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ABSTRACT

The Kirkwood-Buff (KB) theory provides an important connection between microscopic density fluc-
tuations in liquids and macroscopic properties. Recently, Krliger et al. derived equations for KB inte-
grals for finite subvolumes embedded in a reservoir. Using molecular simulation of finite systems, KB
integrals can be computed either from density fluctuations inside such subvolumes, or from integrals
of radial distribution functions (RDFs). Here, based on the second approach, we establish a framework
to compute KB integrals for subvolumes with arbitrary convex shapes. This requires a geometric func-
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tion w(x) which depends on the shape of the subvolume, and the relative position inside the subvol-
ume. We present a numerical method to compute w(x) based on Umbrella Sampling Monte Carlo
(MC). We compute KB integrals of a liquid with a model RDF for subvolumes with different shapes. KB
integrals approach the thermodynamic limit in the same way: for sufficiently large volumes, KB inte-
grals are a linear function of area over volume, which is independent of the shape of the subvolume.
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1. Introduction

Density and energy fluctuations inside subvolumes
embedded in a larger reservoir can be used to determine
macroscopic thermodynamic properties of multicompo-
nent isotropic liquids [1-5]. Recently, Schnell et al. [2]
derived the Small System Method (SSM) where fluctu-
ations inside finite subvolumes are extrapolated to the
thermodynamic limit. Using the SSM, thermodynamic
properties like partial molar enthalpies and thermody-
namic factors were calculated, and in the same man-
ner, Kirkwood-Buft (KB) integrals were obtained [5-8].
The KB theory provides a sound connection between
the microscopic structure of isotropic liquids and their
macroscopic properties [9-13]. Kirkwood and Buff [9]

defined these integrals for infinitely large and open sys-
tems. To compute KB integrals using molecular simu-
lations of closed and finite systems, Kriiger et al. [14]
recently derived expressions for KB integrals for open
subvolumes embedded in a large reservoir. For mul-
ticomponent isotropic systems, these KB integrals for
finite subvolumes, G[‘;ﬁ, are related to the fluctuations
of the number of molecules inside a finite and open
subvolume,

NoNp) = (N} (Ng)  Véag
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where Ny, Ng are the number of molecules of types «
and B inside the subvolume V (N, and Npg fluctuate due
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Table 1. Subvolume shapes considered in this work. L is the char-
acteristic linear dimension of the shape and L,y is the largest
possible distance between two points inside the subvolume. A
cube and sphere are included as special cases of cuboid and
spheroid with aspect ratioa =1.

Shape of the subvolume Linax
Line (1D) Rl e L
L
Circle (2D) L
+
1
1
1
1
Square (2D) ¥ V2L
1
1
1
1
+
. L a<1
Spheroid (3D) {L*a a>1
"""" a.L
L,
Ly
L
Cuboid 3D) ! L2+ a?
sl

to molecule exchanges with the surrounding reservoir),
and the brackets (---) denote an ensemble average in
an open system. d4p is the Kronecker delta (equal to 1
when o« = B and zero otherwise), and V is the volume
of the subvolume. A subvolume V is characterised by its
shape and linear size L. Table 1 shows the shapes con-
sidered in this work and the maximum distance between
two points inside the subvolume, Ly,,y. As in the SSM, KB
integrals for finite subvolumes, GXB, scale with the inverse
of the size of the subvolume, 1/V'? ~ 1/L, in which D
is the dimensionality [14]. To find KB integrals in the
thermodynamic limitm (Gg), extrapolation to V — oo
(I/L — 0) is performed.

For convex subvolumes, Kriiger and co-workers [14]
have shown that the fluctuations of Equation (1) can
also be expressed as integrals over the radial distribution
function (RDF) gup(r),

Limax
Gup =/ dr[gus(r) — 1] c(rw(x) (2)
0

Table 2. Exact expressions of the geometrical func-
tion w(x) for hypersheres in 1-3 dimensions (i.e. line,
circle, and sphere) [14]. Here, x = r/Lmax (0 < x < 1)
and c(r)dr is the hyperspherical volume element.

