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A B S T R A C T

Reconstructing urban scenarios for computational fluid dynamics simulations typically requires significant
manual effort, especially when higher geometrical details are required. To address this issue, we present a
workflow to automatically reconstruct buildings in three levels of detail (LoDs): LoD1.2, LoD1.3, and LoD2.2,
tailored to urban microscale simulations. The workflow uses a combination of building footprints and a point
cloud to segment roof planes, create partitions, optimise planes, and finally assemble roof planes into 3D
building models. Reconstructed buildings are seamlessly integrated into the terrain together with different
surface layers such as water, low vegetation, and paved surfaces. Apart from three general LoDs, building
footprints can be simplified as a part of the 2D generalisation; additionally, smaller surfaces such as chimneys
and ventilation shafts can be removed using a graph-cut optimisation. The integrated geometry validator can
report on validity of building models, such as watertightness, manifoldness, or occurrences of self-intersections.
In the case of invalid geometries, we can generate an approximation: geometry repair the with alpha wrapping
algorithm, or reconstruction in lower LoD. We tested our implementation on two different real-world datasets
— one in The Netherlands, and another one in the USA. The results showed that 95% (Dutch dataset) and 90%
(US dataset) buildings were valid according to the ISO 19107 standard. Generated grids showed satisfactory
quality as we observed monotonous convergence in simulations with grid convergence indices up to 3.8% for
pressure and velocity variables. These results indicate that the workflow is suitable for typical urban microscale
simulations.
1. Introduction

Compared to other stages of a simulation, the preprocessing step in
a computational fluid dynamics (CFD) workflow typically requires the
most human effort [1]. A substantial part of that effort involves prepar-
ing geometries for the computational grid generation software [2].

Geometries used in urban microscale (or urban flow) simulations are
especially tedious to prepare because they are heterogeneous, complex,
and large in scale. Publications such as Toja-Silva et al. [3] and Hågbo
et al. [4] used detailed city models and the authors reported the long
time required to prepare those models for simulation. Additionally,
the input data often come from different sources, requiring format
conversions and adaptations that not only take time but can also
corrupt data and introduce errors.

Geometries used in urban microscale simulations have to meet
certain criteria in order to result in high-quality computational grids.
We can divide the criteria into two main categories:
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(H. Ledoux).

1. Validity — input geometries should not contain errors such
as gaps/missing faces, self-intersections, non-manifold edges,
degenerate faces with no finite area, duplicate vertices and
faces [5,6]. Those criteria can be summarised as the rules for
valid 3D geometries in the geoinformation (GIS) community
called ISO 19107 [7].

2. Resolution — can be expressed through the level of detail (LoD)
[8]. In the broadest sense, geometries should have as many de-
tails as the capabilities of the grid generator and computational
resources allow.

The influence of the criteria depends on the simulation method and
capabilities of different mesh generation software. For example, some
misrepresentations such as small gaps have a limited negative impact
on mesh generation [9], but self-intersections and non-manifold edges
might create bigger issues or even make grid generation impossible,
as indicated by Zheng et al. [10] and Lefieux et al. [11]. To cover
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Fig. 1. LoD classification used in this article.
Source: Adapted from Biljecki et al. [16]

as many numerical methods and grid generators as possible, datasets
should contain high-quality, error-free geometries.

At the same time, a typical 3D city model contains many errors,
as was reported by Biljecki et al. [12]. The reason is that 3D models
are created mostly with visualisation in mind [13], whose require-
ments are less stringent when it comes to validity compared to urban
microscale simulations. Even with the use of automatic geometry re-
pair tools, Saeedrashed and Benim [6] showed that manual labour is
still necessary. This implies that most existing 3D city datasets are
not suitable for numerical simulations and that their preparation is
time-consuming; we believe that the fastest approach would be to
reconstruct city geometries with purpose-built algorithms.

As we outline in Section 2, purpose-built automatic reconstruction
algorithms for urban microscale simulations are scarce. Those that exist
and are replicable, to the best of our knowledge, do not reconstruct
buildings higher than the simple polygon extrusion, that is, the level of
detail (LoD) 1.2 (see Section 2.1 for the concept of LoD). Conversely,
authors like Ricci et al. [14] and Hågbo et al. [4] showed that LoD1.2
might not be accurate enough for certain urban microscale simulations.
Clearly, there is a need for reconstruction in higher LoDs, which was
also noted by Mirzaei [15] in their recent review article.

To address this issue, we adapted and expanded upon the high-
detailed, multi-LoD reconstruction algorithm by Peters et al. [17],
introducing a larger workflow for automatic reconstruction of 3D city
models for urban microscale simulations. The original algorithm uses
the combination of building footprints and airborne lidar data to re-
construct building geometries in LoD1.3 and LoD2.2. Additionally,
it enables finer control over the final model complexity using the
following methods: first, building footprints, and thus outline, can
be simplified, and second, a graph-cut optimisation, introduced in
Section 3.1.2 can be used to reduce the number of planes.

Our workflow (detailed in Section 3.2) expands on the initial work
by reconstructing the rest of the urban scenario required for numerical
simulations while ensuring the geometric validity of the output. This
includes the reconstruction of terrain from a point cloud with surface
smoothing and remeshing, seamless integration of terrain and build-
ings, imprinting surface layers into terrain, and enclosing the domain
with boundaries. Additionally, the workflow can automatically define
which buildings are being reconstructed (i.e. the influence region) using
the best practice guidelines (BPGs). Furthermore, we integrated the
geometry validator of Ledoux [18] and we provide fallbacks in the
form of geometry repair with alpha wrapping [19] and reconstruction
in lower LoD if the geometric validity is crucial (see Section 3.1.5).

By combining the features above, the output of our workflow is
a geometry of an urban scenario containing triangulated buildings
which are intended to be valid, i.e., watertight, two-manifold, and
without duplicated faces/vertices. The output can be directly used in
investigations such as pedestrian wind comfort [20], urban heat island
effects [21], pollutant dispersion [22], and urban air mobility [23], or
2 
as a surrounding urban scenario that supports investigation of a very
detailed and manually reconstructed building model [24].

