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Abstract
During design optimization, a smooth description of the geometry is important, especially for problems that are sensitive to
the way interfaces are resolved, e.g., wave propagation or fluid-structure interaction. A level set description of the boundary,
when combined with an enriched finite element formulation, offers a smoother description of the design than traditional
density-based methods. However, existing enriched methods have drawbacks, including ill-conditioning and difficulties in
prescribing essential boundary conditions. In this work, we introduce a new enriched topology optimization methodology
that overcomes the aforementioned drawbacks; boundaries are resolved accurately by means of the Interface-enriched
Generalized Finite Element Method (IGFEM), coupled to a level set function constructed by radial basis functions. The
enriched method used in this new approach to topology optimization has the same level of accuracy in the analysis as
the standard finite element method with matching meshes, but without the need for remeshing. We derive the analytical
sensitivities and we discuss the behavior of the optimization process in detail. We establish that IGFEM-based level set
topology optimization generates correct topologies for well-known compliance minimization problems.

Keywords Enriched finite element methods · Level sets · Topology optimization · XFEM/GFEM · IGFEM

1 Introduction

The use of enriched finite element methods in topology opti-
mization approaches is not new; the eXtended/Generalized
Finite Element Method (X/GFEM) (Oden et al. 1998; Moës
et al. 1999; Moës et al. 2003; Belytschko et al. 2009; Aragón
et al. 2010), for example, has been explored in this context.
However, the Interface-enriched Generalized Finite Element
Method (IGFEM) has been shown to have many advantages
over X/GFEM (Soghrati et al. 2012a; van den Boom et al.
2019a). In this work, we extend IGFEM to be used in a level
set–based topology optimization framework.
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Topology optimization, first introduced by Bendsøe and
Kikuchi (1988), has been widely used to obtain designs
that are optimized for a certain functionality, e.g., minimum
compliance. In the commonly used density-based methods,
a continuous design variable that represents a material
density is assigned to each element in the discretization.
The design is pushed towards a black and white design
by means of an interpolation function, e.g., the Solid
Isotropic Material with Penalization (SIMP) (Bendsøe
1989), that disfavors intermediate density values (also
referred to as gray values). A filter is then required to
prevent checkerboard-like density patterns, and to impose
a minimum feature size. However, due to the filter, gray
values are introduced. Density-based topology optimization
is straightforward to implement and widely available
in both research and commercial software. However,
because the topology is described by a density field on
a (usually) structured mesh, material interfaces not only
contain gray values but also suffer from pixelization or
staircasing—staggered boundaries that follow the finite
element mesh. Although a post-processing step can be
performed to smoothen the final design, the analysis during
optimization is still based on gray density fields and
a staircased representation. This may be detrimental to
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the approximate solution’s accuracy, especially in cases
that are sensitive to the boundary description, such as
flow problems (Villanueva and Maute 2017). Furthermore,
because the location of the material boundary is not well
defined, it is difficult to track the evolving boundary during
optimization, for example to impose contact constraints.

The aforementioned drawbacks could be alleviated by
the use of geometry-fitted discretization methods, which
have been widely used in shape optimization (Staten et al.
2012). In these methods, the location of the material
interface is known throughout the optimization, and the
analysis mesh is modified to completely eliminate the
pixelization and gray values. Mesh-morphing methods such
as the deformable simplex method (Misztal and Baerentzen
2012; Christiansen et al. 2014; Christiansen et al. 2015;
Zhou et al. 2018), level set–based mesh evolution (Allaire
et al. 2014), anisotropic elements (Jensen 2016), and r-
refinement (Yamasaki et al. 2017) have been demonstrated
for topology optimization. Nevertheless, adapting the mesh
in every design iteration remains a challenge. Not only is
it an extra computational step, the changing discretization
also introduces another complication in the optimization
procedure because design variables need to be mapped to
the new discretization (van Dijk et al. 2013).

A more elegant option is to define material interfaces inde-
pendently from the finite element discretization, e.g., implic-
itly by means of the zero-contour of a level set function. In
level set methods, the material boundary is moved by evolving
the level set function, and new holes can be nucleated by
means of topological derivatives (Amstutz and Andrä 2006).
Although the required mapping between the geometry and
the discretization mesh can be done with an Ersatz method
using material density interpolation (Allaire et al. 2004),
this again introduces gray values and staircasing into the
analysis. Similarly, NURBS-based topology optimization
using the Finite Cell Method (FCM) (Gao et al. 2019)
provides a higher resolution boundary description, that is how-
ever still staircased. Alternatively, there are methods that
allow for a one-to-one mapping of the topology to the analy-
sis mesh, resulting in a non-pixelized boundary description.
These methods combine the advantages of clearly defined
material interfaces with the benefits of a fixed discretization
mesh used in density-based methods. In the literature, level
set–based topology optimization has been established using
for the analysis CutFEM (Villanueva and Maute 2017; Bur-
man et al. 2018), where the basis functions are restricted to
the physical domain, and X/GFEM (Belytschko et al. 2003;
Villanueva and Maute 2014; Liu et al. 2016), where the
approximation space is enriched.

In enriched finite element methods such as X/GFEM, the
standard finite element space is augmented by enrichment
functions that account for a priori knowledge of the
discontinuity of the field or its gradient at cracks or

material interfaces, respectively. Although X/GFEM has
been shown to be advantageous in many applications,
e.g., fluid–structure interaction (Mayer et al. 2010) and
fracture mechanics (Fries and Belytschko 2010), the
method has also weaknesses: degrees of freedom (DOFs)
corresponding to original mesh nodes do not automatically
retain their physical meaning, and non-zero essential
boundary conditions mostly have to be prescribed weakly.
Moreover, X/GFEM may result in ill-conditioned matrices,
in which case Stable Generalized FEM (SGFEM) (Babuška
and Banerjee 2012; Gupta et al. 2013; Kergrene et al. 2016)
or advanced preconditioning schemes (Lang et al. 2014)
are needed. Furthermore, the approximation of stresses
can be highly overestimated near material boundaries (Van
Miegroet and Duysinx 2007; Noël and Duysinx 2017;
Sharma and Maute 2018). Finally, as the enriched functions
are associated with original mesh nodes, the accuracy of
the approximation may degrade in blending elements, i.e.,
elements that do not have all nodes enriched (Fries 2008).

