<]
TUDelft

Delft University of Technology

Convex modeling of pumps in order to optimize their energy use

Horvath, K.; van Esch, B.; Vreeken, D.; Pothof, |.; Baayen, J.

DOI
10.1029/2018WR023811

Publication date
2019

Document Version
Final published version

Published in
Water Resources Research

Citation (APA)

Horvath, K., van Esch, B., Vreeken, D., Pothof, |., & Baayen, J. (2019). Convex modeling of pumps in order
to optimize their energy use. Water Resources Research, 55(3), 2432-2445.
https://doi.org/10.1029/2018WR023811

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1029/2018WR023811
https://doi.org/10.1029/2018WR023811

ADVANCING
‘ , EARTHAND
” ‘ U SPACE SCIENCE

Woater Resources Research ik

RESEARCH ARTICLE
10.1029/2018WR023811

Key Points:

« Convex modeling of pumps for
minimizing energy use is presented

« Mixed-integer optimization is used to
reach the global optimum

« RTC-Tools toolbox is used to
minimize energy use of the drainage
pumps

Correspondence to:
B. van Esch,
B.P.M.v.Esch@tue.nl

Citation:

Horvath, K., van Esch, B., Vreeken, D.,
Pothof, I., & Baayen, J. (2019).

Convex modeling of pumps in

order to optimize their energy

use. Water Resources Research, 55.
https://doi.org/10.1029/2018 WR023811

Received 6 AUG 2018
Accepted 8 FEB 2019
Accepted article online 19 FEB 2019

©2019. The Authors.

This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided
the original work is properly cited, the
use is non-commercial and no
modifications or adaptations are made.

Convex Modeling of Pumps in Order to Optimize Their
Energy Use

K. Horvath!'®' | B. van Esch!'”'| D. Vreeken?, I. Pothof?3, and J. Baayen*

IDepartment of Mechanical Engineering, Groene Loper, Eindhoven University of Technology, Eindhoven, The
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Abstract This study presents convex modeling of drainage pumps so that real-time control systems
can be implemented to minimize their energy use. A convex model is built based on pump curves and then
used in mixed-integer optimization to allow pumps to be turned on or off. It is implemented as an extension
to the open source software package RTC-Tools. The formulation is such that the continuous relaxations of
the mixed-integer problem are convex, hence branch-and-bound techniques may be used to find a global
optimum. The formulation can be used for variable-speed and constant-speed pumps. There are several
possible applications, such as optimization of polder systems, pumped-storage systems, or certain water
distribution networks. Finally, an example of the drainage pump is presented to compare the method to
current methods and show that energy can be saved by using the proposed method.

Plain Language Summary Pumps are present in several water systems, like drinking water
networks or drainage pumps. Drainage pumps are one of the greatest energy consumers in low-lying
countries. Water managers decide when to turn them on depending on the sea level, weather prediction,
and other factors. The operation costs depend on the time of operation. This article explains a method
to decide when to turn these pumps on to use the least amount of energy, cheaper, and more sustainable
drainage possible. The method can be further applied to any water systems containing pumps.

1. Introduction

Freshwater is a basic resource. However, freshwater is often distributed unevenly. To correct this distribution
and prevent the problems originating from it, operational water management ensures the right amount of
water at the right place and time. The distribution of water is carried out by hydraulic structures, such as
overshot gates, undershot gates, and pumps. The decision about the operation of these structures determines
the distribution of water. These principles hold for different water systems, such as irrigation and drainage
systems or water distribution networks. To decide on the operation, mathematical optimization is used to
enable water managers to take into account the future water demands and weather forecasts at the time of
the decision making. For example, for a drainage canal, the task of the optimization is to determine the pump
operation such that the water level in the canal stays in the prescribed bounds while the nearby areas are
drained into that canal. In doing so, disturbances should be taken into account such as rain. Mathematical
optimization of water systems requires a suitable model for each part of such systems. This work focuses
on the modeling of the pumps to optimize their energy use. The approach is demonstrated on a drainage
system, but it can be applied to other systems, such as ground water pumping (Ahlfeld & Laverty, 2011) or
to water distribution networks.

