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ABSTRACT

Every time one counts the number of occurrences of a pair of values for two cat-
egorical variables, one obtains a contingency table. These tables are one of the
simplest representations of data in order to statistically test for the presence of
some association between the two variables under consideration. Although natur-
ally occurring in so many scientific disciplines, there is still a lot of debate on the
appropriate way to perform tests of significance on these contingency tables.

Especially when one wants to use exact methods, i.e., methods that are based
on the exact probabilities of observing the table of interest, there is great disagree-
ment on which marginal totals one should treat as fixed for inference. This has led
to the development of the conditional tests, most famously Fisher’s exact test, and
unconditional tests, of which Barnard’s CSM test was the first example. Mostly
due to philosophical objections and computational challenges, the unconditional
test has received far less attention over the years. This is especially true for con-
tingency tables with more than 2 rows or columns. To our knowledge, there are
no implementations available of exact unconditional tests for these larger tables.

The aim of this text is two-fold. First, we give a historical account on the
rivalry between conditional and unconditional test, and argue that there is a case
to be made to research exact unconditional methods in greater depth. Second, we
will present implementations of exact unconditional tests that are applicable to
general r×c contingency tables. Some of these implementations are generalisations
of existing methods for the 2 × 2 table, such as Barnard’s CSM test, with some
additions in order to increase the computational efficiency. In addition, we also
introduce a new approach that translates the classical Neyman–Pearson procedure
of constructing a critical region for a given significance level α into a a mixed
integer linear programming problem. The latter can be solved efficiently with one
of many existing optimisation software packages.

This will eventually lead to a power study comparing 14 different tests, of
which 12 unconditional ones, for different table dimensions and marginal totals.
Although no test comes out as most powerful in every situation, the tests using
a linear programming formulation have comparable, and often higher power than
the classical unconditional approaches. This comes at a cost however, the critical
regions produced via this optimisation approach are not guaranteed to be nested,
i.e., they are not necessarily contained in each other for increasing values of α. This
limits their use and interpretability. Further research should point out whether
additional requirements can be formulated that would make the critical regions
nested, while still keeping the advantages of the linear programming formulation.
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PREFACE

You are about to start your reading of my Master thesis, written in order to obtain
the degree of Master of Science in Applied Mathematics from the Delft University
of Technology. However, this thesis has not been written in Delft. Instead, from
January to June 2023, I have been fortunate enough to do my research at the
Norwegian University of Science and Technology. It is in the beautiful Norwegian
city of Trondheim that I have been working on the topic of hypothesis testing in
contingency tables.

Of course, it was partially a certain spirit of adventure that has drawn me to
Norway. The short winter days covered in snow back in January, and now the
4-hour twilight which is intended to serve as night, made for an ever-changing
environment to work in. However, the research topic made it even more attractive
to come down here. This is because the problem setting of testing significance in
contingency tables can intuitively be explained in around a minute. Nevertheless,
diving deeper into the different testing approaches, it becomes clear that behind
this simple object hide both a very rich mathematical theory, and a long history of
debate on the appropriateness of each testing method. Because of this two-sided
character, which will clearly be visible in the text you are about to read, there
was never a dull moment when writing this thesis. On one hand, there was always
the possibility to work on interesting and challenging mathematical statistics. On
the other hand, I could always switch and read up on the many philosophical
considerations that can go unnoticed when one is only writing code or handling
equations. This is something I would not have expected beforehand to enjoy so
much.

This thesis made me realise even more that statistics is not just probability,
but also causality, experimental design and philosophy. I also realised, with every
article I read, that I am far from an expert on the matter. However, this thesis
certainly helped me believe that I will graduate as a more well-rounded statistician,
ready to learn more.

It is for these reasons that I would like to say a very sincere “Tusen hjertelig
takk ” to my supervisor at NTNU, Dr. Øyvind Bakke. He proposed this topic to
me, giving me the opportunity to work on it in Trondheim. I appreciated the great
amount of freedom I received along the way to work out ideas in greater depth.
In our weekly Tuesday meetings, Øyvind always provided helpful feedback, and
managed to help me out with the many questions I had. Furthermore, I want to
express my gratitude to my supervisor in Delft, Dr. Rik Lopuhaä. Apart from our
online meetings, there was no way to notice the geographical separation between
us, as I was always welcome to ask questions, and received indispensable feedback
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on my work. I am also grateful to Prof.Dr. Geurt Jongbloed, who as the responsible
supervisor, assisted in many of the more administrative matters along the way.
Finally, from the bottom of my heart, I thank my parents and brother Casper for
their support during these months abroad, but also during all the years before
that, long before I knew I would be where I am today.

Enjoy the reading!
Kos deg med lesingen!

Pim Keer
Trondheim, 1st of June 2023
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CHAPTER

ONE

INTRODUCTION

In order to test the effectiveness of a new medicine for a certain disease, researchers
have devised the following experiment. A number n·· of patients suffering from the
disease have been split up at random into two groups. Group 1 is made up of n1·
patients who will receive the new medicine, while group 2 consists of n2· patients
who will not. After a predetermined testing period, the researchers will record for
each of the two groups how many patients have recovered. It turns out that x11
persons in group 1 got better, and x21 persons in group 2. Although this a gross
simplification of how a real medical trial would be performed, it introduces the
main object of study of this text: the contingency table. Indeed, the researchers can
summarise the results of their experiment as in Table 1.1. We call it a success if,
after the testing period, a patient has healed. In total, n·1 out of the n·· recovered.

Success No Success
Group 1 x11 x12 n1· = x11 + x12
Group 2 x21 x22 n2· = x21 + x22

n·1 = x11 + x21 n·2 = x12 + x22 n·· = n1· + n2· = n·1 + n·2

Table 1.1: A 2×2 contingency table.

Based on this table, researchers would want to conclude whether or not the
medicine has an influence on the healing process (for now it is of no interest
whether this effect is positive or negative for recovery). In other words, is there an
association between recovering from the illness and receiving the medicine?

As we will see in Chapter 2, numerous statistical methods exist to answer
this question whenever the table has 2 rows and 2 columns. We will split these
up into methods using asymptotic approximations and methods based on the
exact probability distributions found in the table. The latter can furthermore be
subdivided into conditional and unconditional methods, based on which marginal
totals are considered fixed. From the description of our medical experiment, it
may seem logical that the (n1·, n2·)-margin should be seen as fixed. However, it is
less clear whether or not one should fix the (n·1, n·2)-margin too. Interestingly, this
seemingly simple problem has been, since its inception, surrounded by controversy
and debate. We will try to navigate the vast literature that has been generated
around this in Chapter 3.
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2 CHAPTER 1. INTRODUCTION

Let us consider another example. This thesis has mostly been written while vis-
iting the Norwegian University of Science and Technology (NTNU) in Trondheim,
Norway. This university offers three different ways in which one can graduate as
a mathematician. First of all, there is the – in the Netherlands common – path
of taking a 3-year bachelor programme in Mathematical Sciences, followed by a
2-year master programme in Mathematical Sciences. Alternatively, one can choose
for a 5-year teacher education. Finally, the technical universities may also award
the legally protected title of “sivilingeniør” (which should not be confused with
the term “civil engineer” in English) after completion of a 5-year programme fo-
cusing on mathematics and physics. One example of a question that might come
up is whether the choice of programme a mathematics student makes is somehow
linked to that student’s gender. Dr. Bakke kindly provided us with data from the
Department of Mathematical Sciences at NTNU from the year 2007, showing how
many students were enrolled in each study programme that year, together with
the male-to-female ratio. This data is shown in Table 1.2.

3y. BSc + 2y. MSc 5y. teacher 5y. siv. ing.
Male 4 0 23 27

Female 0 2 5 7
4 2 28 34

Table 1.2: Male/female distribution across the different mathematics programmes
at NTNU in 2007.

We can ask a similar question to the one we asked with Table 1.1, How can
we find out if there is a significant – we will later see what that means formally
– difference in the choice of programme between the male and female student
populations?

Table 1.2 consists of three columns. This is not an uncommon phenomenon.
Indeed, we can easily think of ways in which Table 1.1 from our first, medical
experiment can be extended. Instead of having just two patient groups, the re-
searchers might have chosen to introduce a third group which received a placebo,
for example. Furthermore, they might have recorded something else than just a
binary response of healed / not healed. After the testing period, the researchers
could have encountered patients who have fully recovered, or not recovered at all,
while others still have some symptoms, or even are experiencing some detrimental
side effects.

Depending on the experiment we are doing, we can encounter tables with any
number of rows and columns. Although a study of the 2 × 2 contingency table
only would already be able to fill numerous theses, we will discuss in Chapter 4
how the statistical methods from Chapter 2 can be applied to the general r × c
contingency table. Both asymptotic methods and exact conditional methods have
been studied in great depth, but the exact unconditional methods have received
far less attention. We will encounter some of the reasons why this may be. Fur-
thermore, we will introduce a couple of alternative methods that try to address
some of the problems that come up when generalising methods from the 2 × 2
case to larger tables. In Chapter 5, we will assess how well the proposed alternat-
ives perform in comparison to the existing approaches with regard to computation
time and statistical power. The alternative methods certainly come with their own
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set of considerations and difficulties, which we will discuss in Chapter 6. Finally,
conclusions will be drawn in Chapter 7.
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CHAPTER

TWO

TESTS ON 2× 2 CONTINGENCY TABLES

Many different solution methods exist to determine whether an association is
present in a contingency table, but they can all ultimately be labelled as either
asymptotic or exact methods. The exact methods can furthermore be divided into
conditional and unconditional methods. We will first take a look at the asymp-
totic approach. This is the classical approach to hypothesis testing on contingency
tables. Via the asymptotic test, we will also reiterate some fundamental concepts
of hypothesis testing, as well as introduce some notions we will need later on. How-
ever, we will shift our focus rather quickly to the exact methods. These will turn
out to be more suited in small-sample situations, which are not uncommon in med-
ical and biological contexts. Contingency tables are very natural objects in both
settings [1]. The discrimination between conditional and unconditional methods
has led to a – yet to be settled – debate. In Chapter 3, we will try to summar-
ise this discussion as accurately as possible. In particular, we will pay attention
to the many interesting and nuanced, statistical and philosophical, concepts and
arguments that divide statisticians up to this day.

2.1 The Classical Neyman–Pearson Approach

The main idea behind any asymptotic test is to come up with some test statistic,
of which we know the asymptotic distribution under the null hypothesis. For large
enough sample sizes, this (often more simple) asymptotic distribution will be a
good approximation for the (often more complex) actual distribution of the test
statistic. We can then decide whether to reject the null hypothesis based on how
probable the value of the test statistic is, under this asymptotic distribution under
the null hypothesis.

In the context of our 2×2 contingency table, the test statistic will be a function
of the quantities in that table. However, if we intend to determine an asymptotic
distribution, we have to agree on some assumptions on these table quantities.
Many such assumptions are possible, but here we will treat n1· and n2· as fixed,
while we treating x11 and x21 as realisations of two random variables, X11 and X21

respectively. Note that knowledge of x11 and x21, together with n1· and n2· fully
determines the table. In order to say something useful about the asymptotic distri-
bution of the test statistics which will follow, we furthermore assume that X11 and

5
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X21 are binomially distributed with parameters (n1·, θ1) and (n2·, θ2) respectively,
where θ := (θ1, θ2) ∈ Θ := [0, 1]2 are of course unknown. This assumption allows
to rewrite the original research question in the format of a statistical hypothesis
test H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where Θ0 = {(θ1, θ2) ∈ Θ : θ1 = θ2} and
Θ1 = Θ \Θ0, or alternatively

H0 : θ1 = θ2 = θ, H1 : θ1 ̸= θ2, (2.1)

for some unknown θ ∈ [0, 1]. The null hypothesis can be interpreted as the recovery
probability of a patient in group 1 being equal to the recovery probability of
a patient in group 2. That is, the recovery probability does not depend on the
patient receiving the medicine or not. The alternative hypothesis states that the
probabilities of recovery are different per group, i.e., the medicine has an effect on
the healing process.

Although this binomial assumption seems quite natural, one can argue this is
actually quite a strong claim to make. Indeed, recall that for a binomial trial, one
should need a set of independent Bernoulli experiments with the same probability
of success in each experiment. In the context of our medical example, it could be
that the reactions of different patients to the medicine are not entirely independent;
perhaps some patients are relatives. Besides that, the probability of recovery of a
given patient, in so far that we can speak of one, might not be the same for each
patient. We come back to this in Section 3.6.

That being said, assuming that X11 and X21 have a binomial distribution
anyway, there is a wide array of possible test statistics to choose from. One of
the more popular test statistics is Pearson’s chi-square test statistic [2]. As a
general goodness-of-fit test, it is perfectly suited for the setting of contingency
tables. The test statistic is constructed as the sum over all 4 table cells of the
quantity (O−E)2/E, where O is the observed number of occurrences (so X11, X21,
X12 := n1·−X11 and X22 := n2·−X21), and E the expected number of occurrences
under the null hypothesis (so n1·θ, n2·θ, n1·(1 − θ), and n2·(1 − θ) respectively).
Since θ is unknown, we will estimate it with the maximum likelihood estimator
θ̂ = (X11 + X21)/(n1· + n2·). Later on, we will spend more time on the different
ways to get rid of this unknown θ. Concretely, the above description gives the
following test statistic:

χ2(X11, X21) :=
2∑
i=1


(
Xi1 − ni·θ̂

)2
ni·θ̂

+

(
Xi2 − ni·(1− θ̂)

)2
ni·(1− θ̂)

, (2.2)

which can be written more compactly as

χ2(X11, X21) =
(X11X22 −X12X21)

2n··

n1·n2·n·1n·2
(2.3)

[3]. From this expression it is easy to see that whenever n·1 or n·2 is zero, the
denominator is zero and the chi-square test statistic is undefined. If this is the
case, we define χ2(X11, X21) = −∞. For completeness, we mention yet another
representation of writing this chi-square statistic, also often used in the literature,
referred to as the squared Z-pooled statistic [4], or squared Z statistic with pooled
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variance estimator.

Z2
p(X11, X21) :=

(
X11

n1·
− X21

n2·

)2
X11+X21

n1·+n2·

(
1− X11+X21

n1·+n2·

)(
1
n1·

+ 1
n2·

) . (2.4)

It is also worth mentioning that there exists a Z statistic with unpooled variance
estimator as well, given by

Z2
u(X11, X21) :=

(
X11

n1·
− X21

n2·

)2
1
n1·

· X11

n1·

(
1− X11

n1·

)
+ 1

n2·
· X21

n2·

(
1− X21

n2·

) . (2.5)

We will encounter this variant later on. It can be shown, under the further as-
sumptions that X11 and X21 are independent, that χ2(X11, X21) = Z2

p(X11, X21)
converges in distribution to a chi-square distribution with one degree of freedom
under the null hypothesis, whenever n1·, n2· → ∞ such that the ratio n2·/n1· con-
verges to a positive constant [5]. That is, n1· and n2· grow to infinity at the same
rate.

Based on this convergence result, it is straightforward to construct a test. The
chi-square test consists of computing the value of the test statistic χ2(x11, x21) for
the observed value of X = (X11, X21). The larger the value of χ2(x11, x21), the
less probable it becomes that this value could have been observed from a random
sample from the χ2

1-distribution 1. We therefore reject the null hypothesis at a
predetermined significance level α ∈ [0, 1] if χ2(x11, x21) lies in the critical region
Kα := [χ2

1,1−α,∞), where χ2
1,1−α is the 1− α-quantile of the χ2

1-distribution. This
is of course the classical Neyman–Pearson approach to hypothesis testing. We first
fix the significance level α ∈ [0, 1], choose an appropriate test statistic T (X), in
this case χ2(X), and then choose the critical region Kα such that the probability of
making a Type I error (wrongly rejecting H0) is at most α, i.e. supθ∈Θ0

β(θ) ≤ α,
where β(θ) := Pθ(T (X) ∈ Kα) is the power function. This function is ideally 0,
if θ ∈ Θ0, and 1, if θ ∈ Θ1. This is of course never possible due to randomness.
Ensuring that the probability of making a Type I error is always bounded by α,
we can then make Kα as large as possible in order to minimise the probability
of a Type II error (wrongly not rejecting H0). Finally, as a way to quantify the
evidence against H0, we can define the p-value corresponding to an observation
x = (x11, x21) as

pT (x) := inf {α ∈ [0, 1] : T (x) ∈ Kα}, (2.6)

which the smallest significance level for which we would reject H0 [6].
We can also look at the Neyman–Pearson approach to hypothesis testing

slightly differently. Instead of constructing the critical region for a given signi-
ficance level and rejecting H0 if the observed value of the test statistic lies within

1One can convince oneself that χ2(x11, x21) will be large whenever x11/n1· and x21/n2· are
far apart, indicating that there might be a difference between θ1 and θ2. This also explains why
we set χ2(x11, x21) = −∞ whenever χ2(x11, x21) is undefined. Realise that this only happens
when we have x11 = x21 = 0 or x11 = n1· and x21 = n2·. In both cases, the corresponding table
does not provide strong evidence against the null hypothesis, and so we want the test statistic
value to be as small as possible in order to avoid rejection when we observe such a table. Note
that we might just as well have defined χ2(x11, x21) as any negative number instead.
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this critical region, we can also design tests based on the p-value. This perspective
will turn out rather useful later on. Given an observation x, we can equivalently
define the p-value as

pT (x) := PH0(T (X) ≥ T (x)), (2.7)

in the case that we would reject the null hypothesis for large values of T (as
is the case with the chi-square test). We would now reject H0 if pT (x) ≤ α.
This observation allows us to think of the p-value itself as a test statistic (and
consequently of pT (X) as a random variable). We can thus turn our original test
(T,Kα) into a p-value test (pT , [0, α]), where we reject H0 whenever pT (x) ≤ α.
In order for this p-value test to have significance level α, we should require the
p-value to be valid.

Definition 2.1. A p-value p(X) is called valid if, for all α ∈ [0, 1] and all θ ∈ Θ0,

Pθ(p(X) ≤ α) ≤ α (2.8)

[7].

Notice the abuse of notation we will employ throughout Chapter 2: Pθ(A)
indicates the probability of event A under the assumption that θ1 = θ2 = θ.
Saying that (2.8) should hold for all θ ∈ Θ0 is thus the same as saying it should
hold for all θ ∈ [0, 1]. A p-value that is valid automatically has a number of nice
properties which we will state the moment we need them.

Apart from that, the p-value test perspective is very convenient in the discrete
setting of contingency tables. As long as we are able to rank the table outcomes
from less probable to most probable under the null hypothesis (whatever that
may mean), we can compute the p-value of an observation x as the sum of the
occurrence probabilities of each table outcome more extreme than x. As we will
see later, this is the main idea behind the unconditional tests. Before we get there
though, let us first see how we can improve on the bad approximation by the
asymptotic testing approach.

The most evident objection against the classical, asymptotic approach is that
the approximation by the asymptotic distribution might not be justified when the
samples remain small. This might in particular lead to the probability of making
a Type I error being larger than α, or in terms of the p-value: the p-value not
being valid. The poor asymptotic approximation is illustrated by Brataas [8], who
mentions that when the group sizes shrink to around 5, the approximation breaks
down. A similar order of magnitude is indicated by Fisher [9], who states that, as
a rule of thumb, one should not employ the asymptotic test whenever the expected
number in each cell of the table is less than 5. Yates [10] investigated how well
the χ2 distribution approximated the exact distribution, which we will derive in
the next Section. He noted that the “discrepancies are primarily due to the fact
that χ is a continuous distribution, whereas the distribution it is endeavouring to
approximate is discontinuous”. To this end, Yates suggests to use the continuity-
corrected test statistic

χ2
c(X11, X21) :=

(
|X11X22 −X12X21| − 1

2
N
)2
n··

n1·n2·n·1n·2
, (2.9)

and shows by examples that this continuity correction leads to a far better ap-
proximation of the exact distribution, in particular for tables where θ1 = θ2 = θ
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close to 1/2. As we will see in Chapter 5, the chi-square test with Yates’ continu-
ity correction will perform very similarly to the exact test we will see in the next
Section.

2.2 The Exact Conditional Approach: Fisher’s Ex-
act Test

For small sample sizes, a more suitable alternative to the chi-square test with
Yates’ continuity correction might be to use so-called exact methods. They are
exact in the sense that they work with the actual distributions appearing in the
problem, without any large-sample approximations. We will now give a slightly
quicker derivation of Fisher’s exact test, which he originally described in his Stat-
istical Methods for Research Workers [9].

In the setting of Table 1.1, making the binomial assumption, Fisher argues
that under the null hypothesis that θ1 = θ2 = θ, the probability of x11 successes
in group 1 is (

n1·

x11

)
θx11(1− θ)x12 . (2.10)

Mutatis mutandis, the same expression can be written for the probability of x21
successes in group 2. Consequently, Fisher states that the probability of observing
Table 1.1 is simply the product

Pθ(X = x) =

(
n1·

x11

)(
n2·

x21

)
θn·1(1− θ)n·2 (2.11)

In his derivation, Fisher implicitly assumed that the (n1·, n2·)-margin is fixed,
something which need not be the case when looking solely at Table 1.1 without
any further context, as we will see in Section 2.3.

Fisher now realised that in order to get rid of the unknown parameter θ, the
factor θn·1(1−θ)n·2 should be the same for all tables with the same (n·1, n·2)-margin.
Therefore, the probability of a given table outcome (X11 = x11, X21 = x21) (note
how this fully determines the table if (n1·, n2·) is fixed), conditional on the value
of the (n·1, n·2)-margin and under the null hypothesis, is given by

Pθ(X11 = x11, X21 = x21 | X11 +X21 = n·1)

=
Pθ(X11 = x11, X21 = n·1 − x11)

Pθ(X11 +X21 = n·1)

=

(
n1·
x11

)(
n2·

n·1−x11

)
θn·1(1− θ)n··−n·1(

n··
n·1

)
θn·1(1− θ)n··−n·1

=

(
n1·
x11

)(
n2·

n·1−x11

)(
n··
n·1

) . (2.12)

In the second equality, we used that the sum of two binomially distributed random
variables with number of trials n and m and with the same success probability θ
is again binomial with number of trials n+m and success probability θ.

Notice how Pθ(X11 = x11, X21 = x21 | X11 +X21 = n·1) no longer depends on
θ, so we can just write P (X11 = x11, X21 = x21 | X11 +X21 = n·1) instead. In other
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words, the test statistic T (X) = X11 +X21 is sufficient for θ. This could have also
been seen directly by the factorisation theorem. Indeed,

Pθ(X = x) = gθ(T (x))h(x) = θT (x)(1− θ)n··−T (x) ·
(
n1·

x11

)(
n2·

x21

)
.

The conditional exact test now uses the probability (2.12), which is the probability
mass function of the hypergeometric distribution with parameters (n··, n1·, n·1), for
all further inference.

The issue of how to define p-values in the case of the two-sided test (2.1) comes
with an entire history of discussion of its own [3]. For a two-sided p-value we want
to somehow add the null probabilities of tables that are more extreme than or
just as extreme as the observed table. However, since the null distribution is the
hypergeometric distribution, which is discrete and potentially asymmetric, how
we can we define these more extreme tables? Several definitions exist based on
how one answers this question [11]. However, all these definitions will have the
following form:

pF (x) = pF (x11, x21) =
∑
i∈Ex

P (X11 = i | X11 +X21 = n·1), (2.13)

where n·1 = x11 + x21, where P (X11 = i | X11 +X21 = n·1) is given by (2.12) and
where the set Ex of outcomes contains all table outcomes for x11 that can be seen
as more extreme than x11. It is this set Ex that varies across definitions.

One possibility is to define Ex as the set of all table outcomes which have a null
probability that is smaller than or equal to the null probability of x = (x11, x21).
That is,

Ex := {i ∈ {0, . . . , n1·} : T (i, n·1 − i) ≤ T (x11, x21)},
where

T (x11, x21) = P (X11 = x11 | X11 +X21 = n·1)

This is the definition used in the R implementation of Fisher’s exact test. Note
that we can view T as a test statistic for Fisher’s exact test, such that we reject
the null hypothesis when observing x such that T (x) is small.

An alternative has been proposed by Mehrorta, Chan and Berger [12]. A table
outcome would now be defined as more extreme than x if the null probability of
ending up as far or further down the tail of the distribution (either in the left or
the right tail) than that outcome is smaller than that same probability for the
outcome x. More concretely, we again have

Ex := {i ∈ {0, . . . , n1·} : T (i, n·1 − i) ≤ T (x11, x21)},

but now with

T (x11, x21) := P (X11 ≤ x11 | X11 +X21 = n·1) ∧ P (X11 ≥ x11 | X11 +X21 = n·1).
(2.14)

Once again, we can view T as a test statistic for which small values will lead to
rejection of H0. The set Ex is thus nothing else than the collection of tables which
have a test statistic value smaller than or equal to the test statistic value of the
observed x, for some test statistic. With this in mind, it is possible to show an
important result we will use later on, namely that Fisher’s exact test produces a
valid p-value.
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Proposition 2.2. The Fisher p-value defined in (2.13) is valid.

To show this, we will make use of the following result, which is stated as Theorem
8.3.27 and proven in Casella and Berger [7].

Lemma 2.3. Let T (X) be a test statistic such that large values of T give evidence
that H1 is true. For each sample point x,

p(x) := sup
θ∈Θ0

Pθ(T (X) ≥ T (x)) (2.15)

is a valid p-value.

This lemma is very useful, as it directly proves the validity of a whole class of
p-values, so-called supremum p-values or more formally p-values obtained via the
supremum method (where we maximise with respect to the nuisance parameter).
In Section 2.4, when we want to get rid of the unknown parameter θ without
conditioning, we will make use of such p-values.

Proof of Proposition 2.2. Using the test statistic for Fisher’s exact test defined in
(2.14), the Fisher p-value (2.13) for a table outcome x = (x11, x21) can be written
as

pF (x1, x2) =
∑
i∈Ex11

P (X11 = i | X11 +X21 = n·1)

=
∑

T (i,n·1−i)≤T (x)

P (X11 = i | X11 +X21 = n·1)

= P (T (X) ≤ T (x) | X11 +X21 = n·1).

Clearly, since we no longer have a dependence on θ, we can write

pF (x1, x2) = sup
θ∈[0,1]

P (T (X) ≤ T (x) | X11 +X21 = n·1).

Although Lemma 2.3 only speaks of test statistics which reject H0 for large values
of the test statistic, it trivially generalises to test statistics T (X) that reject H0 for
small values too, by using −T (X) in the proof. Also conditioning on X11 +X21 =
n·1 does not alter the result, T (X) merely has a different distribution than the
unconditional distribution, but the validity of this supremum p-value still holds.
We conclude that pF (X) is a valid p-value, given that X11 + X21 = n·1. That is,
for all α ∈ [0, 1] and all θ ∈ Θ0,

Pθ(pF (X) ≤ α | X11 +X21 = n·1) ≤ α.

Of course, this is true for all n·1 = 0, . . . , n··. Hence, this “conditional validity”
can easily be shown to lead to the unconditional validity of pF (X). Indeed, for all
α ∈ [0, 1] and all θ ∈ Θ0, we have by the law of total probability that

Pθ(pF (X) ≤ α) =
n··∑

n·1=0

Pθ(pF (X) ≤ α | X11 +X21 = n·1)Pθ(X11 +X21 = n·1)

≤
n··∑

n·1=0

αPθ(X11 +X21 = n·1)

= α,

where we used the conditional validity of pF (X) in the second line.
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2.3 Intermezzo: Contingency Tables as Outcomes
from Urn Experiments

The key observation to make with Fisher’s exact test is that by considering both
margins of the table fixed, we remove any dependence on θ. Barnard remarks
that based on the contingency table alone, it is possible to form several different
abstract pictures [13].

2.3.1 The Independence Trial

One of these is the one implicitly assumed by Fisher’s exact test. To put it in
Barnard’s words, this test corresponds to an experiment where we have n1· balls
marked with 1, and n2· balls marked with 2. These n·· = n1· + n2· balls are put
into an urn. Afterwards, they are withdrawn randomly from the urn and placed
one by one in a row of n·· boxes, n·1 of which are marked by “Success” and n·2
by “No Success”. Realise that for this experiment to be executed it is necessary
to know both (n1·, n2·) and (n·1, n·2) beforehand. With this picture in mind, the
probability of Table 1.1 occurring is, just as we saw with the derivation of Fisher’s
test, equal to (

n1·

x11

)(
n2·

x21

)
(
n··

n·1

) . (2.16)

Indeed, the numerator is the exact number of ways in which we can choose x11 out
of the n1· balls marked 1 and x21 out of the n2· balls marked 2, which we divide by
the denominator; the total number of ways in which we can label n·1 out of n·· boxes
with the label “Success”. This is nothing else than the probability of observing
Table 1.1, conditional on the fact that we should have n·1 “Success” boxes. Barnard
called this experiment the 2× 2 independence trial. Notice that although (2.16) is
the same expression as (2.12), the way we reached those expressions was different
in both cases. In the derivation of (2.12), we assumed the existence of the constant
success probabilities θ1 and θ2 in the two respective groups. However, we made no
such assumption in order to derive (2.16). As Barnard puts it in a later paper,

“The 2×2 independence trial, by contrast, is concerned with a situation
where we have a collection of experimental units allocated at random
into two categories and we observe whether or not a feature such as
“cured” arises just as often in the one category as in the other.” [14]

The introduction of the success probabilities θ1 and θ2 was mostly done in order
to illustrate how Fisher’s exact test does not have to deal with any nuisance
parameters. However, it is clear from the above that we do not need to assume
such constant success probabilities in order to use Fisher’s exact test. We will
return to this in Section 3.5.

2.3.2 The Double Dichotomy

Another abstract picture we can draw, called the double dichotomy by Barnard,
consists of one urn, containing balls with two labels each. The first label is either
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1 or 2, and the second label is either “A” or “B”. We drop the “Success” / “No
Success” labels for this setting in order to stress that contingency tables could also
arise from an experiment where we are testing the association of two properties,
instead of comparing the amount of successes between two groups. An example
could be testing whether there is a relation between sex and handedness, in which
case “Success” / “No Success” is a less appropriate labelling. If we suppose there is
a “very large” number of balls in the urn, and the proportion of balls labelled “1A”
(or “1B”, “2A”, “2B”) is given by θ1A (or θ1B, θ2A, θ2B), the probability of observing
Table 1.1 is then just given by the multinomial expression

n··!

x1A!x1B!x2A!x2B!
θx1A1A θx1B1B θx2A2A θx2B2B , (2.17)

where we should substitute (x11, x12, x21, x22) by (x1A, x1B, x2A, x2B). Note that
this picture corresponds to fixing none of the table margins beforehand. We have
no idea what x1A + x1B and x1A + x2A will be before we start the experiment.
Again, realise that we are making a similar binomial (or in this case multinomial)
assumption, by considering a very large number of balls. Like so, withdrawing a
number of balls from the urn (without replacement!) does not alter the proportions
θ1A, θ1B, θ2A or θ2B significantly during the experiment.

2.3.3 The Comparative Trial

Finally, it should not come as a surprise that the final abstract picture one can
draw from the contingency table is the one where exactly one table margin is
fixed. This received the name of “2×2 comparative trial” by Barnard. In this case
the fixed margin is always the sample size margin, i.e. the (n1·, n2·)-margin. This
picture corresponds to the medical experiment we described at the start of this
chapter. As we will see later on, it is this picture that will serve as the basis for
Barnard’s CSM test, which is an exact unconditional test. Let us consider two urns,
one marked 1 and one marked 2. Each urn contains again a “very large” number of
balls (such that n·· drawings without replacement does not alter the experiment
conditions), either marked “Success” or “No Success”. We draw at random n1·
balls from urn 1 and n2· balls from urn 2 (fixing the (n1·, n2·) margin), and count
afterwards for each urn how many balls are labelled “Success”. If we denote by θ1
and θ2 the respective proportions of “Success” balls in urns 1 and 2, the probability
of ending up with Table 1.1 is given by(

n1·

x11

)
θx111 (1− θ1)

n1·−x11
(
n2·

x21

)
θx212 (1− θ2)

n2·−x21 . (2.18)

Notice that in the derivation of Fisher’s exact test, we also used this abstract
picture at first, after which we conditioned on the second margin to finally end up
with (2.16).

For the sake of completeness, regarding the nomenclature, it is worth noting
that the name “comparative trial” is not deemed correct by everyone. Yates [3]
states that in a – medical – comparative trial, individuals need not to be chosen at
random from a larger population. They can instead be chosen specifically because
they are deemed as suitable test subjects. Yates argues that in the experiment that
Barnard calls a “comparative trial”, the two groups under consideration are in fact
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samples from two larger populations, and prefers to call that experiment “samples
from two binomials”. In this text, we will however stick with the terminology
adopted by Barnard.

From Equations (2.16), (2.17) and (2.18), we see that depending on how we read
the contingency table, we end up with different probabilities of observing a given
table outcome. This should of course not come as a surprise, as the three mentioned
equations represent a completely different experiment. One might perhaps expect
that depending the type of experiment performed, one should choose the according
“urn-and-balls model” and base all further inference based on this. However, this
touches upon the very essence of the debate we will describe in Chapter 3. We will
therefore let this issue rest for a moment, and first introduce the test Barnard has
built based on this last abstract picture; where the (n1·, n2·) table margin is fixed.

2.4 The Exact Unconditional Approach: Barnard’s
CSM Test

The CSM test, introduced by Barnard [13], considers the “comparative trial” we
described in Section 2.3.3. In that setting, we made once again a binomial assump-
tion, such that θ1 and θ2 can be interpreted as the binomial success probabilities
for each of the groups. The null and alternative hypotheses of the CSM test are
just as in Equation (2.1); we want to test whether or not the two groups have
the same success probability θ1 = θ2 = θ. Barnard’s idea is to order all possible
table outcomes, from the most incompatible with the null hypothesis, in some
sense, to the most compatible with the null hypothesis. A table outcome can be
incompatible with the null hypothesis, in the sense that if we assume the null
hypothesis to be true, it is highly improbable for that particular table outcome to
occur. By creating an ordering of the possible table outcomes, we can construct
a p-value test, as we described in 2.1. Indeed, to put it in the classical setting of
hypothesis testing, we did nothing else than constructing a test statistic T (X) for
X = (X11, X21) the number of successes in groups 1 and 2, and then compute the
p-value as the probability under the null hypothesis of obtaining a more extreme
value of that test statistic. For a table outcome X = x, the test statistic takes the
value T (x) ∈ N, which is the rank of x in the ordering. A more extreme value of
T (X) is a smaller value of T (X), since more extreme table outcomes come earlier
in the ordering. Thus, for an observation x, we can look at its (two-sided) tail
probability pθ(x) = Pθ(T (X) ≤ T (x)). Since we are working in a discrete set-
ting, computing this probability amounts to enumerating over all possible table
outcomes y with T (y) ≤ T (x), i.e.

pθ(x) =
∑

T (y)≤T (x)

Pθ(X = y). (2.19)

Under the null hypothesis, we can easily compute how probable it is for a
certain table outcome y = (y11, y21) to be observed; this is nothing else than
Equation (2.18) with θ1 = θ2 = θ, i.e.

P (y; θ) := Pθ(X = y) =

(
n1·

x11

)(
n2·

x21

)
θn·1(1− θ)n·2 . (2.20)



CHAPTER 2. TESTS ON 2× 2 CONTINGENCY TABLES 15

Normally, the corresponding p-value test would simply amounts to rejecting the
null hypothesis whenever pθ(x) is smaller than the given significance level α. How-
ever, we cannot refer to pθ(x) as a p-value, since it is still a function of the unknown
parameter θ.

2.4.1 Constructing the ordering

We want to concretely define how to order the table outcomes. What do we mean
by saying that y is a more extreme observation than x, i.e. T (y) ≤ T (x)? We
would like to say that a table outcome is extreme if its occurrence probability
(under H0) P (·; θ) is small. Saying that y is more extreme than x then means that
P (y; θ) ≤ P (x; θ). However, P (·; θ) is a function of θ ∈ [0, 1], which is unknown to
us. Consequently, pθ(x) in (2.19) is actually also a function of θ. If we would have
set ourselves a significance level α, it can now occur that we might reject the null
hypothesis H0 : θ1 = θ2 = θ only for values of θ within a certain interval such that
pθ(x) ≤ α, while our test would remain inconclusive for θ outside that interval.
Barnard mentions that maybe some day, researchers will be happy with a result
such as (2.19). He also mentions however that this is not yet the case, and that we
should instead strive to somehow translate pθ(x), and thus the P (·; θ)-functions
into something independent of θ, such that we can get a straightforward “reject/do
not reject”-statement at a given significance level [13].