The Interface-enriched General Finite Element Method
(IGFEM) (Soghrati et al. 2012a) was first introduced as a
simplified generalized FEM to solve problems with weak
discontinuities, i.e., where the gradient field is discontin-
uous. The method overcomes most issues of X/GFEM
for this kind of problems: In IGFEM, enriched nodes
are placed along interfaces, and enrichment functions are
non-zero only in cut elements, i.e., elements that are
intersected by a discontinuity. Furthermore, enrichment
functions are exactly zero at original mesh nodes. There-
fore, original mesh nodes retain their physical meaning
and essential boundary conditions can be enforced directly
on non-matching edges (Cuba-Ramos et al. 2015; Aragón
and Simone 2017; van den Boom et al. 2019a). It was
shown that IGFEM is optimally convergent under mesh
refinement for problems without singularities (Soghrati
et al. 2012a, b). Moreover, IGFEM is stable by means
of scaling enrichment functions or a simple diagonal pre-
conditioner (van den Boom et al. 2019a; Aragón et al.
2020), meaning it has the same condition number as stan-
dard FEM. The method has been applied to the model-
ing of fiber-reinforced composites (Soghrati and Geubelle
2012b), multi-scale damage evolution in heterogeneous
adhesives (Aragón et al. 2013), microvascular materials
with active cooling (Soghrati et al. 2012a, b and c, 2013),
and the transverse failure of composite laminates (Zhang
et al. 2019b; Shakiba et al. 2019). IGFEM was later devel-
oped into the Hierarchical Interface-enriched Finite Element
Method (HIFEM) (Soghrati 2014) that allows for inter-
secting discontinuities, and into the Discontinuity-Enriched
Finite Element Method (DE-FEM) (Aragón and Simone
2017), which provides a unified formulation for both strong
and weak discontinuities (i.e., discontinuities in the field
and its gradient, respectively). DE-FEM, which inherits
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the same advantages of IGFEM over X/GFEM, has suc-
cessfully been applied to problems in fracture mechan-
ics (Aragón and Simone 2017; Zhang et al. 2019a) and
fictitious domain or immersed boundary problems with
strongly enforced essential boundary conditions (van den
Boom et al. 2019a). A drawback of IGFEM is that quadratic
enrichment functions are needed when the method is applied
to background meshes composed of bilinear quadrangu-
lar elements (Aragón et al. 2020). Another disadvantage
of IGFEM, which is also shared by X/GFEM, is that it
may yield inaccurate field gradients depending on how the
enriched finite element space is constructed (Soghrati et al.
2017; Nagarajan and Soghrati 2018). Depending on the
aspect ratio of integration elements, stresses may be over-
estimated, and the issue is more prominent near material
interfaces. This is not an issue along Dirichlet boundaries,
where a smooth reaction field can be recovered (van den
Boom et al. 2019a; 2019b), nor along traction-free cracks
where stresses are negligible (Zhang et al. 2019a).

In the context of optimization, IGFEM has been
explored for NURBS-based shape optimization (Najafi
et al. 2017), the shape optimization of microvascular
channels (Tan and Geubelle 2017) and their combined
shape and network topology optimization (Pejman et al.
2019), the optimization of microvascular panels for
nanosatellites (Tan et al. 2018a), and optimal cooling of
batteries (Tan et al. 2018b). Nevertheless, IGFEM has not
yet been used for continuum topology optimization. In this
paper, we show topology optimization based on a level
set function, parametrized with Radial Basis Functions
(RBFs) (Wendland 1995; Wang and Wang 2006), in
combination with IGFEM. We demonstrate the method
on benchmark compliance problems. The sensitivities are
derived and the method is compared with density-based
topology optimization and to the level set–based Ersatz
method. It should be noted that no significant performance
improvement is expected for these cases, as they are
not sensitive to the way the boundaries are discretized.
Cases that would benefit from our approach to topology
optimization compared with density-based methods—and
which may be shared among other methods that provide
clearly defined interfaces—include those where the location
of the boundary has to be known throughout the entire
optimization. Examples include contact, problems where
boundary conditions need to be enforced on evolving
boundaries, or problems where an accurate boundary
description is fundamental for resolving the fields at
interfaces, such as fluid–structure interaction or wave
scattering problems. Although no significant improvement
in performance is expected for the compliance minimization
cases in this paper, they should be seen as the necessary
proof of concept before considering more complex cases.

2 Formulation

2.1 IGFEM-based analysis

In this work, we focus on elastostatics and heat conduction
problems on solid domains, as represented in Fig. 1. A
design domain Ω ⊂ R

d is referenced by a Cartesian
coordinate system spanned by base vectors {ei}di=1. This
domain is decomposed into a solid material domain and a
void domain, denoted by Ωm and Ωv, respectively, such that
the domain closure is Ω = Ωm ∪ Ωv, and Ωm ∩ Ωv = ∅.
The boundary of the design domain, ∂Ω ≡ Γ = Ω \ Ω ,
is subjected to essential (Dirichlet) boundary conditions on
Γ D, and to natural (Neumann) boundary conditions on Γ N,

such that Γ = Γ
D ∪ Γ

N
and Γ D ∩ Γ N = ∅. The material

boundary, Γm = (
Ωm ∩ Ωv

) \ Γ , is defined implicitly by a
level set function, φ (x) = 0, that is a function of the spatial
coordinate x.

For any iteration in the elastostatic optimization proce-
dure, the boundary value problem is solved with prescribed
displacements ū : Γ D → R

d , prescribed tractions t̄ :
Γ N → R

d , and body forces bi defined as the restriction of
b to domain Ωi as bi ≡ b|Ωi

: Ωi → R
d , where i = m, v.

Similarly, we denote the field ui as the restriction of u to
domain Ωi , i.e., ui ≡ u|Ωi

. Note that here the field is
defined on both material and void domains. However, fol-
lowing the techniques described in van den Boom et al.

nm

n

e 1

e 2

N

m

v

m

D

xj

xk

0 0

Fig. 1 Mathematical representation of a topology optimization design
domain Ω . Essential and natural boundary conditions are prescribed
on the part of the boundary denoted Γ D and Γ N, respectively. The
material domain is referred to as Ωm, while the void region is denoted
Ωv. The inset shows the discretization with a material interface,
defined by the zero-contour of the level set function φ, that is non-
matching to the mesh. Original mesh nodes and enriched nodes are
denoted with black circles • and ◦ white circles, respectively

3



S. J. van den Boom et al.

(2019a), it is also possible to completely remove the void
regions from the analysis.

We define the vector-valued function space:

V0 =
{
v ∈ [

L2 (Ω)
]d

, v|Ωi
∈ [

H1(Ωi)
]d

,

v|Γ D
i

= 0, i = m, v
}
,

(1)

where L2 (Ω) is the space of square-integrable functions
and H1(Ωi) is the first-order Sobolev space. In this
work we only focus on problems with homogeneous
Dirichlet boundary conditions. For problems with non-
homogeneous essential boundary conditions, the reader is
referred to Aragón and Simone (2017). The weak form of
the elastostatics boundary value problem can be written as:
Find u ∈ V0 such that:

B (u, v) = L (v) ∀ v ∈ V0, (2)

where the bilinear and linear forms can be written as:

B (u, v) =
∑

i=m,v

∫

Ωi

εi (vi ) : σ i (ui ) dΩ, (3)

and

L (v) =
∑

i=m,v

∫

Ωi

vi · bi dΩ +
∫

Γ N
vi · t̄ dΓ, (4)

respectively, where the stress tensor σ i ≡ σ |Ωi
follows

Hooke’s law for linear elastic materials, σ i = Ci : εi , and
Ci is the elasticity tensor. Small strain theory is used for the
strain tensor, i.e., ε (u) = 1

2 (∇u + ∇uᵀ).
For heat conduction, the variational problem is:

B (u, v) = L (v) ∀ v ∈ V0, (5)

where trial and weight function are taken from the space

V0 =
{
v∈ L2 (Ω) , v|Ωi

∈ H1(Ωi), v|Γ D
i

= 0, i = m, v
}

.