In Section 4 we report on tests we performed with LoD2.2 recon-
struction of two different datasets — one including the campus of
the Delft University of Technology in the Netherlands, and another
one covering the campus of Stanford University, CA, USA. The results
show 95% and 90% of valid buildings respectively according to the
ISO 19107 standard. Generated grids resulted in monotonous conver-
gence in simulations, with maximum relative errors of 3% and grid
convergence indices (GCIs) of 3.8% for pressure and velocity variables.
The tested reconstructions and subsequent simulations suggest that our
workflow is suitable for urban microscale simulations.

2. Related work

2.1. The effect of the level of detail

There is no agreement on the LoD classification of geometries used
in urban flows. Therefore, before mentioning publications that investi-
gated the effect of LoD, we need to define the LoD classifications. We
propose and will use throughout this paper the classification by Biljecki
et al. [16] as it is well established in the 3D city modelling field. Fig. 1
shows a few LoDs relatable to urban microscale simulations.

Few authors have made initial steps in investigating the effect of
different LoDs. For example, Ricci et al. [14] conducted experimental
and numerical comparisons of three LoDs (visually, we identified them
as LoD1.1, LoD1.3 and LoD2.1); the authors indicated that LoD1.1
showed large differences in mean velocity in the influence region at
pedestrian height compared to LoD1.3 and LoD2.1, while LoD1.3 and
LoD2.1 produce similar results. García-Sánchez et al. [25] observed
pronounced differences in velocities at a pedestrian height between
different LoDs. Findings by Hågbo et al. [4] were similar — LoD1.2
and LoD2.1 models they compared showed notable differences in the
results of pedestrian wind comfort.

These first investigations suggested that LoDs of LoD1.3 and higher
might be necessary for urban flow simulations. Further research is
necessary to give a definitive answer on the acceptable LoD, but to
achieve this answer, building reconstruction in multiple LoDs is greatly
beneficial.

2.2. Automatic building reconstruction for urban microscale applications

We concluded in the previous section that multi-LoD building recon-
struction and buildings of LoD1.3 and higher might be necessary for
urban microscale simulations. Conversely, most published workflows
dealing with geometry creation for urban flow simulations do not
reconstruct buildings in more detail than LoD1.2.

For example, the workflow by Gargallo-Peiró et al. [26] uses typical
inputs from GIS – 2D footprints or topographical maps and point clouds
acquired by airborne lidar or photogrammetry — to reconstruct terrain
and buildings in LoD1.2, later used with TetGen [27] to create the
simulation grid.

Camelli et al. [28] used the combination of a gridded elevation
model and building footprints containing height data (stored as an
attribute) to create LoD1.2 building geometries of Oklahoma City.
Sun et al. [29] combined lidar data with deep learning to reconstruct
LoD1.2 buildings, terrain and vegetation which were then meshed and
simulated using Phoenics CFD software. Naserentin and Logg [30]
integrated tetrahedral mesh generation in their 3D city reconstruction
workflow, which also reconstructs buildings in LoD1.2 Even our recent
publication [31] uses LoD1.2 for building reconstruction. The reason
is that automated LoD1.2 reconstruction is very simple in complex-
ity compared to higher LoDs. The only relevant parameters are the
building base and rooftop elevations.

Recently, Alemayehu and Bitsuamlak [32] published an article fo-
cusing on high-fidelity reconstruction for urban flows using deep learn-
ing with satellite imagery and lidar data as input. It is, to the best of
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Table 1
Reproducible automatic LoD2 building reconstruction algorithms.

Publication Input

Zhou and Neumann [33] PC
Gui and Qin [34] SI
Peters et al. [17] FP, PC
Huang et al. [35] FP, PC

FP - footprints, PC - point cloud, SI - satellite imagery.

our knowledge, the first publication dealing with LoD2 reconstruction
tailored to urban microscale simulations. The authors classify their
resulting buildings as LoD3, but through visual inspection, we would
categorise them as LoD2.2 due to slanted roofs and 2.5D geometry
with vertical walls (see Section 3.1 for the description of the term).
Reconstructed parts of London, Ontario, Canada, were used to simulate
pedestrian wind comfort using the StarCCM software.

2.3. High-detailed building reconstruction

While workflows tailored to urban microscale simulations are
mainly developed for LoD1.2 building reconstruction, the develop-
ments in the 3D city modelling field are showing an emergence of LoD2
reconstruction algorithms that aim to automatically generate high-
quality, robust, valid, and large-scale building geometries. While there
are many publications dealing with building surface reconstruction, we
will focus on a few of them that are, first, in our opinion applicable
to urban flow studies, and second, reproducible in terms of published
code. The algorithms are summarised in Table 1.

The publication by Zhou and Neumann [33], based on the 2.5D
dual contouring method presented in [36], enables LoD2.2 building
reconstruction from airborne lidar. Buildings are guaranteed to be
watertight and the authors report a 0.6% to 1.1% building error rate
on datasets with up to 418 buildings.

Gui and Qin [34] developed a workflow that reconstructs LoD2.1
models combining a satellite-derived digital surface model (DSM) and
an orthophoto. It is a GPU-based implementation which is, according
to authors [37], able to process 2.5 × 2.5 km domains at a time.

Huang et al. [35] developed a large-scale LoD2.2 reconstruction
algorithm based on the work of Nan and Wonka [38]. The algorithm
conducts optimisation to ensure a correct topology and enhance the
recovery of details. While the authors report that their algorithm en-
sures watertight and manifold building models, the method can be very
computationally demanding for complex buildings. The authors used
the algorithm to reconstruct 20 thousand real-world buildings.