Dimension c(r) w(x)

1D 2 1—x

2D 2mr 2/ (arccos(x) — x+/1—x2)
3D 41 1—3x2+x/2

where go4(r) is the radial distribution function. Ly is
the largest distance between two points inside the sub-
volume V (see Table 1). c(r) dr is the hyperspherical vol-
ume element (see Table 2). w(x) is a geometrical func-
tion, which depends on the dimensionality and shape of
the subvolume V, as well as on x = /Ly, where r =
|r; — ry| is the pair distance. The integration limit L,y is
therefore also present in the integrand. By construction,
the definitions of w(x) and c(r) automatically lead to w(0)
= 1 and w(1) = 0. For a hypersphere in D dimensions,
w(x) is known analytically [14]. The theoretical deriva-
tion of Equations (1) and (2) and the function w(x) for
a sphere is provided in our recent publication [4]. It is
important to note that Equations (1) and (2) are identical
and yield the same KB integral provided that the subvol-
ume V is convex and the function w(x) corresponding to
the shape of Vis used. Both approaches (Equation (1) and
Equation (2)) have been used in molecular simulation [4-
6,8,14-16]. The advantage of using Equation (2) is that
only the RDF is needed, which is usually computed from
a built-in function of Molecular Dynamics software [17].

Considering the shape of the subvolume, the sphere
is the most natural choice in simple isotropic liquids,
but other shapes may be more convenient for specific
applications. For example, the KB theory was applied to
study the interactions between large biomolecules and
the surrounding solvent molecules [18-20]. Giambasu
et al. [21] used KB integrals to study the ionic atmo-
sphere surrounding nucleic acids. In their work, selecting
the shape of the subvolume depended on the inhomo-
geneous region surrounding the nucleic acids [21]. For
instance, hexagonal prisms were used to study the fluc-
tuations of solvent molecules around DNA. In principle,
it is possible to compute KB integrals using Equation (1)
for any shape of the subvolume. The size of the subvol-
ume can be gradually increased as shown in Figure 1, and
the number of particles in each subvolume is then used
to compute Gxﬁ using Equation (1). Cubic subvolumes
have been used in the works of Schnell et al. [1], Cortes-
Huerto et al. [22] and others [15,17,23]. The alternative
formulation of finite-size KB integrals (Equation (2)), i.e.
direct integration of the RDF, has only been applied to
spherical subvolumes [6,14]. It is important to note that
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Figure 1. Computing particle fluctuations inside finite spherical (a) or cubic (b) subvolumes that are embedded inside a larger simulation
box with a length L, (Equation (1)). The size of the subvolume is gradually increased. For a selected molecule, one can immediately see

in which subvolume the molecule is present or not.

Equation (2) is valid for subvolumes of any shape, pro-
vided the geometrical function w(x) is known for that
shape.

The objective of this work is to present a unified frame-
work to compute KB integrals for subvolumes of arbi-
trary convex shape. We provide a numerical method to
compute the function w(x) based on Umbrella Sampling
Monte Carlo (MC). Once the function w(x) is computed
for a specific shape, it can be used for any size of the sub-
volume. We compute the function w(x) for the following
shapes: square, cube, and spheroids and cuboids with dif-
ferent aspect ratios. Numerical tables of these functions
are provided in the Supporting Information (Online). We
also investigate the effect of the shape of the subvolume on
the computation of KB integrals. We will show that using
a cubic or spherical subvolume leads to the same KB inte-
gral in the thermodynamic limit, and that for sufficiently
large subvolumes KB integrals scale as area over volume,
independent of the shape of the subvolume.

The paper is organised as follows. In Section 2, the
numerical method used to compute w(x) is introduced.
The method is verified by comparing our numerical
results to the analytic expressions for a sphere (3D), cir-
cle (2D), and line (1D). In Section 3, the function w(x)
is computed numerically for a cube and for spheroids
and cuboids with different aspect ratios. From this, finite
volume KB integrals for a liquid with a model RDF are
computed for various shapes, and we discuss the uni-
versality of w(x) and its consequences. Our findings are
summarised in Section 4.

2. Numerical computation of w(x)

In this section, we present a numerical method to
compute the function w(x) for convex subvolumes. Table

1 shows a schematic representation of the shapes stud-
ied here. For cuboids and spheroids, w(x) depends
on the aspect ratio a4, and so w(x) is computed for
each a.