Thus, how can one rank functions, in the presence of the so-called nuisance
parameter θ? Barnard proposes to make use of certain functionals of P (·; θ), which
would remove the dependence on θ. These functionals should be such that if
P (x; θ) < P (y; θ) for all θ ∈ [0, 1] and some table outcomes x,y, the functional
applied to P (x; θ) should give a smaller number than the functional applied to
P (y; θ). In his paper, Barnard eventually suggests to maximise the sum of the
most extreme P (·; θ)-functions as given in (2.19). Instead of (2.7), which assumes
we do not have to deal with a nuisance parameter, our new p-value would then be

p(x) = sup
θ∈[0,1]

pθ(x) = sup
θ∈[0,1]

∑
T (y)≤T (x)

P (y; θ) = sup
θ∈[0,1]

Pθ(T (X) ≤ T (x)). (2.21)

Notice that this is p-value has the same form as the one in defined in (2.15);
p(X) is a valid supremum p-value by Lemma 2.3. We have now answered our
original question of how to define an ordering based on functions of the unknown
nuisance parameter with another question. How do we define an ordering based
on a maximum over these functions of the unknown nuisance parameter? Barnard
introduced a number of additional conditions in order to decide how to sequentially
build up the ordering. Before we discuss these here however, we want to show that
we can create an ordering without these conditions, purely using what we have
seen so far and one guiding principle. This will essentially tell us that Barnard’s
conditions, although quite intuitive, are just a matter of choice, and could easily
be replaced by some other set of conditions, or could just be removed altogether.
The only guiding principle we will need for now is that we want pθ(x) to be a
function of θ that is as constant as possible. Indeed, ideally we would have no
dependence on θ and then pθ(x) would be just a flat line as a function of θ, such
that we can reject/not reject the null hypothesis for all values of θ ∈ [0, 1], and
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not just for an interval. Since p(x) = supθ∈[0,1] pθ(x), if pθ(x) is as flat as possible,
we will have intuitively that p(x) ≈ pθ(x) for all θ ∈ [0, 1].

Based on this guiding principle, we can now construct our ordering inductively.
Suppose we have already ordered k table outcomes x(1), . . . ,x(k). For the remaining
outcomes, we can then compute what their potential p-values would be if they
would be the next outcome in the ordering. As the actual next outcome in the
ordering, we then choose the one which yields the smallest potential p-value, i.e.

x(k+1) = argmin
y∈Ω\{x(1),...,x(k)}

sup
θ∈[0,1]

{
P (y; θ) +

k∑
i=1

P
(
x(i); θ

)}
, (2.22)

where Ω := {x = (x11, x21) ∈ Z2 : 0 ≤ x11 ≤ n1·, 0 ≤ x21 ≤ n2·} is the set of all
possible table outcomes. In case of multiple table outcomes having the same smal-
lest potential p-value, we must come up with some tie-breaker rule, for which
we refer the reader to Sections 2.5.1 and 2.5.2. What we have essentially done is
computed for each outcome how pθ(y) would look like as a function of θ if that
outcome would be the next in the ordering. We then chose the next outcome in
the ordering as the outcome for which pθ(y) is the flattest function of θ. Indeed,
saying that the outcome y which had the smallest possible maximum value for
pθ(y) = P (y; θ) +

∑k
i=1 P

(
x(i); θ

)
, is the same as saying that pθ(y) is the flattest

possible function of θ. Although not a proof, this idea is illustrated in Figure 2.1.
In the leftmost plot, one can see pθ(x(1)) = P (x(1); θ) up to and including

pθ(x(7)) as functions of θ. Only the top one, pθ(x(7)), is indicated. The maximum
of this curve, p(x(7)), is indicated by the dotted line. So far, this is our ordering.
We are now considering two possible candidates to be next in the ordering, y1

and y2. In order to decide which one is next, we compute the what the functions
pθ(y1) = pθ(x(7)) + P (y1; θ) and pθ(y2) = pθ(x(7)) + P (y2; θ) would look like if we
would choose one of them as the next outcome in the ordering. The maximum of
pθ(y1) is around 0.6, and the maximum of pθ(y2) is 1. Therefore, we set y1 = x(8).
Clearly, pθ(y1) is a much flatter function of θ compared to pθ(y2). We can now
repeat this procedure in order to find x(9) and so on. Note that at the end, we will
have gone through all possible outcomes, so our stack of curves will have filled up
the entire plot.

Figure 2.1: Plots of how pθ(·) would look like if y1 (middle) or y2 (right) was
to be chosen as the next table in the ordering, where until now the first seven
outcomes (left) have been determined.

Note that this smallest potential p-value also becomes the actual p-value for
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x(k+1), i.e. p(x(k+1)) = p(y1). This is indicated by Figure 2.1, which visualises pθ(·)
as the sum of the P (·, θ)-functions, which are represented by the different curves
stacked on top of each other. For example, in the leftmost plot, the highest curve
represents θ 7→ pθ(x(7)); it is the sum of P (x(1); θ) up to P (x(7); θ). The six curves
below indicate – from lowest to highest – the functions pθ(x(1)) = P (x(1); θ) up to
and including pθ(x(6)).

Using (2.22), we are now able to order all possible table outcomes. Note that
setting k = 0 yields x(1), the outcome y ∈ Ω which has the smallest value for
supθ∈[0,1] P (y; θ). In terms of the test statistic T (X), we set T (x(k)) = k, for each
possible value of k ∈ Z (which is larger than 0 and at most (n1· + 1)(n2· + 1), but
possibly less if different table outcomes have the same maximum).

2.4.2 The C and S conditions

Realise that in order to build up the entire ordering, we need to repeat the above
procedure until we have considered all table outcomes in Ω. Thus, in order to
find x(k+1), we need to compute and maximise P (·; θ) + pθ(x(k)) a total of at
most |Ω| − k times. If we could somehow limit the amount of possible candidates
for which we would need to do this procedure at each step, we would speed it
up a lot. Barnard, who only had the computational power of the 1940s at his
disposal, has done just that [13]. He introduced two conditions; the convexity
(C) condition and the symmetry (S) condition, that would significantly reduce
the set of candidates in which we should look to find the next outcome in the
ordering. Together with the procedure we just described, which Barnard called
the maximisation (M) condition, this resulted in Barnard’s test; the CSM test.

In order to best explain the C and S conditions, we will represent the table
outcome space Ω as a lattice. Indeed, given (n1·, n2·), Table 1.1 is uniquely determ-
ined if we know the pair (x11, x21). We can therefore summarise all possible table
outcomes in a grid containing (n1· + 1)× (n2· + 1) points, just like Figure 2.2.

Figure 2.2: Sample space of a 2×2 contingency table with n1· = 7 and n2· = 5.

Let us start with the symmetry (S) condition. Let n1· = 7 and n2· = 5, and
consider for a moment the outcome x = (2, 4), which is the upper-left point marked
with a black diamond in the grid. This point corresponds to a contingency table
with x11 = 2 successes in group 1 and x21 = 4 successes in group 2. Barnard
argues that observing this table should provide the same evidence against the null
hypothesis as a table with n1· − x11 = 5 successes in group 1 and n2· − x21 = 1
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successes in group 2, i.e. the table where we interchanged successes and failures.
Indeed, one could argue that instead of testing θ1 = θ2, we are testing 1 − θ1 =
1−θ2. Therefore, the two points indicated by a black diamond in Figure 2.2 should
receive the same rank in the ordering. Remark that we can also have a different
type of symmetry in the case that n1· = n2·. For example, if n1· = n2· = 5 the
outcome (2, 1) would provide the same evidence against the null hypothesis as
(3, 4) due to the S condition, but also as (1, 2) (and by the S condition also as
(4, 3)). This is because we could interchange the labels of group 1 and group 2,
which would yield the same conclusion in the case that the alternative hypothesis
is H1 : θ1 ̸= θ2.

The other condition Barnard imposed was the convexity (C) condition, which
states that if the table (x11, x21) lies above the diagonal connecting the outcomes
(0, 0) and (7, 5), all tables (y11, y21) with y11 ≤ x11 and y21 ≥ x21 (at least one
strict inequality) should receive a lower rank than (x11, x21). If (x11, x21) lies below
the diagonal connecting the outcomes (0, 0) and (7, 5), all tables (y11, y21) with
y11 ≥ x11 and y21 ≤ x21 (at least one strict inequality) should receive a lower
rank than (x11, x21). The idea here is that, say, for the point (2, 4), the points
(1, 4) and (2, 5) should be stronger evidence against the null hypothesis than (2, 4)
itself. This is because these two points indicate a wider difference in the amount
of successes of both groups. If in one group we observe even less successes than we
already had, and in the other one more, we are intuitively more inclined to reject
the null hypothesis that θ1 = θ2. By a transitivity argument, it should be clear
that all points in the upper-left quadrant of (2, 4) should be considered as more
incompatible with the null hypothesis than (2, 4). Due to the symmetry condition,
the same can be said to all points in the lower-right quadrant of (5, 1). All these
points are marked with empty diamonds in Figure 2.2.

Barnard’s CSM ordering can now be found in exactly the same way as the first
ordering method we presented, except that now, by symmetry, we only need to
look at the upper-left triangle of points in Figure 2.2, as the outcomes in the lower
triangle will get the same rank as their respective symmetric counterparts. Then,
by convexity, rank 1 should be given to the most upper-left point. From there, to
determine which outcome should be next, we only need to consider the unordered
points such that their nearest upper or left neighbour is already ordered. In this
fashion, we slowly fill up the table with p-values starting from the (0, 5) and (7, 0)
towards the diagonal between (0, 0) and (7, 5). We no longer need to compute
P (y; θ) + pθ(x(k+1)) at each step for each table outcome y which has not yet been
given a rank, but only for the outcomes which we have to consider by the C and
S conditions.

Note that we can also choose to omit either the C or the S condition to construct
an ordering. In the case of omitting the C condition, this entails that each time
we want to assign the next rank, we should look through all points in the upper
triangle of the outcome space which have not been ranked yet. If we were to omit
the S condition, we would have to look at both the upper and lower triangle of the
outcome space; starting from the corners and working our way towards the main
diagonal connecting (0, 0) and (n1·, n2·). In the upper triangle, we only look at
the points that have already ordered upper or left neighbours, while in the lower
triangle we only consider the points of which the lower or right neighbours are
already ranked. In Figure 2.3, the way in which we go through the outcome space is
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visualised for the four ranking methods we considered so far; applying both C and
S (2.3a), only C (2.3b), only S (2.3c) and applying neither C nor S (2.3d). In each
lattice, we indicate all points we have already ordered by their respective ranks,
and the points that we would consider next for the ordering by ×. The next point
in line will be chosen according to (2.22). Of course, if the S condition is applied, we
replace the term P (x11, x21; θ) by the term P (x11, x21; θ)+P (n1·−x11, n2·−x21; θ) in
(2.22), as we group a point and its symmetric counterpart together in the ordering.

Thus, to recap, in Figure 2.3a, we apply both the C and the S conditions, we
fill up the grid from both the (0, 5) and (7, 0) corners, giving each symmetric pair
the same rank. Hence, both the “upper” and “lower” part will always contain the
same number of grid points. In Figure 2.3b, we remove of the symmetry condition,
so we no longer need to group symmetric points together. We thus have to look
at both the upper-left points and lower-right points as completely separate. This
is also the case in Figure 2.3d, except that now we also remove the convexity
condition and so do not longer restrict ourselves to points which are adjacent to
the ordered points. Finally, in Figure 2.3c, we only apply the symmetry condition
and so can consider each point in the “upper triangle”. The same ranks will be
given to the respective symmetric counterparts in the “lower triangle”. In practice,
“jumps” as illustrated in Figure 2.3c and Figure 2.3d (rank 6 and 11 respectively)
will be very rare. Even without enforcing the C condition, we will often end up
with an ordering that satisfies the C condition (or at least does not have any of
the aforementioned jumps) anyway.

(a) Apply both C and S. (b) Apply only C.

(c) Apply only S. (d) Apply neither C nor S.

Figure 2.3: Each lattice shows which points we would consider next in our or-
dering according to the applied conditions. These points are indicated by ×.
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2.5 Alternatives to the CSM Ordering
As we have just seen, one can create various unconditional tests by leaving out
the C and/or S condition(s). Essentially, these conditions were only invoked in
order to speed up the process of ordering the set of outcomes. The S condition
furthermore made sure that tables which in our eyes present the same evidence
against H0 receive the same p-value. However, nothing prohibits us from coming
up with different conditions, or even totally different orderings, as long as they are
– in some sense – reasonable. Barnard’s CSM test is in fact just a specific case of a
p-value test, where the p-value is computed using the so-called supremum method.
In such a test, we compute the p-value as

p(x) = sup
θ∈[0,1]

pθ(x) = sup
θ∈[0,1]

Pθ(T (X) ≤ T (x)), (2.23)

where in the case of Barnard’s CSM test, the value of the test statistic T (x) was
the rank of the table outcome x, according to the ordering we constructed for
Barnard’s CSM test. However, we might use any other test statistic too. Note
that if we reject the null hypothesis for large values of the test statistic instead,
we should turn around the inequality in (2.23). We have shown in Lemma 2.3 that
this approach always produces a valid p-value, no matter the chosen test statistic.

2.5.1 The χ2 test statistic

As an example of the supremum method, we could use the chi-square test statistic
χ2(X) defined in (2.2) instead of T (X) in (2.23). For each possible table outcome,
we compute the corresponding test statistic value. Afterwards, as we would reject
the null hypothesis H0 : θ1 = θ2 = θ for large values of χ2(x), we could define
a p-value as in (2.23), with the inequality reversed. This approach has first been
proposed by Suissa and Shuster [15], although they referred to χ2 as Z2

p. They also
mentioned that one can use Z2

u, but showed that if n1· = n2·, using Z2
u gives the

same results as using Z2
p.

The chi-square test statistic can also be used in a different way. In the context
of the CSM test, instead of using the S condition defined earlier, we might also
define another symmetry condition (Sχ) where table outcomes which have the same
χ2-value are grouped together. Note that if two tables are symmetric according to
the S condition, they are also symmetric according to Sχ. Indeed, suppose we have
the symmetric pair x = (x11, x21), y = (y11, y21) = (n1· − x11, n2· − x21), where y
is just Table 1.1 with the columns flipped. That is, y11 = x12, y21 = x22, y12 = x11,
and y22 = x21. But then (2.3) immediately shows that

χ2(x) =
(x11x22 − x12x21)

2n··

n1·n2·n·1n·2
=

(y12y21 − y11y22)
2n··

n1·n2·n·2n·1
= χ2(y).

Similarly, if n1· = n2·, the outcomes z = (z11, z21) = (n·1−x11, n·1−x21) (Table 1.1
with the rows flipped) and w = (n1· − z11, n2· − z21) (Table 1.1 with the rows and
columns flipped) are also deemed as symmetric counterparts of x. Since z11 = x21,
z21 = x11, z12 = x22, and z22 = x12, we then have

χ2(x) =
(x11x22 − x12x21)

2n··

n1·n2·n·1n·2
=

(z21z12 − z22z11)
2n··

n2·n1·n·2n·1
= χ2(z).
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From the equality of χ2(y) and χ2(x), it then trivially follows that χ2(w) = χ2(x)
too. The reverse implication is however not necessarily true; as long as the factor
(x11x22 − x12x21)

2 and the marginal totals remain constant, we might construct
tables which are symmetric to x according to Sχ, but not according to S. A trivial
example of this can be found in the space of tables with (n1·, n2·) = (10, 10) (or
any outcome space with n1· = n2·). Here, all tables with x11 = x21 necessarily also
have x12 = x22 and thus x11x22−x12x21 is automatically zero. Consequently, tables
like (9, 9) and (5, 5), which are definitely not symmetric according to Barnard’s S,
are symmetric according to Sχ. A less trivial example occurs at, amongst others,
(n1·, n2·) = (3, 6). There the tables (1, 5), (2, 6), and (3, 3) all have a chi-square
value of 9/4, but are clearly not symmetric according to S.

Splitting up the set of outcomes into (equivalence) classes of symmetric tables
according to S thus leads to more classes than when splitting according to Sχ.
This has computational implications. The fewer groups of tables one needs to go
through, the faster the maximisation procedure will be. However, also note that
if we have fewer, larger groups of tables, we also have less possible ways in which
to construct a sum of P (·; θ)-functions that is as flat as possible. To make sense
of this intuitively, consider again Figure 2.1. If the symmetry groups are larger,
we will have a small number of “thick layers” which we are able to use to make
a stack of functions that is as flat as possible under the given significance level
α. However, with smaller symmetry groups, we will have a larger number of “thin
layers”, which allows us to “fine-tune” the stack of layers a bit more. This leads
us to expect that in general, symmetry conditions that result in fewer symmetry
groups, will yield in a quicker, but less powerful test, as it will be more difficult to
construct a stack of P (·; θ)-functions as close to α as possible, which potentially
misses out on some power.

A final application of the chi-square test statistic is as a possible tie-breaker.
It could happen that while building up the ordering, we encounter at a certain
point that two possible candidates minimise the supremum in (2.22). In that case,
we could compute the value of the χ2 test statistic for both tables and pick as
the next table in the ordering the one with the largest value. Such a tie happens
for example when ordering the outcome space of 2 × 2 tables with group sizes
(n1·, n2·) = (9, 7). After ordering 34 out of the 40 possible symmetry groups of
tables, there are six candidate groups to be the next one in the ordering and
receive rank 35. Two of these, the tables (x11, x21) = (4, 4) (with its symmetric
counterpart (5, 3)) and (x11, x21) = (5, 4) (with its symmetric counterpart (4, 3))
both reach the same maximum

sup
θ∈[0,1]

{
P ((4, 4); θ) + P ((5, 3); θ) +

34∑
i=1

P
(
x(i); θ

)}
= 0.7865601,

sup
θ∈[0,1]

{
P ((5, 4); θ) + P ((4, 3); θ) +

34∑
i=1

P
(
x(i); θ

)}
= 0.7865601,

which is also the lowest maximum out of the 6 maxima for all possible candidate
groups. We thus have a tie: which of these two groups should receive rank 35? If
we use the chi-square test statistic as a tie-breaker, we first compute the sum of
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test statistic values for both groups,

χ2(4, 4) + χ2(5, 3) = 0.508,

χ2(5, 4) + χ2(4, 3) = 0.008.

Since the group consisting of the tables (4, 4) and (5, 3) has the largest sum of test
statistic values, it is considered as “more extreme” in a chi-square sense. Therefore,
these two tables will receive rank 35.

2.5.2 Using the mean value of P (·; θ)
Another p-value test is inspired on one of the functionals Barnard introduced in
his CSM paper [13]. Although he only considered supθ∈[0,1]

∑
P (·; θ) to get rid of

θ in the rest of his paper, he also mentioned the mean value
∫ 1

0
P (·; θ)dθ. The idea

here is to use to mean value as a measure for how (un)likely a table outcome is
under the null hypothesis. The smaller the mean value, the more extreme the test
outcome. Important to note is that the mean values of the P (·; θ)-functions are
easily computed, as we recognise a beta function with integer arguments:∫ 1

0

P (x; θ)dθ =

∫ 1

0

(
n1·

x11

)(
n2·

x21

)
θn·1(1− θ)n·2dθ

=

(
n1·

x11

)(
n2·

x21

)
B(n·1 + 1, n·2 + 1)

=

(
n1·

x11

)(
n2·

x21

)
n·1!n·2!

(n·· + 1)!
. (2.24)

Apart from basing an ordering solely on this mean value, we can instead, just
as with the chi-square test statistic, use it to determine equivalence classes of
“symmetric” tables. Tables with the same value of (2.24) will be grouped together.
We will refer to this symmetry condition as the SV condition, indicating we are
using the area (or Volume for larger tables as we will see in Chapter 4) under the
P (x; θ)-function. Tables which are symmetric according to Barnard’s S condition
are symmetric according to SV. A small computation can convince the reader
that swapping columns (and rows if n1· = n2·) does not change the value (2.24).
The reverse implication is in general not true, take for example (n1·, n2·) = (4, 3).
Both (3, 3) and (3, 2) have a P (·; θ)-function with mean value 1/14. Furthermore,
this same counterexample can be used to realise that SV does not imply Sχ. The
counterexamples from 2.5.1 also serve as evidence that Sχ does not imply SV either.
However, in the case that n1· = n2·, we do suspect that SV implies S. Although not
a proof, we have confirmed that SV and S yield the same symmetry groups in all
outcome spaces up to n1· = n2· = 150. We will come back to this in Section 4.2.4

Alternatively, we can use this quantity as a tie-breaker as well and choose the
table with the smallest mean value as the next one in the ordering. If we would
apply this method to the tie discussed in Section 2.5.1, we would find that∫ 1

0

P ((4, 4); θ)dθ +

∫ 1

0

P ((5, 3); θ)dθ = 0.040,∫ 1

0

P ((5, 4); θ)dθ +

∫ 1

0

P ((4, 3); θ)dθ = 0.045.

Therefore, we would again assign rank 35 to the tables (4, 4) and (5, 3).
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2.5.3 Boschloo’s test

Let us finish this section with another well-known special case of the supremum
method; Boschloo’s test, which makes use of the p-value of another test as a test
statistic. Originally, this test was designed as an unconditional improvement of
Fisher’s exact test, and is by construction uniformly more powerful than Fisher’s
test [16]. Similar tests have been proposed by MacDonald, Davis and Milliken [17]
and Crans and Shuster [18]. Recall that for Fisher’s exact test, we consider as our
set of possible outcomes, all tables which had the same margin totals. Conditional
on X11 +X21 = n·1, we found that X11 had a hypergeometric distribution. Based
on this, we could then construct the largest possible critical region Kα

n·1 such
that αn·1 := P

(
(X11, X21) ∈ Kα

n·1 | X11 +X21 = n·1
)
≤ α. Consider the example

in Figure 2.4. There we again visualise the outcome space Ω of (X11, X21) with
n1· = 7 and n2· = 5. Suppose we observe the outcome (2, 1) (i.e. n·1 = 3). Then
Fisher’s exact test, for some significance level α, will only consider all outcomes
lying on the dotted line n·1 = 3, and we will end up with the critical region
Kα

3 = {(0, 3)}, as indicated by the black diamond on the n·1 = 3 line.

Figure 2.4: The outcome space Ω for an experiment where X11 and X21 are bi-
nomially distributed with parameters (7, θ1) and (5, θ2) respectively. The diagonal
lines link table outcomes with equal values of n·1.

Boschloo argued that the significance level α is in fact a conditional level, in the
sense that the probability of wrongly rejectingH0, conditional onX11+X21 = n·1 is
at most α. One can also associate an unconditional size α′ with α; the probability of
wrongly rejecting H0 when any arbitrary table outcome is observed (with possibly
another value for n·1, i.e. lying on another dotted line in Figure 2.4). By the law
of total probability, this unconditional size is easily seen to be a function of the
nuisance parameter θ:

α′(θ) = Pθ((X11, X21) ∈ Kα) =
n··∑

n·1=0

αn·1Pθ(X11 +X21 = n·1), (2.25)

where Kα :=
⋃n··
n·1=0K

α
n·1 is the union of all Fisher critical regions, where we

run through all possible values of X11 + X21. In Figure 2.4, this corresponds to
the set of all black diamonds. Boschloo observes from a numerical experiment
that this unconditional size is often much smaller than α, even at its maximum
α′

max := maxθ∈[0,1] α
′(θ). As we will see later, this is in line with the often stated

critique that Fisher’s exact test is very conservative. Boschloo’s idea to increase
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the unconditional size, such that it lies closer to the level α (but still smaller than
α), is to raise the conditional level. That is, by performing Fisher’s exact test at
a higher level, say γ > α, each critical region Kα

n·1 would increase to Kγ
n·1 . In our

example, this raising led to the addition of (3, 0) to the critical region Kα
3 , giving

Kγ
3 = {(0, 3), (3, 0)}. This is indicated in Figure 2.4 by the empty diamond at (3, 0).

Doing this for all values of n·1 gives the larger unconditional critical region Kγ, and
thus also a higher unconditional size. Note that it need not to be the case that each
conditional critical region Kγ

n·1 is strictly larger than Kα
n·1 (recall that we are deal-

ing with discrete distributions!). By numerical computation, Boschloo could find
for a given table the largest value γ′ such that supθ∈[0,1] Pθ

(
(X11, X21) ∈ Kγ′

)
≤ α.

Alternatively, we can write the restriction for γ′ in terms of the Fisher p-value
(2.13). The raised conditional level γ′ is the largest value such that

sup
θ∈[0,1]

Pθ(pF (X11, X21) ≤ γ′) ≤ α. (2.26)

In his paper, Boschloo computed the γ′-values for tables of sample sizes up to 50
[16]. For general tables, finding γ′ would require iteratively raising the conditional
level until a suitable value has been found. However, as mentioned without proof
in [12], it turns out that this method is equivalent to Barnard’s test where the
ordering is determined by the p-values of Fisher’s exact test. The big advantage of
this is that we can write Boschloo’s test as a p-value test, instead of as a procedure
which only returns a critical region. Indeed, in its current form, Boschloo’s test does
not really have a clear-cut p-value, other than maybe the corresponding Fisher p-
value, which we should compare with the raised level γ′ in order to decide whether
or not to reject.

Proposition 2.4. Boschloo’s test of rejecting the null hypothesis whenever pF (x) ≤
γ′, where γ′ is the largest number such that (2.26) holds, is the same test as the
p-value test where we reject H0 whenever pB(x) ≤ α, where

pB(x11, x21) = sup
θ∈[0,1]

Pθ(pF (X11, X21) ≤ pF (x11, x21)). (2.27)

We will call pB(x) the Boschloo p-value. Before beginning with the proof, let
us state a useful property of valid p-values.

Lemma 2.5. Assume that p(X) is a valid p-value. Then p(0) = p(n) = 1, where
0 and n are the table outcomes (0, 0) and (n1·, n2·), respectively.

Proof of Lemma 2.5. Suppose that p(X) is a valid p-value. We will show that
p(0) = p(n) = 1. Recall that a p-value is valid whenever Pθ(p(X) ≤ α) ≤ α for all
θ ∈ [0, 1] and α ∈ [0, 1]. In particular, for θ = 0 and α ∈ [0, 1], P0(p(X) > α) ≥
1− α. However, since P0(X = x) = 1{x=0}, we must have for all α ∈ [0, 1] that

P0(p(X) > α) =
∑
x∈Ω

P0(p(X) > α | X = x)P0(X = x)

= P0(p(X) > α | X = 0) ≥ 1− α. (2.28)

Now suppose that p(0) < 1. Then there exists an α ∈ [p(0), 1). But then, if X = 0,
p(X) ≤ α and so P0(p(X) > α | X = 0) = 0 < 1 − α, which contradicts (2.28).
Thus we need p(0) = 1. Repeating this argument for θ = 1 yields p(n) = 1.
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Proof of Proposition 2.4. Firstly, one key observation should be made. Although
one can vary γ continuously within [0, 1], it suffices to consider only the possible
Fisher p-values as possible values for γ. Indeed, suppose that we have found γ′ such
that it is the largest value such that (2.26) holds. Moreover, let us order the Fisher
p-values corresponding to each possible table outcome in Ω in a sequence p(1) ≤
p(2) ≤ . . . ≤ p((n1·+1)(n2·+1)) = 1. This last inequality follows from Lemma 2.5, and
is a nice property of valid p-values.

Now, if γ′ < p(1), the unconditional critical region would be empty. Hence,
Boschloo’s procedure leads to an empty critical region. By (2.26), we know that
supθ∈[0,1] Pθ

(
pF (X11, X21) ≤ p(1)

)
must be greater than α. For a,b ∈ Ω, we clearly

have

pF (a) ≤ pF (b) ⇐⇒ sup
θ∈[0,1]

Pθ(pF (X) ≤ pF (a)) ≤ sup
θ∈[0,1]

Pθ(pF (X) ≤ pF (b)).

(2.29)
Therefore, if a is such that p(1) = pF (a), we also have that pB(a) is the smallest
possible Boschloo p-value. But then, all the Boschloo p-values are greater than α,
and so the critical region from the supremum method with the Fisher p-values as
test statistic is also empty. Hence the two test procedures yield the same conclu-
sion. Remark that the right-to-left implication in (2.29) is only true because pF (a)
and pF (b) are Fisher p-values themselves, and thus possible values of pF (X). If we
would substitute these two numbers by arbitrary constants c1 and c2, the right-
to-left implication does not hold as we might have p(j) ≤ c2 < c1 < p(j+1) for some
j ∈ {1, . . . , (n1· + 1)(n2·+1)− 1}, such that on the right-hand side we have

sup
θ∈[0,1]

Pθ(pF (X) ≤ c1) = sup
θ∈[0,1]

Pθ(pF (X) ≤ c2),

while c1 > c2.
If γ′ were to be 1, that would mean that the whole sample space would be

the unconditional critical region. By (2.26), since pF (X11, X21) ≤ 1 no matter the
value of θ, we would realise that γ′ = 1 only occurs if α = 1 too. In this case both
Boschloo’s procedure and Barnard’s test with the Fisher p-value ordering lead to
the same critical region, being the whole sample space, as all p-values are always
smaller than or equal to 1.

Therefore, let us disregard these two trivial cases and suppose that γ′ ∈ [p(1), 1).
We can then find k ∈ {1, . . . , (n1· + 1)(n2· + 1)− 1} such that p(k) ≤ γ′ < p(k+1).
But then, since the outcome space is discrete, we clearly have for all θ ∈ [0, 1] that

sup
θ∈[0,1]

Pθ(pF (X11, X21) ≤ γ′) = sup
θ∈[0,1]

Pθ
(
pF (X11, X21) ≤ p(k)

)
,

and that

sup
θ∈[0,1]

Pθ(pF (X11, X21) ≤ γ′) < sup
θ∈[0,1]

Pθ
(
pF (X11, X21) ≤ p(k+1)

)
,

since x(k+1) has a nonzero probability of being observed for θ ∈ (0, 1). By (2.26), we
also know that supθ∈[0,1] Pθ

(
pF (X11, X21) ≤ p(k+1)

)
> α. Consequently, we might

just as well use p(k) as our raised conditional significance level instead of γ′, as it
will include exactly the same amount of table outcomes in the critical region.
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However, the above means that if we observe an outcome x, we will reject the
null hypothesis using Boschloo’s procedure if and only if:

pF (x) ≤ γ′ = max

{
γ : sup

θ∈[0,1]
Pθ(pF (X) ≤ γ) ≤ α

}

⇐⇒ pF (x) ≤ max
y∈Ω

{
pF (y) : sup

θ∈[0,1]
Pθ(pF (X) ≤ pF (y)) ≤ α

}
⇐⇒ ∃y ∈ Ω : pF (x) ≤ pF (y) and sup

θ∈[0,1]
Pθ(pF (X) ≤ pF (y)) ≤ α

⇐⇒ pB(x) = sup
θ∈[0,1]

Pθ(pF (X) ≤ pF (x)) ≤ α,

which is equivalent to rejecting the null hypothesis using the supremum method
with the Fisher p-value as a test statistic. In the last equivalence, the reverse
implication is satisfied if we take y = x.



CHAPTER

THREE

HOW TO GET RID OF THE NUISANCE PARAMETER

In the previous section, we have discussed three types of tests for contingency
tables. In each of these tests, we have encountered in one way or another the un-
known parameter θ; the common value of the probabilities θ1 and θ2 under the null
hypothesis. In particular, for each of these tests, we employed a different method
to get rid of the unknown θ. For the asymptotic chi-square test, we estimated
θ away by replacing it with the maximum likelihood estimator θ̂. In the case of
Fisher’s exact test, we avoided dealing with θ because we conditioned on both
table margins. Finally, Barnard’s CSM test (and the variants where we left out
the C or S conditions) removes the dependence on θ by maximisation. These three
techniques are just some of the possibilities when eliminating nuisance parameters,
as illustrated by Basu [19].

3.1 Barnard and Fisher’s initial correspondence

As can already be seen from the correspondence between Barnard and Fisher in
Nature throughout 1945 [20]–[22], the introduction of the CSM test sparked a lot
of discussion about the way one should eliminate the nuisance parameter in exact
tests. Estimating θ away in the case of asymptotic testing is a common practice,
and does not come with much controversy. However, in the case of exact testing,
whether or not one should condition on the (n·1, n·2)-margin, has been debated up
to this day.

In 1947, Barnard elaborated on his CSM test, which he claimed was a more
powerful alternative to Fisher’s exact test [13]. An often expressed criticism of
Fisher’s test is indeed that it is a “very conservative” test. This has been mentioned,
amongst others, by Pearson [23], Gail and Gart [24] and D’Agostino, Chase and
Belanger [25], who pointed out via computational examples that the size of the
exact test is in many cases, in particular with small sample sizes, a lot smaller
than the nominal significance level. They either explicitly discourage the use of
the test, or limit its appropriateness to certain experimental setups. For example,
in 1947 too, Pearson treated in great detail Barnard’s three abstract pictures we
have seen in 2.3: the comparative trial, independence trial and double dichotomy.
He described the independence trial in a medical context, where n1· out of n··
individuals would receive one treatment whereas the remaining n2· = n·· − n1·

27
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individuals would receive another treatment. A certain reaction “A” would be
observed with x11 and x21 individuals respectively. The null hypothesis would then
be, in the words of Pearson, that “while some individuals show reaction “A” and
some do not, the result would be the same whichever treatment were applied as far
as these n·· individuals are concerned”. In other words, under the null hypothesis,
there will always be n·1 = x11 + x21 individuals who will react and n·2 = n·· − n·1
who will not, were we to repeat the experiment. It is for that reason that Pearson
deems Fisher’s approach of fixing all table margins as appropriate. According to
Pearson, a repetition in this setting would entail solely a random reassignment of
the treatments over all individuals. He also notes that a repetition might not be
possible at all, as the reaction “A” could be for instance death, and the experiment
only concerns the selected n·· individuals.

The distinction between the different experiment types which may lead to
the same contingency table, is what according to Pearson led to the controversy
between Fisher and Barnard. Later that year, Barnard published a second article,
in which it became clear that the disagreement was rooted in the – in Fisher’s eyes
– ill-defined concept of a reference set in the Neyman–Pearson theory of hypothesis
testing [26]. For one to be able to talk of a significance level, which is nothing else
than a probability of a certain set of outcomes occurring, one should refer to a
set of possible outcomes, over which one can compute this probability. Barnard
describes a modified version of an example given to him by Fisher, in which it is
not clear what the reference set should be.

Consider a bag of flower seeds; each flower known to be either white or purple.
We want to test the null hypothesis that the proportion of white (w) and red
(r) seeds in the bag is equal. That is, if we let ψ be the probability of a seed
turning into a white flower, we want to test H0 : ψ = 1/2 against H1 : ψ ̸= 1/2.
To do this, we take n = 10 seeds out of the bag at random and plant them. There
is a nonzero probability of the seed not coming out and hence not growing into
a flower. If we let φ be the probability of a seed coming out, then the number
S of seeds coming out is can be assumed to be binomially distributed with n
trials and success probability φ. Only S = 9 of the 10 seeds eventually come out
and lead to a flower. All of these 9 flowers are white. If we define C to be the
number of white flowers, then C | S = s is binomially distributed with s trials and
success probability ψ. Depending on what we think should be the reference set,
we can now come up with two different p-values for this observation. We could
say that we should compute the p-value solely based on the possible outcomes of
9 seeds leading to flowers. This would imply we could reject the null hypothesis
at the level 2 · 2−9 = 2−8, since the outcome of 9 white flowers under the null
hypothesis is just as unlikely as the outcome of 9 red flowers. However, we could
also take as our reference set all possible outcomes of a hypothetical repetition of
the experiment; in which another number of seeds might have led to flowers. In
that case, we would reject the null hypothesis at the level 2−8φ9 instead. Because
of this, someone with green fingers (φ close to 1) would end up with a higher
significance level than someone who is not a good gardener (φ closer to 0). Thus
a worse gardener would be rewarded with stronger evidence against H0, which
makes no sense according to Fisher. Therefore, he argues, one should condition on
anything which bears no information about the parameter of interest, ψ.

The same line of reasoning should be used in the setting of contingency tables,
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to answer the question whether or not one should condition on the total number
of successes/failures (n·1, n·2). Fisher was of the opinion that, just as the number
of seeds which lead to a flower in the example, the total number of successes holds
no information on the success probabilities in both experiment groups. Although
Barnard initially attempted to resolve this issue in the framework of the CSM test
in his second 1947 paper [26], he remained unsatisfied about this solution. Private
correspondence with Fisher ultimately led Barnard in 1949 to reject his CSM test
[27].

3.2 Ancillarity
The flower example actually contains the main idea in favour of conditioning on
both table margins. It is the view of proponents of conditioning, which include
Fisher, Yates, Cox and thus also Barnard, that when performing inference one
should always condition on all almost ancillary statistics. The term ancillary
statistic has originally been coined by Fisher [28]. Since then, a lot of effort has
been spent defining and researching the concept (see for example the review by
Ghosh, Reid and Fraser [29] and the references therein), with many different defin-
itions as a consequence. We employ here the most general definition, as stated by
Reid [30].

Definition 3.1. Given a parametric model fX(x;θ) for a random vector X, we
say that a statistic T := t(X) is ancillary for the parameter θ if the distribution
of T does not depend on θ.

In the case of the flower example, if we set X = (C, S)T , θ = (ψ, φ)T , and
T = S, since the amount of seeds S that comes out contains no information about
the probability ψ of a seed turning into a white flower, we can write

fX(c, s;ψ, φ) = fC|S(c | s;ψ)fS(s;φ) =
(
s

c

)
ψc(1− ψ)s−c

(
n

s

)
φs(1− φ)n−s, (3.1)

That is, S is an ancillary statistic for ψ, and we should condition all inference
about ψ on S [31]. We will return to this “Conditionality Principle” in Section 3.4.
This example, where we condition on an ancillary statistic in order to make the
inference about ψ as relevant to the data as possible, is the standard application
of ancillary statistics.