Modeling and optimization of pump operation can be found in the literature mainly in the context of water
distribution networks. Mala-Jetmarova et al. (2017) provides an overview of this topic. The reason why opti-
mization is studied mainly in connection with water distribution systems is that the costs of such a network
are strongly related to pumping costs (Ormsbee & Lansey, 1994). Pump operation can be classified into two
big categories: constant-speed pumps, whose speed does not vary, and variable-speed pumps, whose speed
varies depending on the discharge and the head.

Constant-speed pumps are often used in water distribution networks. For such pumps, the optimization
algorithm only has to determine when they should be turned on and off. This is a mixed-integer optimization
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problem; hence, it can be very time-consuming to find the global optimum compared to the continuous
version of the problem. For this reason, pumps in water distribution networks are often optimized by faster
algorithms providing only suboptimal solutions. In Marchi et al. (2017), for instance, a genetic algorithm
is used combined with real pump dynamics. Heuristics can be used to increase the solution speed (Fatemi
et al., 2017); however, they also result in suboptimal solutions.

There are few methods found in the literature that can provide the global optimum within acceptable time
frames. Cembrano et al. (2000) avoids using mixed-integer programming by calculating the volume to be
pumped in the formulation (instead of the on-off state of the pump) resulting in a continuous problem, and
then the pump-schedule is obtained as post processing. However, in this case the number of pump-switching
times must be known a priori, which is not the case most of the time. Lansey and Awumah (1994) devel-
oped simplified hydraulic models for each possible pump combination, but the applicability of the model is
limited by the number of pumps in the system. Dorini et al. (2012) describes convex modeling and optimiza-
tion of pumps, supposing they are always on. Another way to reach the optimum without having to solve a
mixed-integer problem is to use time as the optimization variable to determine the start and length of the
pump operation (Dekens et al., 2014; Price & Ostfeld, 2014). This approach provides a mathematical solution
to the problem that leads to global optimum; however, it becomes very complex when it is combined with
other elements of the water system, because the objective of the other elements might not be expressible
using time as optimization variable. Moreover, similarly to the previous case, the number of pump switches
should be set a priori. Although the last two methods are able to reach a global optimum (even having their
own limitations), they can only be applied to constant-speed pumps. They are not suitable to minimize the
energy use of variable-speed pumps.

The optimization of variable-speed pumps is a challenging task. Similar to constant-speed pumps,
variable-speed pumps can be seen as discrete systems—as they have the on and off position—and hence
their optimization is a mixed-integer problem. As opposed to constant-speed pumps, not only the time
of operation should be determined but also the shaft speed. Due to their complexity, several writers have
used heuristic methods to solve the optimization problem. The currently used heuristic optimization meth-
ods can only achieve a suboptimal solution, for example, ant-colony optimization (Hashemi et al., 2014),
stochastic optimization techniques such as Particle Swarm Optimization (Wegley et al., 2000), or genetic
algorithm (Olszewski, 2016). There are several examples of these methods applied in water distribution net-
works, for instance in Bagloee et al. (2018), Candelieri et al. (2018), Marchi et al. (2016), and Oikonomou et
al. (2018), machine learning techniques are combined with optimization methods and also other pump sys-
tems such as pumped-storage hydropower plants (Alizadeh-Mousavi & Nick, 2016; Schmidt et al., 2017) or
optimizing pumps used as turbines (Fecarotta et al., 2016). Malrait et al. (2017) minimized the motor losses
of the pump for a given hydraulic operation point (i.e., pump speed); thus, it does not optimize the whole
hydraulic system. Another way to tackle the problem of finding the global optimum of the discrete system is
using the solution of the continuous system: Ulanicki and Kennedy (1994) is solving a nonconvex continu-
ous problem and rounds the solution of the continuous optimization to integers. This method also leads to
suboptimal solutions.