To find w(x), we first compute w(r) = w(x*Lyax) and
then normalise the distance r using the maximum dis-
tance between two points in the subvolume, L., (see
Table 1). The function w(r) is proportional to the prob-
ability distribution function p(r) for finding two points
inside the subvolume V, separated by distance r [14],
divided by the hyperspherical volume element. There-
fore, by construction we obtain w(r = 0) = 1 and
w(r = Lpax) = 0, so consequently w(x = 0) = 1 and
w(x = 1) = 0. To compute the probability distribution
function p(r) numerically, distances between two points
inside the subvolume are divided into N'bins (i1, i3, ... , in)
of equal sizes, separated by Ar. Each bin contains all dis-
tances between iAr and (i — 1) Ar. As a result of this dis-
cretisation, we sample the probability p(i), which is then
used to compute w (7). The value of Ar has to be chosen
such that the function p(i) is properly sampled. We find
that a small value of Ar results in poor statistics, espe-
cially in the first few bins. We recommend setting Ar to
L/100. To further improve the statistics, Umbrella Sam-
pling [24,25] is implemented for computing w(x). This
introduces a weight function W(i) which modifies the
distribution of sampled distances.

2.1. Importance sampling algorithm for computing
p(i)

In the algorithm below, we show how the probability dis-
tribution function p(i) and the weight function W(i) are
computed. Note that the algorithm presented in this work
is for a 3D subvolume; however, it is trivial to adjust it to
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another dimension. The algorithm follows the following
steps:

(1) Set Ar and the maximum allowed displacement
for random displacements.

(2) Set a weight function W(i) to zero for all bins.

(3) Choose two random points (P; and P,) inside the

subvolume V.

(4) For each sampling cycle (we typically performed

10! cycles):

(a) Selectapoint, P; or P,, randomly. Assume that
P;is selected (the other point is denoted by P;).

(b) Add a random displacement to point P; lead-
ing to Ppey.

(c) Check if this new position falls inside the sub-
volume. If it does not, skip to step (f), other-
wise carry on with the next step.

(d) Determine the normalised distance, 7/Lyax,
between Py and P; and determine the bin
number corresponding to this distance, ipew.
The bin number corresponding to the old dis-
tance is denoted by ig4.

(e) Accept or reject the displacement if a uni-
formly distributed random number between
0 and 1 is less than exp [W(ipew) — W(ioia)]-
If the displacement trial move is accepted,
update P; and igq such that P; = Py, and
fold = inew-

(f) Compute the normalised distance between P;
and P; and the bin number, i correspond-
ing to that distance. Update the sampling of
the observed probability distribution function
pbiased(i)-

(5) After a large number of cycles, remove the bias
caused by the weight function:

P(l) = pbiased(i) eXP[—W(iold)] (3)

(6) Update and save W(i) for the consecutive compu-
tations of p(i) using an iterative updating scheme
(W(i) — W(i) — (1/2)In ppiased (i), and shift W(i)
so that its minimum equals zero.

(7) Repeat steps 1-4 while updating W(i) until a satis-
factory sampling of p(i) is reached. For 10'! cycles,
running the algorithm takes approximately 150
minutes on a modern computer.

2.2. Computing w(i)

The function w(i) is proportional to the distribution
function p(i) divided by the volume of the bin in a

hypersphere with dimension D:

. p(@)

(4)
In Equation (4), the prefactors for the bin volumes are
not included yet since in the next step w(i) is normalised
using the value w(0). Since we do not obtain statistics at
r = 0, we interpolate to w(0) using w(1) and w(2),

w (i)
w(i) - IR ()
w(l) — ( (2)2 1)
Similarly, distances are normalised relative to Lyax
. (i—Ar/2)
x(i) = I (6)

3. Results

3.1. The function w(x) for cube, cuboids, and
spheroids

To validate our numerical method (Section 2), we com-
pute the function w(x) for subvolumes where the ana-
lytic expressions are known (line, circle, and sphere, see
Table 2). In Figure 2(a), the comparison between analytic
and numerical functions w(x) is shown for a line, circle,
and sphere. For these shapes, the numerical results repro-
duce the theoretical solution very well. The average abso-
lute difference between analytic and numerical values are
9 x 1073, 5 x 1073, and 2 x 10~* for a sphere, circle,
and line, respectively. Therefore, we can conclude that the
algorithm of Section 2 can be used to numerically com-
pute the function w(x) for any convex subvolume in 1D,
2D, or 3D.