However, in the presence of nuisance parameters, ancillary statistics are often
used to try to remove the nuisance parameters [29], as is the case with hypothesis
testing on contingency tables. If, in the flower example, we would regard φ as a
nuisance parameter, we could see that by conditioning on S, we managed in (3.1)
to isolate a part of fX not involving φ, on which we could base our inference about
ψ. Because the remainder fS does not depend on ψ anymore, we do not lose any
information on ψ by only considering fC|S.

Notice the addition almost we made just before defining ancillarity. It turns
out that, in the setting of Table 1.1, the margin (n·1, n·2) is actually not an ancillary
statistic for the parameters (θ1, θ2). To show this, we follow the reasoning of Little
[31]. In his paper, he rewrites the null hypothesis in (2.1) to H0 : ψ = 1, where
ψ := θ1(1 − θ2)/(θ2(1 − θ1)) is the odds ratio. Furthermore, he defines the odds
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product φ := θ1θ2/((1− θ1)(1− θ2)). This reparametrisation allows us to rewrite
the probability of observing Table 1.1,

fX11,X21(x11, x21; θ1, θ2) := Pθ1,θ2(X11 = x11, X21 = x21)

=

(
n1·

x11

)
θx111 (1− θ1)

n1·−x11
(
n2·

x21

)
θx212 (1− θ2)

n2·−x21 ,

in terms of one parameter which is of interest to us for our hypothesis test; the
odds ratio ψ, and one nuisance parameter φ. Using that

√
ψφ = θ1/(1 − θ1) and

that
√
φ/ψ = θ2/(1− θ2), a quick computation shows that

fX11,X21(x11, x21;ψ, φ) =

(
n1·

x11

) √
ψφ

x11(
1 +

√
ψφ
)n1·

(
n2·

x21

) √
φ/ψ

x21(
1 +

√
φ/ψ

)n2· , (3.2)

If N·1 := X11 +X21 were an ancillary statistic for ψ, we would be able to factorise
fX11,N·1(x11, n·1;ψ, φ) = fX11|N·1(x11 | n·1;ψ)fN·1(n·1;φ), just as in (3.1). However,
using that x21 = n·1 − x11, one can quickly see from (3.2) that

fX11,N·1(x11, n·1;ψ, φ) =

(
n1·

x11

)(
n2·

n·1 − x11

)
ψx11(

1 +
√
ψφ
)n1·

√
φ/ψ

n·1(
1 +

√
φ/ψ

)n2·

= fX11|N·1(x11 | n·1;ψ)fN·1(n·1;ψ, φ),

(3.3)

where

fX11|N·1(x11 | n·1;ψ) =

(
n1·
x11

)(
n2·

n·1−x11

)
ψx11∑n1·∧n·1

i=0∨n·1−n2·

(
n1·
i

)(
n2·
n·1−i

)
ψi
, (3.4)

is a well-defined probability density function which no longer depends on φ but
where

fN·1(n·1;ψ, φ) =

√
φ/ψ

n·1∑n1·∧n·1
i=0∨n·1−n2·

(
n1·
i

)(
n2·
n·1−i

)
ψi(

1 +
√
ψφ
)n1·
(
1 +

√
φ/ψ

)n2· (3.5)

is still a function of ψ. Although we can factor out the nuisance parameter φ from
the distribution of X11 | N·1, the distribution of N·1 is dependent on ψ. Hence N·1
is not ancillary for ψ. Compare this to the flower example, where the second factor
in (3.1) does no longer depend on ψ 1.

The reason the (n·1, n·2)-margin is seen as almost ancillary, is nicely illus-
trated by Kalbfleisch and Sprott [32]. Just as Little, they split up the density
fX11,N·1(x11, n·1;ψ, φ) into a part which only depends on ψ, and another part con-
taining both ψ and the nuisance parameter, where “any information contained in
ψ is inextricably tied up with the unknown nuisance parameter”. Instead of using
the odds product φ as the nuisance parameter, they used θ2, such that θ1 could
be written as ψθ2/(1 − θ2 + ψθ2). We will repeat their argument using ψ and φ

1Kalbfleisch and Sprott [32] mention that although the distribution of N·1 still depends on
ψ, it would have still been possible for the distribution to carry no information on ψ whenever
the nuisance parameter φ would be completely unknown. This would be the case whenever this
distribution would only depend on a parameter ϕ(ψ,φ) that is an injective function of φ for each
ψ, so that ψ is not identifiable. They argue that this cannot be achieved here however; (3.5)
definitely contains some information on ψ.
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instead, which should not – and will not – yield any different conclusions. The
residual factor (3.5) contains some information about ψ. Therefore, by using only
(3.4) for inference about ψ, we lose that information and Kalbfleisch and Sprott
refer to the likelihood ℓ(ψ;x11, n·1) coming from fX11|N·1(x11 | n·1;ψ) as an ap-
proximate conditional likelihood. In order to say something about the amount of
information that is lost by only considering (3.4) for inference, Kalbfleisch and
Sprott look at what they define as the maximum relative likelihood of ψ

RM(ψ) :=
supφ∈[0,∞) fN·1(n·1;ψ, φ)

supψ,φ∈[0,∞) fN·1(n·1;ψ, φ)
. (3.6)

The argument now goes as follows. If this RM(ψ) is an almost constant function
of ψ, the approximate conditional likelihood ℓ(ψ;x11, n·1) will be very close to the
actual likelihood coming from (3.3). Not knowing anything about the nuisance
parameter φ could be seen as being able to choose any value for φ we want. In
particular, for any value of ψ, we can choose φ as the MLE φ̂(ψ) of φ given ψ. If
RM(ψ) is almost constant, this would make each value of ψ equally likely. That
is, RM(ψ) and thus also fN·1(n·1;ψ, φ) carry little information on ψ if we do not
know anything about φ. This would then justify conditioning on (n·1, n·2).

Kalbfleisch and Sprott investigated RM(ψ) for a specific contingency table
with data from Chinn, Noell and Smith [33] on the effectiveness of dramamine in
preventing seasickness, given in Table 3.1.

Not Sick Sick
Dramamine 31 3 34

Placebo 18 12 30
49 15 64

Table 3.1: Effectiveness of dramamine in preventing seasickness [33].

On the left in Figure 3.1, we have reproduced Figure 1 from Kalbfleisch and
Sprott [32], which shows RM(ψ) and the relative conditional likelihood CR(ψ) =
ℓ(ψ;x11, n·1)/ supψ∈[0,∞) ℓ(ψ;x11, n·1). We obtain the same picture whether we use
the parametrisation (ψ, θ2) or the parametrisation (ψ, φ). This should not come as
a surprise, as CR(ψ) and RM(ψ) are functions of only ψ anyway. For RM(ψ) we
“maximised away” the nuisance parameter and we are taking ratios of likelihoods
so there should not be any difference. Kalbfleisch and Sprott found the RM(ψ)-
function sufficiently constant in order to conclude that (3.5) carried a negligible
amount of information on ψ, and that consequently conditioning on (n·1, n·2) is
justified.

However, when changing the data to the contingency table shown in Table 3.2,
repeating the same procedure yields the right plot in Figure 3.1. Although on a
different scale, the CR(ψ)-function looks rather similar to the one of the original
data. However, it is quite a stretch to claim that RM(ψ) is also an approximately
constant function of ψ right now. The argument in favour of conditioning does
not seem to hold up in this case. Whether or not the (n·1, n·2)-margin can be
seen as ancillary seems to be dependent on the specific contingency table under
consideration.

Finally, as a small side note, it is worth mentioning that in the case of a 2× 2
independence trial and a 2× 2 comparative trial, the sample sizes n1· and n2· are
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Not Sick Sick
Dramamine 31 3 34

Placebo 2 28 30
33 31 64

Table 3.2: Alternative outcome to the effectiveness study of dramamine.

Figure 3.1: CR(ψ) (solid) and RM(ψ) (dashed) for Tables 3.1 (left) and 3.2
(right).

fixed. In particular, their distribution (as far as we can speak of one) does not de-
pend on (θ1, θ2), and hence (n1·, n2·) can be seen as an ancillary statistic for (θ1, θ2).
After all, conditioning on the (n1·, n2·)-margin does not result in controversy.

3.3 Berkson’s dispraise

For Berkson, the fact that N·1 is not ancillary for ψ is one of the main reasons to
denounce the conditional exact test [34]. In his 1978 paper, he compares the size
and power of Fisher’s exact test with that of the chi-square test (with and without
Yates’ correction) for given nominal significance levels, for a one-sided alternative
hypothesis, with different values of n1· = n2·. Just as with many of the critiques
of Fisher’s test, Berkson stresses the conservative behaviour of the exact test. The
size of the test is, for many of the situations Berkson worked out, “considerably
smaller” than the nominal significance level.

Apart from this numerical comparison, Berkson considers the ancillarity argu-
ment. He refers to Fisher’s 1935 paper, in which the latter said that

“if it be admitted that these marginal frequencies by themselves supply
no information on the point at issue, namely, as to the proportionality
of the frequencies in the body of the table, we may recognise the in-
formation they supply as wholly ancillary; and therefore recognise that
we are concerned only with the relative probabilities of occurrence of
the different ways in which the table can be filled in, subject to these
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marginal frequencies.” [35]

Berkson questions what is meant by “information that is wholly ancillary”, and
continues to argue that the (n·1, n·2)-margin contains information about the counts
in the table.

First, he points to one of his other writings [36], in which he looks at all
possible outcomes of the contingency table with n1· = n2· = 5 and computes
the Fisher p-values in order to perform the one-sided test H0 : θ1 = θ2 against
H1 : θ1 > θ2 at the level α = 0.05. Because the test is one-sided, he only looks
at the tables where θ̂1 ≥ θ̂2, i.e., x11/n1· ≥ x21/n2· and thus x11 ≥ x21. This is a
total of |{(x11, x21) : 0 ≤ x21 ≤ x11 ≤ 5}| = 21 tables. In the cases that n·1 = 0 or
n·1 = 10, the table is trivially exactly determined, as we need x11 = 0 or x11 = 5
respectively. The corresponding Fisher p-value is 1, and there is no significant
difference in the observed success proportions (they are either both 0 or both 5).
In total, for 8 out of the 11 possible values of n·1, Fisher’s exact test does not
indicate a significant difference at the α = 0.05 level, while for the remaining
three values of n·1, namely 4, 5 and 6, there was a 1/3 probability of observing
a significant difference (for the tables (4, 0), (5, 0) and (5, 1)). This, for Berkson,
was evidence that the (n·1, n·2)-margin bears information on the proportionality
of θ1 and θ2.

As a second argument for that, Berkson also cites Plackett [37], in which the
latter tries to estimate (λ, ϕ) := (log (θ1(1− θ2)/(θ2(1− θ1))), log(θ2/(1− θ2))),
which is the linear logistic transformation of (θ1, θ2), via the likelihood approach.
Plackett shows that λ ∈ {0,±∞} is required in order for the score function to be
zero. At λ = 0 (and ϕ = log(n·1/n·2), so θ1 = θ2 = n·1/n··), the likelihood reaches
a saddle point, with two rising edges as λ → ±∞, which are asymptotically
horizontal. These asymptotic maxima correspond to

θ1 =
n·1

n1·
1{n·1≤n1·} +

n·2

n2·
1{n·1>n1·}, θ2 = 0, for λ = ∞, (3.7)

and
θ1 = 0, θ2 =

n·1

n2·
1{n·1≤n2·} +

n·2

n1·
1{n·1>n2·}, for λ = −∞. (3.8)

Because these ML estimates are purely functions of the margins, Berkson said that
it “would hardly be possible if the marginal totals contained no information for
judging whether θ1 = θ2” [34]. Plackett himself on the other hand, was less con-
vinced. He felt that his findings were actually corroborating Fisher’s “intuitive view
that the likelihood function provides little information about λ” [37]. For example,
he mentioned that for n1·, n·1, n·· → ∞ in fixed proportions, the score equation
is satisfied for all values of λ. Furthermore, Plackett shows that “application of
likelihood ratio tests for H0 : λ = 0 has been inconclusive”.

Interestingly enough, Berkson does also sketch a line of reasoning in which he
sees how someone could prefer the exact test. In particular, according to Berkson,

“it may be argued that, once the marginal totals have been observed,
it does not matter what might have happened, or what will happen in
the next experiment or what plan was in the mind of the experimenter
when he obtained the data, we judge on the evidence before us.” [34]
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This is reflected by Plackett’s ML estimators (3.7) and (3.8), which do not care
about how we came to the observations we observed; they are the same regardless.
This seems to agree with Fisher; who also sees the marginal totals as a “given”,
on which one should condition in order to perform any further inference. Failing
to do so would take into account experiment outcomes which are not relevant.
Consequently, the table outcomes given the marginal totals are hypergeometrically
distributed, and Berkson agrees that Fisher’s exact test with randomisation is the
appropriate one. It seems that Berkson’s issue with Fisher’s position lies more in
the statement that the marginal totals contain (almost) no information about the
table, instead of the act of conditioning itself.

The randomised exact test, where we perform Fisher’s exact test in combin-
ation with an independent Bernoulli experiment in order to exactly reach the
desired level of significance, has been shown by Tocher [38] to be the uniformly
most powerful unbiased (UMPU) test for testing H0 : θ1 = θ2 against a one-sided
alternative (H1 : θ1 > θ2 orH1 : θ1 < θ2). Recall that a test with significance level α
and power function β(θ) is called uniformly most powerful unbiased (UMPU) if for
all other unbiased tests of level α with power function β′(θ), we have β(θ) ≥ β′(θ)
for all θ ∈ Θ1. A test is unbiased if there are no values of θ ∈ Θ1 for which accept-
ance of H0 is more likely than for some cases in which H0 is actually true. That
is, β(θ) ≤ α for θ ∈ Θ0 and β(θ) ≥ α for θ ∈ Θ1 [39].

Although one might interpret the randomised version of Fisher’s exact test
being UMPU as the response to the power argument often used by proponents
of unconditional tests, one should keep in mind that randomised tests are unac-
ceptable for practitioners. The conclusion of the test should not be dependent on
some random event unrelated to the actual experiment. Furthermore, one should
also recall that a test being UMPU is not the same thing as a test being uniformly
most powerful (UMP). Indeed, Suissa and Shuster [40] object to striving for a test
to be UMPU as if it is some kind of optimality criterion. They show that when
testing the equality of two binomial proportions, one can in fact come up with a
biased test that is more powerful than the randomised version of Fisher’s exact
test.

3.4 The Conditionality Principle

Essentially, Berkson brings up the question to which extent one should accept
the Conditionality Principle (CP), which states, according to Little [31], that one
should always condition on all ancillary statistics for a parameter in order to do
inference on that parameter. It seems that Little argues that should one be in
favour of the conditional test, then one should agree with CP. However, accepting
CP has implications of its own. Birnbaum [41] proved that if one considers this
Principle to be true, and additionally accepts the Sufficiency Principle, defined
in Definition 3.2, one should logically also accept the controversial Likelihood
Principle, defined in Definition 3.3. The definitions are due to van der Meulen [6].

Definition 3.2 (Sufficiency Principle; SP). If T is a sufficient statistic for the
parameter ϑ, then two observations x and x′ which satisfy T (x) = T (x′) must
lead to the same inference on ϑ.
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This Principle essentially motivates the definition of a sufficient statistic; all
the information the data carries about ϑ can be summarised with a sufficient test
statistic.

Definition 3.3 (Likelihood Principle; LP). All the information an observation x
carries about ϑ is fully contained in the likelihood function L(ϑ;x). If for two ob-
servations x and x′ depending on ϑ, possibly via different experiments, there exists
a constant c such that L(ϑ;x) = cL(ϑ;x′) for every possible ϑ, both observations
lead to the same inference on ϑ.

The LP does not agree very well with the significance testing we have done so
far. Little mentions the classical example of testing the null hypothesis H0 : ϑ =
1/2, with ϑ the success probability of independent Bernoulli trials. We can now
come up with two experiments; one with a fixed number of 6 trials in which we
measure the amount of successes, and one where we perform trials until we have
reached one success. If in the former experiment we observe one success, and if in
the latter we need to perform 6 trials, both experiments will yield the likelihood
function ϑ(1 − ϑ)5. The first (binomial) experiment is easily shown to yield a p-
value of 7/64, while the second (negative binomial) experiment yields a p-value of
1/32. This clearly violates the Likelihood Principle.

Although not explicitly stating it, it seems that Little implies that proponents
of the conditional test, essentially apply the CP and must therefore also accept
the LP, which completely denounces classical hypothesis testing (including the
conditional test itself). It is unclear how serious one should view this apparent
contradiction. On one hand, as one is actually allowing conditioning on almost
ancillary statistics with the conditional test, we doubt whether Birnbaum’s res-
ult would still hold. Indeed, in the proof of the result, Birnbaum considered two
experiments which yielded proportional likelihoods, and introduced a mixture ex-
periment which picked one of the two experiments depending on the value of a
binary ancillary statistic. However, if now instead of an ancillary statistic, we are
also allowed to base the mixture experiment on an almost ancillary statistic, con-
ditioning on the outcome of this statistic need not yield one of the two original
experiments.

On the other hand, Birnbaum’s theorem itself has generated a fair amount
of debate of its own. Doubt has been cast on the validity and applicability of
Birnbaum’s formulations of the CP and SP, questioning for example what it means
to lead to the same inference about θ 2. Statisticians not so eager to accept the
LP have shown that slightly different formulations of CP do not imply LP when
furthermore assuming SP. For example, Durbin [42] proved that Birnbaum’s result
does not hold if we require to only condition on ancillary statistics which are
functions of a minimal sufficient statistic. Another example is the proposal by
Kalbfleisch [43], who showed that in order to avoid accepting LP, one could apply
a CP that only required conditioning on ancillary statistics which are an actual
part of the experimental setup. Meanwhile, statisticians willing to accept LP have
come up with modifications to make Birnbaum’s statement more precise, amongst
others Wechsler, de B. Pereira and Marques F. [44] and Grossmann [45]. Note
that Bayesian statistics is entirely based on the likelihood function, so accepting

2In his article, Birnbaum[41] stated the three Principles in terms of a concept called evidence,
also leaving a certain amount of room for interpretation.
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LP is a logical thing to do for statisticians of the Bayesian school. Little [31] even
finishes his paper by arguing that Bayesian methods are the most suitable to deal
with nuisance parameters as in the setting of contingency tables.

The debate is far from settled, with criticisms as recent as 2013 by Evans [46]
and 2014 by Mayo [47], and replies by amongst others Peña and Berger [48]. This
whole discussion, which revolves around the fundamental principles of statistical
inference, and in particular the Conditionality Principle, and the way in which
Birnbaum’s result plays into this, is very interesting. However, we feel that treat-
ment of this rabbit hole would better be suited for a thesis of its own, and will
therefore not dive deeper into the topic here.

Before heading back to the main discussion of this Chapter though, we would
like to highlight the perspective of Helland [49]. His article looks into several
examples which should make the reader realise that the validity of CP is maybe
not as obvious as one might initially think. Helland motivates this by mentioning
the work of Evans, Fraser and Monette [50], [51], which shows that in many settings
CP alone is actually equivalent to LP. Like this, Helland offers an escape to all
those statisticians in the impossible position of not accepting LP while finding CP
(and SP) rather logical.

The key point of the paper is that since LP is such a universal statement
(applying to any experiment, no matter the setup and underlying assumptions,
as only the likelihood function matters), CP is an equally universal statement.
Helland however argues via examples that the universality of CP is “unreasonable”.
We cannot say beforehand that we should condition on all ancillary statistics,
but we should take into account the “target population” and the “questions of
interest”. This view goes directly against LP, but more importantly for us, it also
questions the position of Fisher by asking when it is appropriate to condition on
ancillary statistics. Helland proceeds by working out an example in which we have
two patients who followed the same treatment. Before and after the treatment
we measure some response Xh that is normally distributed with mean µh and
known variance σ2. Here h ∈ {1, 2} is an index representing the patient. Because
both patients had the same treatment, Helland is interested in the mean of the
means ϑ = (µ1 +µ2)/2. In other words, we are interested in inference on ϑ, where
µ1 = ϑ− δ and µ2 = ϑ+ δ, where δ is a nuisance parameter. He now argues that
neither experiments E1 nor E2, which measure X1 and X2 respectively, can provide
us with any information on ϑ that does not depend on the unknown δ. However,
the mixture experiment of choosing either E1 or E2 with probability 1/2 does tell
us something about ϑ, as the response X we measure in E is an unbiased estimator
for ϑ. Alternatively, the only difference between E and a random sampling is that
we have a nonzero σ2; were we to let σ → 0, then we would just pick one of the
two patients as our random sample. This should carry some information about ϑ,
in contrast to choosing a fixed sample. Thus, even though the Bernoulli random
variable H ∈ {1, 2} which decides which experiment to choose is ancillary, we seem
to lose information by conditioning on it and performing either E1 or E2 instead
of E. Later on, Helland explicitly mentions the debate regarding conditioning in
contingency tables, first agreeing with Little [31] that the question is not about
whether or not to condition on ancillary, but on approximately ancillary, statistics.
Second, as we will see in Section 3.7, he shares the view of Greenland [52] that the
question contingency tables try to answer is too broad to confidently say whether
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or not to condition in every possible situation. One should look on a case-by-case
basis, and not blindly follow CP, or an approximate ancillary variant of it.

3.5 Reactions to Berkson’s work

The 1978 paper by Berkson has often been cited by other opponents of the condi-
tional test. For example, Kempthorne [53] agrees for the most part with Berkson,
and argues additionally that Fisher’s exact test should be used for both the inde-
pendence trial and the double dichotomy, while Barnard’s CSM test is appropriate
for the comparative trial. Upton [54] also advocates against Fisher’s exact test.
He discusses 22 different tests for the 2 × 2 comparative trial. Interesting is that
he did not include Barnard’s CSM test because of its high computational bur-
den. Most of the tests considered were variants of the chi-square test (and hence
asymptotic), with a few exact tests such as Fisher’s test or Boschloo’s test. Based
on several criteria related to the size of the test and its possible dependency on
the nuisance parameter, Upton came to the conclusion that for a comparative
trial, Fisher’s exact test should not be used. He instead argues in favour of using
a scaled version of Pearson’s chi-square test statistic. Although not the subject of
his paper, Upton agrees with Kempthorne that, for other experimental setups like
the independence trial and the double dichotomy, Fisher’s test should be used.

On the other hand, proponents of the conditional test also seemed to treat
Berkson’s paper as an important representative of those who were against condi-
tioning. In 1979, Barnard [14] wrote a short note in reply to Berkson’s work. In
that note, he first reiterates the difference between the comparative trial and the
independence trial, and points out that Berkson confuses the two terms in one of
his examples. This example is essentially the same as the medical trial we discussed
in Chapter 1, which resulted in Table 1.1. Berkson considers a clinical trial with
n·· = 70 participants of which half is randomly assigned to a treatment A and the
other half to treatment B. Of interest is how many participants recovered for each
treatment group. The results of this hypothetical study are shown in Table 3.3.
According to Berkson, this clinical trial is a comparative trial in which we compare

Cured Not Cured
A 30 5 35
B 24 11 35

54 16 70

Table 3.3: The 2×2 contingency table from Berkson’s example [34].

the recovery probabilities for each treatment. This is again under the assumption
that we can actually speak of such probabilities, something which Barnard does
not think we should do. He mentions that the reason to randomise the groups
in the first place is to take into account the differences between the participants
that might affect their chance of recovery. Under the null hypothesis that treat-
ments A and B have the same effect, participants cured by A would also have
recovered by B. Therefore, argues Barnard, the amount of 54 cured participants
was predetermined and if we want to test whether A and B are significantly dif-
ferent, we should consider as our reference set only the table outcomes where the
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54 cured people are distributed at random over the two treatments. That is, the
(54, 16)-margin in Table 3.3 should also be kept fixed. This clinical trial is thus
in fact an independence trial, for which we should be using Fisher’s exact test,
even according to Berkson. This same argument has been set forth by Mehta and
Hilton [55].

Regarding comparative trials, Barnard acknowledges that “the situation is less
clear” [14]. Barnard ascribes the differences between the results of the conditional
and unconditional/asymptotic tests to the discreteness of the set of attainable
p-values, instead of to a negligible loss of information due to conditioning on the
almost ancillary (n·1, n·2)-margin. We will return to this point in a bit.

Another reply to Berkson’s work, as well as to the papers of, amongst others,
Kempthorne and Upton, came from Yates [3] in 1984. This text has been applauded
by proponents of the conditional testing approach, in particular Barnard [56] and
Cox [57]. Both mention in their discussion of this paper that it would finally,
after 70 years of arguments, settle the debate in favour of conditioning. After a
brief historical account which finishes with Barnard’s disavowal of his CSM test,
Yates moves on to some numerical examples. With these examples, he wants to
indicate that the (n·1, n·2)-margin contains (almost) no information on whether
or not θ1 = θ2. No matter how many margins were fixed beforehand, it seemed
“obvious” to Yates (and Fisher) that one should condition on both.

In particular, Yates seemed to argue that in the cases where the (n·1, n·2)-
margin would say something about the difference between θ1 and θ2, the contents
(x11, x12, x21, x22) of the table would be able to tell a lot more about the actual
values of θ1 and θ2. For example, if n·· were to be very large and n1· ≈ n·1, like in
Table 3.2, then we might suspect that there is a large difference between θ1 and θ2.
Indeed, for example, if θ1 = 1, θ2 = 0 then we will always have (n·1, n·2) = (n1·, n2·).
This corresponds with what we have seen in the right plot of Figure 3.1, which
indicated that the conditioning on the margin did in fact lead to some loss of
information. At the same time however, Yates argues that the large value of n··
entails that the empirical estimates θ̂1 = x11/n1· and θ̂2 = x21/n2· will already be
rather informative on the actual values of θ1 and θ2, and that in fact the (n·1, n·2)-
margin does not tell us that much extra.

He continues by remarking that in a discrete setting, reducing the set of possible
outcomes to a smaller reference set, inevitably reduces the level of significance of
the more extreme outcomes. According to Yates, this combined with the “urge to
find more powerful tests” explains why people are drawn to unconditional tests in
the discrete setting, even though conditional testing has been widely accepted in
the continuous setting. Related to this, is the use of nominal significance levels,
such as 0.05 or 0.01, with discrete data in the first place. The classic example of
this is tossing a coin ten times to test if it is biased, i.e. H0 : p = 1/2 against
H1 : p ̸= 1/2, where p is the probability of the coin giving heads. Under H0, the
probability of throwing 8 heads or more, or 2 heads or less is 2−10(1 + 10 + 45 +
45 + 10 + 1) = 0.11, while the probability of throwing 9 heads or more, or 1 head
or less is 2−10(1+ 10+ 10+ 1) = 0.021. If we observe 9 heads, we would reject the
null hypothesis at the α = 0.05 level, even though this “preassigned magic level”,
as Cox [57] put it, can never be exactly equal to the size of the test. Thus, in
the discrete case, one should therefore always report the actual significance level
(read: p-value) instead. This makes it more difficult to speak of a “more powerful”
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test in the first place. In the Neyman–Pearson approach for testing, it only makes
sense to compare the power of two tests which have the same level of significance.
This we can only achieve, in general, by making use of randomised tests, which is
undesirable in practice.

Barnard [14] made a similar observation in his 1979 note, advocating for flexib-
ility in significance levels when working with discrete distributions. He came back
to this in a paper from 1989 [58], saying that we should not adhere to one fixed
nominal significance level, to be used under all circumstances. For example, in
planning an experiment, we would set ourselves a certain target sample size. How-
ever, if for some reason the actual sample size n·· turned out differently, Barnard
would find it strange to not alter the pre-determined significance level we would
have chosen too. If the actual sample size were to be smaller than the target sample
size, Barnard argues, we should consider raising the significance level. By doing
so, we would slightly increase the probability of making a Type I error, but at
the same time lower the probability of a Type II error. Barnard thinks the same
way about the (n·1, n·2)-margin. If we would work with the actual sample size n··
instead of the target sample size, why would we not base our inference on the ac-
tually achieved values of (n·1, n·2) instead of all possible values of (n·1, n·2), if this
comes at no (significant) loss of information? Just as Fisher and Yates, Barnard
treats the (n·1, n·2)-margin as if it were ancillary.

3.6 The debate after Yates’ paper

Contrary to the hopes of Yates himself, Barnard and Cox, Yates’ 1984 paper
would not, in the words of Cox, “squash once and for all various misconceptions”
regarding conditional tests. As pointed out by Upton [59] in the second paper he
wrote on the subject, the discussion was far from over; numerous articles on the
issue followed Yates’ 1984 work. Let us mention some of them.

Suissa and Shuster [15] propose an exact unconditional test based on the un-
pooled Z2

u statistic defined in (2.5) (in other words the chi-square test statistic);
essentially boiling down to a p-value test with p-value determined by (2.23) where
T = −Z2

u such that we reject H0 for large values of T , along with a procedure
to maximise with respect to the nuisance parameter. Their view on the debate
is predominantly a pragmatic one. Again, the power argument shows up, now in
the form that for a given Type I error probability and power, one needs smaller
sample sizes using unconditional tests. Moreover, Suissa and Shuster point out
that results of unconditional tests are more easily explainable. In contrast with a
conditional p-value from for example Fisher’s exact test, an unconditional p-value
can simply be interpreted as the maximum possible probability of obtaining an at
least as extreme observation, were we to repeat the experiment (with the group
sizes n1· and n2· fixed) in a setting where H0 is true. Of course, this assumes that a
repetition of the experiment need not to have the same amount of successes. They
however also acknowledge that the conditional test requires simpler and fewer
computations.

A couple of years later, Barnard [58] wrote On alleged gains in power from
lower p-values. As we mentioned in Section 3.5, he argued for a more flexible use
of significance levels. If one observed a certain value of n·1, one could choose a
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significance level from the set of attainable p-values for that given n·1. By appro-
priately choosing significance levels for each n·1, Barnard managed to construct a
test procedure which would yield the exact same conclusion as, say, the chi-square
test. In Barnard’s eyes, this addresses the apparent loss of power of Fisher’s exact
test. By getting rid of this idea that one should have a fixed significance level over
all possible values of n·1, Fisher’s exact test no longer seems to “underrate the
strength of evidence against H0” [58].

This argument has been repeated by Upton [59] in a paper in which he elab-
orated why he changed his mind and was now in favour of conditioning. Upton
denounced his previous line of reasoning that “if users of a test believe that it has
a type I error equal to α, then their belief should not be too far from the truth”
[59]. He argues that one should not stick to a pre-determined nominal significance
level that is more often than not unattainable. Instead, one should only work with
the set of significance levels that can be reached given the (n·1, n·2)-margin. Like
that, one can no longer view Fisher’s exact test as conservative.

It seems that one’s opinion on the conditioning matter boils down to how one
wants to treat p-values, or more generally probabilities, in the setting of discrete
distributions. We find the take of Camilli [60] on this very elucidating. On one
hand, the Fisherian school of thought is of the opinion that researchers should
base conclusions on their hypotheses purely on the available data (essentially the
Likelihood Principle). On the other hand, the Neyman–Pearson school argues that
conclusions should be drawn by comparing the observed result with all alternative
results that could have been observed instead. With the latter approach, we fix a
nominal significance level α, which should represent the amount of times that we
make a Type I error in a hypothetical (infinite) repetition of the experiment. This
is linked to the frequentist point of view that a probability of some experiment
outcome is the proportion of occurrences of that outcome “in the long run”, i.e.,
as the amount of experiments grows to infinity. According to Rice [61], this is the
interpretation most preferred by “practising empiricists”.

Fisher objected that one cannot infinitely (and identically) repeat an experi-
ment. Even if a replication is carried out, the sample and/or experiment circum-
stances change. Although Fisher viewed a probability, just as the frequentists, as
a “limiting ratio of a set of events”, he required furthermore that one could not
recognise subsets of events. Camilli mentions as an example, that before tossing a
coin, we cannot recognise any set of circumstances which would affect the outcome
of the coin toss. In particular, this rejects the Neyman–Pearson interpretation of
the probability of an observed table outcome, where we define “recognisable sub-
sets” based on the value of the (n·1, n·2)-margin. Table outcomes with another
value of this margin are not deemed relevant to find out whether or not there is
an association between the two groups.

As an example, let us consider an experiment mentioned by Routledge [62],
where fish and bacteria are added to six fish tanks. Three out of the six fish tanks
were selected at random to be treated with ozone, and after a while it was recorded
that only the untreated tanks contained some dead fish. This is shown in Table 3.4.
One wanted to test the null hypothesis that treating the fish tank with ozone had
no effect on the survival of the fishes inside those tanks, against the one-sided
alternative hypothesis that treating the fish tank would improve the chances of
survival of the fishes. It can easily be found that 1/20 = 0.05 is the one-sided Fisher
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Some dead fish No dead fish
Treated 0 3 3

Untreated 3 0 3
3 3 6

Table 3.4: The 2×2 contingency table from Routledge’s example [62].

p-value, while the one-sided CSM p-value is 1/64 ≈ 0.016. The table configuration
in Table 3.4, with n·1 = 3, is the only one for which Fisher’s exact test rejects
the null hypothesis. Fisher argued that although “unhelpful outcomes” such as the
tables with n·1 = 0 (no dead fish) or n·1 = 6 (some dead fish in all tanks) can occur
with positive probability, they should for sure not affect our judgement about the
potential effect of treating the tanks, as is the case when using an unconditional
test. These outcomes are unhelpful in the sense that, given n·1 = 0 or n·1 = 6, it
is impossible to get any evidence in favour of the alternative hypothesis.

As a side note, Routledge goes even further by questioning the binomial model
we have required so far for the unconditional test. We mentioned in Section 2.1
that viewing the medical experiment we considered back then as a binomial trial is
a perhaps indefensible assumption. Routledge mentions that under such a model,
the sum X11 + X21 should also be binomially distributed. However, due to time
pressure, or limited resources, one might alter the experimental procedure in such
a way that observing a outcome with X11+X21 = 3 (the only one which can lead to
a significant conclusion!) becomes more probable than the assumed binomial prob-
ability. Such changes are certainly not always reported [62]. For example, it turned
out that in the fish tank experiment, the experiment would have been repeated
once more if the first try would not have been able to yield significant results,
i.e., if X11 +X21 ̸= 3. This alters the underlying probability model, rendering the
binomial assumption, and so the unconditional test, inaccurate. Because of this,
Routledge advocated for more precise descriptions of the experimental procedure.
He proceeded to argue that this aim, amongst others, would get rid of much of the
discrepancies between conditional and unconditional p-values. Since conditional
tests do not require a – possibly complicated – analysis of how the contingency
tables are distributed if we step away from the binomial assumption, he eventually
advocated for the use of Fisher’s exact test.

Back to Fisher, who only wanted to look at the data that has actually been
observed. This restricted the sample space to only those contingency tables which
had the same marginal totals. Camilli [60] points out that within this sample
space, Fisher could be seen as a frequentist too, computing the (hypergeometric)
probability of observing the observed table, or a more extreme one, just as with
the Neyman–Pearson approach. On the other hand, Fisher could also be seen
as a subjectivist, as he interpreted the computed probability as a “measure of
reluctance to accept H0 – to be defined by each individual – within the confines
of one particular experiment” [60]. This differs from the Neyman–Pearson view in
the sense that Fisher did not want to attach a probability to a hypothesis about
the real world. In his own words, “tests of significance are based on hypothetical
probabilities calculated from their null hypotheses. They do not generally lead to
any probability statements about the real world” [63].

Camilli concludes by expressing his preference for Fisher’s exact test, as the



42 CHAPTER 3. HOW TO GET RID OF THE NUISANCE PARAMETER

CSM test is built around the Neyman–Pearson idea of long-run experiments. This
is a perspective Camilli views as inadequate to say something about the meaning
of the observed data “in the short run”. Just as Barnard [14] proposed, Camilli
recommends using Fisher’s exact test in combination with a flexible nominal signi-
ficance level. Even better, he would like to see the label “significant/not significant”
be entirely replaced by just a mentioning of the significance level.

3.7 The current state of the debate and how this
thesis fits in

The contingency table is the most straightforward and natural way to summarise
the results from an experiment with categorical outcomes. It is therefore amazing
that the debate on which type of significance test to use has been going on for
well over a century by now. A quick search on Google Scholar for research articles
in the fields of medicine or biology that have results in the form of a contingency
table seems to indicate that the chi-square test and Fisher’s exact test are popular
under practitioners [64]. This makes it unclear if there is any room or justification
for the exact unconditional test. By extension, as this thesis predominantly focuses
on the unconditional approach, proponents of the conditional test may find the
findings that will follow in Chapters 4 and 5 utterly useless.

However, up until this day, we have seen throughout this Chapter that several
authors have argued in favour of unconditional tests. Even some authors, such as
Macdonald [65] and Greenland [52], have voiced their preference for conditional
tests, but also described some specific cases in which the unconditional test could
be appropriate too. We would like to focus on the work of the latter author, who
justified the use of conditional tests not via the usual ancillarity argument, but
rather by deducing a logical absurdity from the use of unconditional tests under
certain causal models.

