and I; is a feature vector of one
sample, we can say that the calculation to the final activation result A; is of complexity O(i - j), if
n training samples are involved in this forward feed, the final result would be O(n -4 - j). Thus a
final complexity for training in a k-layered neural network with n training samples, in e epochs:

O(train) = 0(6 -n- (ll . 12 + lz . l3 + ...+ lk,:[. lk)) (3)

4.1.1 Communication-Efficient Learning of Deep Networks from Decentralized
Data [5]

Being the vanilla version of Federated Learning, this paper created by Google researchers is one of
the first implementations of a data federation, it presents the main principle of Federated Learning,
together with central server aggregation done using model averaging. It is a framework that can
be applied to a Horizontal Federated Learning setting, but it is a proper starting framework in the
process of developing federated algorithms. The goal of a federation is to minimize the general loss
function, knowing that Fj, is the loss function of client k, K is the total number of clients and ny, is
the number of local dataset samples:

min f(w) where flw) = Ele% - Fr.(w) (4)

Fiu(w) = -5, fi(w))

The algorithm, which can be found in Appendix A, is round based, all the clients are training their
local model for a given number of epochs E in parallel. Following the training process, the models
will be passed to the central server in order to create an aggregated model through averaging the
model parameters. The newly created global model will be sent back to the clients for a new round
of learning.

Server time complexity:

O(K - M) (6)
Client time complexity:
O(train) (7)
Message size complexity:
O(M) (8)

Symbols: K - number of clients (can be ignored if parallel); M - local model parameters and settings.

Security and Privacy

Since it follows the main principle of federated learning, this framework keeps the dataset of each
client private, only the local client models being passed. Although the datasets are being kept
private, information about them can still be found through model inversion, and many kind of
attacks such as data poisoning, model poisoning or membership-inference can still be applied to
this framework, as it does not offer any way to secure the data against a malicious client or a
malicious server.

4.1.2 Selective Federated Transfer Learning using Representation Similarity
20

A very straightforward and bold approach is proposed in the paper presenting this first Federated
Transfer Learning Technique, which uses model similarity as a metric of choice for selecting which
model to use as source during the training process. The algorithm is based on model similarity,
which is calculated according to a CKA (central kernel alignment) similarity index studied by
Kornblith et al . This similarity index is used together with a sketching method that appears
in , thus creating s-CKA, which was finally used in this paper. This similarity index was tested
against other similarity indexes by training models to recognize 2 numbers from the MNIST dataset,
and then compared the models, discovering that the s-CKA model is the most accurate means of
comparing the similarity between the source models, showed in Figure [6]

(0, (2, 0 , (1, 9)
(2. 5 2 (9, 1) -0.98
(2,] _

{0, ' (3, (0, —0.95
{0, 7)] v
o 3.6) (L,4) (1, (8, 7) 0.93 S
B (3.) n
=2
= 0.90 £
€ =
= 0.88 E
~ A

0.85

0.83

(0,1) (2,3) (4.5) (6,7) (8,9)
Source Models

Figure 6: Test that shows the validity of the similarity score, giving results close to 1 for
models recognizing the same MNIST labels. [20]

The principle of FedVote, the algorithm proposed in this paper, present in Appendix[4] is very sim-
ilar to the FedAvg model presented in Section [{.1.1] having a similar complexity, the only difference
being that a round Rs.; is selected in which the clients will perform a similarity check with all the
source models, and voting the most similar m models. At the selected round, the most voted source
model parameters will be copied to the global parameters at the server, and then the federated
process continues. It seems that a proper training acceleration was achieved through the transfer
process, as the number of rounds required for the algorithm to reach a 90% accuracy on a test set
was improved.

Server time complexity:
O(K - M + s) 9)

Client time complexity:
O(train + (s - (infer + sCK A))) (10)

Message size complexity:
O(M+ K) (11)

Symbols: M - model size; s - number of source models; SCKA - complexity of performing sCKA sim-
ilarity check; infer - complexity of executing a forward inference; train - complexity of local training.

Security and Privacy

When it comes to data privacy, we can say that the data silos are safe and no data is being shared
among the clients, but if a malicious user can reach the server, it can perform model inversion or
reconstruction attacks by tapping into the model parameters used in the averaging process. Model
inversion can also be problematic if the source models’ training dataset should remain private.
Moreover, data or model poisoning, which are very hard to avoid in general, can also pose a
problem to this proposed framework. It can surely be concluded that this framework should only
be used for its acceleration capabilities only when the parties are sure to be trustworthy.