For a prescribed temperature u : Γ D → R, prescribed
heat flux q : Γ N → R, heat source fi : Ωi → R, and
conductivity tensor κ i ≡ κ |Ωi

→ R
d ×R

d , the bilinear and
linear forms for each iteration in heat compliance problems
are given by:

B (u, v) =
∑

i=m,v

∫

Ωi

∇vi · (κ i · ∇ui) dΩ (6)

and

L (v) =
∑

i=m,v

∫

Ωi

vi fi dΩ +
∫

Γ N
vi q̄ dΓ . (7)

It is worth noting that interface conditions that satisfy
continuity of the field and its tractions (or fluxes) do not
appear explicitly in (3) or in (6) because they drop out due
to the weight function v (or v) being continuous along the
interface.

The design domain is discretized without prior knowl-

edge of the topology as Ω
h = ⋃

i∈ιE
ei , where ei is the

ith finite element and ιE is the index set corresponding
to all elements in the original mesh. Similarly, we define
the mesh nodes

{
xj

}
j∈ιh

, where ιh is an index set corre-
sponding to all the original nodes of the mesh. A partition
of unity is defined by standard Lagrange shape functions
Nj , associated to the mesh nodes. The result is a mesh
that is non-matching to material boundaries. The level set
function, whose zero contour defines the interface between
void and material, is then evaluated on the same mesh.
This is done for efficiency, as the mapping needs to be
computed only once, and results in discrete nodal level
set values. New enriched nodes are placed at the intersec-
tion between element edges and the zero contour of the
level set. As illustrated in Fig. 1, the locations of these
enriched nodes, denoted xn, are found by linear interpola-
tion between two nodes of the original mesh. Given two
mesh nodes xj and xk with intersecting supports (i.e.,
supp

(
Nj

)∩ supp (Nk) �= ∅) and level set values of different
signs (i.e., φ

(
xj

)
φ (xk) < 0), the enriched node is found

as:

xn = xj − φj

φk − φj

(
xk − xj

)
, (8)

where we adopt the notation φj ≡ φ
(
xj

)
. The

material interface Γm is defined as the piece-wise linear
representation of the zero contour of the level set function,
discretized with enriched nodes {xn}n∈ιw , where ιw is the
index set corresponding to all enriched nodes. Elements
that are intersected by Γm, indexed by the index set ιc,
are then subdivided into integration elements by means of
a constrained Delaunay algorithm. The index set referring
to all integration elements is denoted ιe. The complexity
of finding intersections and creating integration elements
is O (|ιE |), where |·| denotes set cardinality, since each
element has to be processed only once per iteration.

Following a Bubnov-Galerkin procedure, the resulting
finite dimensional problem is then solved by choosing trial
and weight functions from the same enriched finite element
space. The IGFEM approximation can then be written as:

uh(x) =
∑

i∈ιh

Ni (x)U i

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιw

ψi (x)αi

︸ ︷︷ ︸
enrichment

, (9)

for elastostatics, or

uh(x) =
∑

i∈ιh

Ni (x) Ui

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιw

ψi (x) αi

︸ ︷︷ ︸
enrichment

, (10)

for heat conduction problems. The first term in (9) and (10)
corresponds to the standard finite element approximation,
with shape functions Ni (x) and corresponding standard
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degrees of freedom U i (or Ui), and the second term
refers to the enrichment, characterized by enrichment
functions ψi (x) and associated enriched DOFs αi (or αi).
Enrichment functions ψi can be conveniently constructed
from Lagrange shape functions of integration elements, as
illustrated in Fig. 2, while the underlying partition of unity
shape functions are kept intact.

Subsequently, the local stiffness matrix ke and force
vector f e are obtained numerically; elements that are
not intersected follow standard FEM procedures. An
isoparametric procedure is used in integration elements to
obtain the local arrays. Figure 3 shows a schematic of a
triangular integration element (shaded) within an original
cut element—the parent element—in global coordinates.
The reference triangular domains for both integration and
parent elements are also shown. Each reference domain
shows the master coordinate associated to a given global
coordinate x. In elastostatics (heat conductivity follows an
analogous procedure), ke and f e are computed on each
integration element’s reference triangle as:

(11)

where B =
[
�

ᵀ
ξ
NᵀJ−ᵀ �

ᵀ
ξ
ψᵀJ

−ᵀ
e

]
and D is the

constitutive matrix. The parental shape functions vector N

and enrichment functions ψ are stacked together. Note that
je and J−1

e are the determinant and the inverse of the
Jacobian of the isoparamatric mapping of the integration
element respectively, and J−1 is the inverse of the Jacobian
of the mapping of the parent element. The isoparametric
mapping is a standard procedure in FEM; however, as the
steps are important for the derivation of the sensitivities in
Section 2.3.1, it is explained in more detail in Appendix B.

Fig. 2 Schematic representation of enrichment function ψi corre-
sponding to enriched DOFs αi , where enriched nodes are shown with
◦ symbols. This enrichment function is constructed from standard
Lagrange shape functions in integration elements

The differential operator �ξ is defined as:

�ξ ≡
[

∂
∂ξ1

0 ∂
∂ξ2

0 ∂
∂ξ2

∂
∂ξ1

]

,

�ξ ≡
⎡

⎢
⎣

∂
∂ξ1

0 0 ∂
∂ξ2

0 ∂
∂ξ3

0 ∂
∂ξ2

0 ∂
∂ξ1

∂
∂ξ3

0

0 0 ∂
∂ξ3

0 ∂
∂ξ2

∂
∂ξ1

⎤

⎥
⎦




,

(12)

for elastostatics in 2-D and 3-D, respectively, and

�ξ ≡
[

∂
∂ξ1

∂
∂ξ2

]

, �ξ ≡

[
∂

∂ξ1

∂
∂ξ2

∂
∂ξ3

]

, (13)

for heat conductivity in 2-D and 3-D, respectively.
In this work, we are concerned with linear triangular

elements, for which a single integration point in standard
and integration elements is sufficient. The discrete system
of linear equations KU = F is finally obtained through
standard procedures, where:

(14)

where ιA = (ιE \ ιc) ∪ ιe and denotes the standard finite
element assembly operator.

For a more detailed description on IGFEM, the reader is
referred to Soghrati et al. (2012a).