First of all, Greenland repeats the argument from Barnard [14] that stated
that unconditional tests are not appropriate for inference of the experiment set
out in Chapter 1 (or in Table 3.3). In a hypothetical repetition of the experiment,
we would be dealing with the same individuals and thus, under H0, the treatment
would have no effect and the total number of recoveries n·1 will be the same. Hence,
both margins should be treated as fixed. It is important to realise here that this
argument only works because we are testing a hypothesis that only concerns the
individuals involved. That is, we observe the entire population. If we would instead
look at the experiment where we only record the results for a random sample of
the population, this sample would change at every hypothetical repetition of the
experiment: n·1 is thus no longer the same each time.

Greenland argues however that even in this case of random sampling, the
conditional test is the correct one. However, we should be very careful defining
what we mean with random sampling. Greenland spent a great amount of time
describing very precisely the data-generating model, for it is his view that a poor
description of the underlying experimental model is the root cause for the whole
debate on whether or not to condition. Shuster [66] seemed to agree with this
explanation, something Greenland confirmed in personal communication.

The model we will now consider is often referred to as Rubin’s model. Each
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member i ∈ P of a target population P has a nonrandom response ri(x) ∈ {1, 2}
if subjected to a treatment x ∈ {1, 2}. We want to test what Greenland calls the
Sharp Causal null hypothesis about the Population (SCP),

HSCP : ∀i ∈ P : ri(1) = ri(2).

That is, under this null hypothesis, the response of each individual will be the
same no matter the treatment given. Greenland stresses that ri(1) and ri(2) are
“responses of the same individual under different conditions and that the hypo-
thesis refers to a single population”. In order to test this hypothesis, we would
like to observe both ri(1) and ri(2). This is impossible in this model; we cannot
subject i to both treatments simultaneously and will therefore only measure either
ri(1) or ri(2) for each individual. This “missingness problem” is often tackled by
randomisation. We randomly sample without replacement n·· individuals. Let us
call this sample S. For each individual, we then choose at random which of the
ri(x) we wish to observe by assigning them to either treatment x = 1 or treatment
x = 2. This effectively turns x into a random variable, determining which entry of
the outcome vector (ri(1), ri(2)) will be missing for each individual in the sample.
Note that the random variable x is not defined for the individuals not in S.

The total number n·1 of responses ri = 1 in this sample S will then be a
random variable. Again, the question is whether or not n·1 should be fixed, as
we are now no longer observing the total population. To answer this question,
Greenland formulates the Sharp Causal null hypothesis about the Sample (SCS),

HSCS : ∀i ∈ S : ri(1) = ri(2).

Once the sample S is drawn, HSCS is well-defined and concerns only the n·· ob-
served individuals. This is thus the same setting as the one from Table 3.3, and
we should condition on n·1. How is HSCS related to HSCP? Greenland first notes
that HSCP =⇒ HSCS. Indeed, if the given treatment has no effect on the response
of any of the individuals in the population P , then certainly it has no effect on
the response of any of the individuals in the sample S. The reverse implication
HSCS =⇒ HSCP does not hold. However, Greenland argues that it would make no
sense to reject HSCP without rejecting HSCS. This would mean that we conclude
that the choice of treatment did affect the response of some population member,
while not concluding that the treatment choice had an effect on some sample mem-
ber response. This is the same as saying that although we have not found evidence
of an effect of the treatment choice from the observations in our sample, we will
still conclude that there is an effect for someone in the population. Such reasoning
defeats the whole purpose of trying to infer something about a whole population
by only observing a sample.

Thus, there is no coherent way in which we can reject HSCP, but not reject
HSCS, based on the same data and the same model. Since we used a conditional
test on the sample in order to test HSCS, the only way to avoid incoherencies
is to also use the conditional test on the sample to test HSCP, and to conclude
that performing the unconditional test on the sample S must test for some other
hypothesis instead.

Under Rubin’s model, it can thus be argued that one should condition on
both margins. However, what happens when we are not dealing with this causal
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model? Shuster [66], a big proponent of unconditional tests himself, questions for
example the applicability of Greenland’s reasoning because it is based on the use
of sharp null hypotheses, which is debatable in certain experimental settings, even
though Greenland also showed that his reasoning also works for other, weaker
hypotheses. But besides that, Greenland argues that in several cases, there is no
logical argument, such as the one just made, against the use of unconditional tests.
He stresses that this is not a reason to use unconditional tests, but merely that
there is no “logically compelling argument for conditional tests” [52].

One of these cases where unconditional tests might be appropriate is the de-
scriptive comparison of two superpopulations. Consider two disjoint superpopula-
tions, labelled x = 1 and x = 2, and let p1 and p2 be the respective proportions of
individuals i in each population who have a certain characteristic ri ∈ {1, 2} of in-
terest. That is, px = P (ri = 1 | i ∈ x). We take independent random samples from
each superpopulation and want to test what Greenland refers to as the Descriptive
null hypothesis for 2 Populations (D2P),

HD2P : p1 = p2.

The sampling distribution in this case is the same product-binomial distribution
given in (2.20) (but then with p1, p2 instead of θ1, θ2) which also appears in the
causal example. Again, hypothetical repetitions of experiment would yield different
values of n·1 at each repetition. In both experiments, we draw a sample in a way
that what we observe for each individual is not related to the actual attribute
of interest (being (ri(1), ri(2)) in the causal experiment and ri in the descriptive
experiment).

However, it is imperative to realise the difference between the two experiments.
In the causal model, the statistical uncertainty comes from the “missingness prob-
lem”. It is because we cannot observe both ri(1) and ri(2) for an individual i that
we had to randomise and to introduce HSCS. In the descriptive experiment, the
only statistical uncertainty comes from trying to say something about the entire
populations based on only the samples we took, just as in survey sampling. If we
would observe the entire population, there would be no uncertainty and we could
simply reject / not reject HD2P with certainty. The descriptive experiment does
not have the same structure, and it is thus not possible to have a construction that,
by using an unconditional test, could lead to incoherencies between a hypothesis
concerning only the sample and a hypothesis concerning the entire population,
like we had in the causal example. The author would like to express his gratitude
towards Prof. Greenland. He made a number of insightful comments in private
correspondence, which definitely helped in correctly conveying his ideas in this
text.

Apart from the philosophical considerations described in the previous para-
graphs and in fact the whole of this Chapter, one should also look at the practical
perspective. Of course, conditional (and asymptotic) tests are way faster than
unconditional tests. However, we feel that within the realm of contingency tables
with small sample sizes, the current state of readily available computational power
made it entirely feasible to perform unconditional tests in acceptable time. Apart
from some unconditional tests which are already quite fast, such as the ones using
external test statistics like the one introduced by Suissa and Shuster [15], we will
propose in Chapter 4 a test within the classical Neyman–Pearson framework that
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performs similarly to Barnard’s CSM test, but in a fraction of the time.
The question whether to condition on both table margins or only on the group

size margin seems to still lack a definitive answer. Some argue that this “reveals
a fundamental weakness in frequentist inference” [67], or accept that the question
cannot be answered at all and instead recommend to “act like a Bayesian” [68].
It is within this context of disagreement and uncertainty that we find ourselves
today. As long as a clear answer fails to appear, both approaches deserve to be
further researched and developed. It is the – perhaps slightly biased – view of the
author that this thesis adds to this development. This in particular by reaching
out an opportunity to perform unconditional tests in larger tables, for everyone
who deems their use in a specific setting appropriate.
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CHAPTER

FOUR

LARGER TABLES

Until now, we have been predominantly focusing on the 2×2 contingency table. We
can however enlarge the number of rows and/or columns to obtain larger tables.
The first generalisation would be to compare r binomial distributions instead of 2.
This would yield a r× 2 table, where the corresponding null hypothesis would be
H0 : θ1 = θ2 = · · · = θr = θ. Alternatively, we could compare multinomial distri-
butions instead of binomial distributions. A c-nomial distribution is characterised
by a number of n independent trials, where each trial leads to the occurrence of
exactly one out of c mutually exclusive events A1, A2, . . . , Ac, each with corres-
ponding probabilities θ1, θ2, . . . , θc such that

∑c
j=1 θj = 1. The outcome would

then be a vector (x1, x2, . . . , xc), with probability

n!

x1! · · ·xc!
θx11 · · · θxcc . (4.1)

If we wished to compare two c-nomial distributions, we would end up with a 2× c
contingency table, where we would test the multiple null hypothesis

H0 : θ11 = θ21 = θ1, θ12 = θ22 = θ2, . . . , θ1,c−1 = θ1,c−1 = θc−1,

where θij is of course the probability of result j occurring in group i. Note that the
null hypothesis immediately implies that θ1c = θ2c = θc too. Combining these two
generalisations leads to the r× c contingency table, which is shown in Table 4.1.

A1 A2 · · · Ac
Group 1 x11 x12 · · · x1c n1·
Group 2 x21 x22 · · · x2c n2·

...
...

... . . . ...
...

Group r xr1 xr2 · · · xrc nr·
n·1 n·2 · · · n·c n··

Table 4.1: An r × c contingency table.

In the 2 × 2 case, the two-dimensional vector (x11, x21) fully determined the
table if we also knew (n1·, n2·). From now on, we will regard Table 4.1 as a real-

47
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isation x of the random matrix

X =


X11 X12 · · · X1c

X21 X22 · · · X2c
...

... . . . ...
Xr1 Xr2 · · · Xrc

 , (4.2)

where (Xi1, Xi2, . . . , Xic) has a multinomial distribution with ni· trials and respect-
ive event probabilities θi1, θi2, . . . , θic for i ∈ {1, . . . , r}. For such a table, we are
interested in testing the multiple null hypothesis

H0 : θ11 = θ21 = . . . = θr1 = θ1,

θ12 = θ22 = . . . = θr2 = θ2,

. . . ,

θ1,c−1 = θ2,c−1 = . . . = θr,c−1 = θc−1

(4.3)

against the alternative hypothesis that at least one of the above equalities does
not hold. Notice that for an r × c table, the number of common probabilities
θ1, θ2, . . . , θc−1, and hence the number of nuisance parameters, will be equal to
c− 1. Alternatively, if we let θi = (θi1, . . . , θic) for i = 1, . . . , r (keep in mind that∑c

j=1 θij = 1), we can write the null hypothesis as H0 : (θ1, . . . ,θr) ∈ Θ0, where

Θ0 = {(θ1, . . . ,θr) : θ1 = . . . = θr = θ},

where θ is the vector of c − 1 nuisance parameters (where the last entry is
then uniquely defined via

∑c
j=1 θj = 1). The overall parameter space is thus the

Cartesian product of r c− 1-dimensional simplexes{
(θi1, . . . , θic) :

c∑
j=1

θij = 1

}
.

We will adopt the convention that unless stated otherwise, θ (without a subscript)
will always represent the common value of θ1, . . . ,θr under H0, i.e., the vector of
nuisance parameters. These nuisance parameters are just numbers in [0, 1], and
will be indexed by a subscript. No confusion is possible however because of the
boldface for the vectors of probabilities θ1, . . . ,θr. Finally, it is worth noting that
one can even create higher dimensional tables, i.e. d1 × d2 × · · · × ds tables. We
will not deal with the latter in this text.

In the situations where we would consider the use of an unconditional test
justified, as discussed in Chapter 3, the question we would like to answer is how
unconditional exact tests would generalise to larger r × c tables. Asymptotic and
conditional tests have already been explored to a great extent for larger tables (see
for example the book of Fagerland, Lydersen and Laake [1]). However, probably
due to the large number of computations that unconditional tests will inevitably
require, there does not seem to be a lot of effort put into developing exact uncon-
ditional methods for r× c tables [1]. Therefore, let us first briefly mention how the
asymptotic and conditional tests extend to larger tables, and then take a look at
how we might extend the supremum method (as well as the C and S conditions of
Barnard’s CSM test) to r × c contingency tables.
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4.1 Extending the asymptotic and conditional tests
The chi-square test statistic given in (2.2) can easily be generalised to an r × c
table by:

χ2(X) =
r∑
i=1

c∑
j=1

(Xij − ni·θ̂j)
2

ni·θ̂j
, where θ̂j =

n·j

n··
. (4.4)

If this expression is undefined, we again set χ2(x) = −∞. One can show that
under the null hypothesis, χ2(X) has an asymptotic chi-square distribution with
(r− 1)(c− 1) degrees of freedom. We will omit the proof here, as well as the exact
requirements on the asymptotic growth of the group sizes (ni·)i=1...,r, but one can
get an idea of the proof in an article by Benhamou and Melot [69]. An argument
that explains the number of degrees of freedom is that, given both row and column
sums, we need (r − 1)(c − 1) table values in order to fully determine the table.
This argument does not attempt in any way to be rigorous.

Be that as it may, trusting that this asymptotic distribution is correct, we can
reject the null hypothesis for large values of χ2(X), and set the corresponding
p-value as p(x) = PH0(χ

2(X) ≥ χ2(x)) just as in (2.7). Again, this asymptotic
approximation may not be justified for small sample sizes. Similar to the rule of
thumb mentioned by Fisher, Cochran [70] suggested to only use this test whenever
at least 80% of the expected cell counts ni·θ̂j is larger than 5, and all expected cell
counts are larger than 1. Remark that this reduces to Fisher’s rule for the 2 × 2
table.

Luckily, exact approaches can also be used whenever the chi-square method
is not deemed appropriate. In particular, there exists a generalisation of Fisher’s
exact test to r × c tables, called the Fisher–Freeman–Halton exact test. In 1951,
Freeman and Halton [71] showed that, fixing the table margins, i.e., conditional
on X being in

Mn·j
ni·

=

{
x ∈ Ω :

c∑
j=1

xij = ni·, i = 1, . . . , r and
r∑
i=1

xij = n·j, j = 1, . . . , c

}
,

where Ω is the set of all possible table outcomes, the probability of observing
Table 4.1 under H0 is given by

PH0

(
X = x | X ∈Mn·j

ni·

)
=

∏r
i=1 ni·!

∏c
j=1 n·j!

n··!
∏r

i=1

∏c
j=1 xij!

. (4.5)

This is the probability mass function of the multiple hypergeometric distribution.
We can compute a p-value by summing the probabilities of all tables which are
less or equally likely to occur under this distribution than the observed table, i.e.

pFFH(x) =
∑
y∈Sx

PH0

(
X = y | X ∈Mn·j

ni·

)
, (4.6)

where

Sx =
{
y ∈Mn·j

ni·
: PH0

(
X = y | X ∈Mn·j

ni·

)
≤ PH0

(
X = x | X ∈Mn·j

ni·

)}
.

This specific choice allowed Mehta and Patel [55] to construct a network algorithm
that would speed up this otherwise lengthy computation. They proposed to con-
struct a directed acyclic graph in which the set of all unique paths running from
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some initial vertex to some terminal vertex would be isomorphic to M
n·j
ni· . The

path corresponding to y ∈M
n·j
ni· would be assigned a length of

n··!∏r
i=1 ni·!

PH0

(
X = y | X ∈Mn·j

ni·

)
.

The problem of computing the p-value would then amount to summing the lengths
of all paths which have a smaller length than the path corresponding to the ob-
served x. Mehta and Patel argue that by translating the computation of the p-value
to a network problem, the need to enumerate over all possible tables is removed,
as it is possible to preemptively remove infeasible paths from consideration. A
nice and detailed explanation of the procedure can be found in the book by Berry,
Johnston and Mielke [72].

4.2 Generalising Barnard’s (CS)M test

Extending the supremum method of finding p-values to larger tables is – con-
ceptually – not a very hard thing to do. Also for an r × c table, we can list all
possible table outcomes with given a (n1·, . . . , nr·)-margin. This set of outcomes Ω
becomes rather big quite quickly, however. This is straightforward combinatorial
computation; we can view the i-th row of the table as a balls-and-boxes problem
of dividing ni· indistinguishable balls over c distinguishable boxes. It is well-known
that we can do this in (

ni· + c− 1

ni·

)
different ways. Consequently, the total number of possible table outcomes is the
product

ω := |Ω| =
r∏
i=1

(
ni· + c− 1

ni·

)
. (4.7)

Given this set of tables, we can then for example compute a test statistic of interest
for all these tables, such as (4.4), and compute a p-value via the analogue of (2.21)
for multiple nuisance parameters:

p(x) = sup
θ∈Θ0

Pθ(T (X) ≥ T (x)),

or with the inequality sign reversed. Alternatively, speaking in terms of ordering
the tables, we might work out an ordering sequentially just as with Barnard’s
(CS)M test, based on (2.22), such that the k + 1-th table in the ordering can be
defined once

{
x(1), . . . ,x(k)

}
are known:

x(k+1) = argmin
y∈Ω\{x(1),...,x(k)}

sup
θ∈Θ0

{
P (y;θ) +

k∑
i=1

P
(
x(i);θ

)}
, (4.8)

The vectors in that equation should still be understood as representing the tables,
but they will of course no longer be 2-dimensional vectors. Furthermore, the prob-
ability P (x; θ) of observing the 2×2 table x = (x11, x21) under the null hypothesis
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that θ1 = θ2 = θ should be replaced by the equivalent probability of observing
Table 4.1 under the null hypothesis (4.3), that is,

P (x;θ) := Pθ(X = x) =
r∏
i=1

c∏
j=1

ni·!

xij!
θ
xij
j =

∏r
i=1 ni·!∏r

i=1

∏c
j=1 xij!

c∏
j=1

θ
n·j
j . (4.9)

Constructing the ordering of Ω entails maximising a function with respect to
the nuisance parameters (i.e., over a c-dimensional simplex) a total of |Ω| − k + 1
at the k-th iteration. Therefore, introducing some larger dimensional analogue to
the C and S conditions might drastically reduce the number of maximisations we
need to perform.

4.2.1 The S Condition

In the 2×2 case, we interpreted a given table and the table where the columns were
swapped as equally strong evidence against H0. Equivalently, in the r× c case, we
say that two tables carry equal evidence against H0 if they are the same up to a
permutation of the columns. If moreover, we have ni· = nj· for i, j ∈ I ⊂ {1, . . . , r},
we can also permute the rows with index in I and view the resulting tables as
symmetric to the original table.

However, finding out which tables are symmetric counterparts of each other by
switching around and comparing columns and rows can become a relatively costly
operation. Therefore, if we could somehow reduce the requirements on rows and
columns to just comparing a few numbers, there might be a significant compu-
tational gain. Therefore, we would like to introduce a slightly different definition
of the S condition. Essentially, Barnard defined his S condition for 2 × 2 contin-
gency tables by requiring that symmetric tables should provide the same evidence
against the null hypothesis. We can interpret this requirement for general r× c in
terms of the P (·;θ)-function. Two tables could be seen as equally unlikely under
the null hypothesis if their P (·;θ)-functions are equal, up to a permutation of θ.
What do we mean by that? Consider an example with 3 × 3 contingency tables
with sample sizes (n1·, n2·, n3·) = (5, 5, 4). Then (4.9) becomes

P (x;θ) =

∏3
i=3 ni·!∏3

i=1

∏3
j=1 xij!

θn·1
1 θn·2

2 θn·3
3 =: Kxθ

n·1
1 θn·2

2 θn·3
3 .

We can say that two tables are equally likely under H0 if their P (·;θ)-functions
have the same value for Kx and if the column margins (n·1, n·2, n·3) are composed
of the same values, but maybe in a different order. In general, since (ni·)i=1,...,r is
fixed, two tables x and y can be seen as symmetric according to what we will call
the SP condition if

r∏
i=1

c∏
j=1

xij! =
r∏
i=1

c∏
j=1

yij!, and (nx
·j)j=1,...,c ∼ (ny

·j)j=1,...,c, (4.10)

where by a ∼ b we mean that a and b are permutations of each other. It is easy
to see that if two tables are symmetric according to Barnard’s S condition, then
they are also symmetric according to SP. The reverse implication is a bit more
complicated. In the case of 2 × 2 tables, under the condition that n1· = n2·, it
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seems that the SP symmetry requirement coincides with Barnard’s S. We state
this based on the conjecture that

(4.10) ⇐⇒


x11!x12!x21!x22! = y11!y12!y21!y22!,

x11 + x12 = y11 + y12,

x21 + x22 = y21 + y22,

x11 + x21 = y11 + y21 or x11 + x21 = y12 + y22,

?
=⇒


x11 = y11, x12 = y12, x21 = y21, x22 = y22, or
x11 = y12, x12 = y11, x21 = y22, x22 = y21, or
x11 = y21, x12 = y22, x21 = y11, x22 = y12, or
x11 = y22, x12 = y21, x21 = y12, x22 = y11.

which is the same as saying that x and y are symmetric according to S. We have
checked that this conjecture is true at least until n1· = n2· = 150.

For n1· ̸= n2·, this reverse implication does not hold. Indeed, taking (n1·, n2·) =
(2, 11) serves as a counterexample. The tables (1, 8) and (2, 7) both have column
margins (n·1, n·2) = (9, 4) and the product of the factorials of the table entries is in
both cases equal to 1!1!8!3! = 0!2!4!7! = 241920. These tables are thus symmetric
according to SP, but clearly not according to S.

Also for larger tables, this symmetry condition leads to larger equivalence
classes than Barnard’s symmetry condition. For example, in the 3 × 3 case with
equal group sizes, the two tables given in Table 4.2 are symmetric according to
SP, but not according to Barnard’s S condition. Indeed, by only switching rows
and columns, we can never go from the left table to the right table or vice versa.

A1 A2 A3

Group 1 2 1 1 4
Group 2 0 3 1 4
Group 3 0 0 4 4

2 4 6 12

A1 A2 A3

Group 1 1 3 0 4
Group 2 1 1 2 4
Group 3 0 0 4 4

2 4 6 12

Table 4.2: Two tables that are symmetric according to SP, but not according to
S.

Because we only need to perform some elementary computations to see whether
SP is satisfied, instead of comparing matrices, we shorten the computation time.
Also, as for larger tables the symmetry classes are actually larger in the case of
SP, we will go through the space of possible outcomes more quickly. More on this
computational aspect in Section 5.3.

4.2.2 The C condition

The C condition is a bit more tricky to define. Let us first limit ourselves to the
r × 2 case, where we are comparing r binomials, and therefore still only have one
nuisance parameter. Although we just mentioned that we will from now on only
look at table outcomes as matrices like in (4.2), it is worth noticing that r×2 tables
could still be represented as r-dimensional vectors, given the (n1·, . . . , nr·)-margin.
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Consequently, the set of outcomes Ω can be visualised as an r-dimensional lattice,
in the same spirit as Figure 2.2. Because of that, we can easily define a similar
convexity condition. For a table x = (x11, . . . , xr1), we view all the tables which
lie further away from the (hypercube) diagonal connecting the outcomes (0, . . . , 0)
and (n1·, . . . , nr·). For example, in the 3 × 2 setting with n1· = n2· = n3· = 5, we
would expect the table (1, 2, 1) to provide less evidence against H0 than the tables
(0, 2, 1), (1, 1, 1) and (1, 2, 0). With that, the CSM algorithm works in exactly the
same way as in the 2 × 2 case; we start ordering at the most extreme points,
being ni·ei (i = 1, . . . , r) and their symmetric counterparts. Here ei is the i-th
unit vector. Afterwards we start looking at all nearest neighbours which we have
not ordered already, respecting the convexity requirement, and slowly fill up the
r-dimensional lattice.

There is no longer a nice graphical interpretation the moment we are consid-
ering tables with more than 2 columns. However, we can still apply the same idea
of looking at the “most extreme” tables and subsequently considering the nearest
neighbours of these most extreme tables first. We will go through all tables in Ω
sequentially by only considering the nearest neighbours of tables we have already
ordered to be the next in our ordering. This is not exactly the same as the con-
dition we employed in the 2× 2 case. For example, the method we just described
would allow the outcome (3, 4) to be considered next in Figure 2.3, in contrast to
our original convexity condition. However, we would expect this less strict require-
ment to work well enough. Recall that we can enforce any conditions we would
reasonably want; as we are just looking for ways to reduce the number of outcomes
to consider at each iteration.

The only question left to answer is how to determine which tables are the most
extreme. In the r × 2 case, we considered all tables for which there was exactly
one group k such that xk1 = nk·, and xi1 = 0 for i ̸= k as the most extreme
tables. They contained the most possible evidence against H0, in particular that
θk ̸= θi for i ̸= k. As we are interested in the multiple null hypothesis (4.3) for
the r× c setting, we consider each table which has a column of r− 1 zero entries,
and exactly one nonzero entry equal to sample size for that group. Of course, their
symmetric counterparts should be treated as equally extreme.

4.2.3 The use of external test statistics

Just as we discussed in Section 2.5, we can introduce external test statistics to do
a couple of things. If while ordering the tables, we encounter a tie between two
candidates, we can use an external test statistic (chi square or the mean value of
P (·;θ)) to determine which candidate to pick. We could also use the test statistic
to create the ordering itself, and finally the external test statistic can be used
to split up the outcome space in symmetry classes. Almost all these applications
naturally extend to larger tables too. For example, Boschloo’s test, which uses
the Fisher p-value test statistic in the 2 × 2 case, is also easily defined for larger
tables. We just need to use the Fisher–Freeman–Halton p-value. Furthermore, we
can also compute the mean value test statistic, i.e., the integral

∫
Θ0
P (x;θ)dθ of

P (·;θ) over Θ0. This is done in Proposition 4.1.
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Proposition 4.1. The mean value of P (x; θ) as defined in (4.9) is equal to

∫
Θ0

P (x;θ)dθ =

∏r
i=1 ni·!

∏c
j=1 n·j!

(n·· + c− 1)!
∏r

i=1

∏c
j=1 xij!

, (4.11)

where the integral over Θ0 should be understood as a multiple integral over the
c− 1-dimensional simplex

Θ0 :=

{
θ ∈ [0, 1]c :

c∑
j=1

θj = 1

}
. (4.12)

Proof of Proposition 4.1. We will show by induction on c that

∫
Θ0

c∏
j=1

θ
n·j
j dθ =

∏c
j=1 Γ(n·j + 1)

Γ
(∑c

j=1 n·j + c
) . (4.13)

Since Γ(m + 1) = m! for m ∈ N, (4.13) immediately leads to (4.11) by plugging
(4.9) into

∫
Θ0
P (x;θ)dθ.

To this end, let us first suppose that c = 2. Then Θ0 ⊂ [0, 1]2 is the line
segment {(θ1, 1− θ1) : 0 ≤ θ1 ≤ 1} and so

∫
Θ0

c∏
j=1

θ
n·j
j dθ =

∫ 1

0

θn·1
1 (1− θ1)

n·2dθ1

= B(n·1 + 1, n·2 + 1)

=
Γ(n·1 + 1)Γ(n·2 + 1)

Γ(n·1 + n·2 + 2)
,

which is what we wanted to show. Now suppose that (4.11) holds for c = k ≥ 2.
Then realise that for c = k + 1, we can write

∫
Θ0

k+1∏
j=1

θ
n·j
j dθ =

∫ 1

0

θ
n·,k+1

k+1

∫
Θ′

0

k∏
j=1

θn·j
j dθ′dθk+1, (4.14)

where θ′ = (θ1, . . . , θk) and Θ′
0 =

{
θ′ ∈ [0, 1]k :

∑k
j=1 θj = 1− θk+1

}
, which is a

(k − 1)-dimensional simplex given θk+1. To evaluate this integral, we perform the
change of variables

νj =
θj

1− θk+1

, for j = 1, . . . , k and dν = (1− θk+1)
−(k−1)dθ,

where the (k−1) in the exponent follows from the integration region being (k−1)-
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dimensional. If we let N0 :=
{
ν ∈ [0, 1]k :

∑k
j=1 νj = 1

}
, we can rewrite (4.14) as

(4.14) =
∫ 1

0

θ
n·,k+1

k+1

∫
N0

(
k∏
j=1

(1− θ
n·j
k+1)ν

n·j
j

)
(1− θk+1)

k−1dνdθk+1

=

∫ 1

0

θ
n·,k+1

k+1 (1− θk+1)
∑k

j=1 n·j+k−1

(∫
N0

k∏
j=1

ν
n·j
j dν

)
dθk+1

=

∫ 1

0

θ
n·,k+1

k+1 (1− θk+1)
∑k

j=1 n·j+k−1

∏k
j=1 Γ(n·j + 1)

Γ
(∑k

j=1 n·j + k
)dθk+1 (induction)

=

∏k
j=1 Γ(n·j + 1)

Γ
(∑k

j=1 n·j + k
)B(n·,k+1 + 1,

k∑
j=1

n·j + k

)

=

∏k
j=1 Γ(n·j + 1)

Γ
(∑k

j=1 n·j + k
) Γ(n·,k+1 + 1)Γ

(∑k
j=1 n·j + k

)
Γ
(∑k+1

j=1 n·j + k + 1
)

=

∏k+1
j=1 Γ(n·j + 1)

Γ
(∑k+1

j=1 n·j + k + 1
) ,

which is exactly (4.13) with c = k + 1.

We should only be careful when using the chi-square test statistic for larger
tables. Of course, we would work with (4.4) instead of (2.2). However, for tables
with more than two columns, the chi-square test statistic shows some undesirable
behaviour. For the sake of illustration, consider the two 2× 3 tables in Table 4.3.
According to the last paragraph of Section 4.2.2, we would consider the left table
as a “most extreme” table. Intuitively, this also seems to be the strongest possible
evidence against the null hypothesis. The right table on the other hand, seems to
be the weakest evidence against the null hypothesis we could possibly imagine.
However, because both tables have two zero entries in column A3, they both have
a chi-square test statistic value of −∞. The extreme table on the left would be
perceived as just as extreme as the table on the left. Of course, we could still use
the chi-square test statistic to determine the ordering of tables. The only downside
would be that what we would see as the most extreme tables would instead end up
last in the ordering (and thus a p-value of 1). The test would still produce a valid
p-value, but will be less powerful. All the other tables will still get a “reasonable”
p-value.

A1 A2 A3

1 5 0 0 5
2 0 3 0 3

5 3 0 8

A1 A2 A3

1 5 0 0 5
2 3 0 0 3

8 0 0 8

Table 4.3: Two 2× 3 tables with the same chi-square test statistic value.

The implications are a bit more severe if we wish to use the chi-square test
statistic in a CSM-like test to determine the symmetry classes. Of course, both
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tables in Table 4.3 will be put in the same symmetry class. However, if we would
still decide to start our ordering with the most extreme tables, we would need
to put this odd symmetry class first in our ordering. The associated p-value will
be 1. Correspondingly, all the symmetry classes that come afterwards will have
a p-value of 1 too. Two possible solutions for this issue would be to define some
other reasonable (less extreme) starting point. This will yield a sensible ordering
(and set of p-values) and put the odd symmetry class containing the tables in
Table 4.3 at the end of the ordering. Alternatively, one might opt to artificially
define different values for the chi-square test statistic depending on a case-by-case
basis for these few special tables.

However, because of the large number of tests we will already be considering
in Chapter 5, and because the chi-square approach will turn out to in general
lead to a less powerful test in the case of 2 columns, we decided to just not use
the chi-square test statistic to define symmetry classes in a CSM-like procedure
whenever we have more than 2 columns.

4.2.4 A small recap on the different symmetry conditions

Just before we move on constructing some unconditional tests, let us briefly recap
the different symmetry conditions we have encountered. Their – rather brief –
introductions have been scattered over this Chapter, which might not benefit the
clarity of this text.

In the 2 × 2 case, Barnard introduced a symmetry condition based purely on
the swapping of columns (and possibly rows with equal margins). Although this
condition generalised to larger tables, we introduced due to computational reas-
ons a slightly different condition, SP, defined in (4.10). We will use this condition
instead of Barnard’s S condition, also for 2× 2 tables (for which we suspect there
is no actual difference). Apart from these two, we can also define symmetry condi-
tions based on the (external) test statistics. Tables which have the same chi-square
test statistic value (4.4), are said to be symmetric according to the Sχ condition.
If tables have the same mean value of P (·;θ), i.e., the same value of (4.11), they
are said to be symmetric according to the SV condition.

Are there any relations between this symmetry conditions? That is, does one
imply the other in certain cases? We have already shown in Section 2.5.1 that in
the 2×2 case, S =⇒ Sχ but not Sχ =⇒ S. By this abuse of notation we mean that
“if two tables are symmetric according to S, they are also symmetric according to
Sχ”. Similarly, as mentioned in Section 2.5.2, S ≠⇒ SV but not SV =⇒ S (although
we suspect this to be true whenever n1· = n2·), and also SV ≠⇒ Sχ and Sχ ≠⇒ SV.

For larger tables, we already noted with Table 4.2 that SP ≠⇒ S. It is also very
easy to find tables that show that in general, SV ≠⇒ SP, Sχ ≠⇒ SP, SV ≠⇒ Sχ and
Sχ ≠⇒ SV. We already have some in the 3×2 case with group sizes (n1·, n2·, n3·) =
(3, 2, 2). For example, the tables (x11, x21, x31) = (3, 0, 0) and (0, 2, 0) are symmet-
ric according to Sχ, but not according to SV or SP. Similarly, the tables (3, 1, 2)
and (2, 1, 2) are symmetric according to SV, but not according to Sχ or SP.

Furthermore, we do clearly see that if x and y are symmetric according to SP,
i.e., satisfying (4.10), that x and y should also have the same value for (4.11). In
other words, SP =⇒ SV. A similar relation does not hold between SP and Sχ; the
two tables in Table 4.2 serve as a counterexample since they do not have the same
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chi-square test statistic value. However, it is true that S =⇒ Sχ. Indeed, because
(4.4) is a sum over all table cells, swapping columns (or rows with equal group
sizes) does not change the individual terms but merely the order in which they
appear in the sum, not changing the chi square test statistic value.

We can summarise the above observations as in Figure 4.1.

Sχ

S

SP SV

Figure 4.1: Chain of implications of the different symmetry conditions.

To conclude, recall the trade-off between speed and power we mentioned in
Section 2.5.1. Given the chain of implications above, the conditions SV and Sχ will
in general divide the space of outcomes into fewer, larger symmetry classes than
SP. Except in the two 2× 2 case, where we suspect that SP =⇒ SV, we therefore
expect that the tests using SP will be slightly more powerful than those using SV

or Sχ.

4.3 Exact unconditional tests for r × c tables

Now that we have discussed how the building blocks of Barnard’s CSM test would
generalise to larger tables, we feel that we are able to construct an exact uncon-
ditional test for arbitrary r × c tables. We will propose two different approaches.
The first approach could be seen as the direct generalisation of Barnard’s CSM
test. Here, we build up the ordering of tables sequentially, respecting the C and S
conditions. We moreover introduce a number of adjustments in order to speed up
an otherwise computationally intensive procedure. The second approach tries to
perform an unconditional test more from a classical Neyman–Pearson perspective.
By doing so, it turns out we can translate the problem of constructing a critical
region for a given significance level α into a linear programming problem, provid-
ing a far quicker alternative to the CSM computation. Finally, we briefly discuss
an idea that aims to reduce the r× c table to c− 1 r× 2 tables. This will remove
the need to perform maximisations over a c − 1-dimensional simplex of nuisance
parameters, by instead solving c − 1 maximisation problems similar to that one
encountered in the 2× 2 setting.

4.3.1 Approach 1: Maximisation over the full simplex

As we have discussed in Section 4.2, Barnard’s CSM test – and every other su-
premum test – essentially works in the same way for larger tables as for its 2× 2
counterpart. There are however two complications when increasing the table di-
mensions. The first is that we need to consider a larger set of possible candidate
outcomes at each step of the ordering. We have seen in the previous section that
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defining equivalents for the C and S conditions severely decreases the number of
table outcomes we should consider at each iteration.

The second one is that we should maximise the function

P (y;θ) +
k∑
i=1

P
(
x(i);θ

)
(4.15)

no longer just over the unit interval [0, 1], but over the c− 1-dimensional simplex
Θ0 as defined in (4.12). To perform this maximisation, we could either use a non-
linear constrained optimisation method, or discretise Θ0 in some way and simply
evaluate the objective function in each point of our discretisation.

The advantage of using a discretised grid
{
θ1, . . . ,θN

}
of Θ0 is that we can keep

track of the summation
∑

i≤k P (x(i);θ
j) of all P (·;θj)-functions over the already

ordered points for all j = 1, . . . , N . This makes the maximisation in (2.22) a lot
easier, as we can just store this “base layer” instead of evaluating it again and again,
as would be the case when using a constrained optimisation method. Therefore,
we opt to proceed with the discretisation method. It is important to note here
however that the p-values we obtain using this method, are approximations and
not the exact p-values. It is of course very unlikely that the maximum of (4.15)
will be reached exactly in one the grid points. However, by choosing the grid “fine
enough”, we can assume that this approximate p-value will lie not too far from the
actual p-value.

The question we are now left with is how to discretise the c − 1-dimensional
simplex Θ0. One possibility is to first construct an (equidistant) grid on the hy-
percube [0, 1]c, and then transform it in order for it to lie in the simplex. If we
map every grid point

(θ1, . . . , θc) 7→

(
θ1∑c
j=1 θj

, . . . ,
θc∑c
j=1 θj

)
,

then we make sure that the entries of the image point sum up to 1. Although
straightforward, this approach has two disadvantages. First of all, the number of
grid points we have to consider grows exponentially with the number of columns c.
Also, the transformed grid will no longer be equidistant, such that we might have
a higher concentration of grid points in specific parts of the simplex. Consequently,
this transformed grid could be too coarse to catch some maxima.