4.1.3 Secure Federated Transfer Learning [23]

Secure Federated Transfer learning is one of the first of its type, putting the bases of privacy and
security while also combining Federated Learning with Transfer Learning. In a typical application
of this framework, we only have two parties, and a federation of such parties involves multiple such
pairs. The aim of this framework is to assist party B, containing domain Dp = {z? }fV:[j, into
labeling its’ samples x; by using the rich labels available in Dy = {;rf, y]A };.V:Al.

In order to do this, the common elements of these two parties are collected, such that the
samples can be labeled as Dap = {:U,B Syt ﬁV:"‘lB . Then two hidden neural network representation
Net? and Net? are created in order to project the two data distributions onto a mutual feature
subspace. A loss function £; is used to train the prediction function of party B, L2 is used for
minimizing the alignment loss for feature transfer learning, and L3 is for the regularization terms.

Using these terms, the models perform the training phase through either homomorphic en-
cryption and additive secret sharing, or using Beaver triples and additive secret sharing. Multiple
simulations show that the computational overhead introduced by the homomorphic encryption
should be considered when choosing the security technique, as Beaver triples introduces a better
way to hide the model values by adding computational complexity in an unrelated offline phase in
which these tuples are being generated, rather than in the training process itself.

Overall algorithm time complexity: The relevant terms that define the overall runtime
complexity of the algorithm is the number of iterations, the number of common samples and the
size of the models for the calculations of the losses and gradients, although using homomorphic
encryption adds a serious computational overhead:

O(R - (Nag - (enc(M1) + enc(M?2)))) (12)

Communication size complexity: The worst-case communication size is the size of the larger
model plus the size of the mask used in additive secret sharing:

O(mazx(enc(M1), enc(M2)) + mask) (13)

Symbols: R - number of rounds; Nap - number co-occurrences of samples; M1 - size of the first
party model; M2 - size of the second party model; mask - size of the mask used in additive secret
sharing.

Security and Privacy
From a privacy perspective, the clients both manage to keep their data safe, and the models are al-
ways hiding the model parameters when sharing them using encryption or secret sharing techniques,

making targeted model attacks very hard to execute, as they can only be done in a black-box man-
ner. Nevertheless data can still be corrupted if one of the parties is malicious and provides wrong
labels and parameters in the learning process.

4.1.4 FedHealth |24]

FedHealth is a Federated Transfer Learning framework for wearable devices which aims to target
the learning process in the healthcare field by training neural networks based on datasets composed
of information from the clients wearing the devices on which the federated algorithm is running.

For a run of the algorithm, the server first trains a global model which is then passed to all
the clients. The clients will freeze their local convolutional layers and only update the final fully
connected layer, by replacing it with an alignment layer and a correlation layer, as showed in Figure
[l The model is shared to the client and back using homomorphic encryption, such that the model’s
parameters are being kept safe. After the model is trained on the user side, the model is being sent
back to the server in an encrypted manner in order to be aligned again.

O g 5 § 5 3
M, c et e i - i G User
= le] - o . model
e w) =}) =} 'S,
Alignmentt

b ¢ = ¢ = R
— 2l D J P 2V

= S = o model

. (W) = (W) o

T

Data Fl‘c;zeu Train
Figure 7: The alignment made on the last layer between the client and the server. [24]

The communication complexity can be kept lightweight as only the last fully connected layer can
be shared, since the other layers of the models are not being changed during the alignment phase.

Overall algorithm time complexity:
O(R - (K - (enc(train)))) (14)

Message size complexity:

O(enc(M)) (15)

Symbols: R - number of rounds; K - number of clients; M - size of the proposed model; train -
complexity of training.

Security and Privacy

Since homomorphic encryption is being used, the model parameters are being kept hidden from a
malicious user. A backdoor attack can be detrimental in the scenario of FedHealth, as the first
step in the algorithm is to train the source model on the server, that can corrupt the model. Since
homomorphic encryption is done, only black-box access is being given to the model, so advanced re-
construction attacks are necessary. Also since differential privacy is not used, membership-inference
attacks can be executed.

10

4.1.5 FedMD: Heterogenous Federated Learning via Model Distillation |25

The FedMD framework provides a very intriguing view of the Federated Learning process, being
an algorithm that keeps both the client data and the client models private, which is something
rarely done in the federated field, as the federated algorithms are usually based on the sharing
and aggregation of user models, which expose the frameworks to some possible attacks through the
extraction of information from the client models. The framework deals with model heterogeneity
in a novel way, allowing each client to have a different model when training the data.