None of the above-mentioned methods for variable-speed pumps is able to reach global optimum due to the
use of heuristic optimization methods. Using heuristics can decrease the robustness of the solution: A small
perturbation in the initial conditions can lead to a different local optimum. This is not a desirable behavior
in real operational systems, as the system may provide completely different solutions when a slightly dif-
ferent initial condition is used. This also makes it difficult for the human operator to trust the algorithm.
Therefore, for robustness, it is necessary to use an algorithm that is able to find the global optimum. One
such algorithm was presented in Menke et al. (2015, 2016). The authors use simplified modeling of pumps
which enables the use of mixed-integer convex optimization to reach the global optimum. Moreover, they
show that linear approximations outperform nonlinear approximations in computation time without sig-
nificant loss of accuracy. They use convex approximation of the pump curves combined with a relatively
high (5%) optimality gap in the branch and bound algorithm to be able to find the optimal solution within
affordable computation time. The power consumption of the fixed-speed pump is assumed to be constant
and for variable-speed pumps depends only on the discharge. However, the actual power consumption of
the pump highly depends on discharge and head. It introduces a large error in power approximation, thus
in the estimated energy consumption.

HORVATH ET AL.
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Figure 1. Pump characteristic curves for an axial flow pump with impeller diameter 1,040 mm running at 356 rpm.
Shown are characteristics for manometric head H,,,,, total or static head H, power P, manometric efficiency #,,,,, and
total efficiency #.

In this work, we present a convex modeling of pumps which results in reaching the global optimum while
minimizing energy use by taking into account its dependence on head and flow conditions.

2. Methodology

In this section the convex modeling of pumps is described. First, the operation of variable-speed pumps is
recalled. Next, the case is described when the pump is always turned on and formulated as continuous con-
vex optimization problem. Then, the possibility to turn off the pump is included. This requires mixed-integer
modeling of pumps with convex relaxed problems, which accounts for the main contribution of this article.
Finally, the formulation is extended to constant-speed pumps.

2.1. Description of Variable-Speed Pumps

In this section the operation of variable-speed pumps is described. A pump is a dynamic device that increases
the pressure of a liquid by transferring the mechanical energy of the rotating impeller to the liquid (Wright
& Gerhart, 2009). The pressure head generated by the pump at a certain shaft speed depends on the dis-
charge. This dependency is presented graphically by the so-called QH curve of the pump. Figure 1 presents
an example of a large axial flow pump used for polder dewatering, running at 356 rpm. Apart from the QH
curves, characteristic curves for power and efficiency are also included in the figure and are seen to depend
on discharge as well. The manometric head, H,,,, generated by the pump is partially used to compensate
the pressure losses in the pumping station and partially to overcome the total, static head H, that is, the
difference in water levels between the two sides of the pumping station. For every shaft speed, there is a cor-
responding QH curve. Thus, the relationship between discharge, head, and shaft speed is unique, any two
determine the third. This relationship is described by the affinity laws. The performance of an axial flow
pump is given in Figure 2 for a range of different shaft speeds, showing how the pump can be used for a range
of discharges and heads. However, in practice, the operating range is limited by several factors, like mini-
mum discharge Q,,;, to prevent unstable operation, cavitation if available net positive suction head (NPSH)
is not sufficient, and maximum power P, of the motor. All these curves together define an area where the
pump can be operated: This is called working area in the following. In case of constant-speed pumps, there
is only one QH curve, and the working area is reduced to a section of the curve.

2.2. Convex Modeling and Optimization of Pumps That Are Always Turned On
This section describes how the operation of the variable-speed pump can be modeled with convex functions
in case the pump is turned on. An optimization problem is called convex if a convex function is minimized
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Figure 2. Performance of the axial flow pump for different shaft speeds. The working area is bounded by minimum
discharge Q,i,, the minimum shaft speed Ny,;,, cavitation NPSH, and maximum motor power P,,,, and is depicted as
a gray area. NPSH = net positive suction head.

on a convex domain, in the presence of convex inequality and affine equality constraints:
minimize f,(x)
P

subjectto  f;(x) <0, i=1, ...,m, (€))
hx)=0,i=1,...,p,

where x € R" is the optimization variable, f, : R" — R is the convex objective function, f; : R" — R are
the convex inequality constraints, and h; : R" — R are the affine equality constraints. The next step is to
describe the operation of the pump in such form.