The algorithm presented in [17] enables building reconstruction
in LoD1.2, LoD1.3, and LoD2.2. The authors demonstrated the effi-
ciency of the algorithm by reconstructing 10 million buildings in the
Netherlands as a part of the 3DBAG dataset [39]. In addition, the
algorithm aims to reconstruct buildings valid according to the ISO
19107 standard, and the quality assessment of the 3DBAG in [40] re-
ported 90% geometric validity of LoD2.2 models, which was increased
to 99% validity in subsequent versions of the 3DBAG dataset, using
val3dity [18] and a root mean squared distance of 10 cm from the input
point cloud to models. We found this combination of computational ef-
ficiency and geometric validity, among other features (detailed further
in Section 3.1), a compelling case for its application in urban microscale
simulations; therefore, we proceeded with this algorithm as a base for
our implementation.

3. Methods

3.1. Automatic LoD1.3 and LoD2.2 reconstruction algorithm

The automatic reconstruction algorithm by Peters et al. [17], which
we use as a base for our implementation, combines building footprints
3 
Fig. 2. Schematic representation of a 2.5D building model with vertical walls (coloured
in red).

and a point cloud for input. While the method is primarily data-driven
(based solely on the input data) it also encompasses some model-
driven properties (based on strong assumptions about the shape of the
building) [41]. The assumptions used in the model-driven approaches
typically aim to overcome defects in the input point cloud and lower
the model complexity. We use the following assumptions:

• Building shapes are approximated with planar faces extracted
from a point cloud — in other words, they are piecewise planar,

• Building models are 2.5D with vertical walls, as shown in Fig. 2;
as a result, building roofs can be reconstructed with 2D planar
partitions of roof planes. This simplifies the problem and results
in a fast algorithm; however, this also means that features like
roof overhangs and balconies cannot be modelled. The 2.5D
assumption is in line with the state-of-the-art automatic 3D re-
construction algorithms where the emphasis is placed on the
reconstruction of building roofs, as the building sides suffer from
missing data, typically due to the occlusion effect in the case of
airborne lidar [35].

Apart from these assumptions, additional requirements are set on
the input data to ensure high-quality reconstruction for urban mi-
croscale simulations:

• Point clouds and footprints are properly aligned. Not only must
the input data be in the same coordinate reference system (CRS),
but also the positional error (horizontal shift) between them must
be minimised. Otherwise, the reconstruction could result in a bad
data fit.

• Point clouds should have buildings and terrain classified. While
our workflow contains the optional cloth simulation filter (CSF)
by Zhang et al. [42] to separate ground and non-ground points,
the non-ground points still contain vegetation and other off-
ground artefacts that might interfere with the reconstruction.

The main goal of the algorithm is to extract a so-called roof par-
tition — a planar partition of the building footprint where each face
corresponds to a roof plane projected to the ground (see Fig. 3).

The following sections give comprehensive information about the
reconstruction algorithm, complementing the original publication [17]
with additional details.

3.1.1. Feature extraction and regularisation
The first part includes plane detection, line extraction, and line

regularisation from the input point cloud. Initially, building planes
are detected using a region-growing algorithm that segments the point
cloud into groups of points that fit well with a locally estimated plane.
Afterwards, boundary and intersection lines are derived from detected
planes (Fig. 4(a)); the boundary lines represent the outer boundary of a
detected plane’s 𝛼-shape [43], whereas the intersection lines are located
at intersections of adjoining planes.

Next, the boundary and intersection lines are clustered depending
on their orientation (Fig. 4(b)) and distance (Fig. 4(c)). One average
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Fig. 3. An example of roof planes (containing blue vertices) projected onto the building
footprint to form the roof partition (containing red vertices). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Four steps of line regularisation through clustering.

line per cluster is derived, resulting in regularised lines as shown in
Fig. 4(d).

At the same time, building footprints are also processed in this part
of the algorithm. We utilise the Ramer–Douglas–Peucker algorithm [44,
45] to reduce the complexity of footprints, which we refer to as the
‘‘2D simplification’’. Additionally, during this part, the ground elevation
is also approximated using a buffer of ground points surrounding the
footprint.

3.1.2. Roof partitions and optimisation
In the second part, the initial roof partition is constructed from reg-

ularised lines and stored in a doubly connected edge list (DCEL) [46].
All line intersections are defined as vertices during the construction of
DCEL, and there are no dangling edges.

Resulting partitions are typically overly complex — consequently,
the reconstruction would result in too many small faces. To lower the
number of resulting planes while keeping the model accuracy high,
the algorithm performs a graph-cut optimisation based on the method
of Zebedin et al. [47]. It is an energy minimisation equation defined
as

𝐸(𝑓 ) = 𝜆
∑

𝑝∈𝑃
𝐷𝑝

(

𝑓𝑝
)

+ (1 − 𝜆)
∑

{𝑝,𝑞}∈𝑁
𝑆𝑝,𝑞

(

𝑓𝑝, 𝑓𝑞
)

,
(1)

where 𝐷𝑝
(

𝑓𝑝
)

is called the data term which measures data fidelity
obtained by assigning the label 𝑓𝑝 to a roof partition 𝑝. The set of
possible labels is formed by the set of planes that were earlier detected
in the point cloud. The optimisation simplifies the roof partitions in
4 
such a way that adjacent roof partitions are merged by assigning the
same label while simultaneously maintaining good data fidelity. The
data fidelity is expressed as the sum of the height differences between
the points in a point cloud bounded by candidate roof partitions, and
the estimated elevation on a roof partition:

𝐷𝑝
(

𝑓𝑝
)

=
∑

𝑥∈𝑝

[

ℎPC
(

𝑥𝑖
)

− ℎCRP
(

𝑥𝑖
)]

, (2)

with ℎPC
(

𝑥𝑖
)

denoting a point cloud elevation at a location 𝑥𝑖, and
ℎCRP

(

𝑥𝑖
)

representing interpolated elevation at the location 𝑥𝑖 when
label 𝑓𝑝 would be assigned.