2.1.1 Relation to X/GFEM

IGFEM is closely related to X/GFEM: The general
X/GFEM approximation can be written as:

uh(x) =
∑

i∈ιh

Ni (x)U i

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιh

Ni (x)
∑

j∈ιg

Eij (x) Û ij

︸ ︷︷ ︸
enrichment

, (15)

where enrichment functions Eij are associated to general-
ized DOFs Û ij —the latter assigned to nodes of the mesh.
While the X/GFEM approximation uses partition of unity
shape functions to localize the effect of enrichment func-
tions, in IGFEM this is not necessary because enrichment
functions are local to cut elements by construction. In addi-
tion, enriched nodes in IGFEM are collocated along the
discontinuities, resulting in less DOFs than required by (15).

It is worth noting, however, that IGFEM is not only
closely related to X/GFEM, it can actually be derived from
it by means of a proper choice of enrichment functions
Eij and by clustering enriched DOFs (Duarte et al. 2006).
Appendix A shows this with a simple 1-D example.

IGFEM has several benefits over X/GFEM:

• Enrichment functions in IGFEM are local by construc-
tion, i.e., they are non-zero only in elements cut by
the interface and exactly zero elsewhere. Therefore,
IGFEM has no issues with blending elements, which is
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Fig. 3 Schematic of an
integration element (shaded),
whose local arrays are obtained
by using an isoparametric
mapping. Integration points in
integration elements (ξ e) and
parent elements (ξp) are
mapped to global coordinate x 1

x2

x e,1

e,2

p,1

p,2

reference

integration

element

reference

parent

element

x

e p

an issue for X/GFEM for some choices of enrichment
functions (Fries 2008);

• In IGFEM, the enrichment functions vanish at the
nodes of background elements. Therefore, the original
mesh node conserves the Kronecker property, and the
DOFs associated to these nodes maintain their physical
interpretation;

• In X/GFEM, prescribing non-zero Dirichlet boundary
conditions is usually done weakly by means of penalty,
Lagrange, or Nitsche methods (Cuba-Ramos et al. 2015).
In IGFEM, on the contrary, these boundary conditions can
be prescribed strongly, both on original nodes and, by
means of a multipoint constraint, on enriched edges
(Aragón and Simone 2017; van den Boom et al. 2019a);

• Smooth traction profiles can be recovered when Dirich-
let boundary conditions are prescribed on enriched
edges (Cuba-Ramos et al. 2015; van den Boom et al.
2019a; 2019b). This is currently not possible in
X/GFEM even with stabilization techniques (Haslinger
and Renard 2009);

• IGFEM is stable, i.e., the condition number of the system
matrix grows as O

(
h−2

)
, which is the same order as

that of standard FEM. This is accomplished by means
of a proper scaling of enrichment functions or by using
a simple diagonal preconditioner (Aragón et al. 2020);

• The computer implementation is simpler: data struc-
tures of standard FEM can be reused to store enriched
DOFs, post-processing is required for enriched DOFs
only, and no special treatment of Dirichlet boundary
conditions is needed (Aragón and Simone 2017).

2.2 Radial basis functions

Although it is possible to directly use the level set values
φj on original nodes of the finite element mesh as design
variables, we choose to use compactly supported radial basis
functions for the level set parametrization for a number of
reasons (Wang and Wang 2006):

(i) RBFs give control over the complexity of the designs,
and as such, they act similarly to a filter in density-
based topology optimization;

(ii) By decoupling the finite element analysis mesh from
the RBF grid, the design space can be restricted with-
out deteriorating the finite element approximation.
This can be used to mitigate approximation error
discretizations that are too coarse; and

(iii) By tuning the radius of support of RBFs, we can
ensure that the influence of each design variable
extends over multiple elements. This allows the
optimizer to move the boundary further and therefore
converge faster, while using fewer design variables.
This effect is similar to that of a filter radius in
standard density-based topology optimization.

Figure 4 illustrates a compactly supported RBF θi (Wend-
land 1995) described by:

θi (ri) = (1 − ri)
4 (4ri + 1) , (16)

where the radius ri is defined as:

ri (x, xi ) =
√‖x − xi‖

rs
, (17)

and rs is the radius of support. In (17), ‖·‖ denotes
the Euclidian norm, and xi is the center coordinates
corresponding to RBF θi .

The scalar-valued level set function φ (x) is found as
a summation of every non-zero RBF θi , scaled with its
corresponding design variable si :

φ (x) = 	 (x)ᵀ s =
∑

i∈ιs

θi (x) si, (18)

where ιs is the index set corresponding to all design
variables, and:

s ∈ D =
{
s| s ∈ R

|ιs |, −1 ≤ si ≤ 1
}

(19)

is a vector of design variables, with lower and upper bounds
−1 and 1 that prevent the level set from becoming too steep.
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−1

1 1

1

0

1

x1

x2

Fig. 4 Compactly supported RBF given by (16) with coordinates x =
[0 0]ᵀ and radius of influence rs = 1

Finally, evaluating this function at the original nodes of the
finite element mesh results in the level set vector:

φ = θᵀs, (20)

where θ is a matrix that needs to be computed only once,
as the original mesh nodes do not move throughout the
optimization.

2.3 Optimization

The optimization problem is chosen as a minimization of
the compliance C with respect to the design variables s that
scale the RBFs. It needs to be emphasized that compliance
minimization is merely a demonstrator problem, and the
method is not limited to it. The minimization problem is
subject to equilibrium and to a volume constraint Vc. This
problem can be written as:

s� = arg min
s∈D

C = UᵀKU ,

subject to KU = F , (21)

VΩm ≤ Vc.

The Method of Moving Asymptotes (MMA) (Svanberg
1987), a method commonly used in density-based topology
optimization, is employed to solve this optimization
problem.

2.3.1 Sensitivity analysis

The compliance minimization problem is self-
adjoint (Bendsøe and Sigmund 2004), resulting in the

sensitivity of the compliance C with respect to the design
variables s as:

∂C

∂s
= −Uᵀ ∂K

∂s
U + 2Uᵀ ∂F

∂s
. (22)

Applying the chain rule, the sensitivity of the compliance C

with respect to design variable si can be written at the level
of integration elements in terms of the nodal level set values
φj :

∂C

∂si
=

∑

j∈ιi

∑

e∈ιj

∑

n∈ιn

(
−uᵀ

e

∂ke

∂xn

∂xn

∂φj

ue

+2uᵀ
e

∂f e

∂xn

∂xn

∂φj

)
∂φj

∂si
. (23)

In (23), a summation is done over all the nodes in the index
set ιi which contains all the original mesh nodes that are
in the support of the RBF corresponding to design variable
si . Then, a summation is done over ιj , which refers to the
index set of all integration elements e in the support of
original mesh node j , i.e., the region where the original
shape function Nj is nonzero. Lastly, a summation is done
over the index set ιn, which contains all the enriched nodes
n in integration element e. The location of these enriched
nodes is denoted xn. Note that a number of terms can be
identified in the sensitivity formulation: the derivatives of
nodal level set values with respect to the design variables,
∂φj/∂si , the design velocities ∂xn/∂φj , and the sensitivity
of the element stiffness matrix and force vector with respect
to the location of the nth enriched node, ∂ke/∂xn and
∂f e/∂xn, respectively.