Because of these drawbacks, we propose to use a technique inspired from the
Monte Carlo evaluation of integrals; so-called Quasi-Monte Carlo sequences, or
low-discrepancy sequences. These are (multidimensional) sequences of points con-
structed in such a way that any of their subsequences will fill up [0, 1]c “as best
as possible”. We elaborate on what this means in Appendix A. Using a low-
discrepancy sequence removes the curse of dimensionality an equidistant grid has.
Indeed, we are now able to have a subsequence with a fixed size, independent of
the number of dimensions, that will evenly fill up [0, 1]c. We can act as if this
entirely deterministic sequence is a sample from a uniform distribution on [0, 1]c,
which we can then transform to something which looks like a uniform sample on
the simplex. To this end, we state and prove the following result.
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Proposition 4.2. If we let U = (U1, . . . , Uc) be a random vector uniformly dis-
tributed on [0, 1]c, then

W :=

(
− logU1

−
∑c

k=1 logUj
, . . . ,

− logUc
−
∑c

k=1 logUj

)
(4.16)

is uniformly distributed on the simplex Θ0 defined in (4.12). That is, W has a
Dirichlet distribution with parameters α := (α1, . . . , αc) = (1, . . . , 1) with density
function:

fW(w1, . . . , wc;α1, . . . , αc) =
Γ
(∑c

j=1 αj

)
∏c

j=1 Γ(αj)

c∏
j=1

w
αj−1
j = Γ(c), (4.17)

for w = (w1, . . . , wc) ∈ Θ0.

On a side note, observe that the normalising constant in (4.17) follows immedi-
ately from (4.13). The Dirichlet distribution can be seen as multivariate extension
of the Beta distribution. Therefore, the normalising constant is often referred to
as the multivariate Beta function:

B(α) :=

∏c
j=1 Γ(αj)

Γ
(∑c

j=1 αj

) . (4.18)

Proof of Proposition (4.2). (Based on the proof of Theorem XI.4.1 in Devroye
[73]) First of all, note that if U is uniformly distributed on [0, 1]c, then the Uj
are independent and identically distributed uniform random variables on [0, 1] for
j = 1, . . . , c. Now define Vj := − logUj. Then Vj is exponentially distributed with
parameter 1 for j = 1, . . . , c. Indeed, by the inverse probability transform, we
know that for V having a standard exponential distribution, FV (v) = 1− e−v, so
F−1
V (u) = − log(1− u) and thus

− log(U) ≃ − log(1− U) = F−1
V (U),

has a standard exponential distribution whenever U is uniformly distributed on
[0, 1]. The joint density function of (V1, . . . , Vc) is therefore

fV(v1, . . . , vc) =
c∏
j=1

e−vj = e−
∑c

j=1 vj .

If we now define g : [0,∞)c → [0, 1]c−1 × [0,∞) as

g(v1, . . . , vc) :=
(v1
s
, . . . ,

vc−1

s
, s
)
= w′,

where s =
∑c

k=1 vk, then g−1(w′
1, . . . , w

′
c) =

(
w′

1w
′
c, . . . , w

′
c−1w

′
c, w

′
c(1−

∑c−1
k=1w

′
k)
)

and the density of W′ = g(V) is given by

fW′(w′) = fV
(
g−1(w′)

)∣∣∣∣∂g−1(w′)

∂w′

∣∣∣∣
= e−

∑c−1
j=1 w

′
jw

′
c−w′

c(1−
∑c−1

k=1 w
′
k)(w′

c)
c−1

= e−w
′
c(w′

c)
c−1
,
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since

∣∣∣∣∂g−1(w′)

∂w′

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
w′
c 0 · · · w′

1

0 w′
c · · · w′

2
...

... . . . ...
−w′

c −w′
c · · · 1−

∑c−1
k=1w

′
k

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
w′
c 0 · · · w′

1

0 w′
c · · · w′

2
...

... . . . ...
0 0 · · · 1

∣∣∣∣∣∣∣∣∣ = (w′
c)
c−1
.

But then, integrating out the w′
c to obtain the joint density of

(
V1
S
, . . . , Vc−1

S

)
:

f(V1
S
,...,

Vc−1
S

)(w′
1, . . . , w

′
c−1) =

∫ ∞

0

e−w
′
c(w′

c)
c−1

dw′
c = Γ(c).

Since Vc is uniquely defined by V1, . . . , Vc−1 and S, W ≃
(
V1
S
, . . . , Vc−1

S

)
and we

are done.

On top of this Quasi-Monte Carlo grid, we will add some other points which
do not belong to the low-discrepancy sequence. By construction, this sequence
will never contain a boundary point of the simplex. However, it is desirable to
include some of these boundary points. For many tables, the maximum of their
corresponding P (·;θ)-functions will be reached at a θ-value which has one or more
zero entries. For example, the sum of P (·;θ)-functions of the left 2× 3 table given
in Table 4.4 and its 5 symmetric counterparts is given by

2
(
θ31θ

3
2 + θ31θ

3
3 + θ32θ

3
3

)
,

which reaches a maximum of 1/32 for θ ∈ {(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)}.
We could therefore opt to construct another QMC grid on the edges of Θ0. How-
ever, in practice, it seemed that using only the midpoints of each of the edges, such
as {(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)} for tables with three columns, already
gave satisfactory results. Another example is given by the right table in Table 4.4.
The sum of the P (·;θ)-functions of this table and its two symmetric counterparts
is

θ61 + θ62 + θ63,

which reaches a maximum of 1 for θ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Of course, these
are the three only tables for which P (·;θ) evaluated at one of the vertices of the
simplex Θ0 will be something else than 0. However, it is important to include
these θ-values into our grid too. As soon as these three tables become a candidate
to be the next tables in the ordering, including θ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
will immediately render these tables ineligible, for most candidates will have a
maximum P (·;θ)-value smaller than 1.

A1 A2 A3

1 3 0 0 3
2 0 3 0 3

3 3 0 6

A1 A2 A3

1 3 0 0 3
2 3 0 0 3

6 0 0 6

Table 4.4: 2× 3 tables with argmaxθ∈Θ0
P (·;θ) not in the interior of Θ0.

Finally, we will also include θm = (1/c, . . . , 1/c), the midpoint of the simplex
Θ0 in the grid. This is because the sum of P (·;θ)-functions of some symmetry
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classes will certainly reach a maximum at this point, exactly due to the symmetry
within that class. For example, when applying the SP condition, within a symmetry
class, the sum of P (·;θ)-functions will return the same value for all permutations
of a given θ. Clearly, ∥θ − θm∥ = ∥π(θ)− θm∥, where π(θ) is a vector obtained
by permuting the entries of θ according to a certain permutation. Therefore, it
might be reasonable to expect that sometimes the maximum of the sum of P (·;θ)-
functions is reached in θm.

4.3.2 Approach 2: A Packing Problem

Instead of working through the entire space of possible table outcomes using some
kind of supremum test, we could also try to just construct a critical region Kα for
a given significance level α. Surely, from this alone, we will not be able to derive
p-values for individual tables, but if one is only interested in whether or not to
reject the null hypothesis at a nominal significance level, having a critical region is
enough. Setting aside all objections to this Neyman–Pearson way of testing, let us
describe a method in which we can turn the problem of constructing the critical
region Kα for a given α into a linear programming problem.

We would like to construct a critical region of table outcomes such that the
probability of making a Type I error is less than α. Recall that under the null
hypothesis, the probability of observing Table 4.1 was nothing else than P (x;θ)
defined in (4.9). Our aim is thus to construct a critical region Kα such that

sup
θ∈Θ0

∑
x∈Kα

P (x;θ) ≤ α. (4.19)

To minimise the Type II error, we also would like to make Kα as large as possible.
That is, we want to make

∑
x∈Kα P (x;θ) as large as possible for θ ∈ Θ1. In order

to convert this into a linear programming problem, we will slightly alter this aim
in the hope it will still give reasonable power. This slightly altered objective is
to include as many different tables into Kα as possible. The idea is that, as long
as (4.19) is satisfied, creating the largest Kα possible will make

∑
x∈Kα P (x;θ)

as close as possible to α for all θ ∈ Θ0, and potentially also very close to 1 for
θ ∈ Θ1. We can already translate this into the following problem:

maximise wT1

subject to
ω∑
j=1

wjP (x
j;θ) ≤ α, for θ ∈ Θ0,

w ∈ {0, 1}ω,

where we indexed all tables in Ω from 1 to ω and w = (w1, . . . , wO)
T is a binary

vector such that wj = 1 whenever xj ∈ Kα. Instead of checking that the first
condition holds for all θ ∈ Θ0, we will again discretise Θ0 and only consider a
Quasi-Monte Carlo grid of N values for θ, labelled θ1, . . . ,θN . This turns our
problem into a so-called binary integer linear programming:

maximise wT1

subject to Aw ≤ α1,

w ∈ {0, 1}ω,
(4.20)
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where A = (aij) is a N×ω matrix with entries aij = P (xj;θi) for i = 1, . . . , N and
j = 1, . . . , ω. Although this linear program only approximates our actual problem,
it allows us to make use of the vast collection of already-existing LP-solvers. This
will turn out to significantly decrease computation time, as well as allow us to
handle far bigger contingency tables. In this text, we solved all LP problems using
the Gurobi Optimizer software 1. The Gurobi software is proprietary, so its precise
inner workings are unknown to us. However, as indicated on Gurobi’s website 2,
the common approach to solve binary integer linear programming programs (which
are part of a larger class of problems called mixed integer linear programming
problems) is to use a branch-and-bound algorithm. Mixed integer programming
(MIP) problems are characterised by requiring that some of the variables should
be integers.

The basic idea of the branch-and-bound approach is to “relax” the mixed integer
programming to a linear programming by removing all the integrality constraints.
This will yield (most probably) an optimal solution that does not satisfy the
integrality constraints. We will now pick one of the variables v which should be
integer, but takes the value a /∈ Z instead, say. We can now solve two new LP
problems: the one with the added restriction that v ≤ ⌊a⌋, and the one with the
added restriction that v ≥ ⌈a⌉. With the obtained solutions, we can then again
pick another variable which should be integer, and repeat the whole procedure.
One can see that this will result in a tree of LP problems which get more and more
restricted the further down the branches of the tree we go. Once we have found
a solution that satisfies all the integrality conditions, we have found a feasible
solution of the original MIP problem. We can now “prune” this branch of the
tree and record the objective value this solution yields. If the original MIP is
a maximisation problem, this objective value is a lower bound on the optimal
objective value. Were we to find another feasible solution with a smaller objective
value, we can also prune that branch as we already have a better solution. If we
found another feasible solution with a larger objective value, we will update our
lower bound. At the same time, note that the objective values of the solutions of
all the relaxed LP sub-problems we considered so far serve as upper bounds for
the optimal objective value. We can never obtain a better solution for the – more
restricted – integer problem. We have found an optimal solution once the upper
and lower bounds coincide.

Let us get back to statistics. One can wonder why the objective function (4.20)
would yield sensible critical regions. An important realisation to make is that
because we are maximising the number of tables in the critical region, we are
effectively prioritising the inclusion of more extreme tables. To see this, it is in-
structive to interpret the problem of constructing the critical region as some kind
of packing problem. This is visualised in Figure 4.2 for the simple 2× 2 case with
(n1·, n2·) = (2, 2), but the same idea holds for general r × c tables too. Given the
very high significance level α = 0.45, we want to “fill up” the area underneath the
level α with a selection of P (·;θ)-functions on the left of Figure 4.2. The objective
of the LP formulation is to pack as many of these P (·;θ)-functions underneath the
level α. A number of possible solutions are given to the right of Figure 4.2. The

1A free academic license of this solver is available at https://www.gurobi.com/features/
academic-named-user-license/.

2https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/

https://www.gurobi.com/features/academic-named-user-license/
https://www.gurobi.com/features/academic-named-user-license/
https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/
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optimal solution turns out to be the one in the top-right corner, i.e., the critical
region {(1, 0), (2, 0), (1, 2), (0, 2)}, with an optimal objective value of 4. Clearly,
this is because it uses the smaller P (·;θ)-functions, which do not take up that
much space, and thus yield a larger objective value. This is true in general: the LP
formulation (4.20) will naturally be inclined to include tables in the critical region
which have small P (·;θ)-functions, i.e. P (·;θ)-functions taking “small” values for
many values of θ. In other words, we will naturally be inclined to include the most
extreme tables (in the case of the example, the tables (2, 0) and (0, 2)). This may
serve as an indication that the critical region obtained via (4.20) should have some
resemblance to the one obtained via, say, a CSM-like test. Other, weirdly shaped
critical regions will result a less effective packing of the area.

Figure 4.2: Pool of available P (·;θ)-functions for (n1·, n2·) = (2, 2) (left) and a
number of solutions to the packing problem (right).

Note that we can also choose to incorporate some type of symmetry condition,
just as with the supremum methods. Before solving (4.20), we might group tables
together which are symmetric counterparts of each other, and then decide group by
group whether or not we want to include it in the critical region. This has obviously
a large effect on the size of the problem, going from an N × ω matrix to a N × ω′

matrix, where ω′ is the number of equivalence classes of tables that are symmetric
counterparts of each other. The vector w then also becomes ω′-dimensional, each
entry representing whether or not to include the corresponding group of tables.
We should consequently also change the objective function to wTg, where g is the
vector containing the number of tables in each of the symmetry classes.

Let us make three remarks. First of all, as mentioned earlier, this approach only
constructs a critical region for a given significance level α. It is thus not necessarily
the case that Kα1 ⊂ Kα2 whenever α1 < α2. Indeed, as (4.20) only looks for the
“most efficient packing” of the (symmetry groups of) tables, it is possible that the
tables in Kα1 are different from those in Kα2 . Secondly, when looking at tables
with larger sample sizes, the entries aij can become quite small, especially for
the more “extreme” tables. In order to partially prevent any rounding errors by
the LP-solver, we may scale the matrix A by a factor k, still to be determined,
and apply the condition kAw ≤ kα1 in (4.20) instead. We will use this idea in
Section 4.3.2.2. Finally, the solution w of (4.20) is not necessarily unique. This
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can be seen from Figure 4.2. Assume for a moment that the top-right solution in
the right figure would not exist, and that instead the bottom-left solution would
have been marked as optimal. The corresponding objective value would be 3. This
objective value is however also achieved by the top-left selection of tables, making
this too an optimal solution. If it turns out that there are two optimal solutions
w1 and w2, we will adopt the convention that w1 will be the optimal solution the
algorithm returns whenever maxi=1,...,N(Aw

1)i > maxi=1,...,N(Aw
2)i, i.e., whenever

w1 results in the largest maximal size. In the case of Figure 4.2, this would mean
we would pick the bottom-left solution as the optimal solution, as the maximal
size comes very close to 0.45, while that of the top-left solution lies more around
0.40.

Usually, the branch-and-bound approach is able to find many optimal solutions,
and the Gurobi optimiser can be programmed to look for a user-specified number
of optimal solutions. The danger here is that if there turn out to be more optimal
solutions than we asked Gurobi to look for, two LP problems which should yield
the same solution after application of our decision rule on which optimal solution
to pick, return different solutions. Suppose for example that we want to solve
(4.20) two times, once with the constraint matrix A1 and once with the constraint
matrix A2, where A1 and A2 are the same matrix, up to a permutation of the
columns. This could happen if we construct the matrix based on two different
symmetry conditions which actually yield the same symmetry classes (such as SP

and SV in the 2×2 case). This permutation should not affect the optimal solution
in any way, but the branch-and-bound approach could potentially construct a
different search tree based on this difference in matrices. Consequently, it might
find different optimal solutions first. If we asked the solver to look for more optimal
solutions than there actually exist, this is no problem. The solver will just find all
of them. However, if there are more optimal solutions then the number we asked
to look for, the set of optimal solutions Gurobi returns will be different for the
two instances of the same problem. If this is the case, our decision rule might yield
different solutions as it maximises over a different pool of solutions. One way to
remove this discrepancy is to make sure that the columns in A1 and A2 are in
the same order. However, the problem remains that we might miss the optimal
solution which should be chosen according to our decision rule, whenever there are
more optimal solution than we actually look for. An interesting problem to look
into would be to find out whether we can determine the size of the pool of optimal
solutions beforehand, to make sure we do not leave out any optimal solutions.

4.3.2.1 A few other packing problems

The objective function wT1 in (4.20) is by far the most simple one that we could
come up with. In an attempt to more accurately represent the problem that su-
premum tests are trying to solve, we came up with a few other possible linear
programming problems. Recall that the initial goal in Barnard’s procedure, and
every other supremum test, is to find a combination of tables such that the sum of
their respective P (·;θ)-functions is a function of θ that is as constant as possible,
and as close to α as possible. One possible way to achieve that is to force

min
i=1,...,N

∑
x∈Kα

P (x;θi) (4.21)
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to be as large as possible. The idea here is that maintaining the constraint that

∑
x∈Kα

P (x;θi) ≤ α

for every possible θi would essentially “squeeze”
∑

x∈Kα P (x;θ
i) in as small a range

as possible. By introducing some auxiliary variables z ∈ R≥0 and v ∈ RN
≥0, we can

turn (4.20) into a linear program that solves this “maximin” problem:

maximise z
subject to z = min {vi : i = 1, . . . , N},

v ≤ Aw,

Aw ≤ α1,

w ∈ {0, 1}ω, v ∈ RN
≥0.

(4.22)

There is however an immediate difficulty with this approach. Consider for simpli-
city the 2 × 2 case with (n1·, n2·) = (20, 20). If we would include in our grid of
θ-values a vertex of Θ0, say θ = (1, 0), then one of the rows of the matrix A would
consist of a single one, with the remaining entries all zero. Indeed, only the table
(x11, x21) = (20, 20) (or its associate symmetry group) has a positive probability
of occurring for θ = (1, 0). This table cannot be included in the critical region, as
we would violate our size constraint. Consequently, one of the entries of Aw will
be zero, and so will one of the entries of v. Since the entries of v must be non-
negative, we will always have z = min {vi : i = 1, . . . , N} = 0. This entails that
basically all critical regions (which do not contain the table (x11, x21) = (20, 20))
will be optimal.

Thus, we cannot include any vertices of Θ0 with this approach. Including a
θ-value that lies close to one of these vertices also turns out to be a bad idea. The
values of the P (·;θ)-functions at this θ-value will be rather small for most tables.
Because the determination of the critical region is solely based on the values of
P (·;θ) at that θ-value, we might obtain a critical region containing one (not so
extreme) table which happens to have a relatively large value of P (·;θ), and a few
other tables. This would not make for a very powerful test. It also seemed that
the solver software had trouble dealing with these values. We will come back to
this in Section 5.2.

Instead of working with the minimum over all entries of v, an idea might be
to only look at the k-th smallest entry. We have not worked out this approach
further as it would entail the introduction of yet another parameter to decide on,
but it would for sure be an interesting numerical study to find out what value of
k would give the most powerful test.

Another approach is to maximise the area under the
∑

x∈Kα P (x;θ
i)-function.

That is, we aim to maximise the integral of the power function over Θ0. Again,
since it is bounded from above by α, maximising its area hopefully will make it
lie as close as possible to α for as many values of θi as possible. In order to turn
this aim into a suitable objective function for a linear programming formulation,
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we will perform a Quasi-Monte Carlo approximation of the area, i.e.,∫
Θ0

∑
x∈Kα

P (x;θ)dθ =

∫
Θ0

O∑
j=1

wjP (x;
j θ)dθ

≈
N∑
i=1

O∑
j=1

wjP (x;
j θi)

=
∑
i=1

wTAi

= wTAT1,

where Ai is the i-th row of the matrix A we also used in (4.20). More on this
numerical integration procedure can be read in Appendix A. The according linear
program is given by (4.23).

maximise wTAT1

subject to Aw ≤ α1,

w ∈ {0, 1}ω.
(4.23)

As a side effect, we hoped that β(θ) will be large for θ ∈ Θ1. However, as we will
see in Section 5.2, (4.23) seemed to be “overfitting” too much. It would manage
to find a collection of tables for which

∑
x∈Kα P (x;θ

i) is very close to α for many
θ-values, but this set of tables did not form an “intuitive” critical region and had
very small power for θ ∈ Θ1.

We can improve on the previous approach by recalling how we got to the idea
of using a linear programming formulation in the first place. We were trying to
maximise the power function for θ ∈ Θ1, while keeping the power below α for
θ ∈ Θ0. Thus, instead of maximising the integral of the power over Θ0, why not
maximise the integral of the power over Θ1 instead? We still use a Quasi-Monte
Carlo grid of θi-values over Θ0 to check that the size constraint is satisfied, but we
can additionally create a grid of θi-values over Θ1 that we can use to approximate
the integral

∫
Θ1

∑
x∈Kα P (x;θ)dθ just as we did earlier. This we can write as the

following linear program.

maximise wTBT1

subject to Aw ≤ α1,

w ∈ {0, 1}ω,
(4.24)

where again, A is the matrix of P (x;θi)-values for the different tables and grid
points in Θ0. The matrix B also consists of P (x;θi)-values, but now the θi-values
are grid points in Θ1. Just keep in mind: a grid point in Θ0 is a vector of c entries
that sum up to 1, while a grid point in Θ1 is a vector of r × c entries where the
first c entries represent θ1 (and must therefore sum to 1), the next set of c entries
represent θ2 (and again sum to 1), and so on.

4.3.2.2 A binary search

All the linear programming problems we have formulated so far, only give us a
critical region for a given α. Let us now try to extend the LP-approach in order
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to find a p-value for some observed table. One approach would just be to use
again use an external test statistic to order all the tables in the obtained critical
region, and then apply the maximisation procedure to compute the p-values. We
could even perform a CSM-like test, only considering the tables in the critical
region. However, these approaches would almost completely nullify the decrease
in computation time we make by using the LP method, for it is the maximisation
procedure itself that takes a lot of time. Furthermore, the critical region we obtain
from an LP test might well be very similar to that we would have obtained with
one of the supremum tests, containing in particular all the most extreme tables
that the CSM-like method will start out with either way. It is only towards the end
of the maximisation procedure, that the pool of tables to consider for the ordering
will be meaningfully smaller. We might thus just as well have started immediately
with a CSM-like test.

Therefore, we would like to stay away from using the already discussed methods
of computing p-values, and instead try to come up with a solution based solely on
solving LP problems (which can be done efficiently). To this end, realise that if we
apply the LP approach for different values of α, we should be able to iteratively find
the smallest value of α for which the table of interest is still in the critical region.
This is exactly the p-value as defined in (2.6). We will describe two attempts. The
first one, as we will see, does not entirely succeed at solving the problem at hand,
but is still very instructive to mention.

Let us first fix a value of α, and set α0 := α. By applying the LP-method,
we can find the corresponding critical region Kα0 . We are interested in finding
the p-value p(x) of the observed table x. Now, if x /∈ Kα0 , we can choose to for
example double α0 until x ∈ Kα0 , or set α0 = 1 if 2α0 > 1. Therefore, assume that
x ∈ Kα0 . This tells us already that p(x) ≤ α0. Therefore, let us again apply the
LP-method, but now with significance level α1 := α0/2. Furthermore, we limit our
linear program to only use the tables in Kα0 . This enforces that Kα1 ⊂ Kα0 . We
now check if x ∈ Kα1 . If so, we define α2 := α1/2 and compute Kα2 , using only the
tables in Kα1 . This further restricts p(x) to the range (0, α1]. If x /∈ Kα1 however,
we define α2 := α1 + α1/2. Furthermore, we will solve a slightly modified version
of (4.20). Since we know which tables are already contained in Kα1 , we only need
to find the binary vector w, indicating which (groups of) tables to include from
P := Kα0 \Kα1 , which maximises wT1 subject to

∑
y∈Kα1

P (y;θi) +

|P|∑
j=1

wjP (y
j;θi) ≤ α2,

for all i ∈ {1, . . . , N}. We indexed all the tables in P with the index j. We can
translate this to the linear program

maximise wT1

subject to APw ≤ α21− b,

w ∈ {0, 1}|P|,

(4.25)

where

b :=

( ∑
y∈Kα1

P (y;θi)

)
i=1,...,N
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and AP contains the columns of A corresponding to the (groups of) tables in P .
We have now further restricted the p-value to p(x) ≥ α1 ≥ maxi=1,...,N bi. We can
repeat this procedure again and again, narrowing down the range in which p(x)
could lie. At each iteration, we also reduce the pool of tables which we should
consider to construct the next critical region. Indeed, if at the k-th iteration, we
have x ∈ Kαk , we can get rid of all tables in Kαk \ Kαk−1 . If instead x /∈ Kαk ,
we can get rid of all tables in Kαk and replace them by the vector b in (4.25).
The new pool of tables is given by the solution of (4.25). By construction, we
will eventually end up with just one table in the pool, which is necessarily x. The
(approximate) p-value can then be found again just as in (2.21):

p(x) = sup
i=1,...,N

{
b+ P (x;θi)

}
,

since b is the sum of P (·;θi)-functions of all tables which are more “extreme” than
x, in the sense that the LP-method would have preferred to use these tables over
x to construct a critical region for a small enough significance level.

We should be cautious to keep track of the “base vector” b. Once we have had
to solve (4.25) once, our pool of tables no longer coincides with a critical region.
Therefore, if after some iterations, it turns out that x is in the pool of tables, we
should not solve (4.20), but instead (4.25) with P the current pool of tables and
b the current base vector.

Note furthermore that each time we need to solve (4.25), we only consider a
subset of the columns of A. The pool P of tables will contain only tables which
have similar values for supi=1,...,N P (·;θi), as they either were in the same critical
region, or they were all left out of the critical region at the same iteration because
the significance level was too small. Consequently, dividing each entry in AP by
the constant c = supy∈P supi=1,...,N P (y;θ

i), will get rid of any numerical issues
related to working with small numbers. We found that performing this rescaling
at each iteration greatly improved the quality of the solutions returned by the LP
solver. The whole procedure is summarised in Algorithm 1.

The critical reader might have already spotted an issue with this approach.
We could end up with a different p-value if we would have started with a different
initial significance level α. Indeed, since the critical regions are not necessarily
nested, there might exist values α and α′ with α′ < α such that x /∈ Kα but
x ∈ Kα′ . Consequently, we could find p(x) > α if we start our binary search at α,
while starting at α′ would yield p(x) ≤ α′. However, we are still able to uniquely
define a p-value via (2.6) with T (x) = x. We just need to find the smallest value
of α for which the observed table x is still in Kα.

Notice that we also introduced an additional maximum kmax on the number of
iterations that we want to do. This is essentially a specification of how precise we
want our approximation to be. As long as we are not able to create two different
critical regions which correspond to levels which are 2−kmax apart, which is of
course the case for a set of sample sizes that grows with increasing kmax, we will
have P = {x} before kmax will be reached. However, we did observe that even for
relatively small sample sizes (say (n1·, n2·) = (25, 25)), kmax was, for certain tables,
reached before P = {x}. This can happen if, for some level αk we encounter in one
of the iterations, the observed table x is in Kαk , but, for all l > k, x /∈ Kαl . This
can happen by coincidence (since the critical regions are not nested), or perhaps
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Algorithm 1: BinarySearch(x,α.kmax)
Input: an observed table x, an initial significance level α0 := α, and the

maximum number kmax of iterations we are willing to do
Output: an approximate p-value p(x)
construct Kα0 by (4.20);
if x /∈ Kα0 then

BinarySearch(x,2α ∧ 1);
end
else

define the level α1 = α0/2;
define the base vector b = 0;
construct the pool P = Kα1 by (4.20) using only tables from Kα0 ;
set k = 2;
while P ≠ {x} and k ≤ kmax + 1 do

if x ∈ P then
set αk = αk−1 − α0 · 2−k;
construct the new P by (4.25) using only tables from the
current P and b as base vector;

end
else

set b = b+
(∑

y∈P P (y;θ
i)
)
i=1,...,N

;

set αk = αk−1 + α0 · 2−k;
construct the new P by (4.25) using only tables from the
current P and b as base vector;

end
set k = k + 1;

end
end
define p(x) = supi=1,...,N

{
b+ P (x;θi)

}
;

because the p-value is actually exactly equal to αk. What happens next will be
the same either way; at each iteration we will execute the else statement in the
while loop of Algorithm 1, meaning that the sequence (αl)l>k will monotonically
converge to αk, but only reach it in the limit. Introducing kmax is a lazy way to
deal with this problem, avoiding the finding algorithm to go on for too long. This
should be done with care however; at a certain sample size the chosen value of
kmax will not be large enough, meaning that we would prematurely cut off the
search while the scenario we just sketched did not at all occur. However, at the
sample sizes we considered, setting kmax to 100 turned out to be sufficient.

4.3.2.3 Extending the binary search

The binary search method we just described will return some (arguably small)
value of α for which x is still in Kα. It might not be the smallest such α, but
it will serve as a good starting point for the iterative method we are about to
describe. We can check very easily for a number of smaller significance levels
α′ < α, say between α/2 and α, whether or not x ∈ Kα′ by solving (4.20). If,
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for some α′ we try out, it turns out that x ∈ Kα′ , we set this α′ as our new
p-value, and we can repeat the searching procedure. We do this until the search
no longer finds any smaller value for α′, as indicated in Algorithm 2. This is of
course not a guaranteed way to find the smallest significance level. We are trying a
finite number of α′-values and might very well miss the smallest level. It is thus a
trade-off between how much time we want to spend looking for a smaller α′-value
and how satisfied we are with the upper bound for the actual p-value we already
have.

Algorithm 2: ExtendedBinarySearch(x,α,m)
Input: an observed table x, an initial significance level α0 := α, and a

number m of trial values to find a smaller significance level
Output: an approximate p-value p(x)
compute the initial guess for the p-value p0 = BinarySearch(x,α);
set k = 0 and p−1 = 1;
while pk ̸= pk−1 do

set pk−1 = pk;
for α′ ∈

{
pk
2
+ j

m+1
· pk

2
: j = 1, . . . ,m

}
do

if x ∈ Kα′ then
set pk = α′;
break;

end
end
set k = k + 1;

end
define p(x) = pk;

4.3.2.4 Validity of the p-value

An important question to ask is whether or not the (approximate) p-value obtained
with one of the LP tests will be valid. We will argue that because of the inevitable
non-nestedness of the critical regions, the p-values of the LP tests defined as the
smallest level α for which the observed table is still in Kα cannot be valid.

To this end, consider three tables x1,x2,x3 ∈ Ω. In theory, one way to find
the respective p-values p(x1), p(x2), and p(x3) is to let the level α run from 0 up
to 1, and record the first values of α for which x1, x2, and x3 get first included
in the critical region Kα. We call these values α1, α2, and α3 respectively, and
furthermore assume without loss of generality that α1 < α3. By definition, we
have that p(xi) = αi for i ∈ {1, 2, 3}.

Since the critical regions need not be nested, it can occur that Kα3 = {x2,x3}.
This is enough to disprove the validity of the p-value. First note that by definition
of the p-value, we have that p(x2) = α2 ≤ α3. Indeed, since x2 is included in Kα3 ,
the smallest level for which x2 is rejected is at most α3. But then, realise that

PH0(p(X) ≤ α3) =
∑

p(x)≤α3

P (x;θ) ≥ P (x1;θ) + P (x2;θ) + P (x3;θ).

We claim that there must exist some θ ∈ Θ0 for which this probability is larger
than α3, which shows that p(X) is not a valid p-value. Indeed, suppose instead
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that for all θ ∈ Θ0,

P (x1;θ) + P (x2;θ) + P (x3;θ) ≤ α3.

That is, the set {x1,x2,x3} satisfies the size constraint and is thus a feasible
solution of the LP problem. No matter which of the four objective functions we
have discussed in this Section, the objective value corresponding to {x1,x2,x3}
will always be larger than the one corresponding to {x2,x3}, meaning that actually
we have Kα3 = {x1,x2,x3}, contradicting our assumption that x1 /∈ Kα3 . Hence,
indeed, we have PH0(p(X) ≤ α3) > α3 for some θ ∈ Θ0, showing that the p-value
obtained with the LP test is not valid.

4.3.3 Another problem: Reduction to r × 2 tables

When looking at the null hypothesis (4.3), realise that we are in fact performing a
test for a multiple null hypothesis. Instead of tackling this large null hypothesis all
at once, we could also try to test each of the constituent null hypotheses separately.
This is the idea behind the concept of table reduction we will briefly mention here.

Table 4.1 can be rewritten to a set of c − 1 tables with only two columns as
shown in Table 4.5.

1 Not 1
1 x11

∑c
j=2 x1j n1·

2 x21
∑c

j=2 x2j n2·
...

...
...

...
r xr1

∑c
j=2 xrj nr·

n·1
∑c

j=2 n·j n··

2 Not 1,2
1 x12

∑c
j=3 x1j n1· − n·1

2 x22
∑c

j=3 x2j n2· − n·1
...

...
...

...
r xr2

∑c
j=3 xrj nr· − n·1

n·2
∑c

j=3 n·j n·· − n·1

...

c− 1 c
1 x1,c−1 x1c x1,c−1 + x1,c
2 x2,c−1 x2c x2,c−1 + x2,c
...

...
...

...
r xr,c−1 xrc xr,c−1 + xrc

n·,c−1 n·c n·,c−1 + n·c

Table 4.5: Reduction of Table 4.1 into c− 1 r × 2 tables.
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We are now able to perform Barnard’s CSM test on each of these tables separ-
ately. The advantage of that is that each CSM test now only involves maximisation
over a one-dimensional simplex only, and we only need to look through a smaller
set of tables. Indeed, instead of doing one test which goes through ω tables, where
ω is given in (4.7), we perform c− 1 tests that go through

∏r
i=1(ni· + 1) tables. A

quick computation shows that (c− 1)
∏r

i=1(ni·+1) grows a lot less quicker than ω
for increasing r, c or (ni·)i=1,...,r. Furthermore, as discussed in Section 4.2, we can
still define a nice geometry-based convexity condition which is exactly the same
as in the 2× 2 case.

However, one difference is that because we now have a total of c − 1 tests
to perform, we also end up with c − 1 p-values. How should we interpret such a
result? If we test c− 1 hypotheses separately, and require for each individual test
the probability of a Type I error to be at most α, then the probability of making at
least one Type I error over these c−1 tests is 1−(1−α)c−1, assuming independence
of the tests. For α = 0.05 and c = 5, this is already a probability of 0.185. Different
ways exist to handle this “multiple testing problem”. For example, in order to
control the family-wise error rate (FWER), i.e., the probability of making at least
one Type I error, one could apply a Bonferroni correction. If we denote the, say, k
null hypotheses we are testing for by H1, . . . , Hk, and the respective valid p-values
we obtain from those tests by p1, . . . , pk. Then the Bonferroni correction amounts
to rejecting each hypothesis H i for which pi ≤ α/k, where α is the desired upper
bound for the FWER. By Boole’s inequality, this procedure guarantees that α is
actually upper bound for the FWER. Indeed, if we assume that kT out of the k
null hypotheses are actually true,

FWER = PH0

(
kT⋃
i=1

{
pi ≤ α

k

})
≤

kT∑
i=1

PH0

(
pi ≤ α

k

)
≤ kT

α

k
≤ α.

In the penultimate inequality we used that the p-values are valid. One should real-
ise that this approach is rather conservative. Especially for large k it will become
very rare to actually reject one of the null hypotheses. Several other approaches
can improve on this, and we recommend the paper by Goeman and Solari [74] to
learn more on the topic, but whatever approach we choose, we will in one way or
another always lose some test power by considering multiple hypotheses.

Furthermore, the reduction into c− 1 r× 2 tables essentially tries to answer a
different question. In deciding whether or not to reject the general null hypothesis
(4.3), we are not interested in finding out for which categorical outcome the asso-
ciation between the groups breaks down or not. Instead, the reduction will point
us to which of the c − 1 constituting null hypotheses in (4.3) we should actually
reject. Because of this, and because of the complications of dealing with error rates
in the case of multiple hypotheses, we will not be able to properly compare the
reduction approach with the other ideas in this thesis. Although the author of
this thesis would love to find out if this approach would be fruitful, it will not be
researched in more depth in the remainder of this text.
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FIVE

RESULTS

Let us actually start trying out some of the methods described in the previous
chapters. First of all, as the goal was to construct statistical tests on contingency
tables that surpass a standard 2×2 size, let us see how large we can make the tables
while still keeping the computation time “within an acceptable range”, whatever
that may mean. Afterwards, we want to see how “powerful” the different tests
are. As we have discussed in Chapter 3, this might not seem a useful exercise
for those in favour of conditional tests, but one might still interested in how the
argument of unconditional tests being more powerful holds up when the table sizes
start increasing. We will therefore keep in mind the trend observed by Mehta and
Hilton [55], that the difference in power between the tests decreases for increasing
table and sample sizes, when analysing the results from our power study.

In our comparisons, we will consider the following tests:

• Fisher’s Exact Test. For larger tables, this will be the Fisher–Freeman–Hilton
test. As mentioned in countless papers already [24], [25], we will expect this
test to be rather conservative. We will make this more precise in Section 5.4.
We will make use of the already existing R implementation fisher.test
here.

• Pearson’s Chi-Square Test. In particular, we will use the chi-square test with
the continuity correction proposed by Yates [10], using (2.9) as test statistic.
This will make this test comparable to Fisher’s exact test. We will use the
function chisq.test, which is again the existing R implementation.