The second term in Eq. (1) is the smoothness term where

𝑆𝑝,𝑞
(

𝑓𝑝, 𝑓𝑞
)

=
{

𝑙b
(

𝑓𝑝, 𝑓𝑞
)

if 𝑓𝑝 ≠ 𝑓𝑞
0 if 𝑓𝑝 = 𝑓𝑞

. (3)

In the equation above, 𝑙b
(

𝑓𝑝, 𝑓𝑞
)

is the border length between labelled
partitions 𝑓𝑝 and 𝑓𝑞 . The smoothness term favours homogenised regions
by penalising adjacent roof partitions with different labels.

In this paper, we introduce the parameter 𝜆 to the original for-
mulation and call it the complexity factor. The lower the complexity
factor, the more the optimisation favours fewer borders with lower data
fidelity as a consequence. Simply put, by lowering 𝜆, one can remove
smaller details from the planar partition, and ultimately, de-feature the
model. The opposite effect happens by increasing the factor.

Since it is normalised, 𝜆 with values approaching 1 results in a case
that closely resembles the original point cloud, with the extreme case
including all planes detected by the region-growing algorithm.

On the other hand, 𝜆 with the value of 0 will label all polygons as
one group. With the cancelled out data term, the energy minimisation
problem min

(

𝑆𝑝,𝑞
(

𝑓𝑝, 𝑓𝑞
))

equals 0 in a case where the total length
of borders is 0 m, meaning there are no borders between groups. As a
consequence, the outcome of this extreme is a model resembling LoD1.2
reconstruction. We say resembling because it can either be true LoD1.2,
or LoD2.0 with one slanted surface. This is because footprint vertices
can still be lifted to different elevations (while keeping the surface
planar) if it better describes the input point cloud.

The graph-cut optimisation with the weighted complexity factor
is very useful for computational wind engineering applications, as it
introduces control over building complexity and it is simple to use
for the end users. This functionality forms the second part of our
simplification, which we named ‘‘3D simplification’’. The results of a
changing complexity factor are shown in Fig. 5.

The output of the optimisation, min (𝐸(𝑓 )), contains roof partitions
clustered in labelled groups. Edges between roof partitions within the
same groups are removed to form the final planar partitioning of the
footprint, now called roof parts.

3.1.3. Downwards extrusion
The final part of the reconstruction algorithm is creating a building

geometry by extruding the roof parts downwards to terrain eleva-
tion. The created building faces can be separated into three categories
depending on their reconstruction procedure:

1. The ground face edges are incident to the building footprint. Ver-
tex elevations are obtained by conducting a natural neighbour
interpolation [48,49] directly from the terrain (see Section 3.2
for terrain reconstruction).

2. Wall faces are vertical faces that connect the ground face with
roof faces, as well as borders of incident roof parts. The faces
are created in such a way to result in topologically correct
geometries. This includes solving vertices of incident planes that
have different heights.

3. Roof faces are reconstructed from the planes that were assigned
to the roof parts during optimisation.

The order of vertices in all planes is set to counter-clockwise when
viewed from the outside so that the normals are pointing outwards, as
mandated by the ISO9107 [7].
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Fig. 5. LoD2.2 reconstruction with different complexity factors 𝜆.
3.1.4. Differences between LoD1.3 and LoD2.2
To achieve the LoD1.3 reconstruction, vertices of individual roof

parts are set to a predefined percentile calculated from elevations
of all original points bound by the roof part, resulting in horizon-
tal roof planes. This stage comes after the optimisation described in
Section 3.1.2.

Additional functionality is added that enforces a minimum jump
in heights between planes (i.e. the step size), with checks starting
from the plane with the highest elevation. If, for instance, the targeted
mesh resolution is 2 m, any two roof parts whose elevation difference is
smaller than this threshold will be merged to the predefined percentile
of all elevations belonging to those parts. Fig. 6 shows an example of
LoD1.3 reconstruction with different step sizes. The extreme instance of
this functionality is when the step size is sufficiently large (matching
or larger than the building height); then, the resulting building will be
reconstructed in LoD1.2, as seen in Fig. 6(e).

LoD2.2 reconstruction skips these two steps.
5 
3.1.5. Geometric validity
Even though the algorithm targets valid reconstruction, problems

can still arise due to different reasons, e.g. issues in plane detec-
tion, overlapping planes, regularisation gone wrong, numerical issues,
etc. This is why our workflow can conduct validity inspection with the
workflow of Ledoux [18], implemented in the library val3dity.

Whether the error is acceptable or not depends on the numeri-
cal method and capabilities of the grid generation software. This is
why we added optional fallbacks in case the validity is of paramount
importance for a numerical simulation.

The first fallback is the alpha wrapping algorithm by Portaneri et al.
[19] which refines and carves a 3D Delaunay triangulation with empty
balls of radius alpha on an offset surface of the input. It is a surface
approximation approach where the approximation (and thus fidelity)
can be tuned with user-defined parameters. The algorithm is robust and
efficient, guaranteed to terminate and to produce valid geometries.
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Fig. 6. Distinction between LoD2.2 and LoD1.3 reconstruction with different step sizes.

The drawback of the algorithm is that it is an approximation of
the original geometry and as such, it has a disadvantage in capturing
sharp edges. Tighter tolerances (e.g. smaller carving ball) make an
approximation better, however, capturing convex edges is a limita-
tion. Such results can create issues in some aspects of computational
mesh generation, e.g. when enforcing feature edges. An example of a
resulting geometry from an alpha wrap is shown in Fig. 7.

The second fallback is a reconstruction of invalid geometries to
the lower LoD1.2 since the implementation of LoD1.2 reconstruction
ensures valid buildings. The two fallbacks are mutually exclusive.

3.2. Workflow for urban microscale simulations

We expanded the LoD1.3 and LoD2.2 reconstruction algorithm
of Peters et al. [17] with the normalised complexity factor 𝜆 and
geometric validity fallbacks into an automatic urban scenario recon-
struction workflow specifically targeting urban microscale simulations.
The workflow can be split into the following features: (1) buildings, (2)
terrain, (3) surface layers, (4) influence regions, (5) domain boundaries.