The optimization problem for pumps is the following: How to choose the pump speed for the instantaneous
head during a time period ¢4, so that the least amount of energy is used. It could be expressed as

tdn
minimize ZP(N(td),H(td))At
G ©)
subjectto  h,(Q(N, t), H(t;)) =0,

Fi(QN,ty), H(ty)) <0, i=1, ...,m,

where N is the pump speed, Q is the pump discharge, P is the power, H is the static head, At is the time step of
the discretization, and t,,, is the horizon of the optimization. The first constraint expresses the QH character-
istic of the pump, which depends on the pump speed N following affinity theory. The inequality constraints
can be divided into two groups. The first group of constraints ensure that the pump operates inside the work-
ing area. The second group describes the hydraulic system where the pump is used, for example, the volume
to be pumped should be within a certain range for the water levels to remain within their bounds. Based on
the example above, the function of the power should be convex, and the QH characteristics should be affine.
However, none of these relationships is even convex. Therefore, we reformulate equation (2) to become a
convex optimization problem: For a pump that is always turned on, the final convex optimization problem
is now formulated as

Ldn

minimize P, (Q(ty), H(ty))At
0 Z) pp! i), T 3)

subjectto  f;(Q(ty). H(ty)) <0, i=1, ...,n.

There are three main characteristics of the convex optimization (equation (3)) that are not present in the
nonconvex one (equation (2)): (1) The optimization variable is the discharge and not the pump speed; (2)
the equality constraint and the inequality constraints are reformulated to convex inequality constraints; (3)

HORVATH ET AL.
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Figure 3. The working area of the pump. The original area is shaded with gray, and the convex approximation of the
edges is shown with dashed lines. NPSH = net positive suction head.

the approximated power (P,
one by one.

app) 18 used instead of the power. In what follows, these changes are explained

The first change, using discharge instead of pump speed as optimization variable, helps to express to build a
convex continuous objective function. The shaft speed is no longer required during the optimization, there-
fore its calculation is postponed until the post-processing. It is calculated by using the unique relationship
N(Q, H) stated by the affinity rules:

2= @
H N\’
- (%) ®

where N, and N, are different shaft speeds, and Q and H are the corresponding discharge and head. A
consequence of these affinity rules is that each QH point in the working area is related to pump speeds via
a parabolic relation. An example for such calculation is given in Appendix A.

The second change is to reformulate all constraints as convex inequality constraints. The equality constraint
is removed. This step is possible, because of the first change, since the discharge is the optimization variable
and the shaft speed is calculated as post-processing, the QH characteristic is no longer required as equality
constraint. The next step is to ensure that all inequality constraints are convex. In case of the constraints
related to operating points, it means to ensure that the bounding curves enclose a convex working area.
This is implemented in the following way: The bounding curves are approximated by a second-order func-
tion. If the area is not convex because of a curve, then this curve is approximated with a linear function.
The final curves are used as inequality constraints. An example is shown in Figure 3: The dashed lines are
approximating the boundaries of the working area: the maximum power curve, the NPSH curve, and the
minimum shaft speed curve. The maximum power curve is approximated with a second-order function,
which is convex in Q. The NPSH and the minimum shaft speed curve should be concave in Q, and thus, they
are approximated with a linear function. The convex working area (dashed lines) is only slightly different
than the original one (gray area). That means that the optimization has some different choice of Q-H points
at the boundaries, than it would have using a nonconvex working area.

The third change is the convex approximation of the power. The power is a function of two variables: the dis-
charge and the head. It can be approximated as a second-order function, which makes verifying its convexity
straightforward.

Papp =Py + P40+ Pcl3Q2 + P H+ Pc23H2 + Py, QH. (6)

HORVATH ET AL.
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This function is convex if the Hessian is positive semidefinite.