The setting is defined the following way, there is a vast available dataset Dy = (0, y?)f\fl which
can be accessed by all clients. The models fx are free to be implemented according to the clients’
wishes. The algorithm starts with the transfer phase in which the models are being trained until
convergence on the publicly available dataset Dy. After this training, for a given number of rounds
P, each party will compute a score fi (x?) of their model and send it to the central server which will
perform an aggregation in order to reach a consensus of the form % -2 fr(2?). This consensus
is being sent back to the clients such that they can train their models until they approach the
consensus (Figure, then for a certain number of epochs on their own private dataset.

m—
Transiator |
Y /

=
Translator |
Consensus
- =
j ——

{Transtator |

Agent3 Agent 4

Figure 8: A general overview of the knowledge distillation mechanism, which uses the trans-
lators to coordinate the learning process by averaging them into a consensus.

The communication cost of this framework is very small since the only thing that has to be sent back
and forth between the client and the server is the model scoring, which can be considered constant.
We can ignore the initial need to transfer the public dataset since that only has to be executed once.

Server time complexity: The server only has to calculate an average of the client scores.
O(K) (16)

Client time complexity: The clients train on the public dataset until convergence to average
score.

O(train) (17)

Message size complexity: Only the score is being sent by the clients to the server
o(1) (18)

Symbols: K - number of clients; train - complexity of training.

11

Security and Privacy

Although counter-intuitive, since no security and privacy measure is being used, the algorithm is
designed in such a way that the clients and the central server don’t have any access to the models
or datasets of the other parties, ensuring total security against attacks that seek to discover the
model or the dataset of the clients. Probably the only possible attacks seek to corrupt the training
samples or directly the scoring in order to change the general consensus, but if a scoring outlier
detection algorithm is implemented by the central server or the number of clients is large enough,
then this small corruption breach can be circumvented.

4.1.6 Federated Distillation and Augmentation under Non-IID Private Data
26

The Federated Distillation and Augmentation framework focuses on decreasing the communication

overhead of the classical Federated Learning Technique by distilling knowledge about the local

models into a "logit vector". In order to guide the learning process of every model, each one
considers itself as a student, and the average global "logit vector" which is calculated by the central

server of the network as the teacher(" l = X4 FIS l>/ (M-1)). Each round a cross-entropy loss is
calculated for each device between the client and teacher that aids in the training process.
@ upload L' W ozacamos EE —
local avg. logitlabel O local avg. logifiane Y — il
O @ giobal awg. logitiabsl a% | [— oversampiing
. . @ b
{ C ~ = 1 D upload |
':;;»‘_\...‘ | Fi local samples -
lls‘tore “ 5 é’: ,{2
Ioc:ll logit ™ o P
b_ﬁg_@‘/download @
! ! global £ g -~ @ download
23 o @select avg.logitlabel P & A /\5 generator
regularV L) rf) .
| &)
-0l 2 O target lanai
Fd - redundant labet

Figure 9: A visual overview of the federated distillation (left) and and augmentation (right)

process.

The Federated Augmentation is the second framework proposed in this paper, that allows Non In-
dependent and Identically Distributed (henceforth shortened as non-IID) data sample distributions
in a federation. It does this by training a generative adversial network (GAN) [27] prior to the
learning process in order to allow all devices to fill their datasets with representative samples in
order to convert the federation distribution to IID type. Every client sends samples from the labels
which are too scarce, plus some redundant samples from the labels that contain enough samples
in order to improve the privacy of the scarce samples. The central server uses the Google reverse
image search to enrich the samples and generates the GAN that is able to generate samples for all
the received labels (as seen in Figure E[)

Server time complexity: Server does the average of the logit vectors for the clients.
O(K - L - logit) (19)
Client time complexity: The client trains its model and calculates their average logit vector.
O(E - (B-M)+ L -logit) (20)

Message size complexity: The message complexity reduces to the size of the logit vectors passed
between clients and server.
O(logit) (21)

12

Symbols: K - number of clients; M - size of the model; E - number of epochs on a client; B - size
of local batch; L - number of labels; logit - size of the logit vector; train - complexity of training.

Security and Privacy

When using only the distillation algorithm in an IID federation, the privacy guarantee of the
framework is fairly reliable, as reconstruction attacks are almost impossible to execute since only
the final layer is being provided to the server. Federated augmentation on the other side introduces
privacy leakage as samples from the clients have to be sent to the server, and the other parties will
be able to generate samples for the labels that needed generative assistance. This is why redundant
samples are also added, and with a more significant number of devices, the privacy leakage becomes
more reasonable. Still, the paper recommends the usage of Differential Privacy at the cost of
accuracy in order to prevent sensitive information from being leaked through the labels which are
scarcely sampled.

4.1.7 Knowledge Federation: A Unified and Hierarchical Privacy-Preserving
AT Framework [28]

Knowledge Federation (KF) proposes a conceptual hierarchical federation model that operates on
multiple levels in order to achieve the goal of secure and private decentralized learning on multiple
levels. It is a conceptual framework that is presented together with an implementation of the
showcased techniques (the iBond platform).