First, as a part of the workflow, building geometries can also be
reconstructed in LoD1.2 by gathering all building points encompassed
by a footprint and calculating an arbitrary percentile to define build-
ing elevation. Additionally, LoD1.2 reconstruction is also available
using polygon attributes, either through a building height attribute
or an attribute containing the number of floors paired with a floor
height. Building geometries can also be isotropically remeshed to target
equilateral triangles with uniform edge lengths.

Second, we create the terrain geometry from ground points as a
triangulated irregular network (TIN) using the constrained Delaunay
6 
Fig. 7. Edge details of a building model before (left) and after (right) alpha wrapping.

triangulation (CDT). Smooth terrain surface is obtained in three steps:
first, we apply the weighted locally optimal projection WLOP opera-
tor [50] on the input points; second, we construct an initial surface
with the triangulation; third, we conduct the shape smoothing from Lo-
riot et al. [51]. Building footprints are imprinted into the terrain as
constraints, leading to good alignment of building and terrain surfaces.

Third, surface layers are polygons encompassing different types of
surfaces such as water, low vegetation, roads, etc. We imprint those
2D polygons into the triangulated 3D terrain as constraints using the
natural neighbour interpolation for elevation calculation. The algo-
rithm removes duplicated edges during the insert (in case of adjacent
polygons), and in the case of overlaps, it inserts additional vertices at
intersections of edges. We then tag surface layers by traversing through
constrained regions and exporting them as triangulated geometries,
perfectly cutting them out from the terrain. As such, they can be used
to impose roughness values associated with the type of the surface,
typically by using the classification from Wieringa [52], as done in [53–
56].

Fourth, the workflow includes an automatic definition of the influ-
ence region according to best practice guidelines (BPGs) by Liu et al.
[57]. Furthermore, multiple LoDs can be combined in the influence re-
gion — one can, for example, reconstruct the very centre of the domain
in LoD2.2, then define the second perimeter for LoD1.2 reconstruction,
and then extract the third LoD1.2 region where the buildings can be
parameterised (i.e. used as virtual buildings with drag terms).

Fifth, we can automatically define the domain scope using the BPGs
from Tominaga et al. [58] and Franke et al. [59]. The rectangular and
circular domains are available as the two representative domain types
in urban microscale simulations [60]. A typical rectangular domain
extends 5 times the tallest building height 𝐻max from the influence
region in the upwind, lateral, and vertical direction, as well as 15𝐻max
in the downwind direction [61]. Similarly, the circular domain extends
15𝐻max radially from the influence region and 5𝐻max from the highest
building in the vertical direction, as indicated by Hågbo and Giljarhus
[62]. Finally, a domain can be closed off from sides and top, depending
on the requirements of grid generating software.
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3.3. Implementation

We used our open-source automatic geometry reconstruction frame-
work City4CFD [31] as a basis for the implementation of this workflow.

he workflow is implemented in C++ using the Computational Geome-
try Algorithms Library (CGAL) [63] for low-level functionalities such as
triangulations [64], spatial searching [65], polygon operations [66,67],
and polygon mesh processing [51]. The reconstruction of buildings
is performed concurrently, utilising OpenMP [68] library for parallel
execution.

4. Test cases

We evaluated the implementation of our workflow in three steps:

1. Reconstruction of urban scenarios: in this step, we assessed the
quality of the outputted building geometries, focusing on their
adherence to the ISO 19107 standard for the validity of 3D
primitives.

2. Computational grid generation for urban flow simulations: we
used the reconstructed geometries without any manual modifi-
cations as input for an automatic computational grid generator.
Through this process, we generated computational grids and
reported on the grid quality indicators.

3. Running numerical simulations: finally, we conducted numerical
simulations to calculate grid convergence indices (GCI) and to
evaluate differences between reconstructions with low and high
point cloud densities.

Two different locations were analysed:

1. The location of the Delft University of Technology’s campus in
Delft, The Netherlands (Fig. 8(a)). The three datasets used for
reconstruction were the Dutch national lidar dataset AHN [69],
the building footprint dataset BAG [70], and the polygon dataset
BGT [71], the latter used to extract water and low vegetation
surfaces. All datasets are open and freely available. The initial
point cloud density was 17.4 pts/m2 which we then thinned to
6.11 pts/m2 to test whether the algorithm is suitable for low-
density airborne lidar-based point clouds (based on classification
by Stanley and Laefer [72]). We will refer to it as the ‘‘TU Delft
case’’.

2. The location of the Science and Engineering Quad at Stanford
University in Stanford, CA, USA (Fig. 8(b)). The two datasets
used for reconstruction were open data footprints from Open-
StreetMap [73] and the Santa Clara county point cloud from U.S.
Geological Survey [74], also open and freely available. The input
point cloud density in this case is 23.76 pts/m2, classifying it as
a high-density point cloud by Stanley and Laefer [72]. We will
denote it as the ‘‘Stanford case’’.

We deliberately chose different point cloud resolutions to investi-
ate the impacts of a low-density point cloud reconstruction. The im-
acts were investigated by comparing the results of numerical simula-
ions using geometries reconstructed from high-density and low-density
oint clouds.

Even though our workflow can reconstruct multiple levels of detail,
e focused on LoD2.2 as it represents the most complex scenario both

or the reconstruction itself and the subsequent grid generation.

.1. Geometry reconstruction

The two reconstructed areas are 3 km2 (TU Delft) and 1.6 km2 (Stan-
ord), both representing a neighbourhood-scale case [75]. The TU Delft
ase was reconstructed as a rectangular domain, portraying a typical
rban flow simulation with an inlet, outlet, and side domains [61]. The
otal number of buildings was 76 and 8213 other polygons represented

ater and low vegetation.

7 
Table 2
Data related to geometry reconstruction.

TU Delft Stanford

Area 3 km2 1.6 km2

Point density 6.11 pts/m2 23.76 pts/m2

No. buildings 76 167
No. other polygons 8213 5583
No. invalid 4 18
No. failed recon. 6 0
Recon. time 136 s 385 s

The Stanford case was reconstructed as a round domain for a
cylindrical grid, a validated configuration [60] that allows for easier
setup of multiple wind directions, as demonstrated in [20,76,77]. The
total number of buildings was 167, along with 5583 additional low
vegetation polygons. Reconstructed geometries are shown in Fig. 8.