The approximation of the power is calculated as follows: First, the power is determined in different Q-H
points in the working area. Then the coefficients P,; are obtained through the following optimization:

minimize Y’ (P, + Py Q + Pey3Q’ + PoyH + Py H” + Py QH — PY?
c Q,H

subjectto — P, 3 — P <0, ™
P2 4Pcl3P023 < 0.

22~

The convexity of the power approximation is guaranteed by the constraints that are equivalent to the Hessian
being positive semidefinite. The optimization problem in equation (7) itself is not necessarily convex, while
the resulting power approximation is convex. This means that the solution might be a local optimum and
the power approximation might not be the best possible one. Therefore, the error of the resulting power
approximation is calculated and assessed. Not only the difference between the original and the approximated
values of the power is calculated but also the difference between the original values and approximated values
of the gradient of the power with respect to the discharge and the head; which plays an important role in the
optimization. Another solution for this nonconvex optimization problem could be to use homotopy methods
to find the global optimum (Baayen et al., 2018). The error between the power and the approximated power
did not exceed 10% for the case considered in this study.

2.3. Mixed-Integer Optimization: Including the Possibility to Turn Off the Pump

In this section, the optimization problem is extended to the case when the pump is turned off. This can be
described as mixed-integer optimization, where at least one of the variables can only take integer values. A
possible solution of such a problem involves relaxation to a continuous problem. In other words, the integers
are allowed to take noninteger values. In order to reach global optimum, these relaxed problems should be
convex. In order to find a global optimum of a mixed-integer problem, several relaxed problems should be
solved, which can lead to high computation times. Note that the convexity of the continuous relaxations
of the mixed-integer problem will be guaranteed by making sure that the integer variables enter into the
constraints linearly, as explained below.

In order to describe the pump optimization as a true mixed-integer problem, we introduce §, a boolean
variable indicating if the pump ison (§ = 1) or off (6 = 0). Suppose the power is approximated with a
convex polynomial P,,,(Q, H) which is not necessarily zero at zero discharge. Therefore, it can occur when
the discharge is zero, and there is a head the consumed power is estimated to be positive. If the pump is
allowed to be turned off, P,,, should be multiplied by 6, so that it is zero when the pump is off. However,
the product of these two variables does not necessary lead to a convex-relaxed problem. The optimization

problem can be written as

ldn

minimize N 8P (QUEy), H(tg)AL

t;=0
subjectto  fi(Q,H)§ <0,i=1,...,m @®)
6 = sgn(Q)
6€{0,1}and 6 € Z,
FQy) <0,

where § indicates the status of the pump. In order to transform equation (8) to a convex optimization
problem, the objective function and the constraints should be replaced by convex ones.

First, the transformation of the working area constraints is described (f,(Q,H) < 0,i = 1, ..., m) and then
the objective function (P,,,(Q, H, t4)). The working area constraints define a boundary for the working area
of the pump when it is on: The working area is shaded with purple and its boundaries are shown with blue
lines in Figure 4. If the pump is off, the discharge is zero, but the head is not, therefore the Q-H points will
be on the y axis. However, this is outside the working area. In order to allow the pump to be off, the working
area should be extended to contain the physically possible portion of the y axis when the pump is off. This is
achieved by shifting the left boundaries of the working area. The constraints should be shifted such that they

include the y axis with the minimum and maximum possible heads. These head values can be obtained from

HORVATH ET AL.
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Figure 4. Definition of the extended working area (dashed lines). The extended working area is shown in case the
pump is turned off. The markers show the actual operating points of the pump during the presented scenarios.

the physical characteristics from the system, they are denoted as f_ ., (see the yellow circles on Figure 4).
The offset is calculated in the positive head direction as

Sottsetmax,i = Si(Q> Hnax)» ©)
and
oftsetmin, i = fi(Q, Hipin)- (10)
Then f .. ; can be calculated as follows:
Jofset, i = MX(| foftsetmin, i |- | fotsetmin, i)- (11)

Hence, the working area constraints from equation (8) can be written as
JUQH) = (1= 8) fofpyer,1 SO, =1, ...,m. (12)

This equation is convex. If the pump is on, it is equivalent to the original convex constraint (equation (3)).
If the pump is off (6 = 0), the equation simply states that the head is less than the maximum possible head.
This formulation makes it possible to extend the working area to the situation when the discharge is zero
and the pump is off.