The framework levels are the following:

e Information level: Information level federations are based on centralized processing of all the
datasets. The computation is done directly on the data on the arbitrator, so all the data is
encrypted using homomorphic encryption.

e Model level: Model level federations are classical federated learning models in which every
client keeps its own data private and sends its parameters or gradients protected either by
encryption, Secret Sharing or Differential Privacy to the central server for aggregation.

e Cognition level: Cognition level training is very similar to the model one, but instead of
models, different embedded elements such as specific layers will be shared with the central
server, which will work into fusing the local knowledge discovery in a more refined feature
discovery element.

e Knowledge level: Knowledge level learning is a technique based on knowledge graphs, that
allows the achievement of advanced knowledge through the use of lesser knowledge which is
kept in an organized interconnected graph.

Various federations can be created at multiple levels, the Knowledge Federation platform iBond
offering the user the possibility to choose between the levels. One use case is also being given
when 2 different companies from the same field but with different datasets want to collaborate in
a learning task regarding the calculation of credit risk score. They send their encrypted datasets
to the server which finds the common elements between the two datasets. After this the important
features for credit risk assessment are selected and the federated model is being built and trained.
In order to keep the labels secure, the party with no labels will compute the gradients for all the
labels and securely send them to the party containing the labels for aggregation.

Security and Privacy

The framework offers secure data transfer through mechanisms such as Homomorphic Encryption,
Secret Sharing and Differential Privacy, making sure that the data can not be viewed by the third-
party and only black box access might be given when sending models. The framework claims that
the third party can also be trusted as it only acts as an arbitrator and computation assistant, not

13

persistently storing any data. The only possible attacks on this framework are untargeted normal
data or model corruption, but the malicious user most probably does not have anything to gain
from these attacks.

4.2 Framework comparison

Two aspects about the frameworks are of interest, their performance and security /privacy balance.
Tables 2 and 3 present these two facets of the frameworks showcased in Section [£]in their order
of appearance.

Algorithm Complexity Communication cost complexity
Server: O(K = M)
Client: O(train)

Server: O(K+M +s)
Client: O(train + s = (infer + sCKA))

3.SecureFed Transfer | Overall: O(R = (Nab * (enc(M1) + enc(M2)))) | O(max(enc(M1), enc(M2)) + mask)

1.FedAvg o(M)

2.FedVote O(M +K)

4 FedHealth O(R = (K = (enc(train)))) O(enc(M))
Server: O(K)
5.FedMD Client: O(train) oM
- Server: O(K = L = logit) i
6.FedDistil Client: O(E » (B » M) +L » logit) O(logit)

Table 2: Overview of the time complexities and communication cost of the frameworks
presented in this Section.

When it comes to the runtime of the algorithms, we can say that the most heavyweight runtime com-
plexities are being present in Secure Federated Transfer Learning and FedHealth as the operations
are done on homomorphically encrypted data which results in heavy computational overheard. The
most basic of algorithms are present in Federated Average, Vote and Model distillation, in which
the training is done without any encryption. When it comes to communication cost per message,
the distillation algorithms provide the best of solutions in simplifying the messaging protocol as
only scores or logit vectors have to be sent over the network, which drastically increase the time
efficiency of the federations using these techniques.

Algorithm Security/Privacy Mechanism
1.FedAvg None
2.FedVote None

Homomorphic Encryption/Beaver Triples
3.SecureFed Transfer +
Additive secret sharing

4 FedHealth Homomorphic Encryption
5.FedMD Model Distillation
6.FedDistil/FedAug Knowledge Distillation

7. Knowledge Federation | SMPC/Homomorphic Encryption/Differential Privacy

Table 3: The security mechanisms that are used in the showcased frameworks.

With security in mind, various techniques are used in these frameworks, as showed in Table [3]
but we can say that all of them contain at least a basic privacy-preserving mechanism since the
clients participating in the federation do not share their dataset samples (with the exception of

14

Federated Augmentation). Federated Average and Federated Vote provide the least privacy and
security and are very weak against any type of inference attack since the server has white-box access
to the models, giving the opportunity for devastating attacks to an eavesdropper or someone who
infiltrates the central server. The use of Differential Privacy could enhance the privacy of these two
frameworks by securing them against backdoor or membership-inference attacks. Secure Federated
Transfer and FedHealth provide better protection against inference attacks since only black-box
access to the model is being given, giving better protection against reconstruction attacks. Besides
great runtimes and communication costs, the FedMD and Federated Distillation frameworks provide
the best security against inference attacks, since access to the models is not given to other parties.
If a Sniper [10] algorithm is implemented on the central server of these two techniques to discard
suspicious outlier scores, the frameworks would also have a great defence even against data and
model poisoning from the clients. So it can be said that FedMD and Federated Distillation provide
the greatest of defence in their elegant simplicity. The last conceptual framework, the Knowledge
Federation, also provides all the necessary tools to prevent attacks as it is a general framework that
integrates many possible defensive techniques against poisoning and inference attacks.