Table 2 shows the reconstruction details for the both cases. We can
see that there are six failed reconstructions in the TU Delft case and zero
failed reconstructions in the Stanford case. All failed reconstructions are
due to insufficient points in the point cloud for LoD2.2 reconstruction.
The algorithm recovered one building with LoD1.2 reconstruction as
there were enough points for height estimation. Our workflow would be
able to mitigate the issue with LoD1.2 reconstruction of other buildings
if either of the footprint databases contained attributes for building
height or number of floors.

The geometric validity report showed 5% and 10% of invalid build-
ings for the TU Delft and Stanford cases, respectively. In detail, the
invalid buildings contained self-intersections and non-manifold edges.
With a subsequent geometry repair with alpha wrapping (done au-
tomatically through City4CFD), the investigated scenarios resulted in
100% valid buildings.

The reconstruction time took in total 136 s for the TU Delft case
and 385 s for the Stanford case, using the AMD Threadripper 3970X
processor.

4.2. Computational grids

We conducted our numerical investigations in OpenFOAM [78]
version 7. We used blockMesh and snappyHexMesh utilities to create our
numerical grids. Building geometries were used as they were automat-
ically reconstructed, without manual modifications. To facilitate a grid
convergence study, we constructed three distinct meshes for both cases.

The background mesh was refined through an octree-based re-
finement strategy, ensuring a 2:1 ratio in cell edge length between
consecutive refinement levels. The increase in mesh density was tar-
geted to adhere to BPG’s [58,59,61] in areas of interest, including a
minimum of ten grid cells across building heights and sides, and within
passages between buildings.

The two finer meshes were obtained by isotropically refining the
background mesh of the coarsest case by a factor of 2, resulting in
mesh resolutions in the vicinity of buildings from 0.33 m to 0.19 m for
the TU Delft case and 0.36 m to 0.2 m for the Stanford case. In total,
the grid generation produced grids from 9.2 million to 35 million cells
for the TU Delft case and 14 million to 55.3 million for the Stanford
case. Nominal meshes are shown in Fig. 9 and the basic information on
computational grids is presented in Table 3.

4.3. Numerical simulations

Simulations were conducted as steady-state with the Reynolds-
Averaged Navier Stokes (RANS) approach and the standard 𝑘 − 𝜖 tur-
bulence model. The atmospheric boundary layer (ABL) was modelled
as neutral, with the formulation:

𝑈 =
𝑢∗ ln

(

𝑧 + 𝑧0
)

, (4)

𝜅 𝑧0
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Fig. 8. Reconstructed urban scenarios of (a) TU Delft and (b) Stanford campuses. Low vegetation surfaces are coloured green, whereas water surfaces are coloured blue.
Table 3
Computational grids and first cell heights in the influence region.

Grid size ℎ0 [m]

TU Delft Coarse 9 224 141 0.33
Nominal 17 670 626 0.26
Fine 35 337 584 0.19

Stanford Coarse 13 989 641 0.36
Nominal 27 347 383 0.28
Fine 55 313 175 0.20

where 𝑢∗ represents the friction velocity, 𝜅 is the von Karman constant
with the value 0.41, 𝑧 is the height above ground level (AGL) and 𝑧0 is
the aerodynamic roughness length.

Both simulated cases are located in urban areas; therefore, the inlet
aerodynamic roughness length was chosen as 0.2 m, corresponding to
the value of ‘‘very rough’’ area by the specification of Wieringa [52].

For the TU Delft case, the inlet was modelled with the 45◦ north di-
rection and 4.9 m/s inlet velocity at 10 m. These conditions correspond
to averaged meteorological data for the period of January to October
of 2019 at the Rotterdam Station [79]. Boundary conditions included
symmetry for the side and top domains, and a prescribed pressure/zero
velocity gradient at the outlet.

The Stanford case utilised inletOutlet type boundary condition, as-
signing the ABL inlet for inflow and zero gradient for outflow depend-
ing on the velocity gradient. The inflow parameters were calculated
using the weather station data located around 800 m east of the centre
of Stanford’s Science and Engineering Quad [80]. The inlet was mod-
elled as a northwest wind with 3.06 m/s velocity at 10 m height. The
time chosen to calculate the inlet velocity was between 3 am and 4
am on the 12th of October 2017, as it was reported in [80] that the
minimum variability had been observed in measurements, indicating
conditions close to neutral.
8 
Fig. 9. Computational grids of nominal meshes for (a) TU Delft and (b) Stanford cases.
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Fig. 10. Velocity magnitude and TKE fields at 2 m AGL for the (a) TU Delft and (b) Stanford cases.
We used the rough wall function based on 𝑧0 by Parente et al.
[81] to model the near-wall behaviour in the rough terrain. The water
surfaces’ aerodynamic roughness length was set to 0.0002 m, whereas
for the low vegetation surfaces it was set to 0.03 m. The rest of the
terrain, not covered by any other surface layers, was modelled with an
aerodynamic roughness length with the value of 0.2 m.

We used the central differencing scheme for pressure discretisation,
the linear upwind-biased scheme for the momentum variables, and the
limited linear scheme for turbulence quantities.

4.3.1. Grid convergence analysis
All the simulations yielded stable and consistent outcomes. Fig. 10

illustrates the velocity magnitude and turbulence kinetic energy (TKE)
fields at the 2 m AGL for both the TU Delft and Stanford cases. In the
9 
TU Delft scenario, we can see the notable hot spot located next to
the high-rise building in the campus [25,31]. On the other hand, the
Stanford case exhibits patterns that qualitatively match the obser-
vations reported in [80], reinforcing the validity of our simulation
results.