Next, we compute the function w(x) numerically for
subvolumes where analytic expressions are not available.
In Figure 2(b), we show the function w(x) computed
numerically for a cube and sphere, which are the most
commonly used shapes for subvolumes. Figure 3 shows
the function w(x) for spheroids (Figure 3(a)) and cuboids
(Figure 3(b)) with the following aspect ratios, a = 0.1, 1,
2, 5, and 10. Clearly, the function w(x) varies a lot with
the aspect ratio g, and this function is very different for
a sphere (Figure 3(a), a = 1) and a cube (Figure 3(b),
a = 1). We found that it is difficult to accurately fit w(x)
with polynomial functions. In the Supporting Informa-
tion (Online), we provide tabulated data of the function
w(x) for these shapes of the subvolumes. Interpolation
can be used to find w(x) for any value of x.
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Figure 2. (Colour online) (a) The function w(x) for a line (1D), circle
(2D), and a sphere (3D). The function w(x) is computed numerically
using the MC algorithm provided in Section 2 and the analytic
functions are listed in Table 2. In all cases, the numerical solution
matches the theoretical expressions of w(x). (b) The function w(x)
for a sphere and a cube.

3.2. KBintegrals

Using the functions w(x), we compute KB integrals
for subvolumes with different shapes. We will focus on
3D systems as these are most relevant for applications.
The expression for KB integrals of finite subvolumes,
Go‘fﬁ, is provided by Equation (2). The distance depen-
dent function ¢(r) is provided in Table 2. To investigate
shape effects, a liquid with the following analytic RDF
model [10,26] is used:

Hew[S]eoslr (£ -B)] £2 5
19
-1, <%
(7)
where o is the diameter of the particles, and x is the
length scale at which the fluctuations of the RDF decay.

This RDF mimics density fluctuations around a central

gr)—1=
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Figure 3. (Colour online) The function w(x) computed numerically
using the MCalgorithm provided in Section 2, for (a) spheroids and
(b) cuboids with different aspect ratios a.

particle for a typical isotropic liquid. The RDF parame-
ters are fixed at o = 1 and y = 2. Here, we work with a
single-component fluid and therefore the indices « and
are dropped. The use of an analytic g(r) eliminates errors
due to uncertainties in RDFs obtained from molecular
dynamics simulations [14,16,17]. The functions w(x) are
obtained numerically in tabulated form, and the value of
w(x) at any x is obtained by interpolation. The integral of
Equation (2) is calculated using the trapezoidal rule [27].

In Figure 4, we show the KB integrals for finite sub-
volumes, GV/a?, plotted as a function of the inverse of
the length of the subvolumes, o/L. Figure 4(a) shows the
KB integrals computed for spheroids with different aspect
ratios (a =1, 2, 5, 10), and Figure 4(b) shows the same for
cuboids. As expected, in all cases, G"/o> scales linearly
with o/L for large L. In Figure 4(a), we use both analytic
and numerical functions w(x) for spherical subvolumes
(a =1). Integrating using the analytic or numerical func-
tion w(x) yields practically identical values of the KB inte-
grals, and differences are of the same order as the error
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Figure 4. (Colour online) KB integrals of finite subvolumes G"/o3
vs. the inverse of the size of the subvolume (o /L) using the numer-
ically computed w(r). The subvolumes used have the following
shapes: (a) spheroids and (b) cuboids with different aspect ratios
a.In (a), we also compare the KB integral for a sphere (a = 1) using
both the numerical w(x) and the analytic w(x) from Table 2.

introduced by the numerical integration of Equation (2).
Changing the aspect ratio affects the slope of the lines of
G"/o3 versus o /L. All lines approach the same value of
the KB integral in the limit 0/L — 0, which is expected
as in the thermodynamic limit KB integrals should be
independent of the shape of the subvolume. The slope
dependence on the shape of the finite subvolume was pre-
viously reported in the work of Strom et al. [5] using
arguments based on small-scale thermodynamics. These
authors found that plotting KB integrals as a function of
the surface-to-volume ratio of the subvolume eliminates
shape effects.