First, the sensitivity of the nodal level set values with
respect to the design variables is simply computed by taking
the derivative of (20) with respect to s as:

∂φ

∂s
= θᵀ. (24)

The design velocities ∂xn/∂φj also remain straightforward
as they are computed by taking the derivative of (8) as:

∂xn

∂φj

= − φk
(
φj − φk

)2

(
xj − xk

)
. (25)

Note that the enriched nodes remain on the element edges of
the finite element mesh, and thus the direction of the design
velocity is known a priori.

More involved is the sensitivity of the eth integration
element stiffness matrix ke with respect to the location of
enriched node n, which can be computed on the reference
domain as:

(26)
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where B =
[
�

ᵀ
ξ
NᵀJ−ᵀ �

ᵀ
ξ
ψᵀJ

−ᵀ
e

]
as defined in

Section 2.1. In this work, a single integration point is used
for numerical quadrature, with ξ e = [1/3, 1/3] and wg =
1/2. Recall that the material within each integration element
remains constant, and therefore ∂D/∂xn = 0. The first term
in (26) contains the sensitivity of the Jacobian determinant,
and represents the effect of the changing integration element
area; the second and third terms contain the sensitivity of the
element B matrix, and represent the effect of the changing
shape and enrichment functions. The latter is computed as:

∂B

∂xn

=
[

0 �
ᵀ
ξ
ψᵀ ∂J

−ᵀ
e

∂xn

]
. (27)

Observe that only the enriched part of the formulation has
an influence, as for linear elements the background shape
function derivatives are constant throughout the integration
element, and thus

(28)

The Jacobian of the parent element is not influenced by the
enriched node location either (∂J/∂xn = 0). Similarly to
(28), the enrichment functions are constant throughout the
integration element, so that:

(29)

Appendix C describes how to compute the derivative of the
Jacobian inverse and determinant, ∂J−1

e /∂xn and ∂je/∂xn,
respectively, by straightforward differentiation.

Finally, the sensitivity of the design-dependent force
vector f e is evaluated. Due to the IGFEM discretization,
enriched nodes whose support is subjected to a line or
body load contribute to the force vector, implying that the
derivatives of the force vector are nonzero for cases with
line loads or body forces. Similarly to the sensitivity of the
element stiffness matrix, each integral in the sensitivity of
the element force vector consists of two terms: one related to
the Jacobian derivative, and another containing the function
derivatives:

(30)

In the second term of the integrals, only the parent shape
functions have a contribution. This is because enrichment

functions in reference coordinates are not influenced by the
enriched node in global coordinates, i.e., ∂ψ/∂xn = 0.
However, as the mapping to the parent reference domain
is influenced by the enriched node location, ∂N/∂xn is
nonzero, and can be evaluated as:

∂N

∂xn

= ∂N

∂ξp

∂ξp

∂x

∂x

∂xn

= ∂N

∂ξp

A−1
p

∂xe

∂xn

Ne, (31)

where A−1
p is the inverse isoparametric mapping that maps

global coordinates to the local master coordinate system of
the parent element as explained in Appendix B.

Although the sensitivity analysis seems involved, the
partial derivatives are relatively straightforward to compute
on local arrays.

3 Numerical examples

The enriched method outlined above is demonstrated on
a number of classical compliance optimization problems.
The results generated by this approach are compared with
those generated by open source optimization codes, and the
influence of the design discretization is investigated. A 3-D
compliance optimization case and a heat sink problem are
also considered. It should be noted that no holes can be
nucleated in the method presented in this paper. Therefore,
initial designs containing a relatively large number of holes
are used for the numerical examples. However, the method
could be extended to also nucleate holes by means of
topological derivatives (Amstutz and Andrä 2006).

In this section, no units are specified; therefore, any
consistent unit system can be assumed. For the MMA
optimizer (Svanberg 1987), the following settings are used
unless otherwise specified:

• The lower and upper bounds on the design variables si
are given by −1 and 1, as defined in the design variable
space in (19)

• The move limit used by MMA is set to 0.01;
• A value of 10 is used for the Lagrange multiplier on

the auxiliary variables in the MMA sub-problem that
controls how aggressively the constraints are enforced.

3.1 Numerical verification of the sensitivities

The analytically computed sensitivities ∂C/∂si are checked
against central finite differences C′

i for a small test problem
as illustrated in Fig. 5. This test problem consists of a beam
of size 2L × L that is clamped on the left, and subjected
to a downward force

∣
∣t

∣
∣ = 1 on the bottom right. The

material phase of this beam has Young’s modulus E1 = 1.
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Fig. 5 Test problem for the finite difference check of the analytical
sensitivities. The relative differences δi as per (32) are illustrated in
Fig. 6

We consider the initial design with three holes, as shown in
Fig. 5, with Young’s modulus E2 = 10−6. The problem is
solved on a symmetric mesh of 12 × 6 × 2 triangles. The
RBFs are defined on a 13 × 7 grid, and have a radius of
0.15L.

The relative differences of the non-zero design variable
sensitivities are computed as:

δi = C′
i − ∂C/∂si

∂C/∂si
, (32)

and illustrated in Fig. 6 for different finite different step
sizes 
si . For a step size of 
si = 10−5, the relative
difference is minimized and takes a value of δ ≈ 5 × 10−6.

3.2 Cantilever beam

Our approach to enriched level set–based topology opti-
mization is compared with the following open source codes:
(i) the 99-line SIMP-based code by Sigmund (2001); (ii) an

10−7 10−6 10−5 10−4
−4
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·10−5

Step size si

R
el
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iv

e
di
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en
ce

Fig. 6 Relative difference δi between the analytically computed
sensitivities for node i and central finite differences, as a function of
the step size 
si

88-line code for parameterized level set optimization using
radial-basis functions and density mapping, proposed by
Wei et al. (2018); and (iii) a code for discrete level set topol-
ogy optimization with topological derivatives by Challis
(2010).

The optimization problem for this comparison is the
widely used cantilever beam problem, as illustrated in
Fig. 7. It consists of a 2L × L rectangular domain that is
clamped on the left and subjected to a downward point load
t̄ in the middle of the right side. We set L equal to 1, the
volume constraint to 55% of the design domain volume, and
use

∣
∣t̄

∣
∣ = 1. The material domain Ωm is assigned a Young’s

modulus E1 = 1, whereas the void domain Ωv has Young’s
modulus E2 = 10−6. Both domains have a Poisson ratio
ν1 = ν2 = 0.3. Note that it is also possible to give the void
regions a stiffness of exactly zero by removing DOFs (van
den Boom et al. 2019a). However, this would entail extra
overhead, and to ensure a fair comparison with the other
models; in this work, it is chosen to use a small value for the
void stiffness.