We conducted the grid convergence study to verify the results using
the method outlined in [82]. The solved variables of velocity, pressure,
and turbulence quantities were measured at 32 random locations within
the area of interest. Median grid convergence values were computed
for all measured quantities, with the results presented in Table 4. From
the grid convergence values, 𝑒21𝑎 denotes the approximate relative error
between the fine and the medium mesh, 𝑒21ext is the extrapolated relative
error, and GCI21ext stands for the fine grid convergence index. The GCI
values, with a maximum of 3.8% for velocity and pressure fields and up
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Table 4
Approximate relative error, extrapolated relative error, and GCI values between medium
and fine meshes across simulation results.

TU Delft Stanford

𝑒21𝑎 𝑒21ext GCI21ext 𝑒21𝑎 𝑒21ext GCI21ext
𝑈mag 1.4% 2.1% 2.5% 2.3% 2.3% 2.9%
𝑝 0.48% 0.21% 0.26% 3.7% 3.0% 3.8%
𝑘 0.84% 0.39% 0.49% 5.4% 5.9% 7.8%
𝜖 2.3% 2.1% 2.6% 4.5% 4.1% 5.1%

o 7.8% for turbulence quantities, confirm the simulations’ reliability.
otably, the consistency in convergence towards asymptotic values,
ith relative errors below 6% across all variables, underscores the
rids’ suitability for conducted simulations. This finding reinforces the
pplicability of our automatic building reconstruction algorithm for
rban flow simulations.

.3.2. Comparison between low and high density point clouds
We have conducted an additional set of simulations to investigate

he differences between using lower-density point clouds and using
igher-density point clouds as input. To achieve that, we reconstructed
he same scenarios as in Section 4.1, but with the original point
loud density for the TU Delft case (17.4 pts/m2) and we thinned the
riginal point cloud of Stanford (23 pts/m2) to the same low-resolution
6.11 pts/m2) as that of the TUDelft case.

We observed that some buildings reconstructed from lower-density
oint clouds lost finer details, whereas other buildings exhibited sharp
irectional changes in rooflines (a ‘zigzag’ pattern). Furthermore, one
f the failed geometries in the TU Delft case could be reconstructed
n LoD2.2 (denoted as ‘B44’). See Fig. 11 for a few examples showing
eometry differences in the TU Delft case. Finally, the resulting com-
utational grids are nearly identical in size and quality, containing 18
illion cells in the high-density TU Delft case and 27.4 million cells in

he low-density Stanford case.
Fig. 12 shows the difference in simulation results between ge-

metries created from high-density and low-density point clouds. The
ifferences are calculated with the expression

dif f =
|

|

𝑈HD − 𝑈LD
|

|

𝑈ref
(5)

or the absolute non-dimensional velocity magnitude difference, and

dif f =
|

|

𝑘HD − 𝑘LD||
𝑈2
ref

(6)

or the absolute non-dimensional TKE difference, where HD and LD
epresent field values for the cases created with high-density and low-
ensity point clouds as an input respectively, and 𝑈ref is the reference
elocity of 4.97 m/s for the TU Delft case and 3.06 m/s for the Stanford
ase.

In Fig. 12, we show results for the TU Delft case at three distinct
evels: 2 m AGL, 10 m elevation, and 20 m elevation. We notice that
ifferences in velocity magnitude and TKE are localised around certain
uildings, with maximum values being 138% of 𝑈ref for the velocity
agnitude and 15% of 𝑈2

ref for the TKE. As the differences are localised,
he average differences do not exceed 5.3% of 𝑈ref for the velocity
agnitude and 0.39% of 𝑈2

ref for the TKE. The differences are smaller
t the pedestrian level but tend to increase with height. This is caused
y higher wind velocities but also intensified by larger differences
n geometries at higher AGLs. The one building that stands out the
ost as the local maxima for all cases is the building ‘B44’ which was

econstructed in LoD1.2 in the low-density case due to a failed LoD2.2
econstruction.

We also compared the difference between two input geometries by
alculating chamfer and Hausdorff distances. The chamfer distance can
10 
Fig. 11. Selected examples of buildings from the TU Delft scenario reconstructed in
LoD2.2 using the (a) high-density point cloud (17.4 pts/m2) and (b) low-density point
cloud (6.11 pts/m2).

be described as an average value of all the distances from a point in one
set to the nearest point in the other set — see [83] for more details.
On the other hand, Hausdorff distance is the maximum value of all
the distances from a point in one set to the nearest point in the other
set [84]. Point sets required to calculate distances were obtained by
sampling building surfaces with 70 pts/m2.

Fig. 13 shows the chamfer and Hausdorff distances for buildings in
the TU Delft case. Buildings that cause visible differences in simulation
results are marked red. We can see that the differences between two
reconstructions are not negligible, especially in Hausdorff distances
where more than half the buildings have differences larger than one
meter. Moreover, 30% of buildings have Hausdorff distances over 3 m,
meaning a considerable percentage of buildings can be differently
reconstructed when using low-density point clouds.

In terms of how these distances translate to simulation results, we
can observe that under a certain threshold, which is around 0.027 m
chamfer distance and 1.17 m Hausdorff distance, no differences can be
observed in simulation results. From the threshold, with the increasing
distances, there is a high probability that the differences in building
geometries will influence the flow around them. However, some build-
ings above the threshold show no observable differences in the flow
field around them. We can assume that other factors, such as wind
orientation, building height, and placement in the domain contribute
to this outcome. Detailed investigation of such phenomena is outside
of the scope of this paper, and we believe it deserves research on its
own.
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Fig. 12. Differences in simulation results between high-density and low-density input point clouds for the TU Delft case.
Similarly, the qualitative and quantitative results of the Stanford
case (see Appendix, Fig. A.2) support our conclusions. Maximum and
average 𝑈dif f and 𝑘dif f correspond to the TU Delft case, while in terms of
geometry, results for the Stanford case (see Appendix, Fig. A.1) show
a threshold of 0.0057 m for the chamfer distance and 0.75 m for the
Hausdorff distance under which no differences in flow fields caused by
building geometries are visible anymore.