Now the transformation of the objective function from nonconvex to convex is described. Currently, it is
a convex function multiplied with a boolean, which is not necessarily convex. As a first step, we move
the approximated power to the constraints by replacing P,, the objective with a helper variable Py,.
The sum of this single variable over time is going to be minimized, and a new constraint is added stating
Ppp(Q,H, tg) < Ppepp. AS Ppgp is minimized, its possible smallest value will be equal to P,,,. The objective
function in equation (8) is multiplied with a boolean. This step was necessary to express that the power is
zero when the pump is off, while the power approximation function is not zero in that case. In order to cre-
ate a convex constraint, the function Poop should not be multiplied with a boolean, but we still need to get
€10 Py, When Q is zero. The following inequalities help to describe this. Let us denote the minimum and
maximum of the approximated power by m and M, respectively. These values can be obtained from the char-
acteristics of the pump. The power constraint from equation (8) is replaced by the following five equations:

0<Q, (13)

Q—06Qux <0, (14)

ms — Pyg, <0, (15)

Phegp — M5 <0, (16)

HORVATH ET AL. 7
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Figure 5. Definition of the extended working area of a constant speed pump. The extended working area is shown in
case the pump is turned off. The red crosses show the actual working point of the pump during the presented scenario.

and
P,pp(Q.H) = M(1 = 6) < Py, (17)

According to these constraints, if § is zero, pump is off, 0 < Preip < 0,80 Py, = 0. If 6 is 1, pump is on,

m < Py, < Mand Py, < Py, is equivalent to the original constraint.

The final optimization problem for a variable-speed pump, valid for all conditions, is

Ldn

miniQmize ZP hetp(E) At

14=0
subject to  fi{(Q,H) — (1 — )Hypeer; <0, i=1, ..., m,
Popp(Q.H) = M(1 = 8) < Ppg (1), (18)

M6 — Prepp(ty) <0, Pogy(ty) — M6 <0,
Q_éQmaxSo7 OSQ’
6€f0,1]and 6 € Z, [f(Q(ty) <0.

Finally, we discuss the errors between the continuous and the mixed-integer approximation. The
mixed-integer approach does not introduce new errors; however, two aspects should be pointed out. Several
helper variables are needed (like m, M, and Q,,,,) that should be deduced from the physical characteristics
of the system. By underestimating them, errors are introduced to the solution. In case of overestimation,
the computation time and even the accuracy of the solution is affected. The second aspect is the difference
in computation time: A mixed-integer optimization is several orders of magnitude slower than the contin-
uous one. Having a mixed-integer problem with convex-relaxed problems allows RTC-Tools 2 to find the
global optimum. RTC-Tools is using standard mixed-integer solvers such as CPLEX that, given enough time,
probably reach the global optimum of mixed-integer problems with convex relaxations (Floudas, 1995).

2.4. Application of the Method to Constant-Speed Pumps

The above-described methodology can be applied to constant-speed pumps. The working area of a constant
speed pump is a special case: The curves defining the minimum and maximum shaft-speed coincide, and
the area is reduced to a line. An example of the working area of a constant-speed pump is shown in Figure 5.
The curves bounding the working area define the beginning and end point of the segment, with other words
the minimum and maximum possible discharges. The pump can operate either on this segment or, in case it
is off, the vertical axes. The markers show examples of operation of a constant speed pump. As the minimum
and maximum shaft speed lines coincide, the equation serves as minimum and maximum bounds, thus this
constraint has to be affine.

HORVATH ET AL.
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Figure 6. Schematics of the case study.