• Barnard’s CSM-like Test. With this, we refer to the CSM test as described
in Section 4.2 (or rather the CSPM test), as well as two variants, where we
determine the symmetry classes using the Sχ or SV conditions.

• Suissa and Shuster’s Unconditional Test. Here we use the chi-square test
statistic as an external test statistic to determine the ordering of the tables.
We also define a variant of this test by using the mean value test statistic∫
Θ0
P (X;θ)dθ instead, and one by using the Fisher p-value as a test statistic.

Recall from Proposition 2.4 that this is nothing else than Boschloo’s test.

• Linear Programming Tests. Finally, we will consider the tests which convert
our problem into a linear program, as described in Section 4.3.2. Numerous
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variations are possible here too. We can construct a test based on each of the
linear programs (4.20), (4.22), (4.23) and (4.24). For each of these versions,
we can furthermore choose which of three definitions for symmetric tables
to use; the SP, Sχ, or SV conditions.

Recall that the power of a test is given by β(θ1, . . . ,θr) = Pθ1,...,θr(T (X) ∈
Kα). Alternatively, we can write this expression in terms of the p-value as β(θ1, . . . ,θr) =
Pθ1,...,θr(p(X) ≤ α). Because we are working in a discrete setting, we can actu-
ally exactly compute the power for any given (θ1, . . . ,θr) ∈ Θ pretty easily by
enumerating over all the tables x which have p(x) ≤ α, i.e.,

β(θ1, . . . ,θr) =
∑
x∈Kα

Pθ1,...,θr(X = x) =
∑

x∈Ω:p(x)≤α

Pθ1,...,θr(X = x). (5.1)

One should be mindful of the notation here. We have replaced the subscript θ,
representing the common value under the null hypothesis, by the “vector of vectors”
(θ1, . . . ,θr) ∈ Θ. We thus have

Pθ1,...,θr(X = x) =
r∏
i=1

c∏
j=1

ni·!

xij!
θ
xij
j =

∏r
i=1 ni·!∏r

i=1

∏c
j=1 xij!

r∏
i=1

c∏
j=1

θ
xij
ij . (5.2)

Given the critical regions or p-values obtained from two tests, we can easily com-
pare their power for any given (θ1, . . . ,θr) ∈ Θ by computing the probability of
a table ending up in the critical region or having a p-value smaller than α via
(5.1). Note that if (θ1, . . . ,θr) ∈ Θ0, we refer to β(θ1, . . . ,θr) = β(θ) as the size
of the test. In this case we will write θ to save space (this comes with the abuse of
notation that θ ∈ Θ0). In the Neyman–Pearson framework, this size is bounded
by α. Furthermore, for (θ1, . . . ,θr) ∈ Θ1, β(θ1, . . . ,θr) represents the probability
of rejecting the null hypothesis given that the null hypothesis is false. Of course,
we want this probability to be as large as possible, minimising the probability of
a Type II error. In the power comparisons that will follow, we will thus always be
searching for the most powerful test. That is, we will be looking for the test with
the largest power for (θ1, . . . ,θr) ∈ Θ1, while keeping β(θ) ≤ α for θ ∈ Θ0.

5.1 Grid Size
The first step in determining how large we can make tables in order for the compu-
tation time to be “within an acceptable range” is to find out how large of a grid for
Θ0 we actually need. The CSM and LP tests perform some kind of maximisation
over values of θ in Θ0, and to limit the computation time we would like to keep
this amount of θ-values to a minimum, without sacrificing too much on test power
and validity. Indeed, if we would perform the maximisation over too few points,
this also means that we enforce the test size to be smaller than α over few points,
and it might thus occur that after we have selected the table in our critical region,
we have Pθ(X ∈ Kα) > α for some θ ∈ Θ0 which was not included in the grid.

To investigate the effect of the grid size on the test performance, we will look at
two unconditional tests: Barnard’s CSM test where we utilise the StextP condition
and the LP test based on (4.20) with the StextP condition. We will execute these
tests on tables with different sizes and sample sizes, using different grid sizes. The
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CSM test will return an ordering of the tables. Given a table size and sample sizes,
the outcome space Ω is fully determined. We will then perform the test for a very
large grid size (N = 1000), of which we assume that this grid size is large enough
for the problem sizes we have been working with. This guess is based on experience,
and will turn out to be large enough in a bit. The ordering we obtain from this
will serve as our benchmark ordering. We will now decrease or increase the grid
size in a similar fashion to how we altered ℓ in Algorithm 1 and perform the CSM
test with this grid size, as long as it takes to find the smallest N = N ′ that still
results in the same ordering as the benchmark ordering. It is at N ′ that we can say
with a certain degree of confidence that a finer grid is not necessary. For the LP
test, we will perform the same procedure, but instead, given the significance level
α = 0.05, search for the smallest grid size for which the obtained critical region is
the same as the benchmark critical region. This procedure is written out for the
CSM test in Algorithm 3.

Algorithm 3: Find minimal grid size N .
Input: sample sizes (ni·)i=1,...,r, a number of columns c, and the large

benchmark grid size Nb = 1000
Output: the minimal grid size N ′

construct the outcome space Ω for the given values of (ni·)i=1,...,r and c;
divide the sample space into symmetry classes according to the desired
symmetry condition, in this case StextP ;

let ob be the ordering of Ω using the CSM test with grid size Nb;
set k = 2, Nold = Nb and Nnew = Nb/2;
while |Nold −Nnew| > 1 do

set Nold = Nnew;
let onew be the ordering of Ω using the CSM test with grid size Nnew;
if onew = ob then

set Nnew = Nnew −Nb · 2−k;
end
else

set Nnew = Nnew +Nb · 2−k;
end
set k = k + 1;

end
return Nold ∨Nnew;

Notice that with this method we are guaranteed to find the smallest necessary
grid size, as the QMC grids are nested for increasing grid sizes (see Appendix A).
If for grid sizes N1 < N2, we find that the CSM test with grid size N1 still yields
the same ordering as the benchmark ordering, then so will the CSM test with grid
size N2.

We aim to find the minimal grid size for the following combinations of table
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sizes and sample sizes:

2× 2 : (n1·, n2·) = (n, n) with n ∈ {5k : k = 1, . . . , 6},
2× 3 : (n1·, n2·) = (n, n) with n ∈ {5k : k = 1, . . . , 6},
3× 2 : (n1·, n2·, n3·) = (n, n, n) with n ∈ {5k : k = 1, . . . , 6},

For each of these tables we computed N ′ via Algorithm 3. The mentioned sample
sizes, however, turned out to be a bit too optimistic in the case of the CSM tests.
The results are shown in Table 5.1. A hyphen (-) indicates that the computation
would have taken too long (in the order of magnitude of multiple hours). We will
come back to this in Section 5.3.

n 2× 2 3× 2 2× 3
5 1 385 96
10 58 62 -
15 26 - -
20 33 - -
25 67 - -
30 226 - -

n 2× 2 3× 2 2× 3
5 1 1 67
10 1 53 127
15 29 63 1000
20 26 18 -
25 788 600 -
30 1000 - -

Table 5.1: Minimal grid size N ′ yielding the same ordering as Nb = 1000 for the
CSM test (left) and the LP test (right).

For the considered table and sample sizes, it seems that especially for smaller
tables the minimal grid size is well below Nb = 1000. However, we also see that
the increase in table and sample sizes also leads to an increase in N ′. Eventually,
in the right table, we even see a minimal grid size of N ′ = Nb, meaning that the
ordering with N = 999 was already different than that with N = 1000. This might
lead one to think that, when considering larger tables, Nb = 1000 grid points will
no longer be sufficient to obtain the optimal ordering. One might however ask the
question how good the test performs, even though we know that we might not have
the optimal ordering. In that case, we can still make sure that the test is valid.
Indeed, realise that when performing the CSM test, at each iteration, we make use
of the grid

{
θ1, . . . ,θN

}
-values to compute the maximal values of (4.15) for each

candidate table y. If the table y′ yields the smallest maximum value for (4.15),
we set x(k+1) = y′ and set p(y′) as this smallest maximum value. Note that we
essentially kill two birds with one stone here. First, we decide on the next table in
the ordering. Second, we immediately retrieve the p-value from the computations
we have just performed, and can use the vector

(∑k+1
i=1 P (x(i);θ

j)
)
j=1,...,N

as the

base layer for the next iteration.
Although this is all performed using the same grid, it does not need to. We can

use one grid with size No to choose the next table in the ordering, and another grid
with size Np to compute the p-value. It may seem at first that there is no advantage
in doing this, but by using a fine grid only for one part of the computations, we
can drastically cut down the computation time. By using a fine grid to compute
the p-value, we can at the same time remain more confident that the outputted
p-value is still valid, as it is less likely that we missed the actual maximum with
our fine grid than with our coarse grid.
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To illustrate this point, let us look at a specific example concerning the outcome
space of 2 × 2 tables with sample sizes (n1·, n2·) = (20, 20). We will perform
two series of CSM tests; using alternative symmetry condition such Sχ or SV
yielded similar conclusions as the ones that will come. One series in which we
always use a fine grid of Np = 1000 points to determine the p-value, but vary
the size No of a coarse grid which we use to determine at each iteration which
table to choose next in the ordering. The coarse grid size will take the values
No ∈ {1, 3, 5, 7, 9, 50, 1000}. In another series, we will set the size of both grids
equal to No = Np ∈ {1, 3, 5, 7, 9, 50, 1000}. For both series of tests, we will compare
the size and power of the tests at the level α = 0.01 in order to see how big an effect
varying the grid sizes has on the power. The test sizes are shown in Figure 5.1 as a
function of θ. In the left plot, we see β(θ, θ) for Np = 1000 and for No indicated in
the legend. Note that we only see 3 lines. In the case of an overlap, only the colour
corresponding to the highest No can be seen. Thus, No ∈ {3, 5} yield the same size
function, and so do No ∈ {7, 9, 50, 1000}. Because the grid used to compute the
p-value is so fine, we never exceed the α = 0.01 line and so the p-values we obtain
are valid. Note that this is not the case in the right plot, where Np also takes
small values at first. For Nf ∈ {1, 3, 5}, we clearly see that the fine grid consists of
too few points to accurately compute the p-value. As a consequence, some tables
receive an severe underestimate for their p-value, and so are unjustly included into
the critical region, yielding in the probability of a Type I error exceeding α. Also
note that from Nf = 7 onwards, the size functions for both series of tests coincide.

It is worth noticing in the left plot that the size function corresponding to
No = 1 is significantly smaller than the other ones. This can be explained as
follows. Because we determine the ordering by comparing the values of (4.15) at
very few points, the next table in the ordering may be a table which yields the
smallest values of (4.15) at these few points, but yields large values of (4.15)
everywhere else. Consequently, when we determine the p-value of this table with
the fine grid, this table will receive a large p-value. This p-value can even be so
large that it exceeds α, meaning that it will not be included in the critical region,
along with all tables that come after it in the ordering. By increasing No, we
decrease the likelihood of including these “wrong” tables prematurely, such that
we can keep constructing a critical region which will yield a β(θ, θ) closer to the
α = 0.01 line.

The power β(θ1, θ2) is shown in Figure 5.2 for variable No and fixed Np and in
Figure 5.3 for variable No and Np. In both figures, we indicate the line θ1 = θ2,
i.e., Θ0. Figure 5.1 is thus a close-up of the power function on that line. We show
for the indicated values of No and Nf both the power function β(θ1, θ2), and the
difference β(θ1, θ2)−βbenchmark(θ1, θ2) of the power function with the power function
with the benchmark power function obtained when using No = Nf = 1000. Also
observe that in both series of tests, we do not only get the same size function for
No ∈ {3, 5}, but in fact the same power function on the whole of Θ. This should
not come as a surprise; both No-values yield the same ordering. The same is true
for No ∈ {7, 9, 50, 1000}, and therefore we only show the power functions for the
N -values that actually yielded a different power function. From No = 7 onward,
there is no difference with the benchmark anymore, which can also be seen from
the plot in the bottom-right corners of Figures 5.2 and 5.3.

We can also perform the above exercise for the LP test. In contrast to the CSM
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Figure 5.1: β(θ, θ) for variable No and fixed Np (left) and for variable No, Np

(right) with α = 0.01.

tests we only use the grid once, to make sure that the constraint
∑ω

j=1wjP (x
j;θ) ≤

α is satisfied for each grid point θ. We again consider the outcome space of 2× 2
tables with sample size (n1·, n2·) = (20, 20), but now only perform one series of
tests with grid size N ∈ {1, 3, 5, 7, 9, 50} and compare their power functions to that
of the test with N = 1000, for the significance level of α = 0.01. The respective
size functions are given in Figure 5.4, and the power functions in Figure 5.15. We
get similar results; for very small values of N (in fact N ≤ 7), the constraint on
the critical region is not enforced in enough values of θ, leading to critical regions
that clearly entail a Type I error probability larger than α for many values of θ.
However, from 9 grid points onward, the critical region is the same. This can again
be seen from the overlapping size curves for N ∈ {9, 50, 1000} in Figure 5.4, and by
the zero difference plot in the bottom-right corner of Figure 5.15. The motivation
for this long-winded example is essentially to say that even though the grid size
might be too small for the actual problem dimensions to capture the actual CSM
ordering or LP critical region, we still create an approximating ordering/region
which performs relatively comparable to the actual ordering/region in terms of
power. Table 5.1 does not tell the whole story as it only indicates the smallest grid
size for which the obtained ordering/region is exactly the same as the benchmark
ordering/region. The smaller grid size might yield the same ordering, up to one
swap of two symmetry classes, or region, up to the inclusion of one symmetry
class. This is already “punished” as a difference in Table 5.1, but it is definitely
not necessarily the case that this slightly different ordering results in a less powerful
test. This would only be the case if the swap in the ordering “unluckily” happens
to occur around the chosen significance level, such that one set of tables would
be part of the critical region in one ordering, but not anymore in the swapped
ordering.

It is only when we go towards very small grid sizes (in the example below 7
grid points for the CSM test and below 9 grid points for the LP test), that we
end up with dramatically different results. Based on the (empirical) observations
made in this Section, we will from now on always set the grid sizes for the CSM
test to No = 10 and Nf = 100, and for the LP test to N = 100, unless specified
otherwise. Having run many simulations for different table and sample sizes, we



CHAPTER 5. RESULTS 79

Figure 5.2: β(θ1, θ2) for indicated values of No (left) and the difference β(θ1, θ2)−
βbenchmark(θ1, θ2) (right).

feel that this number of grid points is, until certain table dimensions and sample
sizes, neither too large that the computations will take too long, nor too small that
it allows any violations of the upper bound on the Type I error probability. We
will however also encounter table and group sizes for which the aforementioned
grid sizes will no longer be sufficient, as the test size constraint has been violated.
We will indicate whenever this happened, and will also mention the (larger) grid
size we used instead in order to again satisfy the test size constraint.
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Figure 5.3: β(θ1, θ2) for indicated values of No and Nf (left) and the difference
β(θ1, θ2)− βbenchmark(θ1, θ2) (column).

5.2 Cutting down on the number of LP tests

As one might have already noticed, the number of different LP tests one can per-
form is rather large. We mentioned four linear programming formulations, each of
which can be performed with one of three symmetry conditions. It would not make
sense to consider all twelve variations in the large speed and power comparisons
that will follow in Sections 5.3 and 5.4. Therefore, let us preemptively eliminate a
few of these tests from further consideration.
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Figure 5.4: β(θ, θ) for variable N with α = 0.01.

5.2.1 The “maximin” test based on (4.22)
First of all, the tests based on (4.22) led to some odd behaviour. Consider the
tables with (n1·, n2·) = (20, 20). The critical region corresponding to α = 0.05 we
find for the test using (4.22) (which we will call test A) is shown in Figure 5.5 on
the left. On the right, we find the critical region for the same level, but instead for
the test using (4.20) (which we will call test B). Tables that are included in the
critical region are marked in black.

Figure 5.5: Critical regions for test A (left) and B (right).

Already, the critical region on the left does not look very intuitive; it does not
include many of the most extreme tables in the top-left and bottom-right corners
of the figure. This is a big difference with the critical region of test B, which in
fact entirely includes the critical region in the left plot. The corresponding size
functions β(θ, θ) can be seen in Figure 5.6. The blue curve corresponds to test A,
and the red curve to test B. Again, it seems that the blue curve could have easily
been a lot closer to the black α = 0.05 line (without violating the size constraint)
by just adding some of the most extreme tables.

Finally, the power functions for the two tests are plotted in Figure 5.7. In the
left plot, the power βA(θ1, θ2) in Θ1 of test A can be seen. This shows that test
A is really not that powerful when compared to the middle plot, which shows the
power function of test B. Of course, this could have already been realised from
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Figure 5.6: Size functions βA(θ, θ) (blue) and βB(θ, θ) (red).

the fact that the critical region for test A is a subset of the critical region for test
B. The difference βA(θ1, θ2)−βB(θ1, θ2) is shown in the right plot, and is negative
everywhere.

Figure 5.7: Power functions βA(θ1, θ2) (left), βB(θ1, θ2) (middle) and the differ-
ence βA(θ1, θ2)− βB(θ1, θ2).

The obvious question that arises from looking at the critical regions and the
corresponding power functions, is why the critical region does not include any of
the “extreme” tables in the top-left and bottom-right corners of Figure 5.5. We
suspect that this is due to numerical errors that arise when solving the linear
programming problem (4.22). Again, the matrix A in (4.22) will contain a number
of rows with a lot of small entries, corresponding to the θ-values close to the
boundary of Θ0. Although the entirety of the matrix A will be used to check the
size constraint, only these few small-entry rows will be relevant to determine the
value of the objective function. Round-off errors will therefore have a large effect
on the final shape of the critical region. This is less of an issue in, say, the test based
on (4.20). The same matrix A, with the same small entries, also appears there,
but now these small-entry rows are not involved in determining the value of the
objective function. This hypothesis is confirmed by instead solving, for example,
the linear programming problem

maximise z
subject to z = min {vi : i = 1, . . . , N},

v ≤M · Aw,
Aw ≤ α1,

w ∈ {0, 1}ω, v ∈ RN
≥0,
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where M is a large number. This will rescale the entries of v and thus of z too.
If we execute test A again with this slightly altered LP formulation for increasing
values of M ∈ {103, 104, 105}, we indeed see in the first column of Figure 5.8 that
the critical region of test A takes a more “expected” shape. As M increases, the
blue size function (second column) also seems to come closer to the α = 0.05 line.
Note however how the solver favours the inclusion of tables of which the P (x;θ)-
function takes large values near θ = (1, 0) and θ = (0, 1), leaving a big gap in the
size for M = 103 and M = 104. Even for M = 105 a small gap remains. However,
the power βA(θ1, θ2) (third column) seems to get a lot closer to that of test B, as
one can see from the shrinking difference βA(θ1, θ2)− βB(θ1, θ2) (fourth column).

Figure 5.8: Critical regions (column 1), βA(θ, θ) (column 2), βA(θ1, θ2) (column
3), and βA(θ1, θ2)− βB(θ1, θ2) (column 4) for the indicated values of M .

The smallest value of this constant M for which we obtain an “acceptable”
critical region will dependent on the group sizes of the table. Indeed, the larger
the group sizes, the smaller the values of P (·;θ) (and hence the corresponding
entries of A) will be for certain tables and values of θ. Just as we did with the
question whether to consider the k-th smallest entry in v instead of the minimum,
we will label the problem of determining the “smallest acceptable” value of M as
future research. Because of the quirky behaviour of test A, i.e., the test based on
(4.22), we will not take it into account for the large speed and power comparisons.

5.2.2 The maximal area test based on (4.23)
Below (4.23), we already foreshadowed that the test based on this LP formulation,
which we will call test C in this Section, did not behave entirely as expected.
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Our hope at first was that by maximising the area of the power function in Θ0,
we might also get a critical region that has high power in Θ1 “for free”. As the
following example will show however, this is not the case.

Consider again the tables with (n1·, n2·) = (20, 20). We will compare the per-
formance of test C to that of the test where we instead use (4.24), i.e., maximise
the integral of the power over Θ1. This test will be referred to as test D. In Fig-
ure 5.9, the critical regions of tests C (left) and D (right) are compared. Note the
odd shape of the critical region of test C: some tables which we would deem as
“more extreme”, such as (x11, x21) = (14, 0), are not included, while other “less
extreme” tables, such as (x11, x21) = (4, 0), are included. When looking at the size

Figure 5.9: Critical regions for test C (left) and D (right).

β(θ, θ) for both tests, we clearly see in Figure 5.10 that test C tried to make the
area under the blue curve as large as possible. βC(θ, θ) manages to get a lot closer
to α for many values of θ compared to βD(θ, θ).

Figure 5.10: Size functions βC(θ, θ) (blue) and βD(θ, θ) (red).

However, this gain in size comes at a price. When comparing βC(θ1, θ2) to
βD(θ1, θ2) on the whole of Θ, we observe in Figure 5.11 that test C is less powerful.

Test C looks for the set of tables that makes β(θ, θ) as close to α as possible
for as many θ as possible, while completely neglecting the power of the implied
critical region in Θ1. It is definitely worthwhile to give in a bit on the test size, if
that means achieving a far greater power in Θ1. We have observed this behaviour
not only for this specific example, and have therefore opted to not consider test
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Figure 5.11: Power functions βC(θ1, θ2) (left), βD(θ1, θ2) (middle) and the differ-
ence βC(θ1, θ2)− βD(θ1, θ2).

C, i.e., the test based on (4.23), in the rest of this chapter. For ease of notation,
we will now always refer to the test based on (4.20) as test “LP1”, and to the test
based on (4.24) as test “LP2”.

5.3 Speed
The larger the tables we are working with, the longer it will take to compute the
different tests. In particular, the computation time for the unconditional tests will
grow quickly with the table dimensions, as these tests need to consider the entire
space of table outcomes. One might have already spotted the gaps in Table 5.1,
indicating that for the corresponding table and sample sizes, the computations
took longer than we were willing to let it run for. In this section, we will be
particularly interested in how fast the different tests are compared to each other.

5.3.1 Preliminary computations for unconditional tests

For the unconditional tests, it is necessary to first construct a list of all possible
table outcomes, and to find out how to divide these outcomes into equivalence
classes according to the desired (symmetry) criterion. It is important to keep
in mind that unconditional tests require this extra computation because they
somehow need to determine, for an observed outcome, which tables are more
extreme. In the case of CSM-like tests, this actually means that we compute the
p-values for each of the more extreme outcomes before being able to compute the
p-value of the table we are actually interested in. For tests using an external test
statistic, we first need to compute the value of that test statistic for the more
extreme outcomes. This extra work certainly slows down the unconditional tests
when using them for their intended purpose; deciding on whether or not to reject
the null hypothesis for an observed outcome. However, as we will see in Section 5.4,
this does imply that we will only need to run a CSM-like test once in order to
obtain the p-values for all table outcomes.

Recall that the total amount of table outcomes of a contingency table with c
columns and sample sizes (ni·)i=1,...,r is given by (4.7). The time it takes to con-
struct the list of all possible outcomes should therefore scale as this function of
the table and group sizes. A more interesting question is however to find out how
long it will take to divide the set of outcomes into equivalence classes. In partic-
ular, how does this computation time depend on the table dimensions and group
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sizes? This is a combinatorial exercise which depends on the type of symmetry
condition we apply. However, with some justified simplifications, we can come up
with pretty reasonable estimates for this computation time. First of all, realise
that the procedure to construct the equivalence classes is the same regardless of
which symmetry condition is applied. Given a possible table outcome, we will loop
through the list of all possible outcomes and keep track of the ones which are a
symmetric counterpart. After we have gone through the entire list, we will remove
all these symmetric counterparts, as well as the given outcome, from the list of
tables to consider and repeat the procedure, until there are no more tables left to
consider.

To this end, let us consider the setting of 2 × 2 tables. For a table where
n1· = n2· =: n, it is possible to obtain symmetry classes of size 1, 2 or 4 tables.
If a table has no other symmetric counterparts, that means that it is invariant
under switching rows or columns, i.e. all table entries should be the same. Thus,
if n is even, the table (n/2, n/2) forms its own symmetry class. If n is odd there
are no such singleton symmetry classes. Moving on, the only way in which we can
have a table with only one symmetric counterpart is if swapping the rows does
not change the table, or if swapping the rows yields the same table as swapping
the columns. That is, x11 = x21 or x11 = x22 respectively. As x11 ∈ {0, . . . , n},
there are n + 1 possible ways to achieve the former. However, if n is even, this
also includes (n/2, n/2), so to prevent double counting there are in fact n possible
ways to have x11 = x21. Similarly, if n is odd, we can see that there are n ways to
choose x11 = x22. Thus, if n is even, there are 2n tables which belong to a class
of 2 tables, so there are n classes of size 2. If n is odd, there are 2(n + 1) such
tables, so n + 1 classes of size 2. The remaining tables thus all belong to a class
of size 4; switching rows and/or columns each time yields a different table. By
(4.7) with r = c = 2, there are (n + 1)2 tables in total, so if n is even there are
(n + 1)2 − 1 − 2n = n2 tables which belong to a class of size 4. If n is odd there
are (n+ 1)2 − 2(n+ 1) = n2 − 1 such tables. Thus, a total of n2/4 and (n2 − 1)/4
of such classes, respectively.

From this, we can easily see the total amount of symmetry classes G as a
function of the common group size n:

G(n) =

{
1
4
n2 + n+ 1, n even,

1
4
n2 + n+ 3

4
, n odd,

(5.3)

and also compute the average size of a symmetry class m(n):

m(n) =
ω

G(n)
=


n2+2n+1
1
4
n2+n+1

, n even,
n2+2n+1
1
4
n2+n+ 3

4

, n odd.
, (5.4)

We can now come up with a rough estimate for the total amount of searches we
need to perform in order to find all the symmetry classes. When we start, we have
to go through all ω tables of the outcome space. We will then find a symmetry
class, which on average has size m. Therefore, for the search of the next class,
we will only need to go through ω −m tables. Afterwards, for the next one, only
through ω− 2m and so on. Thus, if we let for simplicity ω be a multiple of m, i.e.
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ω = km, the total number of searches N will be approximately

N = ω + (ω −m) + (ω − 2m) + . . .+ 2m+m

= m(k + (k − 1) + . . .+ 2 + 1)

= m
k(k + 1)

2

=
1

2m
ω2 +

1

2
ω.

(5.5)

Note that the approximation here is made by setting all group sizes to m. If we
would remain exact there would be different group sizes, and then the order in
which we go through the groups will affect the sum in (5.5). For larger tables, the
above computation becomes quite a lot more involved so we did not come up with
an analytic expression there. However, we find it reasonable to believe that the
total number of searches can still be approximated with some kind of arithmetic
sequence as in (5.5), albeit with a different number value for m. The number
of different group sizes will inevitably become larger, so the approximation will
perform more and more poorly. Nevertheless, we can assess how well a quadratic
function of the form aω2+bω would fit to measurements of the time it takes to find
all symmetry classes for given table and group sizes. This is shown in Figure 5.12.
In all three graphs, we plot the computation time of finding all symmetry classes
as a function of the number of tables. The left plot corresponds to 2 × 2 tables
with n1· = n2· = n ∈ {5k : k = 1, . . . , 30}, the middle one with 3× 2 tables where
n1· = n2· = n3· = n ∈ {5k : k = 1, . . . , 10}, and the right one with 2 × 3 tables
where n1· = n2· = n ∈ {5k : k = 1, . . . , 6}.

Figure 5.12: Runtime to find the symmetry classes as a function of the number
of tables ω for indicated table dimensions.

The adjusted R2 values of the fits are (from left to right) 0.9992, 0.9998, and
1. However, according to our rough estimate, the amount of searches (and so also
roughly the computation time) should only depend on the amount of tables ω.
That is, there should be no dependence on the table dimensions. If we were to
put all the measurements into one plot, they should all lie approximately on one
parabola. In Figure 5.13, we have done exactly that. We have also added a log-
log plot for clarity. The colours correspond to those in Figure 5.12. Furthermore,
we have added a quadratic regression line considering all measurements (with an
adjusted R2 of 0.9943).



88 CHAPTER 5. RESULTS

Figure 5.13: Computation time to find the symmetry classes as a function of the
number of tables ω. The corresponding log-log plot can be found on the right.

The quadratic fit over all measurements is not as good as the individual fits
of course (adjusted R2 of 0.9932), however a visual inspection leads us to believe
that our rough estimate of quadratic behaviour should serve as a good indication
on how the time it takes to find all the equivalence classes should scale with the
table and group sizes. The deviations that we observe might simply be a sign of
measurement errors, or maybe some small effects of the table dimensions after all.
For example, the time it takes to check whether a table is belongs to the same
equivalence class as another table will depend on the table dimensions.

5.3.2 The effect of the grid size on the computation time

Before moving on to the main speed comparison, the computation time of the
supremum and LP tests will inevitably depend on the chosen grid size N . Although
we have fixed the grid size to N = 100 in the previous Section already, it is still
worth briefly mentioning how the computation time grows with N . For example,
for the CSM test, at each iterations, the amount of operations to perform is directly
proportional to the amount of grid points we consider. Therefore, we expect the
computation time to grow linearly in N . The tests using an external test statistic
only need to perform this maximisation once to find the p-value of the table of
interest. For the LP test, the grid size N comes back as the amount of rows of
the matrix A in (4.20) and is thus the amount of inequalities we need to check for
each proposed solution w. This we also expect to scale linearly.

Let us consider the outcome space of tables with (n1·, n2·) = (10, 10). We
will measure for the CSM test the time it takes to compute the p-values of all
tables in the outcome space, and for the LP test the time it takes to determine the
critical region K0.05. We will not include the time it takes to list all table outcomes
and construct the equivalence classes, as both tests perform those steps anyway.
Each time measurement will be repeated 10 times and then we will work with the
average. One should not compare the computation times of the CSM and LP tests,
as we end up with different amounts of information after performing both tests.
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For now, we are only interested in the effect of N on the computation time. A fair
comparison of the two tests will follow in Section 5.3.3. In Figure 5.14, we show
the computation time as a function of the grid size N ∈ {10k : k = 1, . . . , 10}.
In the left plot, two sets of points can be seen. The blue points represent the
CSM test durations where we vary No = N and set Nf = 100 fixed set. The red
points represent the CSM test durations where we vary both No = Nf = N . The
dashed lines are the linear regression lines. The respective adjusted R2-values of
0.9993 and 0.9997 for the blue and red lines confirm our earlier expectations of
linear growth in N . Note that for N = 100 both lines correspond to the same
CSM test with No = Nf = 100. The right plot shows the time durations of the
LP test as a function of the grid size N . Again, we see a linear relation between
N and the computation time (R2 = 0.9992). The standard deviation over the 10
measurements is indicated with the error bars in both plots.

Figure 5.14: Computation time as a function of the grid size N for the CSM test
with fixed Nf (left, blue), the CSM test without fixed Nf (left, red) and for the
LP test (right).

5.3.3 Speed comparison for different table and group sizes

Finally, let us compare how quick the actual tests of significance are. In order to
perform a fair comparison, there are a few things we should keep in mind. First
of all, because the unconditional tests require the computation of the equivalence
classes to reach a result, we should include that time into the time the actual
test takes too. Second, our goal here will be to measure how long it takes for
the tests to do what they are intended to do. That is, for an observed outcome,
returning a p-value. To this end, we will proceed as follows. Given the group sizes
(n1·, . . . , nr·), we will perform the test for each table in a random selection of M
tables from the outcome space Ω and measure how long it takes. This will returnM
time measurements. For CSM-like tests, we expect a wide range of test durations;
tables which are more extreme will come earlier in the ordering, and we will be
able to stop the computations whenever we have reached that table. Tables which
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are not extreme will come late in the ordering, meaning that the CSM algorithm
will have already worked through most of the outcome space before returning a
result. For the other tests, we expect the test durations to be more or less the
same for all outcomes. Also, keep in mind that we also want to end up with a
p-value when performing the LP tests, so we will make use of Algorithm 2 to
find an approximate p-value. We will thus need to solve the linear programming
problem multiple times. Finally, all computations that involve some measurement
of time should be performed on the same hardware for fair comparison. In this
case, all time measurements made in the remainder of Section 5.3 were made on
an Acer Travelmate P214-53-72EQ laptop with an 11th generation Intel i7-1165G7
processor with a frequency of 2.80GHz, 16GB of RAM and running Windows 11
Pro version 22H2.

Even with all these precautions to ensure a comparison that is as fair as pos-
sible, one should keep in mind that the LP tests use the highly efficient software
written by a private company to actually solve the linear programming problem,
whereas the remaining tests (in particular the CSM tests) have to settle with the
R implementation of the author. It remains an open question how fast and efficient
one can make the implementation of the supremum tests. This makes the speed
comparison of limited use, but it is the best we can do, as it is difficult to come up
with any meaningful theoretical estimates in order to compare the computation
times of the different tests. Of course, for the supremum tests, we can think of
some rough estimates. For example, the tests using an external test statistic first
need to compute the value of the test statistic for each table (ω computations of
the test statistic). Next, these tests should sort the tables based on the values of
the test statistic (this can be done in O(ω)). Finally, we should perform, based on
the ordering, the maximisation procedure once to find the p-values for the table of
interest. This amounts to computing and comparing N sums of P (·;θ)-functions,
where N is the number of grid points. The number of terms in these sums will
depend the position of the table of interest in the ordering. Hence the computation
time for the tests using an external test statistic should scale linearly in ω.

For the CSM-like tests, we have a slightly different situation. There, we perform
a set of maximisations at each iteration of the algorithm, in order to find out
which candidate outcome has the smallest maximum value. Recall that we might
use these smallest maximum values as the p-values, or alternatively we could, after
determining the ordering, run the maximisation procedure again with a finer grid
just as if the ordering was obtained by an external test statistic. However, how
many maximisations are performed to determine the ordering? Note that if we
would not include the C condition, we would perform ω maximisations at the first
iteration, on average ω − m at the second one (where m is the average size of
the symmetry classes we use), ω − 2m in the next one and so on, which yields a
number of maximisations that scales with ω2, as shown in (5.5). Including the C
condition would lower this number substantially, but giving an estimate for general
tables becomes a more involved task. Likewise, it is hard to give an indication of
the speed of the LP tests. In the worst case, the branch-and-bound algorithm
can be exponential in the number of integer constraints (in this case the number
of grid points), if we would need to go through the entire tree of sub-problems.
However, this is rarely the case and the actual complexity of dependent on the
exact problem at hand. The best we can do for now is thus our speed comparison
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described earlier.
With a fixed grid size, the computation times will only depend on the table

dimensions and group sizes. We will consider 14 tests in total. These are Pear-
son’s chi square test (denoted PEARSON), Fisher’s exact test (denoted FISHER), 3
CSM-like tests (denoted C <S> M depending on the symmetry condition used),
3 supremum tests using an external test statistic (denoted ET <T> depending on
the chosen test statistic), and 6 LP tests. The latter are denoted LP<1,2> <S>,
indicating whether we are considering an LP1 test or an LP2 test, and specifying
one of the three symmetry conditions. For each test we will perform two series of
measurements. In the first series, we will fix the table dimensions to r = c = 2
and measure the runtimes for group sizes (n1·, n2·) = (n, n) with n running from
5 to 25 in increments of 5. The second series will always consider groups of sizes
equal to 5, but with varying table dimensions (r, c) ∈ {(2, 2), (3, 2), (4, 2), (2, 3)}.

In Figure 5.16, we show the results of the first series. For each test, and for
each value of n, a boxplot of time measurements for M = 30 randomly selected
tables in the corresponding outcome spaces. It seems that the asymptotic and
conditional tests are not so much dependent on the group size. Of course, because
the existing implementations of these tests are already so efficient, we did not
expect to find any significant effect for the relatively small group sizes we are
considering here. Moving on to the unconditional tests however, we clearly see
a superlinear increase in runtime. This is to be expected, as the problem sizes
increases at least at the same rate as the amount of symmetry classes, which
we conjectured to grow quadratically in the amount of tables, which itself is a
superlinear function of the group sizes, as can be seen in (4.7).

A perhaps more interesting result can be found by using the timings we just
obtained to compare the speed of the tests relative to each other. In Figure 5.17,
we have shown boxplots of the runtimes of each test, for fixed values of n. Pearson’s
asymptotic test and Fisher’s exact test are clearly the quickest test, followed by
the LP tests. The tests using external test statistics are slightly slower, and as
expected, the three CSM tests can either be very quick, if the table we want
to know the p-value of is extreme, or very slow, if we first need to order a large
portion of the outcome space before we arrive at the table of interest. The runtime
of the other tests is not that dependent on the table under consideration, hence
the rather squeezed boxplots. Note that in this comparison, the 12 unconditional
tests all include the time it took to do the required preliminary computations, i.e.
constructing the relevant symmetry classes. Among the different test categories
themselves, there does not seem to be much difference in runtime. Interestingly,
even though the Sχ symmetry condition splits up the outcome space into fewer
symmetry classes, this does not result in any considerable speedup.