Figure 7 shows the initial design that is used for the
IGFEM-based optimization, which is the same as that used
in the paper describing the 88-line code (Wei et al. 2018).
The other two codes do not require an initial design, as
they are able to nucleate holes. The optimization problem is
solved on meshes defined on rectangular grids of 21 × 11,
41×21, 61×31, 81×41, and 101×51 nodes. Our proposed
method makes use of triangular meshes, whereas the other
methods use quadrilateral meshes. The RBF mesh used
in the IGFEM-based solutions is the same as the analysis
mesh, and a radius of influence of rs = √

2·a is used, where
a is the distance between two RBFs.

The results for each code are illustrated in Fig. 8. For
all methods, the design becomes more detailed when the
mesh resolution is increased. Furthermore, the topologies
obtained by each method are roughly the same. It is
observed that the resulting designs are similar to those given

L

2L

E 1

E 2

Fig. 7 Problem description and initial design for the cantilever beam
example in Section 3.2. The domain is clamped on the left and a
downward force is applied in the middle of the right side
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IGFEM SIMP (Sigmund 2001)

Density mapping

(Wei et al. 2018)

Discrete level set

(Challis 2010)

21 × 11

41 × 21

61 × 31

81 × 41

101 × 51

Fig. 8 Final designs for a cantilever beam obtained by the proposed method and the other methods considered in this study, shown in the columns.
The rows show designs obtained on meshes defined on grids of 21 × 11, 41 × 21, 61 × 31, 81 × 41, and 101 × 51 nodes, respectively

by the code of Wei et al., especially for the finer meshes.
Indeed, our proposed method yields results that have clearly
defined (black and white) non-staircased boundaries. It
should be noted, however, that the coarsest IGFEM result
shows jagged boundaries. This zigzagging effect reduces
with mesh refinement and is investigated in detail in
Section 4.2. Figure 9a shows the convergence behavior of
the different codes for the finest mesh. It is observed that

our method leads to the lowest objective function value,
which again is similar to that obtained by the code by
Wei et al., while initially converging faster in the volume
fraction.

Figure 9b shows the final compliance as a function of
the number of DOFs. Initially, the different methods all find
lower compliance values as the mesh is refined, but the
method by Wei et al. and our method find slightly higher
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Fig. 9 Results of the cantilever beam problem for the different methods considered in Section 3.2; a shows the compliance and volume ratio
convergence during optimization, b illustrates the final compliance as a function of the number of DOFs
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L

3L

E2

E2

Fig. 10 Problem description and initial design for the MBB beam
example in Section 3.3. Symmetry conditions are applied on the left
of the domain, and the bottom-right corner is simply supported. A
downward force is applied at the top-left side on the domain, in the
middle of the beam

values for the finest mesh sizes. This may be explained by
the optimizer converging to a local optimum. For each mesh
size, the proposed method finds the lowest compliance value
at the cost of adding some enriched DOFs.

3.3 MBB beam

The influence of the number of radial basis functions is
investigated on the well-known MBB beam1, which is
illustrated in Fig. 10. The optimization problem consists of
a 3L × L domain with symmetry conditions on the left. On
the bottom right corner, the domain is simply supported, and
a downward force t̄ is applied on the top left corner. As in
the previous example, the volume constraint is set to 55%
of the volume of the total design domain. The initial design
is also indicated in Fig. 10, and the same material properties
as in the previous example are used.

This optimization problem is solved on a triangular
analysis mesh defined on a grid of 151 × 51 nodes, using
a discretization of the design space consisting of 61 × 21,
91 × 31, 121 × 41, and 151 × 51 radial basis functions,
so that only for the finest design space discretization, both
resolutions match, and an RBF is assigned to every node in
the analysis mesh. The support radius rs is changed together
with the design grid so that the overlap of RBFs is the same
in each case: rs = √

2 · a, where a is again the distance
between two RBFs.

Figure 11 shows the optimized designs. As expected,
the level of detail in the design can be controlled by

1The original Messerschmitt-Bölkow-Blohm (MBB) beam problem,
as introduced by Olhoff et al. (1991), also specified that the upper
and lower surfaces have to remain planar, in addition to a maximum
allowable deflection and maximum stress. Over the years a more free
interpretation of the problem formulation has become commonplace.

Fig. 11 Influence of the RBF mesh on the final design. Using
symmetry conditions, only half of the MBB-beam is considered in the
optimization. For each optimization, a structured mesh consisting of
150×50×2 triangular finite elements is used. From top to bottom, final
designs are shown obtained with design meshes consisting of 61 × 21,
91 × 31, 121 × 41, and 151 × 51 RBFs

the RBF discretization. However, it is noted that in the
finest RBF mesh, artifacts appear on the design boundary.
This behavior will be further analyzed in Section 4.2. In
Fig. 12a, the convergence behavior of the different RBF
meshes is shown. Although the coarsest RBF mesh shows
some initial oscillations, the overall convergence behavior
is similar in all cases. Moreover, as shown in Fig. 12b, the
compliance no longer significantly improves for the finest
RBF discretization.

3.4 3-D cantilever beam

To show that the method is not restricted to 2-D, a 3-D
cantilever beam example is also considered. The material
properties are the same as those of previous examples. The
size of this cantilever beam is 2L×L×0.5L, and a structured
mesh with 40 × 20 × 10 × 6 tetrahedral elements is used to
discretize the model. The design space is discretized using a
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Fig. 12 Subfigure a shows the convergence of the compliance C and volume fraction VΩm/VΩ of the MBB beam using different discretizations
of the design space; b shows the final compliance of the MBB beam as a function of the number of design variables

grid of 21×11×6 RBFs, with rs = √
2 ·a. Figure 13 shows

the initial design, along with the boundary conditions; the
right surface is clamped, and a distributed line load with∣
∣t̄

∣
∣ = 0.2 per unit length is applied on the bottom-left edge.

The move limit for MMA in this example is set to 0.001
to prevent the optimizer from moving the boundaries too
fast, as only a small number of RBFs is used with a large rs
compared with the analysis mesh. The objective function is
again the structural compliance, and the volume constraint
is set to 40% of the total design domain.

Figure 14a displays the optimized design; the corre-
sponding convergence plot is shown in Fig. 14b, where it

Fig. 13 Initial design of the 3-D example with a schematic illustration
of the boundary conditions: the right side is fixed and a vertical
downward line load is applied on the bottom-left edge

can be seen that the volume satisfied the constraint, and the
objective function converges smoothly.