We can conclude that the thinning done in the case of the TU Delft
made an impact on the quality of the output. While the differences
are not large enough to interfere with grid generation in our case,
they can still cause failed reconstructions and have a localised effect
on simulation results. This effect intensifies with increasing elevation
due to higher wind velocities and larger discrepancies towards building
tops. In other words, research aiming for results closer to the ground,
such as pedestrian wind comfort studies, will be less affected by a
11 
lower-density point cloud. On the other hand, research aiming for
detailed flow results at a higher AGL, such as urban air mobility, will
be the most affected.

The noticeable difference between the original and thinned input
point clouds means that to achieve the highest quality reconstruction,
a high-density point cloud (i.e. 15 pts/m2 or more) should be used.

5. Discussion and conclusions

In this study, we have introduced an automatic and high-detailed
building reconstruction workflow for urban flow simulations. Our
workflow targets applications such as pedestrian wind comfort studies,
urban heat island effects, pollutant dispersion, and urban air mobility,
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or it can be used as a surrounding urban scenario of a very detailed
and manually reconstructed building model. We have demonstrated
the applicability of our workflow through the reconstruction of two
realistic urban scenarios and a subsequent grid refinement study, which
required no manual adjustments to the geometries. The algorithm has
proved versatile, effectively processing various data sources and point
cloud densities to produce LoD2.2 building models with minimal input.

The reconstructed models have achieved satisfactory quality lev-
els, with geometric validity rates of 95% and 90% for the TU Delft
and Stanford cases, respectively. Generated geometries were shown
to be of satisfactory quality for the direct application with snappy-
HexMesh. However, we cannot foresee potential issues with different
input datasets and different grid generators. Additionally, for more
details regarding the quality assessment of generated building models
on a larger sample of 10 million buildings, you can refer to Dukai et al.
[40].

Furthermore, we have demonstrated that in the case of a low-
density point cloud (according to the classification by Stanley and
Laefer [72] our TU Delft case was low-density) we were still able
to procure valid building models, generate computational grid, and
successfully run a grid sensitivity analysis. However, it should be noted
that a low-density point cloud (i.e. less than 15 m2) can result in loss
of building details or ultimately in failed reconstructions.

Despite its strengths, our method has limitations. First, the al-
gorithm generates building models with 2.5D roof geometries and
vertical walls. Simply put, features like balconies and overhangs cannot
be reliably captured, which implies that reconstructing them is not
feasible. This limitation is due to the state of the art in automatic
reconstruction of 3D city models from airborne lidar. Our future efforts
will investigate the reconstruction to include such features by using
other datasets like terrestrial lidar and street-view images [85]. Second,
the created planes are piecewise planar, so curved roof features such
as domes cannot be reconstructed. However, if the point cloud density
is high enough, a curved feature can be approximated by a number
of small planar surfaces. Third, the output does not always guarantee
valid reconstruction. We alleviate this problem by conducting a va-
lidity check [18] and automatically repairing geometries using alpha
wrapping [19]. Fourth, the quality of the reconstruction is largely
influenced by the input data quality (footprints, point clouds, and their
alignment). Potential improvements include changes to the core parts
of the algorithm (such as better planar partition regularisation [86]) or
employing new techniques to solve missing data in point clouds [87].

This new versatility in simple albeit fine control over the building
reconstruction process opens opportunities for practitioners to easily
and quickly configure urban scenarios for urban microscale simulations
that would otherwise take a very long time. As a part of our auto-
matic reconstruction workflow City4CFD, one can now, for example,
reconstruct the building of interest in LoD2.2 with a high complexity
factor, the immediate vicinity in LoD2.2 with a lower complexity factor,
the next row of buildings in LoD1.2, and have another extra region of
buildings in LoD1.2 that can be used as virtual buildings. This can be
done automatically using configuration settings of City4CFD.

We believe this method can noticeably speed up the geometry
preparation step of the CFD workflow. The whole process of our
reconstruction, given the input data source is known, takes around
four hours in our subjective experience. On the other hand, manually
reconstructing such a complex case would take days or even weeks.

Moreover, our contributions address the computer-aided design
(CAD) challenges in CFD modelling of urban microclimate recognised

by Mirzaei [15, p. 6] in their review paper, who wrote the following:

12 
Fig. 13. Chamfer (above) and Hausdorff (below) distances between geometries gener-
ated by high-density and low-density input point clouds for the TU Delft case. Coloured
red are the buildings that cause observable differences in flow fields when comparing
original and thinned point clouds. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

studies should be conducted to develop algorithms to synthesis such
crude data to become suitable for CFD analysis [...] smart algo-
rithms should make a balance between the geometry detail (flow
field resolution) and mesh size (computational load). Definition of
new concept such as Level of Details (LOD) [...] are handy practices
and viable options in urban climate CFD simulations [...] each
building, road, infrastructure, and tree has multiple surfaces that
should be defined, labelled, and set as a suitable boundary condition
in a CFD domain.

In response to these challenges, our work introduces the concept
of LoDs in wind engineering, and our workflow balances between
geometrical details, generates LoD2 geometries, and adds definition
and labelling of different surfaces that can be set as suitable boundary
conditions in a CFD domain. It is, to the best of our knowledge, the first
work that addresses all these challenges at once.

Finally, in alignment with the principles of open-source science, we
are releasing the code publicly under the GNU Affero General Public
License, hoping that others would contribute and benefit from it.
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ppendix

This appendix contains supplementary figures related to
ection 4.3.2 and the Stanford case. In Fig. A.2, we show slices at
m AGL, 43 m elevation and 53 m elevation. The latter two elevations
oughly correspond to 10 m AGL and 20 m AGL, respectively.
Fig. A.1. Chamfer (above) and Hausdorff (below) distances between geometries generated by high-density and low-density input point clouds for the Stanford case. Coloured red
re the buildings that cause observable differences in flow fields when comparing original and thinned point clouds. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
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Fig. A.2. Differences in simulation results between high-density and low-density input point clouds for the Stanford case.
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