5 Responsible Research

The goal of research is to explore and reinforce the domain of science through either studies on
the already existing elements of this domain, or through discoveries that extend the reaches of this
domain. In order to make sure that research is of appropriate quality, it should be made responsibly,
following well established criteria in integrity and reproducibility.

5.1 Research integrity

The first side of research integrity focuses on the veracity of the research data. In order to provide
a truthful analysis of a subject, the data should not be trimmed or altered in any way, as it will
impact the quality of the final result. It is better to showcase an unexpected negative result which
is valid, than an invalid positive result. Thus the results of the simulation from this paper are in
sync with the quality of the libraries, programming language and tools that were used to develop
it, and showcase expected results after performing training on the established datasets.

The other side of integrity is focused on the authenticity of the information that has been used
in the paper. Proper mention of the authors and contributors to the frameworks that have been
presented in this paper is made, as the purpose of this work is exploring the current frontiers of
Federated Learning combined with Transfer Learning frameworks, and how they strive to preserve
privacy and security, while also offering competitive efficiency and end-result accuracy.

It is in the interest of the paper to properly present the positive and negative sides of each
framework, as this work’s goal is to highlight when they should be used. Without a proper and
trustworthy analysis, false trust in the framework can be created leading to its possible use which can
generate problems when a weak framework is presented as being very safe against all attacks. Thus
the frameworks have been objectively analyzed to highlight both the advantages and disadvantages
of using them.

5.2 Research reproducibility

Most of the scientific pieces that are pursuing the explanation of the inner workings of the world
plan on being reproducible, in order to prove the validity of the actions and experiments undertaken
in the respective studies. This is becoming an increasingly difficult tasks, as even the understanding
of our reality is not sure to be deterministic [29], so at times it can be said that some experiments
or actions are not completely reproducible. In such cases the directives of the setup and experiment
should be really well documented, such that the results show a clear similarity to the ones presented
in the study. This is a fact that should also be considered in the field of Machine Learning, as the

15

results of training and the model inference are highly dependent on the training set or factors such
as the nature of the randomness in shuffling the data to be used in the learning process. [30| So
the expected results when simulating a Machine Learning experiment should be similar to the ones
in the original experiment, being extremely improbable for the results to be the same.

6 Discussion

Although Federated Transfer Learning introduces a means to utilize a scarce overlap over the sample
and feature space in order to label the dataset of the party that contains only raw samples, there
are situations in which the overlap is too small to achieve a positive transfer. This applies when
talking about Transfer Learning in the context of feature transfer.

In cases in which pre-trained models are used in order to benefit from the knowledge already
gathered by another network, the problem of negative transfer can also happen, as the task might
be too vastly different for reuse. This consideration does not even include the problem of model
heterogeneity, in which the models have to be moulded on the data and the features present on the
target client, this problem is only solved by Model and Knowledge Distillation |25] [26], which are
very straightforward and elegant solutions, but not applicable to any situation.

Another constituent problem in adding Transfer Learning to a federation is the possible need
for frequent communication between the clients. Since security can introduce serious computa-
tional overhead, a Secure Federated Transfer Learning algorithm might be an inefficient solution
for problems that require not only improved accuracy, but also high performance.

7 Conclusion

In situations where data privacy should be preserved at all cost, Federated Learning can be a
powerful tool in decentralized training as it can enhance the quality of the entire federation of
participating clients while also complying with government regulations on user privacy. The privacy
of the datasets is ensured by using the federated approach, although the clients are exposed to
novel network security breaches that can be solved using different security techniques, such as
Homomorphic Encryption, Secure Multi-Party Computing, Differential Privacy, or hybrid and novel
approaches.

For future work, the feasibility of using Transfer Learning can also be studied, as there are times
in which the difference between two tasks is so great that a negative transfer will always happen.
Different fields can be studied and an overview of the general fields and tasks in which Transfer
Learning should be applied can be made.

As studied in this research, using a federation provides privacy and model accuracy, while var-
ious frameworks proposing different Transfer Learning mechanisms can enhance the data training
process, and bring valuable contributions in cases where heterogeneity appears in the data distri-
bution, feature representation or model design.