Finally, the measurements for varying table dimensions and fixed group sizes
are shown in Figure 5.18. A similar conclusion to the one from the 2×2 comparison
can be drawn. The asymptotic and conditional tests take by far the least amount
of time. Although the CSM tests seem to be quicker for a small number of tables,
these are “lucky” observations in the sense that we executed the test on a relatively
extreme table which arrived early in the ordering. Apart from these few exceptions,
the LP tests again have the smallest runtime out of the unconditional tests, fol-
lowed by the tests using an external test statistic. Of course, one can question the
quality of the p-values obtained by the binary search in Algorithm 1. However, the
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formulation in terms of a linear programming problem and the opportunity this
brings to use efficient optimisation software, suddenly make unconditional tests a
lot quicker (although nowhere near the speeds of the asymptotic and conditional
tests yet). Again, the non-LP tests cannot use the fast LP solver software. A more
efficient implementation of the supremum methods might be able to achieve com-
parable runtimes to those of the LP tests. A recommendation for further research
would thus be to find good theoretical estimates on the runtimes of both the CSM
and LP tests, try to optimise the CSM implementation as much as possible, and
repeat the speed comparison in this more fair setting.

5.4 Size and power

Making use of (5.1), we are able to compute the size/power of the tests we discussed
at any (θ1, . . . ,θr) ∈ Θ, for any given α ∈ [0, 1]. In the case of tests on r × 2
tables, Θ0 is one-dimensional and so we are able to graphically visualise the size
of the test for θ = (θ, 1 − θ) ∈ Θ0. Also, we would able to visualise the power
on a colour plot for the 2 × 2 case as Θ1 is two-dimensional, just as we did in
Figure 5.2. The same holds true for the size of the tests on r× 3 tables, as in this
case Θ0 = {(θ1, θ2, 1− θ1 − θ2) : θ1, θ2 ≥ 0, θ1 + θ2 ≤ 1} is also two-dimensional.
However, for larger tables we are unable to show plots covering the entirety of
Θ. We should even ask ourselves whether comparing the power function based on
images is such a good idea. Of course, we could just as in Figure 5.2 take the
difference between two power functions to see which one is largest, and for which
values in Θ. However, we will be looking at the same 14 tests as in the previous
Section; Pearson’s chi-square test, Fisher’s exact test, 3 CSM-like tests, 3 tests
using an external test statistic, and 6 LP tests, at different group sizes. Pairwise
comparisons will yield a lot of – or rather, too much – plots and pairwise difference
plots.

Hence, we should be selective about which results to include. As we are inter-
ested in the power function of the 14 aforementioned tests when applied to tables
with different dimensions and group sizes, we will consider 2×2, 3×2, 2×3, 3×3,
and 2× 4 tables. For each of these table dimensions, we will indicate a number of
group sizes for which we will then compute the power function on a grid over Θ
using (5.1), for the significance levels α ∈ {0.01, 0.05, 0.10}. We can then compare,
for each choice of group sizes and significance level, the power functions of the
different tests to each other in two ways. First, we will look at the power functions
on Θ0, i.e., at the size, as we can plot these as functions of a single parameter θ.
Note that this we can only do for the 2× 2 and 3× 2 tables. Second, we will try
to compare the power functions on Θ1 via an approach used by Mehrorta, Chan
and Berger [12]. This we will discuss in more detail once we get there.

Finally, one should realise that this power comparison is of limited signific-
ance. As noted by Upton [54], power comparisons are usually done for tests which
share the same Type I error. However, because we are in a discrete setting, the
significance level α we fixed beforehand will in general not be reached by all tests
(and keep in mind that the size is in fact a function of the unknown nuisance
parameter). However, in the words of Martín Andrés and Silva Mato [75], “the
absence of a reasonable alternative makes the use of this procedure unavoidable”.



CHAPTER 5. RESULTS 93

5.4.1 2× 2 tables

Let us start with the 2 × 2 table. We will consider all 14 tests we discussed at
3 significance levels α ∈ {0.01, 0.05, 0.10} for several sample sizes (n1·, n2·), given
below

(5, 5), (10, 5), (10, 10),

(20, 5), (20, 10), (20, 20),

(40, 5), (40, 10), (40, 20), (40, 40).

(5.6)

Each of these 14 tests will either return a critical region, or an array of p-values
from which we can deduce the critical region for the given level. With this, we can
then easily use (5.1) to compute the power function on a grid of (θ1, θ2)-values.
We will compute the power β(θ1, θ2) for all θ1, θ2 ∈ {k∆ : k = 0, . . . ,∆−1} with
∆ = 0.01. This will return a total of 14 ·3 ·10 = 420 matrices with 101×101 entries
representing the power function evaluated on this equidistant discretisation of Θ.
Again, we will not show 420 colour plots. However, to get a first idea of how the
different tests performed relatively to each other, let us look at the size functions
for each combination of α and (n1·, n2·). For all combinations of α and (n1·, n2·),
one can find the plots of the size functions in Figures C.1, C.2, and C.3. We use the
same abbreviations for the tests as introduced in Section 5.3.3. The corresponding
plots can be found for the LP tests in Figures C.4, C.5, and C.6.

First thing to note is that in general, all unconditional tests have a larger size
for all θ ∈ [0, 1] than Pearson’s and Fisher’s tests. Since we use Yates’ correction
for Pearson’s chi square test, we expected it already to behave like Fisher’s exact
test. The relatively small size of these two tests is in line with the often mentioned
argument against conditional testing; that it is less powerful. Since the power
function is continuous in θ (this is easy to see from (5.1)), we would in general
expect a test with lower power also to have lower size. For completeness, note that
this observation does not always hold. There are a couple of cases in which the
sizes of ET chi and ET vol dip below that of the size of Fisher’s exact test. It is
not really clear yet whether the gap between the size function of Fisher’s test and
that of the unconditional tests becomes smaller as the sample sizes increase.

Note of course that, by construction, Boschloo’s test (ET fisher) is uniformly
more powerful than Fisher’s exact test and the size function of Boschloo’s test
always takes a larger value than that of Fisher’s. Furthermore, we see for small
group sizes (in particular the first rows of Figures C.1 and C.4), that also the
unconditional tests have a size far below α, and sometimes even coincide with
the size of Fisher’s exact test. This is also to be expected, as the outcome space
is simply not that large, the P (x;θ)-functions take relatively large values and
therefore the supremum methods will not be able to “stack another table” on top
of the already ordered tables without surpassing the level α.

Comparing the unconditional tests with each other (not including the LP tests
for a moment), we see that especially for small sample sizes, there is a lot of
overlap in the size functions. For certain tests, this overlap stays even for large
sample sizes. For example, in every plot, the size function of C S_P M is exactly the
same as that of C S_V M. C S_chi M sometimes also has the same size function.
Overall, it does not seem as if one symmetry condition always yields superior size.
We will see in a bit that this conclusion also follows for the power function on Θ1.
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Also when looking at the tests using an external test statistic, there does not seem
to be one test statistic which yields superior size in all cases. However, it seems
that unless the CSM-like tests and tests using external test statistics overlap, the
CSM-like tests have a higher size for most values of θ.

Now only looking at the LP tests, there seems to be lot of overlap for small
sample sizes (see Figure C.4). For larger sample sizes, the size functions of the
different tests seem to differ more and more. However, also here there does not
seem to be a test which clearly has the largest size for all θ ∈ [0, 1]. In particular,
there does not appear to be a big difference between the LP1 tests and the LP2
tests. We will see in a bit if this also holds for the power function on Θ1. Comparing
the LP tests to the other unconditional ones, the general observation seems to be
that the LP tests always have a size comparable to that of the CSM-like tests.

As we are essentially only interested in the how powerful the tests are compared
to each other, we decided to use a similar table representation as the one used by
Mehrorta, Chan and Berger [12]. This is shown in Tables C.1, C.2, C.3, and C.4
for α = 0.01. We have omitted the tables for other significance levels, as they did
not provide much added value. How should one read these tables? All rows and
columns are named after one of the tests we are investigating. Consider the cell in
row R and column C (note that the table is rotated; we say that Table C.1, for
example, has 13 rows and 4 columns). There are a bunch of numbers and signs in
this cell. Each pair of one number or sign with one number between parentheses
or an empty entry corresponds to one of the (n1·, n2·)-values in (5.6) (in the same
configuration). So for example, in Table C.1 in the cell in row PEARSON and column
FISHER, the two entries “<” and “(-0.0590)” correspond to group size (5, 5), and
the two pairs of one “=” and an empty entry correspond to the group sizes (10, 10)
and (40, 40).

What do these numbers and signs mean? For the given group size, we com-
puted the difference in power functions βR(θ1, θ2)− βC(θ1, θ2) for the grid θ1, θ2 ∈
{k∆ : k = 0, . . . ,∆−1} with ∆ = 0.01. We can then count the number of (θ1, θ2)-
values where the difference is positive, i.e. where test R has higher power than test
C. If the difference is positive at all values of (θ1, θ2), we denote this in the table
by a “>” sign as the upper entry, meaning that the row test has greater power
than the column test at all (θ1, θ2)-values. If the row test has lesser power at all
(θ1, θ2)-values, we place a “<” sign as the upper entry. If the power is equal at
every grid point, we write a “=” sign. Finally, if one test is more powerful on some
parts of Θ1 and the other on other parts of Θ1, we display the proportion of grid
points where the row test has greater power than the column test. The lower entry
(the number between parentheses, if present) is the numerical approximation of
the volume between the two power functions, i.e. the number

1

∆2

∆−1∑
k=0

∆−1∑
ℓ=0

βR(k∆, ℓ∆)− βC(k∆, ℓ∆). (5.7)

In the case we have displayed an “=” sign, this sum is of course zero, so we left
it out, explaining the empty entries. Thus, just as an example, if we want to
compare the power functions of the tests ET chi and LP1 S_V for the group sizes
(n1·, n2·) = (20, 20), we should look at the cell the sixth row and the second column
of Table C.3. Within that cell, the pair of entries on the second row and on the
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third column is of interest to us. There we read the numbers 0.3641 and (0.0000).
The first indicates that for 36.41% of the grid points in Θ1, the power function
of ET chi is higher than that of LP1 S_V. However, the volume between the two
power surfaces is so small that it 0.0000 is displayed. Thus, at that 36.41% of Θ1,
the gain in power by using ET chi approximately compensates the loss in power
by using ET chi in the remaining 63.59%.

There are a number of things to observe from these tables. First of all, just
as we already expected a bit from the size functions, and from all the proponents
of unconditional tests, we see a lot of “<” signs in the PEARSON and FISHER rows,
indicating that the remaining tests (all unconditional) are more powerful. Also,
in the FISHER row, one might argue that for increasing group sizes, the power
function of Fisher’s exact test seems to slightly “close the gap” with the other
power functions. This observation is based on the numbers between parentheses
to become slightly less negative when going going through the entries in each cell
from top to bottom and left to right. For example, in the (FISHER, C S_P M) cell,
the volume between the power surfaces is -0.0623 and -0.0863 for (n1·, n2·) equal to
(10, 5) and (10, 10) respectively, whereas for (n1·, n2·) = (40, 40) it is “just” -0.0403.
This pattern does not hold every time however, in the (FISHER, ET vol) cell for
example, we have a difference of -0.0303 at (n1·, n2·) = (10, 5), but a difference of
-0.0350 at (n1·, n2·) = (40, 40).

Furthermore, looking at the three tables cells that compare the CSM-like tests,
we see a lot equality signs. This we also saw coming by the many overlapping
size functions of the CSM-like tests. Realise that if two size functions precisely
overlap, one can say almost with certainty that the corresponding critical regions
must consist of the same tables. But then from (5.1) it follows immediately that
the power functions will also be identical on the whole of Θ. C S_P M and C S_V
M perform identical, while one could argue that for the group sizes where C S_chi
M has a different power functions than its two counterparts, it performs slightly
worse most of the time. This can be seen in the (C S_P M, C S_chi M) cell, where
the volumes between the two power surfaces are all non-negative (so in favour
of C S_P M), and in the (C S_chi M, C S_V M) cell, where the volumes are all
non-positive (thus in favour of C S_V M).

Moving on to the ET tests in Table C.2, we see many “=” signs. However, for
the (n1·, n2·)-values where the power functions are not identical, it seems that ET
chi (recall, Suissa and Shuster’s test) performs slightly worse than ET fisher
(Boschloo’s test). For (n1·, n2·) ∈ {(20, 5), (40, 5), (40, 10)}, Boschloo’s test has a
higher power function at all grid points. For (n1·, n2·) ∈ {(20, 10), (40, 20)}, there
is no superior test for all values of (θ1, θ2), and ET chi has larger power on a
slightly larger proportion of Θ1. However, the volume between the two power
surfaces is in both cases close to zero. Comparing ET chi with ET vol gives a
more mixed impression, with ET chi being less powerful everywhere for certain
(n1·, n2·)-values, but also more powerful on a large portion of Θ1 for other (n1·, n2·)-
values. A similar observation can be made comparing ET fisher with ET vol.
However, it occurs less often that the power function of ET fisher is worse on
the whole of Θ1 than that of ET vol. If we would have to pick one test out of these
three external statistic tests, we would suggest to use ET fisher, as it seems to
generally have the highest power. However, this is not intended to be a rigorous
statement.
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Comparing the LP tests in Tables C.3 and C.4, we again see a lot of identical
power functions. The LP1 S_P and LP1 S_V tests behave almost identically, just
as the LP2 S_P and LP2 S_V tests. Furthermore, it again seems that the Sχ-based
tests perform slightly worse. If we want to compare the LP1 tests with the LP2
tests, we should look at the cells in the intersection of the LP1 S_P and LP1 S_V
rows and LP2 S_P and LP2 S_V columns. We temporarily leave out the Sχ-based
tests because of their slightly lower power. In these cells, we see many “=” signs,
but it seems that the remaining non-“=” entries are overall either smaller than 0.5,
or not much bigger than 0.5, where the volume between the power functions is
often either 0.0000, or something close to that. One might be tempted to say that
because the LP2 approach tries to maximise the average power on Θ1, the LP2 tests
will achieve higher power for a greater portion of grid points than the LP1 tests,
explaining many of the entries smaller or around 0.5. On the other hand, as the
volume between the power functions is always pretty close to zero, this indicates
that on the smaller part of Θ1 where LP1 tests achieve greater power than LP2
tests, this gain in power is greater than the loss of power on the remainder of Θ1.
There does not seem a clearly more powerful approach here either.

There are three more comparisons we would like to make. First of all, let us
look at the ET tests versus the CSM-like tests in Table C.2. If not equal, the power
functions of the CSM tests are almost always larger than that of the ET on large
portions of Θ1, and the occurrences where this is not true are most often observed
when using the C S_chi M test, of which we had already noted it seemed to be less
powerful. Focusing on C S_P M (C S_V M performs identical), out of the 19 non-
“=” entries in the 3 cells comparing C S_P M with every ET test, the proportion of
Θ1 where the C S_P M power is just around 0.5 three times (once 0.4579 and twice
0.5458, all with positive volumes in favour of C S_P M). Apart from these three
(n1·, n2·)-values, the proportion is convincingly in favour of C S_P M, even coming
out above 94% for 9 (n1·, n2·)-values. The volumes between the power surfaces
are in fact also always positive (in favour of the CSM tests), except for the C
S_chi M test. We are therefore inclined to say that the C S_P M (and C S_V M)
tests are generally more powerful than the ET methods. Again, no strong, uniform
statement can be made however.

Comparing the ET tests with the LP tests in Tables C.2, C.3, and C.4, if equal
power functions are observed, they are only found for the small (n1·, n2·)-values of
(5, 5) and (10, 5). For the rest, we either have a “<” sign (note that most of them
are in the ET chi row), indicating that the ET power function takes smaller values
everywhere on Θ1, or a proportion of grid points where ET has larger power that
comes above 0.5 only in 6 out of 126 non-“<” and non-“=” entries, and can get
as small as 0.0345. The volumes between power functions is 0.0000 or higher (but
never above 0.0005) in 38 out of the earlier 126 entries. These observations also
give reason to believe that the LP tests might be more powerful in general than
the ET tests.

Finally, looking at the CSM tests versus the LP tests in Tables C.2, C.3, and
C.4, we see that the methods all have the same power for (n1·, n2·) taking values in
{(5, 5), (10, 5), (10, 10)}. Some individual pairs of tests have identical power also
for other (n1·, n2·)-values. For 18 out of the 97 entries, we see that the power
functions of the LP tests are larger than that of the CSM tests on a larger part
of Θ1. However, the corresponding volumes are all very close to zero. Interesting
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to note is that LP2 S_P (and LP2 S_V, which performed identically), is the only
LP test never has smaller power on a majority of Θ1 than a CSM test for all
(n1·, n2·)-values. Summarising, it seems that the LP tests generally have higher
power on a bigger part of Θ1, but the gain in power relative to CSM tests on this
majority of Θ1 is smaller than the loss in power on the remainder of Θ1, as the
volumes between the power surfaces are generally close to zero.

5.4.2 3× 2 tables

For 3 × 2 tables, we are still able to plot the size function. Let us consider the
outcome spaces of tables with group sizes (n1·, n2·, n3·) equal to

(5, 5, 5), (10, 5, 5), (20, 5, 5), (20, 10, 10),

(10, 5, 5), (20, 10, 5), (20, 20, 10),

(10, 10, 10), (20, 20, 5), (20, 20, 20).

(5.8)

We can again plot the size functions for different values of (n1·, n2·, n3·). This time,
we limited ourselves to α = 0.01; the other plots would convey a similar message.
In Figures C.7, C.8, and C.9, the reader can find the size functions for the indicated
tests and groups sizes. In the right column of plots, one can find all the LP tests,
the remaining ones are always in the left column. For the small group size of
(5, 5, 5), we again see that all tests all have a overlapping size which is quite far
away from α. Only Fisher’s exact test has a smaller size there. Apart from that,
glossing over all the plots there are three important observations to make. First
is that we the blue line cross over the α level a couple of times. This should not
come as a surprise, as there is no reason why the asymptotic test should actually
be valid. It is shown in Aanes [5] that in fact the Pearson’s chi squared test is only
asymptotically valid, and these plots form a clear counterexample that it need not
be valid in general. The second observation is that the LP tests manage to have
size very close to α for many θ-values, achieving greater size than many of their
non-LP counterparts. Due to the low resolution of the R plots, it seems that the
LP tests seem to surpass the α level. We checked however that this is not the case.
Finally, observe that the ET chi and ET vol test often have a size lower than
that of Fisher’s test for many values of θ. Boschloo’s test of course always has a
larger size than Fisher’s exact test. In general, the gap between the size function
of FISHER and that of the unconditional tests is already a lot smaller than in the
2 × 2 case, especially for the larger group sizes. This is in agreement with the
observations from Mehta and Hilton [55].

Let us move on to comparing the power functions of the tests on Θ1. Realise
that the power function is now a function of three parameters; θ1, θ2, and θ3.
Consequently, keep in mind that the power comparisons in Tables C.5, C.6, C.7
and C.8 are now made over a three-dimensional grid of (θ1, θ2, θ3)-values. We
chose the spacing between grid points a bit larger now, such that θ1, θ2, θ3 ∈
{k∆ : k = 0, . . . ,∆−1} with ∆ = 0.1. The numbers between parentheses should
be interpreted as in (5.7), but now with a triple sum as β is a function of three
arguments, and a division by ∆3 instead of ∆2 (the exponent should in general be
equal to r(c− 1)).

A first observation we can instantly make is that all the tests have identical
power for (n1·, n2·, n3·) = (5, 5, 5), except Fisher’s test, which has lower power.
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Another thing that stands out is that the PEARSON and FISHER rows no longer
contain as many “<” signs as they did in the 2 × 2 case. Still, the PEARSON and
FISHER power functions are smaller than those of the unconditional tests on a
majority of Θ1, but this again points towards Fisher’s exact test becoming less
conservative for larger tables. Moreover, going through the entries from left to
right in each cell, we observe the numbers in parentheses to become once again less
negative; Fisher’s power function moves closer to its unconditional counterparts.

Recall that for several group sizes, the chi square test actually had a size larger
than α, which gives it a “head start” to achieve greater power on some parts of Θ1

too. Also, the numbers between parentheses, i.e., the numerical integrals of the
differences of two power functions on Θ1, are most of the time negative. It seems
that the head start the chi squared test got did not last that long. As a side note,
observe in Table C.6 that Boschloo’s test is the only test which has uniformly
greater power than Fisher’s exact test for all (n1·, n2·, n3·)-values.

Moving down to the three CSM rows, we are again inclined to say that C S_chi
M is less powerful than C S_P M and C S_V M, while there does not seem to be a
clear winner in terms of power between C S_P M and C S_V M. Comparing with
the ET tests, we again see many proportions larger than 0.5 and positive numbers
between the parentheses, similar to the 2×2 tables. Looking even further to the LP
columns to compare CSM and LP tests however, notice that the LP1 S_P and LP1
S_V columns only have proportions smaller than 0.5 and negative numbers between
the parentheses for all CSM tests. Contrary to the 2× 2 tables, it now seems that
at least the LP1 S_P and LP1 S_V tests are in general more powerful than the
CSM tests. For the remaining LP tests, there are also some proportions larger
than 0.5 and positive integral values, so we cannot draw as strong a conclusion as
with LP1 S_P and LP1 S_V.

Amongst the ET tests, it seems that Boschloo’s test performs better than the
other two, as can be seen in the mostly negative integral values and less-than-
half proportions in the (ET chi, ET fisher)-cell, and the solely positive integral
values and mostly more-than-half proportions in the (ET fisher, ET vol)-cell.
Furthermore, just as in the 2×2 setting, comparing the ET tests with the LP tests
yields cells with almost exclusively entries in favour of LP tests being more the
powerful ones.

Finally, comparing the LP tests amongst each other, we see multiple “=” signs,
and the non-identical entries are again of such a mixed nature that it is difficult to
say anything meaningful about which of the 6 tests is the most powerful. However,
looking at the cells involving either LP1 S_chi or LP2 S_chi, it again seems that
the chi-square approaches are less powerful. Also note the greater level of similarity
between the power functions of the (LP1 S_P, LP1 S_V)- and (LP2 S_P, LP2 S_V)-
pairs.

5.4.3 2× 3, 3× 3, and 2× 4 tables

Considering tables which all have more than two columns, we will only look at
the power comparison tables. We will consider the following combinations of c and
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(n1·, n2·) (or (n1·, n2·, n3·) in the 3× 3 case):

(5, 5), c = 3; (10, 5), c = 3; (10, 10), c = 3;

(20, 5), c = 3; (5, 5, 5), c = 3; (5, 5), c = 4.
(5.9)

As discussed in Section 4.2.3, we will not include the C S_chi M test in this study.
The power comparison tables can be found in Tables C.9 and C.10, and are based
on grids with a spacing of ∆ = 0.2 now.

First thing to note is that we once again see many “<” signs in the PEARSON
and FISHER rows (especially in the former). Apart from the LP S_P, LP S_V and C
S_P M tests, who generally have higher power than FISHER, the power of Fisher’s
exact test is comparable to that of the other tests. For these table dimensions
the results seem to be less in agreement with Mehta and Hilton’s conclusions, but
keep in mind that the sample sizes have been kept relatively small in order to limit
the computation time, leading to a smaller outcome space and less opportunities
for the power of Fisher’s exact test to “catch up” with that of the unconditional
methods.

Moving on to the CSM tests, the C S_P M test has higher power than C S_V
M on a majority of Θ1. C S_P M also has generally higher power than the ET tests
and the LP tests using the Sχ condition. It also has a power comparable to that
of the remaining LP tests. C S_chi M does not fare so well though; it has a power
function lower than that of the ET fisher and ET vol tests, more comparable to
that of the two LP S_chi tests. Out of the ET tests, Boschloo’s test again seems
to be the most powerful, and Suissa and Shuster’s test the least powerful. Note
however that Suissa and Shuster’s test has to suffer from the odd behaviour of
the chi-square test statistic in tables with c > 2, as mentioned in Section 4.2.3.
All ET tests have generally lower power than the LP tests, except when comparing
to the two LP S_chi tests, to which the power functions of ET fisher and ET
vol seem more similar. Finally, comparing the LP tests to each other, we already
mentioned the relatively low power of the two LP S_chi tests. Apart from that,
the differences are smaller, but LP1 S_P and LP2 S_P seems to have a comparable
power functions, that are greater than the power functions of the LP S_V tests on
a majority of Θ1.

5.4.4 Main takeaways from the power study

The observations we just made are necessarily hand-waving, containing a lot of
words like “generally”, “similar”, “almost”, and “often”. There is no single test which
we (theoretically) expect to always have higher power than another test (other than
Boschloo’s test having higher power than Fisher’s exact test, by construction).
Consequently, there will always be certain table dimensions and (n1·, n2·)-values
where one test performs better than the other and other (n1·, n2·)-values were the
reverse is true. We can only make some cautious statements about some of the
tests based on the few (n1·, n2·)-values we have considered. These should serve as
the main takeaways from Sections 5.4.1, 5.4.2, and 5.4.3, but it cannot be stressed
enough that these should be interpreted with a certain degree of caution. The key
points are:

• The asymptotic test is often either too conservative (having low power), or
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too liberal (having high power but also a size higher than the given signific-
ance level).

• Just as the critics of Fisher’s exact test point out, this test is often con-
servative compared to the unconditional methods. However, in agreement
with Mehta and Hilton [55], this conservativeness becomes less visible for
increasing table dimensions and sample sizes.

• Boschloo’s (unconditional) test has uniformly higher power than Fisher’s
exact test, and turned out overall to be the most powerful test using an
external test statistic.

• The tests using the chi square test statistic (either as an external test statistic
or via the symmetry condition Sχ) generally have lower power than their
respective counterparts.

• The ET tests are less powerful than the CSM-like and LP tests.

• Between the LP1 and LP2 tests, we did not manage to label one of the two
approaches as more powerful.

• Comparing the CSM and LP tests, there is no single clearly more powerful
approach.
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5.5 Long-term power

Martín Andrés and Silva Mato [75] found the results from a power comparison
to be “unsatisfactory”, as no test has been proven to be uniformly more powerful
than another test (again, Boschloo’s test being the exception here). It is hard to
compare power functions which take different values at different values of θ1 and
θ2 (in the 2×2 case; more generally at θij for i = 1, . . . , r and j = 1, . . . , c). To this
end, they introduce a metric called the long-term power. They argue that in order
to make a global statement about the power function over the whole parameter
space Θ, we should assign an “a priori” distribution to the θi vectors. Martín
Andrés and Silva Mato assume that, in the long term, every time a researcher
will encounter a contingency table like this, the θi vectors will follow a uniform
distribution 1. They consider this distribution to reflect our ignorance about the
θi-values. Given a level α, the long-term power β′ is then the overall probability
of rejecting the null hypothesis and can be found by the law of total probability,
as done below.

β′ :=

∫
Θ

β(θ1, . . . ,θr) d(θ1, . . . ,θr)

(5.1)
=
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Θ

∑
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,

where in the last equality we recognise the expression for the number of tables
with r rows and c columns with group sizes (ni·)i=1,...,r. Thus, the long-term power
β′ is nothing else than the ratio of tables in the critical region to the total number
of tables in the outcome space (up to a constant, which equals one in the 2 × 2
case that Martín Andrés and Silva Mato considered, and in general as long as

1That is, each θi will follow a uniform distribution on the c− 1-dimensional simplex. Martín
Andrés and Silva Mato argued only for the 2× 2 case, where the uniform distribution is on the
unit interval.
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c = 2). At equality (i) we wrote Θ = Θ1 × . . . × Θr, where the Θi are just the
c− 1-dimensional simplexes in which the respective θi vectors reside. This makes
it straightforward to pull the big integral over Θ apart into a product of r integrals
over the simplexes Θi. But then, realise that one such an integral is nothing else
than the integral in (4.13) , where the n·j are replaced by the xij. Equality (ii)
then directly follows from (4.13).

From this, we can immediately give an alternative justification for the LP
formulation (4.20). As this linear programming problem tries to maximise the
number of tables in the critical region, it will, by construction, have the largest
possible long-term power. Thus, we can say that LP1 (with no symmetry condition)
is the most powerful test in the long term. It is up to the reader to decide how much
value to attach to this property. As soon as we add a symmetry condition to the
LP test, it is not necessarily the most powerful on the long-run. Indeed, because
we can now only add groups of tables to the critical region instead of individual
tables, we are less flexible to make the critical region as large as possible. The
larger the equivalence classes, the smaller β′ will be.

For all the table dimensions and group sizes we have considered for the power
comparison in the previous section, it is now straightforward to list the corres-
ponding long-term powers. This is done in Table C.11. For each row, we indicate
the group sizes, as well as the number of columns. The maximum value in each row
is displayed in bold. Notice how LP1 S_P always has the largest long-term power,
even though it is (in theory) not the optimal test in terms of long-term power. For
2×2 tables we actually see a lot of equal values, indicating that the critical regions
of many tests consist of the same number of tables (but they are generally not
identical, as the tables from the power comparison tell us). However, as the table
dimensions increase, we see how only LP1 S_P manages to keep the highest value
every time, while the C S_P M and LP2 S_P tests often have a long-term power
not much smaller than that of LP1 S_P, in particular for the outcome spaces of
the tables with more than 3 columns.

If we only consider the CSM-like tests, both C S_P M and C S_V M perform
identical in the 2 × 2 case (here the critical regions are in fact the same since SP

yields the same symmetry classes as SV), with C S_chi M test sometimes lacking
behind. For 3×2 tables, C S_P M has a slightly higher long-term power than C S_V
M in most cases, and both have a higher long-term power than C S_chi M (except
when (n1·, n2·, n3·) = (10, 10, 10)). This should again indicate that the Sχ ordering
generally yields fewer, larger symmetry classes, resulting in smaller critical regions
(and generally lower power as seen in the previous Section). For the tables with
more than two columns, C S_P M always had a higher long-term power than C
S_V M.

Out of the three ET tests, Boschloo’s test has the highest long-term power every
time, except for the 2× 2 table with group sizes (40, 20) and the 3× 2 table with
group sizes (10, 5, 5). Compared to the CSM and LP methods however, the ET
tests generally have a lower long-term power. Finally, between the LP tests, LP1
S_P always has the highest long-term power. In the 2 × 2 case, all LP tests not
using Sχ have an identical long-term power. For 3×2 tables, the LP1 S_V still has
identical long-term power to LP1 S_P, while LP2 S_P and LP1 S_V do not lack far
behind. For tables with more than 3 columns, LP2 S_P has the highest long-term
power of all the LP tests not including LP1 S_P.



CHAPTER 5. RESULTS 103

Keep in mind that Table C.11 essentially only shows the number of outcomes
in the critical region, and does certainly not tell a complete story of the power
of the different tests. Just as the power comparison of Section 5.4, this is not a
perfect metric. However, in the interpretation described by Martín Andrés and
Silva Mato, we would conclude that under the assumption of uniformity of the
probabilities θ1, . . . ,θr, in the long run, for α = 0.01, LP1 S_P is be the most
powerful test, C S_P M generally the most powerful CSM test, and Boschloo’s test
generally the most powerful ET test.

5.6 The choice of a mathematics programme among
male and female students

In Table 1.2, we showed the number of male and female students in each of the
three mathematics programmes offered by NTNU in 2007. We moved on with the
rest of this thesis leaving an important question unanswered. Is there a significant
difference in the choice of mathematics study programme between the male and
female students? Let us conclude this Chapter by picking a significance level of
α = 0.05, and performing some of the tests that we have encountered throughout
this text, to decide whether or not to reject the null hypothesis

H0 : θM1 = θF1, θM2 = θF2,

where we defined θM1, θF1 as the proportion of male/female students that opted
for a 3-year bachelor and 2-year master programme, and θM2, θF2 as the proportion
of male/female students that chose a teacher education.

First of all, to answer this question, we may opt to use Pearson’s chi square
test, although Cochran’s rule does not recommend it. Using Yates’ correction, we
find a chi-square value of 8.8791, corresponding in this case to a p-value of 0.0118.
In case one is hesitant to use the asymptotic test here, we might also use the
Fisher–Freeman–Halton exact test, which gives a p-value of 0.0583.

Apart from these two popular tests, which return a result almost instantly, we
might opt for an exact unconditional test. As we have seen in Section 3.7, because
this is a purely descriptive experiment, the use of an unconditional test does not
lead to logical incoherencies. Some might still deem the use of this test inappro-
priate, others will argue that it is the only correct way to do inference in this case.
Either way, executing a CSPM test yields a p-value of 0.0502. Alternatively, we
can use a test which orders the table based on an external test statistic, such as
Boschloo’s test, which yields a p-value of 0.0524 and, if we perform an LP2 SP

test combined with a binary search for the p-value, we find that Table 1.2 has a
p-value of 0.0290.

As we would expect, the unconditional methods return a – in this case slightly
– smaller p-value than Fisher’s exact test. However, for all tests but the LP test,
the obtained p-value is larger than the significance level of 0.05, meaning that we
would not reject the null hypothesis for all but the LP test. The fact that the LP
p-value (which really is just an upper bound on the p-value) is so much smaller
than the other ones, again illustrates the flaw of the LP method. Because the
LP test tries to find the smallest level for which Table 1.2 is still included in the
critical region, the p-value it will return is artificially low, corresponding to a most
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probably non-intuitive critical region which happens to include the observed table.
Not requiring the nestedness of the critical regions allows to label an observation
as significant evidence against the null hypothesis, even though other tests would
not reject H0 based on that observation. Clearly, striving for the highest power
should not be the only aim when devising hypothesis tests.
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Figure 5.15: β(θ1, θ2) for indicated values of N (left) and the difference β(θ1, θ2)−
βbenchmark(θ1, θ2) (column).
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Figure 5.16: Runtime as a function of the common group size n for the 14 tests.
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Figure 5.17: Runtime and log-runtime comparison of the 14 tests on 2×2 tables
with indicated values of n1· = n2· = n.
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Figure 5.18: Runtime and log-runtime comparison of the 14 tests (13 in the case
of 3 columns by removal of the CSχM test) with indicated group sizes and table
dimensions.



CHAPTER

SIX

DISCUSSION

In this Chapter, we will discuss some of the issues, limitations, and design choices
of the main additions of this thesis to the field of exact unconditional hypothesis
tests on general r× c contingency tables. As to whether there is any justification,
other than pure mathematical interest, to research this field, we gladly refer to
Section 3.7. In Chapter 4, we essentially introduced two approaches to testing the
hypothesis (4.3). The first was a generalisation of the already existing uncondi-
tional methods for 2 × 2 tables, in particular Barnard’s CSM test. The second
was an approach entirely inspired by the Neyman–Pearson school of thought on
hypothesis testing. This approach uses a linear programming (LP) formulation to
construct an – in some sense – optimal critical region. In total, we ended up with
14 different tests, which we tried to compare in Chapter 5 in terms of speed and
power.

One should be cautious with the conclusions drawn from these two comparis-
ons. Of course, all other things being equal, the speed of the different tests still
depends on the efficiency of the underlying implementation. Therefore, our speed
comparison does not say anything about the efficiency of the methods themselves,
only about the efficiency of our implementations. As mentioned in Section 5.3.3,
we did not manage to find any meaningful theoretical results regarding the expec-
ted runtime or number of operations of the different methods (especially for the
LP methods). This would be a great first topic for further study.

Talking about the efficiency of the presented implementations, one particular
optimisation immediately comes to mind. Right now, when performing a CSM-like
test, all the symmetry classes are computed beforehand. If we are not interested in
a complete ordering of the outcome space, some of these equivalence classes may
not ever be considered by the algorithm. A speedup could therefore be reached if
we were to only compute a symmetry class the moment a table in that class is a
possible candidate to be the next table in the ordering.

Moving on to the power comparison, we remarked multiple times throughout
Section 5.4 that also the power comparison is of limited use. On one hand, we are
comparing tests with different sizes, as the precise level α will in general not be
reached in this discrete setting. On the other hand, there are no results grounded
in theory that would lead us to expect one particular test to be more powerful than
the other. Once again, the only exception is Boschloo’s test, which is uniformly
more powerful than Fisher’s exact test, because Boschloo’s test is a supremum
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test which uses the Fisher p-value as a test statistic. Since the test power is a
function of the level α (of which we have just looked at one value: α = 0.01), and
of the table probabilities (θij)i=1,...,r; j=1,...,c described under (4.2) , different tests
will often alternate being the one having the higher power of the two for different
levels and probabilities. To this end, we briefly looked at the long-term power,
but there are a number of alternatives which are worth looking into for further
research. For the 2× 2 setting, Haber [76] suggested for example to compute, for
a given level α, the minimum of the power function a distance d from Θ0, i.e.

βmin(d) := min
|θ1−θ2|=d

β(θ1, θ2).

Just as the size function, this univariate function can easily be visualised and
compared for different tests. It should be possible to generalise this quantity to
general r × c tables as well by defining an appropriate metric to quantify the
distance that θ = (θij)i=1,...,r; j=1,...,c lies from Θ0. Other alternatives, which remove
for example the dependence on the chosen level α can be found in the paper by
Martín Andrés and Silva Mato [75], from which we also got the idea to consider
the long-term power.