In Figure 5(a), we show the KB integrals plotted as a
function of the surface-area-to-volume ratio of the sub-
volume (Ao /V) for the following shapes: sphere, cube,
spheroid with a = 2, and cuboid with a = 2. As expected
from the work by Strom et al. [5], all KB integrals
approach the same value of G®/o® with the same slope,

(a) -1.85 ;
—— Sphere
—— Cube
1.9t Cuboid, a =2
—— Spheroid, a = 2
C"DQ
N -1.95¢
G
ot
-2.05 : : : :
0 0.1 0.2 0.3 0.4 0.5
AoV
(b) - -
1 y
209}
S
3 0.8¢
=
leo 7t— Sphere
| — Cube
= 0.6} Cuboid, a =2
— Spheroid, a = 2
0.5 : : : :
0 0.1 0.2 0.3 0.4 0.5

r

Figure 5. (Colour online) (a) KB integrals of finite subvolumes,
GY/o3 vs. the inverse of the surface area to volume ratio of the sub-
volume (A.o/V). The KB integrals are found by numerically inte-
grating Ggﬂ for 3D subvolumes. (b) The ratio of w(r) from Equa-
tion (8) and the numerically obtained w(r).

and the effect of shape is only important for systems
smaller than a few molecular diameters (for a sphere,
Ac/V > 0.5 corresponds to R > 60). Close to the ther-
modynamic limit, G¥/o® seems to be a function of Ao /V/
only. For large subvolumes (and thus large Lp,y), only
small values of x = r/L, have an important contribu-
tion w(x) so one would expect that for small x, the func-
tion w(x) should have a universal behaviour. Using Table
2, a Taylor expansion of w(r) around r = 0 for a sphere
yields

__r4 2
wr)=1 1V + O(r?). (8)

In Figure 5(b), we plot the ratio of w(r) from Equa-
tion (8) to the numerically computed w(r), for the follow-
ing shapes: sphere, cube, spheroid with a = 2, and cuboid
with a = 2. A subvolume with L = 1 is used for all shapes.
At small distances (r < 0.10), this ratio is practically 1 for



all shapes considered. At this range, Equation (8) provides
values of w(r) that are nearly identical to the numerically
computed w(r). This numerically confirms the universal-
ity of w(x) for small x.

By neglecting the O(r?) term in Equation (8) and
imposing that w(x) is positive, we can define a realistic
model function w(x) as follows:

w(x)=1—axfor x < 1/a
wx) =0 for x>1/a 9)

The parameter « is related to the shape of the subvol-
ume according to Equation (8). Based on the results of
the previous section, we know that elongated subvolumes
will have a large value of «. By inserting Equation (9)
into Equation (2) and combining with Equation (8), we
obtain

4V/(Ao) A
G(Ao V) = / dr47tr2[g(r) —1] |:1 - —]
0 4V

(10)

which is a function of the surface area to volume ratio
Ac/V, and independent of & and thus independent of the
shape of the subvolume. This clearly shows that the origin
of shape effects is due to the O(7?) term in Equation (8),
which is only important for small subvolumes.

4, Conclusions

We have introduced a method to compute KB integrals
for finite subvolumes of arbitrary convex shape. This
requires a numerical method to obtain the geometrical
function w(x), which is needed when computing KB inte-
grals from RDFs. We showed that w(x) is related to the
probability of finding two particles inside a subvolume
V at a certain distance, and we presented a numerical
scheme based on Umbrella Sampling Monte Carlo for
this. The numerical method was verified by comparing
the results with analytic expressions for hyperspherical
subvolumes in 1D (line), 2D (circle), and 3D (sphere).
The method was used to compute the function w(x) for
subvolumes where analytic expressions are not available:
square, cube, and spheroids and cuboids with different
aspect ratios. These functions are tabulated in the Sup-
porting Information (Online). We computed KB integrals
for subvolumes with different shapes, using an analytic
RDF model representing an isotropic liquid. In the ther-
modynamic limit, KB integrals are independent of the
shape of the subvolume, and the approach to the ther-
modynamic limit only depends on the area over volume
ratio, and not the shape of the subvolume. This is due
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to the observation that for small r, w(r) is only a func-
tion of r and the surface-to-volume ratio of the subvol-
ume, and independent of the shape of the subvolume.
One may consider the universality of w(r) as a ‘shape ther-
modynamic limit. The difference with the conventional
thermodynamic limit is that only system size dependen-
cies are important, and not the shape. From our calcula-
tions, it seems that shape effects are only important for
systems smaller than a few molecular diameters. It would
be interesting to investigate whether or not these find-
ings are applicable to molecular liquids and non-isotropic
liquids.
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