16

References

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]
[10]

[11]

[12]

[13]

S. Jurgen. “Deep learning in neural networks: An overview”. In: Neural Networks 61
(Jan. 2015), pp. 85-117. 1sSN: 0893-6080. DOI: 10 .1016/j . neunet . 2014 .09 . 003.
URL: http://dx.doi.org/10.1016/j.neunet.2014.09.003.

E. S. Dove. “The EU General Data Protection Regulation: Implications for Interna-
tional Scientific Research in the Digital Era”. In: The Journal of Law, Medicine &
Fthics 46.4 (2018), pp. 1013-1030. DOI: [10.1177/1073110518822003 eprint: https:
//doi.org/10.1177/1073110518822003. URL: https://doi.org/10. 1177/
1073110518822003.

M. Brendan and R. Daniel. Federated Learning: Collaborative Machine Learning with-
out Centralized Training Data. 2017. URL: https://ai.googleblog.com/2017/04/
federated-learning-collaborative.htmll

S. Saha and T. Ahmad. Federated Transfer Learning: concept and applications. 2021.
arXiv:|2010.15561 [cs.LG].

H. B. McMahan, E. Moore, and D. Ramage. Communication-Efficient Learning of
Deep Networks from Decentralized Data. 2017. arXiv: [1602.05629 [cs.LG].

S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transactions on
Knowledge and Data Engineering 22.10 (2010), pp. 1345-1359. DOI: |10.1109/TKDE.
2009.191.

J. S. Malhar, F. Tyler, and K. Farinaz. “A Taxonomy of Attacks on Federated Learn-
ing”. In: IEEE Security Privacy 19.2 (2021), pp. 20-28. DOI: [10.1109/MSEC. 2020 .
3039941.

L. Yehuda. “How to Simulate It — A Tutorial on the Simulation Proof Technique”. In:
Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich. Ed. by
L. Yehuda. Cham: Springer International Publishing, 2017, pp. 277-346. 1SBN: 978-3-
319-57048-8. DOI: |10.1007/978-3-319-57048-8_6. URL: https://doi.org/10.
1007/978-3-319-57048-8_6.

L. Yang Y. Qiang et al. Federated Learning. 2019.

V. Mothukuri et al. “A survey on security and privacy of federated learning”. In: Future
Generation Computer Systems 115 (2021), pp. 619-640. 1sSN: 0167-739X. DOI: https:
//doi.org/10.1016/j.future.2020.10.007. URL: https://www.sciencedirect.
com/science/article/pii/S0167739X20329848.

V. Feldman. “Does Learning Require Memorization? A Short Tale about a Long Tail”.
In: CoRR abs/1906.05271 (2019). arXiv: 1906.05271. URL: http://arxiv.org/abs/
1906.05271.

M. O. Rabin. How To Exzchange Secrets with Oblivious Transfer. Harvard University
Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun 2005. 2005. URL:
http://eprint.iacr.org/2005/187.

D. Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In: Advances
in Cryptology — CRYPTO ’91. Ed. by F. Joan. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1992, pp. 420-432. 1SBN: 978-3-540-46766-3.

17

https://doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1177/1073110518822003
https://doi.org/10.1177/1073110518822003
https://doi.org/10.1177/1073110518822003
https://doi.org/10.1177/1073110518822003
https://doi.org/10.1177/1073110518822003
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/2010.15561
https://arxiv.org/abs/1602.05629
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/MSEC.2020.3039941
https://doi.org/10.1109/MSEC.2020.3039941
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/https://doi.org/10.1016/j.future.2020.10.007
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://arxiv.org/abs/1906.05271
http://arxiv.org/abs/1906.05271
http://arxiv.org/abs/1906.05271
http://eprint.iacr.org/2005/187

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]

28]

[29]

G. Craig. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09. Bethesda,
MD, USA: Association for Computing Machinery, 2009, 1694178. 1SBN: 9781605585062.
DOI: 10 . 1145 /1536414 . 1536440, URL: https://doi.org/10.1145/1536414 .
1536440.

D. Cynthia and N. Kobbi. “Privacy-Preserving Datamining on Vertically Partitioned
Databases”. In: Advances in Cryptology — CRYPTO 2004. Ed. by Matt Franklin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 528-544. ISBN: 978-3-540-
28628-8.

M. Gharibi. Federated Learning. .2021. [Online]. Available:
https://www.udemy.com/course/federated learning. [Accessed: 03-May-2021].

Open-Source. PyTorch. .2021. [Online]. Available: https://pytorch.org/. [Accessed: 02-
May-2021].

OpenMined. PySyft. .2021. [Online]. Available: https://github.com/OpenMined /PySyft.
[Accessed: 05-May-2021].

D. Testuggine and 1. Mironov. Introducing Opacus: A high-speed library for training
PyTorch models with differential privacy. .2020. [Online]. Available:
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-
models-with-differential-privacy/. [Accessed: 03-June-2021].