3.5 Heat sink

Lastly, we consider a heat compliance minimization
problem, illustrated in Fig. 15. In this two-material problem,
a highly conductive material (κ1 = 1) is distributed within
an L × L square domain with a lower conductivity (κ2 =
0.01). The bottom-right corner of the domain has a heat
sink, with u = 0, whereas the domain edges are adiabatic
boundaries, i.e., q̄ = 0. The entire domain is subjected
to uniform heat source f = 1. The problem is solved on
a 41 × 41 node analysis mesh, using 31 × 31 RBFs with
rs = √

2 · a.
As this problem considers a case with a body load, the

load vector also contains enriched degrees of freedom that
depend on the locations of the enriched nodes. Therefore,
the right-hand side is design dependent, i.e., ∂F/∂s �= 0,
even though the body load is constant throughout the entire
domain.

The results of this optimization problem are shown in
Fig. 16. In the optimized design, narrow features can be
distinguished that follow the edges of original elements in
the background mesh. This is an effect caused by how the
intersections are detected, and is investigated in more detail
in Section 4.1. The convergence plot shows that, although
there are initially some oscillations in both the objective
and constraint (also investigated further in Section 4.1), they
converge in the end.
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Fig. 14 Optimized design for the 3-D cantilever beam optimization example (a), and the convergence of the compliance C and volume fraction
VΩm/VΩ (b)

4 Discussion

4.1 Oscillations: the level set discretization

Oscillations in the objective functions are visible in the con-
vergence of the heat sink problem in Fig. 16, and in the
coarsest RBF mesh of the MBB beam in Fig. 12. As these
oscillations might point to inaccurate modeling or sensitivi-
ties, the phenomenon is discussed here in more detail.

Recall that intersections between the zero contour of the
level set function and element edges are found using a linear
interpolation of nodal level set values. Because the level set
function is discretized, no intersections can be found if two
adjacent nodes have the same sign, as (8) does not hold for
φjφk ≥ 0. This effect is illustrated in Fig. 17. On the left, the
zero contour of a level set function is shown in red, which
defines a design shown in white/gray. The white arrows

u = 0

L

L

1

2

q̄ = 0

q̄ = 0

q̄
=

0

q̄
=

0

Fig. 15 Problem description and initial design for the heat sink. A
fixed temperature is applied to the bottom right corner, and a uniform
heat source is applied throughout the entire square domain

indicate the movement of the material boundary during
the next design update. On the right, the updated level set
contour is shown in red. As the level set values φj and φk

on the two adjacent original nodes xj and xk now have the
same sign, the two intersections between them, shown as
cannot be found.

The sudden disconnection of the structure due to the level
set discretization is a discontinuous event that cannot be
captured by the sensitivity information. Therefore, as soon
as such discontinuous event occurs, the sensitivities and the
modeling deviate, and oscillations may occur.

This problem can be alleviated by using a smaller move
limit, as was done in the 3-D MBB example. Another approach
that could mitigate this issue is to evaluate the parametrized
level set function on a finer grid, so that multiple
intersections are found on an element edge. However,
the procedure that creates integration elements would also
need to allow for these more complex intersections. It
should be noted that neither of these methods completely
eliminates the problem of discontinuous events. Rather,
the methods alleviate the problem by limiting their chance
of occurrence. On the contrary, the use of a length scale
control could eliminate this issue completely by enforcing
material and void features to be larger than the element
size. Besides eliminating the issue of numerical oscillations,
length scale control can also ensure the mesh is sufficiently
fine with respect to the design’s features to properly
describe its physical behavior. Methods for length scale
control in parametrized level set methods have recently been
proposed (Dunning 2018; Jansen 2019).

A related observation can be made in the zigzagged
features in the heat sink design of Fig. 16. As illustrated in
Fig. 18, this pattern occurs when the optimizer tries to make
a narrow diagonal feature in the opposite direction of the
mesh diagonals. The red intersections cannot be detected;
therefore, the structure is disconnected. As a result, the
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Fig. 16 Subfigure a shows the optimized design of the heat sink problem, where narrow features are created along the edges of the original mesh
element. The convergence plot in b shows initially some small oscillations that can be prevented by the use of a smaller move limit

Fig. 17 Structure disconnecting
due to level set discretization.
White arrows (left) indicate the
update of the level set in the
next iteration (right), where the
narrowest part of the zero
contour lies within a single
element, and the nodal level set
values φj and φk have the same
sign. The two intersections
shown as are thus not found,
and the structure disconnects

k

j

Fig. 18 Illustration of the
zigzagged pattern that appears
in Fig. 16. When a narrow
diagonal line is desired in the
opposite direction of the
diagonal lines of the mesh, the
problem illustrated in Fig. 17
results in a disconnected line, as
shown on the left. Instead, the
optimizer will create narrow
features along element edges, as
illustrated on the right
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Fig. 19 Detail of zigzagging that might occur when the design space
is not reduced with respect to the FE mesh

optimizer can only create diagonal narrow features by
zigzagging them along element edges, as illustrated in
Fig. 18 on the right.

4.2 Zigzagging: approximation error

In the final designs of some of the numerical examples,
zigzagging of the edges occurred where the zero contour
of the level set function is not perfectly smooth, as detailed
in Fig. 19. To investigate the cause of this artifact, the
test problem of a clamped beam loaded axially shown in
Fig. 20 was investigated. The compliance was computed for
a varying zigzagging angle β while keeping the material
volume constant.

The results in Fig. 21 show that the minimum compliance
is not found at β = 0, as one would expect, but instead it is
found at a negative value of β. Furthermore, the compliance
is not symmetric with respect to β = 0 due to the asymmetry
of the analysis mesh. The cause of this zigzagging is an
approximation error, as the mesh is too coarse to accurately
describe the deformations and stresses in the structure,
similarly to the effect described for nodal design variables
in Braibant and Fleury (1984). This effect can be resolved
by reducing the design space with respect to the analysis
mesh, for example with the use of RBFs, or by increasing

Fig. 20 Schematic for the zigzagging approximation error. A beam
with zigzagging angle β is clamped on the left, while a concentrated
axial loading is applied on the right. The angle β is varied without
changing the material volume, and the compliance is evaluated

0
1.3

1.35

C

Fig. 21 The compliance of the test case, illustrated in Fig. 20, as a
function of the zigzagging angle β. The compliance for this coarse test
case is non-symmetric with respect to 0

the element order. Furthermore, as the non-smoothness is
confined to a single layer of background elements, mesh
refinement makes the issue less pronounced.

5 Summary and conclusions

In this work we introduced a new enriched topology opti-
mization approach based on the IGFEM. The technique
yields non-pixelized black and white designs that do not
require any post-processing. We have derived an analytic
expression for the sensitivities for compliance minimiza-
tion problems in elastostatics and heat conduction, and have
shown that they can be computed with relatively low com-
putational effort. Furthermore, the method was compared
with a number of open source topology optimization codes,
based on SIMP, the Ersatz approach, and discrete level sets.
The influence of decoupling the design discretization from
the analysis mesh was investigated using the classical MBB
beam optimization problem. A 3-D cantilever beam and a
heat sink problem were also demonstrated. The convergence
behavior was provided for each numerical example. Any
numerical artifacts, such as approximation errors and dis-
cretization errors of the level set, as discussed in Section 4,
can be mitigated by means of suitable move limits and radial
basis functions, where the latter serve as a sort of filter
because they can control the design complexity.