3. Results and Discussion

The proposed method will eventually be implemented in a model predictive control formulation with a
receding horizon, as inflow boundary conditions are only known (to a certain degree of accuracy) in a time
period up till the horizon. After each time step, the horizon shifts, and the optimization is performed again.
In this paper we demonstrate one single optimization, as an indication of performance. The next step would
be to test it with receding horizon formulation. The numerical example is shown and compared to two
existing methods to demonstrate the advantages of the presented approach. First, the water system and the
test scenario are introduced.

This water system consists of a lower-lying area (polder) and an area with higher level (sea). The goal is to
keep the water level of the polder within some predefined bounds by pumping while water is flowing into
the polder. A schematic view of the system is shown in Figure 6. The polder water level is at the midpoint
between the lower and upper bounds the beginning of the period and water is flowing into the polder, while
the outside (sea) water level also changes due to the tidal motion. A terminal constraint forces the water
level to reach the midpoint between the lower and upper bounds at the end of the time period. In order to
reach the goal, the excess water should be pumped out by using as little energy as possible.
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Figure 7. Results with the proposed optimization system.
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Table 1
Energy Consumption and Computation Time of the Different Methods

Proposed method No head dependency Continuous
Energy (kWh) 1,120 1,274 1,235
Time (s) 660 230 60

Without pumping, the water level would exceed the maximum polder level. It is favorable to wait for the
polder water level to rise and/or the sea water level to drop (low tide) before starting pumping, as a lower
head will lead to a lower energy consumption. However, letting the water level increase excessively in
the polder might also risk exceeding the maximum bound. In what follows, the pump operation is calcu-
lated by optimization using three different methods: the method proposed in this paper, a method using
head-independent power (Menke et al., 2016), and a method using continuous optimization (Ulanicki &
Kennedy, 1994). The time horizon is 34 hr in all cases. The time step is 2 hr which is long enough for a pump
to slowly change its shaft speed between consecutive time steps.

The mixed-integer optimization problem in the proposed method is solved with RTC-Tools 2, an open-source
toolbox for control and optimization of environmental systems (Deltares, 2018a, 2018b; Gijsbers et al., 2018).
The results calculated by the proposed method are shown in Figure 7. It can be seen that the requirement is
fulfilled: The polder water level stayed within the prescribed bounds, while the energy used by the pump is
1,120 kWh (Table 1). The pump started to work in the beginning of the period but stopped after 2 hr when
the tide and therefore the head across the pump was the highest. Then it turned on again and pumped almost
until the water level was reaching the lower edge of the bound, thus taking advantage of the entire low tide
period. The final water level reaches the midpoint between the lower and upper bounds as a result of the
terminal constraint. The operating points of the pump are shown in Figure 4 with diamonds. It can be seen
that the pump operates close to the maximum efficiency when it is possible.

The scenario was also calculated with a mixed-integer optimization method similar to the proposed one, but
in this case it is assumed that the power does not depend on the head, it does only depend on the discharge,
and it is approximated as a second-order function of the discharge. Figure 8 shows that in this case the
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Figure 8. Results without head dependency.
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Figure 9. Results with continuous optimization.

pump started to work in the beginning of the period, and it kept on pumping even during the highest tide.
It stopped when the water level was close to the lower bound, and it restarted when the polder was full.
As in this formulation the power does not depend on the head; the pump rather pumps at low discharges
instead of pumping at low head. This leads to less efficient pumping: It can be seen that the duty points of
this pump (triangles in Figure 4) are further from the best efficiency line and predominantly at minimum
discharge. The algorithm was able to reach the goal: The polder water level stayed within the prescribed
bounds. However, the energy consumption was 1,274 kWh, which is about 14% higher than that of the
proposed method (Table 1).