T. Semwal, H. Wang, and C. K. T. Reddy. “Selective Federated Transfer Learning

using Representation Similarity”. In: NeurIPS-SpicyFL 2020 Workshop (2020). URL:
https://osf.io/kbhq5/download.

S. Kornblith et al. Similarity of Neural Network Representations Revisited. 2019. arXiv:
1905.00414 [cs.LG].

S. Tang et al. Similarity of Neural Networks with Gradients. 2020. arXiv: |2003.11498
[cs.LG].

L. Yang et al. “A Secure Federated Transfer Learning Framework”. In: IEEF Intelligent
Systems 35.4 (July 2020), 70482. 1SSN: 1941-1294. DOI: [10.1109/mis . 2020.2988525.
URL: http://dx.doi.org/10.1109/MIS.2020.2988525.

Y. Chen et al. FedHealth: A Federated Transfer Learning Framework for Wearable
Healthcare. 2021. arXiv: [1907.09173 [cs.LG]k

D. Li and J. Wang. FedMD: Heterogenous Federated Learning via Model Distillation.
2019. arXiv:[1910.03581 [cs.LG].

E. Jeong et al. Communication-Efficient On-Device Machine Learning: Federated Dis-
tillation and Augmentation under Non-IID Private Data. 2018. arXiv: [1811. 11479
[cs.LG].

C. Antonia et al. “Generative Adversarial Networks: An Overview”. In: IEEE Signal
Processing Magazine 35.1 (Jan. 2018), 53465. 1SSN: 1053-5888. DOI: [10.1109/msp .
2017.2765202. URL: http://dx.doi.org/10.1109/MSP.2017.2765202.

H. Li et al. Knowledge Federation: A Unified and Hierarchical Privacy-Preserving Al
Framework. 2020. arXiv: 2002.01647 [cs.CR].

V. Lev. “Quantum theory and determinism”. In: Quantum Studies: Mathematics and
Foundations 1.1-2 (July 2014), 5a38. 1SSN: 2196-5617. DOI: 10. 1007 /s40509- 014 -
0008-4. URL: http://dx.doi.org/10.1007/s40509-014-0008-4.

18

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://osf.io/kbhq5/download
https://arxiv.org/abs/1905.00414
https://arxiv.org/abs/2003.11498
https://arxiv.org/abs/2003.11498
https://doi.org/10.1109/mis.2020.2988525
http://dx.doi.org/10.1109/MIS.2020.2988525
https://arxiv.org/abs/1907.09173
https://arxiv.org/abs/1910.03581
https://arxiv.org/abs/1811.11479
https://arxiv.org/abs/1811.11479
https://doi.org/10.1109/msp.2017.2765202
https://doi.org/10.1109/msp.2017.2765202
http://dx.doi.org/10.1109/MSP.2017.2765202
https://arxiv.org/abs/2002.01647
https://doi.org/10.1007/s40509-014-0008-4
https://doi.org/10.1007/s40509-014-0008-4
http://dx.doi.org/10.1007/s40509-014-0008-4

[30] P. Henderson et al. Deep Reinforcement Learning that Matters. 2019. arXiv: |1709 .
06560 [cs.LG].

19

https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1709.06560

A Framework algorithms

Algorithm 1 FederatedAveraging. The K clients are
indexed by k: B is the local minibatch size, £ is the number
of local epochs, and 5 is the learning rate.
Server executes:
initialize wy
foreachround t = 1.2.... deo
m « max(C - K,1)
S; + (random set of m clients)
for each client k € S; in parallel do
wk,, + ClientUpdate(k, w,)

. K me k
Wepy 4 3y W

ClientUpdate(k, w): // Run on client k
B ¢ (split Py into batches of size B)
for each local epoch i from 1 to E do

for batch b € B do
w +— w— nVE(w: b)
return w to server

Figure 12: The FedAvg algorithm present in Communication-Efficient Learning of Deep
Networks from Decentralized Data .

Algorithm 1: FedVote running on a client.

Input: Set of source models M, global model w, Rge;
Output: Best m models
for each round R = 1,2, ... do
Choose K clients
for each client k: € K do // in parallel
w 4 LocalUpdate(k.w) // client k trains model on local data
if R == R..; then

for each s € Mg do

2l 212« w(Py),s(Pe) // create representations of layer /i of source
model and ls of client model; local data P, is forward passed

votes%s-CKA(:B,ziz) // calculate similarity score and increment
vote count for top m € M,
end
return votes, w to server
else

end
Server node selects the highest voted m models

end

Figure 13: The FedVote algorithm present in Selective Federated Transfer Learning using
Representation Similarity [20].