All unconditional tests we proposed in this text at some point required a dis-
cretisation of Θ0 (or even the whole of Θ in the case of LP formulation (4.24)).
To construct this discretisation, we have used a low-discrepancy sequence trans-
formed from [0, 1]c onto the c−1-dimensional simplex Θ0. There are some technical
objections in doing this, for which we refer to Appendix A. Also, there are many
types of low-discrepancy sequences one could choose from, each of them showing
different behaviour depending, amongst others, on the number of columns c. We
discuss the choice we have made for this text as well in Appendix A. The main
takeaway is that for larger tables than the ones considered here, it would be in-
teresting to look into the quality of the tests when executed using different types
of low-discrepancy sequences.

Apart from these considerations specific to the use of low-discrepancy sequence,
there is a more general comment to make. Realise that, using the Quasi-Monte
Carlo approach, the grid has been constructed to be as evenly distributed over
Θ0 as possible. One might actually wonder whether this is the best approach. For
example, as mentioned by Lydersen, Langaas and Bakke [4], the sum of P (·;θ)-
functions can have sharp peaks near the boundaries of Θ0. It may be wise to
have a higher concentration of grid points around the edges, in order not to miss
any potential maxima. Related to this is a completely different approach that
might have been worth implementing and investigating. For a given table, the
sharp peaks may have been far away from the “interesting” possible values for θ
(for example, in the 2 × 2 case, near the MLE θ̂ = (x11 + x21)/n··). Therefore,
we might not want to include the peaks when determining a supremum p-value
p(X) = supθ∈Θ0

PH0(T (X) ≥ T (x)) for some test statistic T (X). Berger and Boos
[77] showed that

sup
θ∈Cγ

PH0(T (X) ≥ T (x)) + γ,

where Cγ is a 1 − γ-confidence interval for θ, is also a valid p-value. This would
allow us to restrict the maximisation to a domain Cγ ⊂ Θ0, most likely excluding
the region closest to the boundaries.
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Figure 6.1: Frequency of θ-values at which a minimal maximum has been recor-
ded in the CSM procedure.

Apart from near the edges, there exist perhaps other areas of Θ0 where we
are more likely to encounter, say, a minimal maximum of the current sum of
P (·;θ)-functions when doing a CSM test. For example, in Figure 6.1, we display a
histogram indicating the frequency of θ-values at which minimal maxima occurred
when ordering the space of 2× 2 tables with (n1·, n2·) = (75, 50). That is, at each
iteration of the CSM method, we recorded the θ-value at which the sum of P (·; θ)-
functions of all tables that have already been ordered reached its maximum. There
seems to be higher concentration of maxima near the edges, and around (but not
including) θ = 0.5. It would be an interesting research topic to find out whether
one can, a priori, locate these areas of higher concentration given only the table and
group sizes. A non-uniform (and probably smaller) grid can then be constructed
accordingly, without giving in on the quality of the table ordering we end up with.
This is also relevant for the LP methods. When constructing the constraint matrix
A, we can now decrease the number of rows to only include fewer, “more relevant”
values of θ ∈ Θ0 (or Θ), leading to a smaller LP problem that needs solving.

Finally, as we mentioned the LP methods, we would like to briefly discuss
whether this approach has a future in hypothesis testing. Although very quick
and powerful compared to many of the other unconditional methods, the non-
nestedness of the critical regions is quite a big flaw of this testing approach. We
wonder if this is an inherent flaw of using a general optimisation method, which will
simply find the most optimal solution given the significance level α, not interested
in any underlying structure we find desirable from a statistical point of view.
If so, then we fear that the LP methods might be of limited use, other than
perhaps giving a rough outline of the shape of a critical region in certain cases. If
not, however, a recommendation for further research would be to look for ways in
which we can add additional requirements, constraints or rules to the LP approach
that would make the obtained critical regions nested. Solving this issue would
mean that there exists an exact unconditional test that is computationally feasible
within reasonable time, whenever the corresponding linear programming problem
is. The LP tests would thus benefit from all the effort being put in pushing the
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boundaries of what optimisation software can solve. Another added flexibility of
the LP method is that the branch-and-bound method used to solve mixed integer
linear programmings also keeps track of feasible solutions along the way. If the
contingency table does become too big at some point, it is still possible to find
non-optimal solutions of a certain quality. It would be very interesting to see
if these less-than-optimal solutions can be used, perhaps in combination with a
more conventional unconditional method to come more quickly to a p-value for an
observed table, or even an ordering of the entire outcome space.



CHAPTER

SEVEN

CONCLUSIONS

Whether it is the testing of the effectiveness of a new medicine, or finding out
whether male and female students behave differently when deciding on a university
education in mathematics, one is looking for a statement about the significance of
a potential effect or difference. Inevitably, a statistical test of significance should
be performed on a contingency table. We have discussed what types of test can
be performed, first for the simple 2 × 2 table, and later for general r × c tables.
Along the way, we have also explored the different opinions on which tests should
be performed, in which situations.

For r× c tables, the literature on asymptotic tests and exact conditional tests,
which consider both marginal totals of the contingency table as fixed, is already
quite extensive. Meanwhile, the exact unconditional tests, which only fix the mar-
gin concerning the group sizes, have not received the same attention. This is most
probably due to philosophical objections, and due to their computational com-
plexity, especially for larger tables. Having considered both the philosophical ar-
guments in favour of and against the use of each type of contingency table test,
it is the opinion of the author that the exact unconditional tests certainly have a
right to exist. Whether or not a certain test is appropriate or not, should depend
on the experimental design that led to the contingency table of interest. With that
being said, there are definitely scenarios in which one can deem the unconditional
approach as appropriate, or at least where no logical case can be made against
this approach.

The computational burden an unconditional test brings cannot be denied, nor
can it completely be removed. After all, conditioning on only one set of marginal
totals leads to a far greater set of possible, alternate table outcomes that one needs
to work through. However, in order to partially remove that workload, we have
introduced two approaches. The first one generalises the already existing methods
for the 2× 2 table to larger tables, applying a couple of speedups along the way.
The most important of those were to perform all maximisations using a Quasi-
Monte Carlo method, and the definition of new symmetry conditions that would
split up the space of possible table outcomes into equivalence classes.

The second approach aims to construct a critical region that is in some sense
optimal, given a significance level α. This is achieved by formulating a binary lin-
ear programming problem, which can then be solved with existing optimisation
software. This makes the second approach much faster than the first one, while
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maintaining comparable power. This approach is fully in line with the Neyman–
Pearson school of hypothesis testing, which might be a downside for many already.
Furthermore as the optimal solution is dependent on the level α, there is no guar-
antee that obtained critical regions are nested when α increases. We proposed
ideas to define a p-value based on the linear programming approach. However, be-
cause of the non-nestedness of the critical regions, this p-value need not be valid.
For the applicability of this approach, it is very important to find out whether or
not this non-nestedness issue can be resolved.

Finally, we performed a comparison study to see how the power functions of
asymptotic, conditional and unconditional methods would fare in both the 2 × 2
case, as for larger tables. From that, we drew a number of conclusions. First of
all, although Fisher’s exact test is often criticised for being too conservative, this
critique becomes less and less applicable for increasing table dimensions. This
is in agreement with Mehta and Hilton [55]. Furthermore, the tests inspired on
Barnard’s original CSM test, and the LP tests seem to have comparable power,
and higher power than the asymptotic test, Fisher’s exact test, and the tests using
external test statistics. Most of the time there was however no single test which
had the highest power on the whole of Θ. Only in a few specific cases was it
impossible for someone to find some (θ1, . . . ,θ2)-value where the power of any
test of choice would be higher than the power of another test. To this end, we also
compared the long-term power as introduced by Martín Andrés and Silva Mato
[75]. Evidently, the LP test which maximised the amount of tables in the critical
region (using the SP condition) was the most powerful in a long-term sense. The
CSPM was generally the most powerful CSM-like test, and Boschloo’s test the
most powerful test using an external test statistic.

Apart from a formal disclaimer that one can always speed up the R imple-
mentations of tests made by the author, there are a number of interesting other
directions for further research. First of all, one might aim to develop a smarter
discretisation of Θ0 over which to perform the maximisations required for the LP
tests to construct the constraint matrix, and for the supremum tests in order to
determine the ordering of the table outcomes and/or to compute the p-values of
the table outcomes. A more general recommendation would be to research different
metrics in order to compare power functions in higher dimensions, as will occur in
the case of contingency tables with a large amount of rows or columns. Finally, if
the LP approach can be forced to return nested critical regions, many interesting
research questions come up, such as looking for alternative LP formulations, or
combining LP tests with classical unconditional tests.
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APPENDIX

A

LOW-DISCREPANCY SEQUENCES

In Sections 4.3.1 and 4.3.2, we made use of low-discrepancy sequences in order
to create a deterministic grid over Θ0 that would not necessarily scale with the
number of columns of the contingency table being considered. We could then use
this grid to compute and compare the maximal values of sums of P (x;θ)-functions
in the case of CSM-like tests, or use it to construct the matrix A for the LP tests.

Probably the most intuitive way in which low-discrepancy sequences are intro-
duced is via numerical integration. We follow the treatment in the book of Nieder-
reiter [78] here. When evaluating the integral

∫ 1

0
f(s)ds, a classical approach is to

construct an equidistant grid {i/N : i = 0, . . . , N} of N+1 points over the interval
[0, 1] and use a method like the midpoint rule to obtain the approximation∫ 1

0

f(s)ds ≈
N∑
i=1

1

N
f

(
i− 1

2

N

)
.

It is easy to show that this approximation has an error of order O(N−2). When
generalising this rule to d dimensions, say to approximate the integral

∫
[0,1]d

f(s)ds,
the equidistant grid will consist of (N +1)d grid points instead, and one can show
that the corresponding approximation will be of order O(N−2/d). For large d,
this quickly becomes a rather useless error bound. This inherent weakness of the
classical integration methods is often referred to as the curse of dimensionality.

To avoid this issue, one can use the Monte Carlo method of integration instead.
The idea here is to regard the integral

∫
[0,1]d

f(s)ds as an expected value. Indeed,
for U = (U1, . . . , Ud) ∈ [0, 1]d a random vector of uniform random variables,

E[f(U)] =

∫
[0,1]d

f(u)du.

However, we can approximate the expected value E[f(U)] by taking N independ-
ent uniform random samples u1, . . . ,uN and computing their average 1/N

∑N
i=1 f(u

i).
This approximation is bound to converge to the actual expected value, as by the
Strong Law of Large Numbers,

1

N

N∑
i=1

f(ui)
a.s.−→ E[f(U)],
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as N → ∞. Based on this, we can approximate our integral by∫
[0,1]d

f(s)ds ≈ 1

N

N∑
i=1

f(ui). (A.1)

One can prove using the Central Limit Theorem that the average error of this
approximation is O(N−1/2) [78]. The big advantage of the Monte Carlo approach
is thus that the error does not longer depend on the number of dimensions d. Thus,
if one is able to generate independent random samples, the Monte Carlo integration
method is definitely an attractive alternative to the classical integration rules for
d ≥ 5. Keep in mind however that because we are taking random samples, we do
not have a guaranteed error bound as with the classical (deterministic) methods.
Some samples might yield a worse approximation, and some might yield a better
approximation.

A.1 Quasi-Monte Carlo integration
What if we would be able to pick samples which yield a better approximation?
This is where the Quasi Monte Carlo method of integration comes in. Instead of
sampling the points at which we evaluate f in (A.1) at random, we can construct a
specific deterministic sequence (v1, . . . ,vN) of points for which the approximation
error of (A.1) is smaller than this average O(N−1/2). The resulting Quasi Monte
Carlo approximation is given by∫

[0,1]d
f(s)ds ≈ 1

N

N∑
i=1

f(vi). (A.2)

Thus, if we are able to construct a “good” sequence of points, we have a method of
numerical integration that just as the Monte Carlo approach does not suffer from
the curse of dimensionality, but has a smaller approximation error. Furthermore,
since the sequence is completely deterministic, we can come up with an actual
error bound, and not some average statement on the approximation error.

The question we thus want to answer is how to construct a “good” sequence of
points. Of course, the larger we make N , the better we expect the approximation
(A.2) to be. That is, we would like the sequence (vi)i∈N to be uniformly distributed
on [0, 1]d, in the sense that

lim
N→∞

1

N

N∑
i=1

f(vi) =

∫
[0,1]d

f(s)ds,

for a class of functions f . Niederreiter requires f to be continuous on [0, 1]d. Equi-
valently, one can say that (vi)i∈N is uniformly distributed if for all subintervals
I ⊂ [0, 1]d,

lim
N→∞

1

N

N∑
i=1

1{vi∈I} = λd(I),

where λd is the d-dimensional Lebesgue measure. To quantify how evenly the point
set
{
v1, . . . ,vN

}
is distributed, we can define its discrepancy.
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Definition A.1. For a point set
{
v1, . . . ,vN

}
⊂ [0, 1]d and for a collection of

Lebesgue-measurable subsets A ∈ P([0, 1]d), we define its discrepancy relative to
A by

DN(v
1, . . . ,vN ;A) := sup

A∈A

∣∣∣∣∣ 1N
N∑
i=1

1{vi∈A} − λd(A)

∣∣∣∣∣. (A.3)

The index N indicates the number of points in the point set. If we have a
sequence V = (vi)i∈N, we denote by DN(V ;A) the discrepancy relative to A of the
first N elements of V . There exist two common choices for the collection A. First is
the ordinary discrepancy DN(v

1, . . . ,vN) := DN(v
1, . . . ,vN ;A), with A the collec-

tion of all rectangles in [0, 1)d, i.e., all subintervals of [0, 1)d of the form
∏d

j=1[sj, tj).
The second one is the star discrepancy D∗

N(v
1, . . . ,vN) := DN(v

1, . . . ,vN ;A),
where A is the collection of all rectangles with the origin as their bottom-left
corner, i.e., all subintervals of [0, 1)d of the form

∏d
j=1[0, sj). One can show that

the ordinary discrepancy and star discrepancy have the same order of magnitude
(see Proposition 2.4 in Niederreiter [78]).

The smaller the discrepancy of a point set, the more evenly distributed it is
over [0, 1]d, and the better the approximation (A.2) will be. This idea is formalised
via the following result.

Theorem A.2 (Koksma-Hlawka inequality). Suppose that f has bounded Hardy-
Krause variation V (f) on [0, 1)d. Then, for any v1, . . . ,vN ∈ [0, 1)d,∣∣∣∣∣ 1N

N∑
i=1

f(vi)−
∫
[0,1]d

f(s)ds

∣∣∣∣∣ ≤ V (f)D∗
N(v

1, . . . ,vN). (A.4)

Proof of Theorem A.2. See the proof by Hlawka [79] (in German).

The Hardy-Krause variation V (f) is a rather involved generalisation of the
total variation to functions of multiple variables. We refer for its definition to
Niederreiter [78]. This complicated definition makes the actual error bound hard
to compute, but nevertheless (A.4) should indicate that the Quasi Monte Carlo
approach can certainly be effective if we manage to find sequences with a small
star discrepancy. We call a sequence V a low-discrepancy sequence if it has for all
N ∈ N a “small” value of DN(V) (and thus of D∗

N(V) too).

A.2 Examples of low-discrepancy sequences
Let us first give a very important example of a one-dimensional low-discrepancy
sequence: the van der Corput sequence. Although its applicability is limited in
one dimension, since classical integration methods outperform (Quasi) Monte
Carlo methods for d = 1, it is fundamental for the construction of many higher-
dimensional low-discrepancy sequences.

Consider an integer b ≤ 2. Then every integer k ≥ 0 has a b-ary expansion∑∞
i=0 ai(k)b

i, where ai(k) ∈ {0, . . . , b− 1} for all i ≥ 0 and eventually ai(k) = 0,
such that this expansion is actually a finite sum. The van der Corput sequence is
constructed by “flipping this expansion around the decimal point”. This is made
more precise in the following definition.
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Definition A.3. For an integer b ≥ 2, we define the van der Corput sequence in
base b, denoted by Cb, as the sequence (ck)k≥0 where ck = ϕb(k). The so-called
radical inverse function ϕb in base b is defined as

ϕb(k) =
∞∑
i=0

ai(k)b
−i−1.

It turns out that for all N ≥ 2, D∗
N(Cb) = O(N−1 logN) [78]. This is the best

we can do in one dimension, as Schmidt [80] has shown that there exists a constant
c > 0 such that, for any sequence V in [0, 1], DN(V) ≥ cN−1 logN for infinitely
many N .

As an example, the first 9 terms of C3 are given in Table A.1, as well as an
illustration of how to compute them. Intuitively, it seems that the first N terms
of C3 try to fill up [0, 1] as evenly as possible, no matter at which value of N we
decide to stop the sequence.

k k (base 3) ϕ3(k) (base 3) ck = ϕ3(k)
0 0 0 0
1 1 0.1 1/3
2 2 0.2 2/3
3 10 0.01 1/9
4 11 0.11 4/9
5 12 0.21 7/9
6 20 0.02 2/9
7 21 0.12 5/9
8 22 0.22 8/9

Table A.1: Construction of the first 9 terms of C3.

As we mentioned earlier, we can use the van der Corput sequence to construct
higher-dimensional low-discrepancy sequences. The most straightforward example
of this is the so-called Halton family of sequences. Given d ≥ 1, we choose integers
b1, . . . , bd ≥ 2 and define the Halton sequence in the bases b1, . . . , bd, denoted by
Hb1,...,bd , as the sequence (hk)k≥0 where, for all k ≥ 0,

hk = (ϕb1(k), . . . , ϕbd(k)).

Niederreiter [78] showed that when choosing the b1, . . . , bd ≥ 2 relatively prime,

D∗
N(Hb1,...,bd) ≤ K1(b1, . . . , bd)N

−1(logN)d +O(N−1(logN)d−1), (A.5)

for all N ≥ 2, and for some constant K1(b1, . . . , bd) only dependent on the bases.
It is believed that D∗

N(Hb1,...,bd) ≥ K2(d)N
−1(logN)d for infinitely many N and a

constant[78], which would also mean that a Halton sequence with relatively prime
bases is the best we can do regarding the order of magnitude of the star discrep-
ancy. However, the constant K1(b1, . . . , bd) can be shown to grow superexponen-
tially as d increases. This makes the bound (A.5) not so informative for larger d.
Indeed, it also turns out that for large dimensions, we will be forced to use van
der Corput sequences with high bases, which have long monotone subsequences,
leading to a large discrepancy.

As an alternative to the Halton sequence, Sobol’ [81] introduced the concept
of (t,m, d)-nets and (t, d)-sequences.
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Definition A.4. Let 0 ≤ t ≤ m be integers and fix a base b ≥ 0. A (t,m, d)-net
in base b is a set of bm points in [0, 1)d such that every b-ary box, i.e., each interval
of the form

B =
d∏
j=1

[
aj
bkj
,
aj + 1

bkj

)
,

with kj ≥ 0 and aj ∈
{
0, . . . , bkj − 1

}
integer for all j ∈ {1, . . . , d} which has a

volume λd(B) = bt−m contains exactly bt points.

Definition A.5. Let t ≥ 0 be an integer and fix a base b ≥ 0. A sequence
(vi)i≥0 ⊂ [0, 1)d is a (t, d)-sequence in base b, denoted St,d, if for all integers k ≥ 0
and m > t, the point set {vi : kbm < i ≤ (k + 1)bm} is a (t,m, d)-net in base b.

The intuition behind these definitions is that for any point set taken from a
(t, d)-sequence, each b-ary box of a certain volume contain an “expected” number
of points. The smaller t, the smaller boxes this will hold for and so the more
evenly distributed the sequence points will be. Moreover, if we feel that a point
set of bm points from a (t, d)-sequence still leaves a number of gaps in [0, 1)d, the
next bm points of the sequence will tend to fill those gaps. Niederreiter shows that
(t, d)-sequences are low-discrepancy sequences with star discrepancy

D∗
N(St,d) ≤ K3(b, d)b

tN−1(logN)d +O(btN−1(logN)d−1),

where the constant can be shown to grow far less quickly than K1(b1, . . . , bd).
One important example of a (t, d)-sequence (in base 2) is the Sobol’ sequence. Its
construction goes far beyond the scope of this thesis, and is described in detail in
Chapter 4 of Niederreiter [78]. Other nice explanations can be found in Section
5.4 of Savine [82] and Section 5.2.3 of Glasserman [83]. Because one can use bit-
level operations to build up the sequence, its construction knows very efficient
implementations. Although Niederreiter [78] mentions a couple of ways to obtain
theoretically better performing sequences, the Sobol’ sequence seems to be go-to
low-discrepancy sequence nowadays when d gets large, outperforming most other
low-discrepancy sequences in many numerical experiments [83].

Despite the attractiveness of the Sobol’ sequence, we still opted in this text to
exclusively use another low-discrepancy sequence; the Torus sequence. This has
been mentioned briefly in Chapter 6. Essentially, although the Sobol’ sequence can
be implemented efficiently, elements from the Torus sequence can still be generated
more quickly. Furthermore, even though this thesis was focused on larger tables
with multiple columns and thus required the generation of low-discrepancy se-
quences in multiple dimensions, we never needed to consider the high-dimensional
regime in which the performance of the Torus sequence degrades very quickly, and
in which the Sobol’ sequence’s superiority really pays off. In the dimensions we
considered, i.e. c ∈ {2, 3, 4}, tests using the Torus sequence behaved very simil-
arly to those using the Sobol’ sequence – when used with a reasonable amount of
grid points – and we thus opted to choose the sequence with the fastest genera-
tion. If one would like to use low-discrepancy sequences to test contingency tables
with a higher number of columns, it would be worthwhile using a low-discrepancy
sequence that is known to perform well in high dimensions.

The Torus sequence is a special case of the so-called Kronecker family of se-
quences, which are obtained by taking the fractional parts of multiples of certain
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irrational numbers. That is, for an irrational number z, the corresponding Kro-
necker sequence Kz = (κi)i≥0 ⊂ [0, 1) is defined by

κi = iz − ⌊iz⌋,

for all i ≥ 0. In higher dimensions, this easily generalises to the sequence (κi)i≥0 ⊂
[0, 1)d, with for all i ≥ 0,

κi = (iz1 − ⌊iz1⌋, . . . , izd − ⌊izd⌋).

One should however additionally require that 1, z1, . . . , zd are linearly independent
over Q [78]. The Torus sequence can be constructed by choosing (z1, . . . , zd) =
(
√
p1, . . . ,

√
pd), where p1, . . . , pd are prime numbers. Note that the √

p1, . . . ,
√
pd

are algebraic numbers: √pj is the root of the rational-coefficient polynomial x2−pj.
Niederreiter has shown that therefore, DN(K√

p1,...,
√
pd) = O(N−1+ε), for all N ≥ 0

and all ε > 0 [84].

A.3 Quasi Monte Carlo optimisation

So far, we have been talking a lot about how low-discrepancy sequences appear to
be a useful tool for numerical integration. However, recall that we are not using
them for that purpose at all. Instead, we use them in the CSM tests for finding
the maxima of the sums of P (x; θ)-functions, and in the LP tests we look at these
sequence points whether or not the probability of a Type I error is still under the
level α. In both cases, we can view this as a problem of finding the maximum of
the power function β(·)

m(β) := sup
θ∈Θ0

β(θ) (A.6)

for a suited level α, by choosing a set of points θ1, . . . ,θN in Θ0, evaluating β(·)
at those points and then approximating the maximum m(β) by

m(β) ≈ mN(β;θ
1, . . . ,θN) := max

1≤i≤N
β(θi).

This is inspired on the so-called random search; sampling random points and
evaluating the function at these points to approximate the maximum. This Monte
Carlo approach works as one can show that for continuous functions f defined on
S and a sequence (ui)i≥1 ⊂ S of independent random samples,

mN(f ;u
1, . . . ,uN)

a.s.−→ m(f).

Just as with numerical integration, the Quasi Monte Carlo alternative to this
random search is to use a deterministic (reproducible) sequence (vi)i≥1 instead of
a random one to approximate m(f). For continuous f and a sequence (vi)i≥1 that
is dense in S, mN(β;v

1, . . . ,vN) will also converge to m(f) as N → ∞.
Where we needed sequences with small discrepancy, i.e., sequences that were

evenly distributed, to make sure that (A.2) was a good approximation, we now
need sequences that are dense in S. To determine how “dense” a sequence is, we
can define a quantity playing a similar role to the discrepancy.
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Definition A.6. Suppose (S, δ) is a bounded metric space. Then the dispersion
of a point set

{
v1, . . . ,vN

}
⊂ S in S is defined by

δN(v
1, . . . ,vN ;S) := sup

s∈S
min

1≤i≤N
δ(s,vi). (A.7)

Niederreiter [78] showed that for a point set
{
v1, . . . ,vN

}
⊂ S,

m(f)−mN(f ;v
1, . . . ,vN) ≤ sup

s,t∈S
δ(s,t)≤δN (v1,...,vN ;S)

|f(s)− f(t)|. (A.8)

This formalises the idea that low-dispersion sequences will yield good approxim-
ations to m(f). Indeed, if f is uniformly continuous on S, the right-hand side of
(A.8) will go to zero for sequences (vi)i≥1 that have limN→∞ δN(v

1, . . . ,vN ;S) = 0.
Luckily for us, it turns out that on [0, 1)d, a low-discrepancy sequence is automat-
ically a low-dispersion sequence, since for any point set

{
v1, . . . ,vN

}
⊂ [0, 1]d,

δ′N(v
1, . . . ,vN) ≤

(
DN(v

1, . . . ,vN)
)1/d

[78]. Here δ′N(v1, . . . ,vN) := δN(v
1, . . . ,vN ; [0, 1]d) is the dispersion defined on the

metric space ([0, 1]d, δ′), with δ′ the maximum metric defined by

δ′(s, t) := max
1≤j≤d

|sj − tj|

for all s, t ∈ [0, 1]d. Because this metric is equivalent with the Euclidean metric,
this dispersion can be shown to be of the same order of magnitude as the dispersion
defined with the Euclidean metric. In particular, we can use the Torus sequence
discussed earlier to approximate sups∈[0,1]d f(s).

However, the attentive reader might notice that in (A.6) we are not maximising
over [0, 1]d, but over Θ0, which is a d− 1-dimensional simplex (with d the number
of table columns in this case). We can call upon the work of Niederreiter [78]
one last time, who shows that for a map g : (S1, δ

1) → (S2, δ
2) that is Lipschitz

continuous, i.e., for which there exists a constant L ≥ 0 such that for all s, t ∈ S1,

δ2(g(s), g(t)) ≤ Lδ1(s, t),

we have for any point set
{
v1, . . . ,vN

}
⊂ S1 that

δN(g(v
1), . . . , g(vN);S2) ≤ LδN(v

1, . . . ,vN ;S1).

In the setting of (A.6), we have S1 = [0, 1]c and S2 = Θ0, both equipped with the
Euclidean metric. The function g : [0, 1]c → Θ0 follows immediately from (4.16)
and is given by:

g(s1, . . . , sc) =

(
log s1∑c
j=1 log sj

, . . . ,
log sc∑c
j=1 log sj

)
.

However, this function is not differentiable on the whole of [0, 1]c. In partic-
ular, an easy computation shows that the partial derivatives at the boundary
points can be infinite. Hence, we do not have Lipschitz continuity. However, we
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still argue that for any N ≥ 1, the transformation via g of any Torus point set{
v1, . . . ,vN

}
⊂ [0, 1]c is also a low-dispersion point set on the simplex. This is

because by construction, we in fact have
{
v1, . . . ,vN

}
⊂ (0, 1)c. We can thus find

some ϵ > 0 for which
{
v1, . . . ,vN

}
⊂ [ϵ, 1 − ϵ]c. On this reduced domain, g can

easily be seen to be differentiable and thus Lipschitz continuous. Therefore, the
point set

{
g(v1), . . . , g(vN)

}
is a low-discrepancy point set on g([ϵ, 1 − ϵ]c). For

small ϵ, g([ϵ, 1 − ϵ]c) will cover a large enough part of Θ0 such that we do not
miss out on any potential maxima in the case of the supremum tests, and do not
violate the size constraint in the case of the LP tests.
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GITHUB REPOSITORY

All methods implemented for this project can be found in the Github repository

https://github.com/PimKeer/contingency_tables.

The most important file of the project is function.R, containing all implement-
ations of the different tests discussed in this thesis, as well as helper functions
needed for these implementations. There are also a number of functions used for
computation of the power function, and for visualisation of the critical region, size
functions and power functions. The function supremum_ordering() can be called
to run any of the supremum tests: the CSM tests, with one of the three symmetry
conditions (or none at all), and with or without the convexity (C) condition, or
the tests using external test statistics (chi-square, mean value of P (·;θ) or the
Fisher p-value). It returns an array containing the ordering of the tables, an array
with the p-values, and a list of arrays containing the values of

∑k
i=1 P (x(k);θ) at

each θ-value on the grid, at each iteration k. Therefore the function does in fact
not take as input an observed table, but just the table dimensions and group sizes
that uniquely define the outcome space Ω. Based on that it can then return an
ordering of tables. By specifying to run supremum_ordering() until a single table
of interest has been reached, we can turn this function into a test. Some of the
helper functions that make up supremum_ordering() are

• gen_tables(), to list all the possible tables in the desired outcome space,

• group_reduce(), to reduce the outcome space into all its equivalence classes,
according to the desired symmetry condition,

• find_extreme(), to find the symmetry classes that contain the most ex-
treme tables, as we described in the last paragraph of 4.2.2,

• next_indices(), to find which tables to consider as candidates for the next
step in the ordering (for the CSM methods), given the tables which were
candidates in the previous step, and the tables which have already been
ordered,

• make_grid_qmc(), to construct the Quasi-Monte Carlo grid used as a dis-
cretisation of Θ0.
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There are many small optimisations that happen “under the hood” which we shall
not discuss at length here. For example, instead of always carrying around the
actual tables to go computations with, we can represent each table by a unique
integer for the bulk of computations (amongst others, to keep track of which
tables we still have to order for example), and only use the table representation
when needed. Another example would be that whenever we are constructing the
symmetry classes, we do not keep track of a list of varying length containing the
tables we still need to sort, but instead update a fixed-length vector of “status”
values, indicating whether or not the corresponding table has already been sorted.

In the functions.R file, one can also find the implementations for all of the
LP tests. Given table dimensions, group sizes, and a significance level, the func-
tion lp_K() returns the critical region found by one of the linear programming
formulation discussed in Section 4.3.2, for a specified symmetry condition. There
is also a function lp_test(), which takes as input a single table and returns
an approximate p-value for that table using the binary search described in Al-
gorithm 1. lp_test_explorer() does the same but with the extended binary
search Algorithm 2.

Apart from this main file, there are a couple of other R scripts in the repository.
These were mostly to work out specific examples treated in the text or to generate
certain figures or tables. We list them below in order of appearance.

• kalbfleisch.R served to reproduce the results from Kalbfleisch and Sprott
[32] as discussed in Section 3.2.

• S_equivalences.R helped us establishing the relationships between the dif-
ferent symmetry conditions implied each other in Section 4.2.4.

• stack_example.R created Figure 4.2 to explain the LP formulations as a
packing problem.

• optimal_grid.R was used to build up Table 5.1.

• grid_size_effects.R has been used to investigate the effect of the chosen
grid size on the test size and power. In particular, to produce Figure 5.1,
5.2, 5.3, 5.4, and 5.15.

• lp_comparisons.R compared the power of the critical regions, size functions
and power functions of the original four LP formulations we had, as discussed
in Section 5.2.

• speed_plots.R determined how long the preliminary computations took, as
described in Section 5.3.1, and created Figures 5.12 and 5.13.

• grid_time.R we used to look at the effect of the grid size on the computation
time, which led to Figure 5.14.

• time_comparison.R looked at the runtimes of the different test relative to
each other, and as a function of the table and group sizes and outputted the
timings in Excel spreadsheets (stored in the folder time_comparison_files).
These were used by time_boxplots.R to generate Figures 5.16, 5.17, and
5.18 (raw images can be found in the folder time_plots).
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• gen_power_mat.R generated, for the 2 × 2 case, a matrix of values of the
power function on a grid of θ-values on Θ, for the desired tests, signific-
ance levels, and group sizes. This matrix was outputted as an Excel spread-
sheet for later use (stored in the folder power_mats). For example, the script
plot_power_mat.R used these spreadsheets to construct some of the plots
of the size functions one can see in Appendix C (raw images in the folder
size_plots). It is also able to plot the power function in the 2 × 2 case, a
feature we did not end up using in the thesis. However, a number of power
functions have been plotted and can be seen in the folder power_plots.
gen_power_mat.R could also output an Excel spreadsheet with only the p-
values (stored in the folder p_arrs). This was useful when we were not
interested in a power matrix for a whole grid of θ-values, or when we moved
on to larger tables for which a simple matrix would not suffice to repres-
ent the power function. Instead of plot_power_mat.R, we could then use
plot_size.R, which would use the p-value spreadsheet to only compute the
power for a grid on Θ0 and output a plot. These p-value spreadsheets were
also helpful to compute the power on coarser grids than the one for which we
executed plot_power_mat.R. This was helpful when constructing the power
comparison tables in Appendix C, which was done by the gen_power_comp.R
script (which outputted files to the folder power_comps).

• gen_long_term_power.R outputted Excel spreadsheets (stored in the folder
long_term_powers) of the long-term power, i.e., the proportion of tables in
the critical region (up to a factor).

• ntnu_example.R and discussion_example.R were used to come up with
the p-values given in Section 5.6 and generate Figure 6.1, respectively.
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LARGE FIGURES AND TABLES

The size and power study in Chapter 5 came with a number of very large figures
and tables. In order to keep the main body of this thesis as organised as possible,
we have kept the bulk of these plots and tables for this Appendix.

C.1 Size functions on 2× 2 tables

Figure C.1: β(θ, θ) for indicated tests and α-values. Group sizes (from top to
bottom) are (5, 5), (10, 5), and (10, 10). Ambiguous overlaps are indicated in the
legend.
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Figure C.2: β(θ, θ) for indicated tests and α-values. Group sizes (from top to
bottom) are (20, 5), (20, 10), and (20, 20). Ambiguous overlaps are indicated in
the legend.

C.2 Size functions on 3× 2 tables
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Figure C.3: β(θ, θ) for indicated tests and α-values. Group sizes (from top to
bottom) are (40, 5), (40, 10), (40, 20), and (40, 40). Ambiguous overlaps are indic-
ated in the legend.
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Figure C.4: β(θ, θ) for indicated LP tests and α-values. Group sizes (from top to
bottom) are (5, 5), (10, 5), and (10, 10). Ambiguous overlaps are indicated in the
legend.
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Figure C.5: β(θ, θ) for indicated LP tests and α-values. Group sizes (from top
to bottom) are (20, 5), (20, 10), and (20, 20). Ambiguous overlaps are indicated in
the legend.
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Figure C.6: β(θ, θ) for indicated LP tests and α-values. Group sizes (from top
to bottom) are (40, 5), (40, 10), (40, 20), and (40, 40). Ambiguous overlaps are
indicated in the legend.
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Figure C.7: β(θ, θ, θ) for indicated tests and α = 0.01. Group sizes (from top to
bottom) are (5, 5, 5), (10, 5, 5), (10, 10, 5),and (10, 10, 10). Ambiguous overlaps are
indicated in the legend.
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Figure C.8: β(θ, θ, θ) for indicated tests and α = 0.01. Group sizes (from top to
bottom) are (20, 5, 5), (20, 10, 5), and (20, 20, 5). Ambiguous overlaps are indicated
in the legend.
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Figure C.9: β(θ, θ, θ) for indicated tests and α = 0.01. Group sizes (from top
to bottom) are (20, 10, 10), (20, 20, 10), and (20, 20, 20). Ambiguous overlaps are
indicated in the legend.
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C.3 Tables for power comparison on 2× 2 tables
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Table C.1: Power comparison of tests on 2 × 2 tables with sample sizes (5.6) (FISHER, C S_P M, C S_chi M,
and C S_V M).
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Table C.2: Power comparison of tests on 2 × 2 tables with sample sizes (5.6) (ET chi, ET fisher, ET vol,
and LP1 S_P)
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Table C.3: Power comparison of tests on 2× 2 tables with sample sizes (5.6) (LP1 S_chi, LP1 S_V, LP2 S_P,
and LP2 S_chi)
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Table C.4: Power comparison of tests on 2× 2 tables with sample sizes (5.6) (LP2 S_V)
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C.4 Tables for power comparison on 3× 2 tables
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Table C.5: Power comparison of tests on 3 × 2 tables with sample sizes (5.8) (FISHER, C S_P M, C S_chi M,
and C S_V M).
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Table C.6: Power comparison of tests on 3 × 2 tables with sample sizes (5.8) (ET chi, ET fisher, ET vol,
and LP1 S_P)
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Table C.7: Power comparison of tests on 3× 2 tables with sample sizes (5.8) (LP1 S_chi, LP1 S_V, LP2 S_P,
and LP2 S_chi)
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Table C.8: Power comparison of tests on 3× 2 tables with sample sizes (5.8) (LP2 S_V)
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C.5 Tables for power comparison on 2× 3, 3× 3, and 2× 4 tables
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Table C.9: Power comparison of tests on 2× 3, 3× 3, and 2× 4 tables with sample sizes (5.9) (non-LP tests)
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Table C.10: Power comparison of tests on 2× 3, 3× 3, and 2× 4 tables with sample sizes (5.9) (LP tests)
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C.6 Long-term power comparison
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Table C.11: Long-term power comparison for indicated group and table sizes.
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