Several practitioners suggest to use continuous optimization and then round the results off to integers to
calculate when the pump is on or off as this approach results in faster computation. Therefore, we also tested
the same scenario with a continuous algorithm. Note that the rounding off the solution took place step by
step: The optimization was run once, then one point was rounded off, then it was run again. It was run
several times, and the rounding method involves some heuristics, therefore it is not clear in all cases and
cumbersome. In this case the pump did not turn on in the beginning of the period, only after 4 hr (Figure 9).
Then it pumped until the second high tide came. The water level remained in the bound during the period,
and in the end, it reaches the middle of the bound. The pump used 1,235-kWh energy, that is about 10%
more than the proposed method. Note that the performance of this method is not optimal, and it depends
on case by case and also on the way the user implements the rounding off.

Comparing the energy consumption of the three methods (Table 1), it is clear that the proposed method
outperformed the existing methods for this example test scenario: The energy consumption is lower com-
pared to the other two methods. All methods reached the desired goal of keeping the water level within the
given bounds. It should be noted that the calculation time of the continuous method was almost an order
of magnitude lower than in case of the other two mixed-integer methods. This faster performance of the
continuous method was expected from the nature of the method; however, for this example, all times were
acceptable for real-time implementation. It should be considered that by increasing the size of the prob-
lem, that is, using more pumps, the proposed method might lead to prohibitive computation times. As this
example demonstrated, for problems consisting of small number of pumps, this is a promising solution.
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The method can be used for different kinds of pumps and for different applications. It can be applied for
water distribution networks with storage capacity, including water tanks or water towers. In that case the
water levels would be replaced by pressure heads in the problem formulation. It can be applied for pumped
storage where the driving parameter is energy price. The objective function can easily be extended with
energy price.

4. Conclusion

In this paper a convex modeling to minimize energy use in pumps is introduced. The modeling method
has several advantages compared to existing heuristic methods: It finds the global optimum, it includes
pump switches, and it is applicable to variable-speed pumping. Due to these advantages, more energy can
be saved by using this method when performing optimization. The methodology and its advantages were
demonstrated on a numerical example of a drainage pump. In this example the energy use can be 10% to 13%
lower compared to other optimization methods. Further implications of the method are that not only energy
use can be optimized but also energy costs or sustainable energy use. The method can be used in several
applications of pumps such as polder systems, ground-water pumping systems, pumped-storage systems,
and water transmission or distribution networks with water towers or storage tanks. It is also possible to
extend the approach to model different pump types.

Appendix A: Calculation of Pump Speed Using Affinity Rules

Here an example is given for calculating the speed of a pump in order to run at a specific working point
(Q,H) using affinity rules. The pump has a QH curve as given in Table A1 for a reference speed of 356 rpm.

This performance curve is shown in Figure Al. It is the same pump as presented in the article, however
with a lower number of points for simplicity. Suppose the result of the optimization is that the pump should
operate at working point (Qy,, Hy,) = (2.39 m*/s, 4 m). The pump speed can be found as post-processing
using the affinity rules as follows. First, the working point is scaled by using the following relation resulting
from combining equations (4) and (5):

H (&)
- (a) o

a
The result of the scaling is shown in Figure A1l as the dashed curve. From the graph, it shows that the
corresponding working point at reference speed is at a head of 4.51 m and a discharge of 2.53 m3/s. Now
using equation (5) with the following input: H, = 4.51 m, Hy = 4 m, and N, = 356 rpm, the new shaft
speed N, is calculated as 335 rpm. The scaled pump performance curve at 335 rpm can be calculated using
equations (4) and (5) and is presented in Table A2 and also shown in Figure Al.

Table Al

Pump Performance Curve at Reference Speed of 356 rpm
Q H
0.041 16.322
0.273 14.42
0.546 12.577
0.897 10.544
1.234 8.769
1.597 7.592
1.943 6.911
2.253 5.848
2.517 4.612
2.768 3.014
3.034 1.062
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Figure A1l. Scaling of reference pump curve for operation at the working point.

Table A2

Scaled Pump Performance Curve at 335 rpm
Q H
0.038 14.453
0.257 12.769
0.513 11.137
0.844 9.337
1.161 7.765
1.503 6.723
1.828 6.12
2.12 5.179
2.368 4.084
2.605 2.669
2.855 0.94
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