20

create 84 and
public-private key pair
iter=0

create 8% and
public-private key pair
public key B
public key A

uf « Net®(85,xF) fori € Dg
compute and encrypt: compute and encrypt:
(L5701 ({rE @)}, Ve

uf « Net?(84,x{") fori € D,

Terminate

(1A @, 3 ey_ N

™

(nk @}y i, Nl

o

create mask m*

create mask m?

By Eq. (7). (9) compute:

By Eq. (8) compute:

aL a
[[L115 and [[555 + m*]ls [[ﬁ +mP],

(l3g5 +m*TNs . [[L1]s

) [lzg5 +m"1la
decrypt and get decrypt and get
:Tlf_i_mﬂ ;:l—LF+mB :TL?+m"andLL
;TL? +mA, L l
update 8 = 8 — ‘q:TI;, update 8F = 6f — nfTLP
stop signal

Lprmr =L

iter = iter + 1 Terminate

Figure 14: The HE-based algorithm scheme present in A Secure Federated Transfer Learning
Framework .

Algorithm 1 The learning procedure of FedHealth

Input: Data from different users {Dy. Ds,--- . Dy} 7

Qutput: Personalized user model f,

- Construct a cloud model fg using Eq. (2)

: Distribute fs to all users via homomorphic encryption

: Train user models using Eq. (3)

: Update all user models to the server using homomorphic
encryption. Then server update its model by aligning
with user model

: Distribute f7 to all users. then perform transfer learn-
ing on each user to get their personalized model f, using

. (6)

: EZpem the above procedures with the continuously

emerging user data

Bl =

Figure 15: The FedHealth algorithm present in FedHealth: A Federated Transfer Learning
Framework for Wearable Healthcare .

21

Algorithm 1: The FedMD framework enabling federated learning for heterogeneous models.
Input: Public dataset Dy, private datasets Dy independently designed model fi. k=1...m.
Output: Trained model f;.

Transfer learning: Each party trains fi to convergence on the public Dy and then on its private Dy.

for j=1.2..P do

Communicate: Each party computes the class scores fi.(z”) on the public dataset. and
transmits the result to a central server.

Aggregate: The server computes an updated consensus, which is an average
f2?) = L X, fulz?).

Distribute: Each party downloads the updated consensus f(x?).

Digest: Each party trains its model f}. to approach the consensus f on the public dataset D.

Revisit: Each party trains its model f. on its own private data for a few epochs.

end

Figure 16: The FedMD algorithm present in FedMD: Heterogenous Federated Learning via
Model Distillation [25].

Algorithm 1 Federated distillation (FD)

Require: Prediction function: F'(w, input), Loss function: ¢(F, label), Ground-truth label: y,ypu:
1: while not converged do
2: procedure LOCAL TRAINING PHASE (at each device)

3 fornstepsdo: B,yp + S

4 for sample b € B do

5 w® e w — gV {(F(w®,b), u) +7 - o(F(w®,b), F{"))}
6: F,Ef;b — FE;& + F(w',b), cntr‘}yb — cntr‘}yb +1

7 for label ¢ =1,2,.-- , L do

8 F‘;:ﬁ — By cntr)é - return F") to server

9 procedure GLOBAL ENSEMBLING PHASE (at the server)

10: for each device i = 1,2,--- , M do

11: for label ¢ =1,2,.-- , L do

12: F‘k_f {—F‘k‘g +F}E“§
13: for each device i = 1,2,--- , M do
14: for label ¢ =1,2,.-- , L do
15: F}EL,& — Frp— F‘,Efg, F,Efel_f — F,Efl_ff(}l-f — 1) : return F}Ezl,z to device 1

end while : :

Figure 17: The Federated Distillation algorithm present in Federated Distillation and Aug-
mentation under Non-IID Private Data .

22

	Introduction
	Methodology and Background Knowledge
	Federated Learning
	Data-Dependent Types of Learning
	Security and Privacy

	Implementation
	Architecture

	Results and Framework Comparisons
	Transfer enhancement using the studied framework techniques
	Communication-Efficient Learning of Deep Networks from Decentralized Data communicationEfficient
	Selective Federated Transfer Learning using Representation Similarity selective
	Secure Federated Transfer Learning secure
	FedHealth fedHealth
	FedMD: Heterogenous Federated Learning via Model Distillation fedMD
	Federated Distillation and Augmentation under Non-IID Private Data fedDistil
	Knowledge Federation: A Unified and Hierarchical Privacy-Preserving AI Framework knowledgeFed

	Framework comparison

	Responsible Research
	Research integrity
	Research reproducibility

	Discussion
	Conclusion
	Framework algorithms