A number of conclusions can be drawn from this work:

• The combination of IGFEM with the level set topology
optimization based on RBFs results in crisp boundaries
in both the design representation and the modeling.
Because the RBF mesh and analysis mesh are
completely decoupled, the resolution of the design and
the modeling can be chosen independently, as is the case
in any parametrized level set optimization. In addition,
the radial basis functions help in reducing numerical
artifacts, as they act like a black-and-white filter. Lastly,
as the RBFs may extend over multiple elements, they
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allow the boundary to move further and the optimizer to
converge faster;

• As only one intersection can be detected per element
edge, due to the mapping of the level set to the
original mesh nodes, features smaller than a single
element might not be described correctly. As discussed
in Section 4.1, this may lead to oscillations in the
convergence. Using a finer grid for evaluating the level
sets, more intersection may be found, allowing for
narrower features. However, this will require a more
involved procedure for creating integration elements.
Similarly, the method may be extended to be used
on quadrilateral elements, which also requires more
involved integration element procedures. Furthermore,
for quadrilateral elements, higher order enrichment
functions are needed (Aragón et al. 2020);

• Due to approximation error, numerical artifacts may
occur that may be exploited by the optimizer when the
RBF mesh is too fine with respect to the analysis mesh.
Another known issue in IGFEM and other enriched
methods, which may be exploited by the optimizer, is
the fact that the computation of stresses near material
interfaces may yield inaccurate results (Soghrati et al.
2017; Nagarajan and Soghrati 2018);

• In this work, we chose to model the void together with
the material domain for a number of reasons, including
ease of implementation, and ease of comparing with
other methods. However, we could have chosen to
completely remove the void from the analysis (van den
Boom et al. 2019a), which would reduce computation
times and eliminate the artificial stiffness in the void.

Compared with the commonly used density-based meth-
ods, our proposed approach does not introduce staircasing
nor gray values. The location of the boundary is therefore
known throughout the entire optimization, and no post-
processing of the design is required. However, additional
complexity is introduced in the creation of integration
elements. Furthermore, the extra enriched nodes slightly
increase the size of system matrices, which is an effect that
diminishes with mesh refinement. Lastly, in density-based
methods for linear elasticity, the local element arrays can
simply be scaled with the density, and need to be com-
puted only once. In our approach, local arrays for integration
elements have to be computed at every iteration.

In an optimization context, IGFEM has a number of
advantages:

(i) The IGFEM formulation provides a natural distinc-
tion between original mesh nodes, which are sta-
tionary and on which the level set is evaluated, and
enriched nodes, which define the material bound-
ary and are allowed to move during optimization.

Enriched DOFs are directly related to the discontinu-
ity in the gradient of the field;

(ii) As the background mesh does not change during
optimization, the mapping of the design variables to
nodal level set values has to be computed only once;
and

(iii) As the location of enriched nodes is known to remain
on the background element edges, and the enriched
node location is computed as a linear interpolation
between background mesh nodes, the direction of the
design velocities is known a priori. This simplifies the
sensitivity computations;

Regarding the benefits of IGFEM with respect to X/GFEM,
in addition to those regarding the analysis phase described
in Section 2.1.1, item (i) above must also be added. In
X/GFEM, the distinction is less clear, as enrichments are
associated to nodes of the background mesh.

As mentioned in Section 1, the benefits of using an
enriched formulation are expected to be more pronounced
for problems that rely heavily on an accurate boundary
description, such as fluid-structure interaction and wave
scattering. In fact, the optimization of the latter is the subject
of an incoming publication.

Acknowledgements The authors would like to thank Krister Svanberg
for providing us with the MMA implementation.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results This manuscript is self-contained, in that it
contains all necessary theory to reproduce the results, including the
preliminaries, i.e., the IGFEM approximation and the theory on radial
basis functions. The sensitivity computation is described in detail, and
all parameters for the numerical examples are provided. Furthermore,
the sensitivities are verified using central finite differences, and
appendices detailing the relation of IGFEM to X/GFEM, the
isoparametric mapping of integration elements, and the derivatives
of the Jacobian inverse and determinant have been included. Lastly,
designs of intermediate iterations are supplied in the supplementary
material.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

16

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/


An interface-enriched generalized finite element method for level set-based topology optimization

Appendix A: Derivation of IGFEM from
X/GFEM

Here, we derive the IGFEM formulation from the X/GFEM
approximation for a single 1-D linear finite element with
nodes x1 and x2 that contain a weak discontinuity at xn. For
this element, the X/GFEM approximation can be written as:

uh (x) =
2∑

i=1

Ni (x)Ui

︸ ︷︷ ︸
std. FEM

+
2∑

i=1

Ni (x)Ei (x) Ûi

︸ ︷︷ ︸
enrichment

, (33)

where Ei denotes the enrichment functions and Ûi are
the generalized DOFs. In order to derive the IGFEM
formulation, the key is to select appropriate enrichment
functions Ei . We use scaled heaviside enrichments, as
shown in Fig. 22.

x1 xn x2

1

x

Ni (x)

Ei (x)

Ei (x)

N1

N2

x1 xn x2

1

1
1 − w

1
w

x

c1 H (x − xn )
c2 H (xn − x )

x1 xn x2

1

x

Ni

=
i

E iNii

Fig. 22 Construction of IGFEM enrichment function from X/GFEM
formulation

By clustering DOFs, i.e., Û1 = Û2 = α, we reduce
the number of enriched DOFs (Duarte et al. 2006). The
enrichment term is then given by:

2∑

i=1

NiEiÛi = (N1E1 + N2E2) α,

= [N1c1H (x − xn) + N2c2H (xn − x)]︸ ︷︷ ︸
ψ

α(34)

where H is the heaviside function and the constants c1 =
1/(1 − w) and c2 = 1/w, with w = xn/ (x2 − x1), yield
a C0–continuous function that attains a maximum value
of one regardless of the discontinuity location within the
element.

The final approximation is therefore:

uh (x) =
2∑

i=1

Ni (x)Ui + ψα, (35)

which is equivalent to the IGFEM approximation for a 1-D
bar containing a weak discontinuity. Similar considerations
can be made for higher dimensional problems.

Appendix B: Isoparametric mapping
of integration elements

In order to make this manuscript self-contained, here
we describe the isoparametric mapping and numerical
integration of an IGFEM integration element, as explained
in more detail in Section 2.1 and illustrated in Fig. 3.

The integration element’s stiffness matrix ke can be
computed in terms of the reference integration element as:

(36)

with B =
[
�

ᵀ
ξ
NᵀJ−ᵀ �

ᵀ
ξ
ψᵀJ

−ᵀ
e

]
, and the element force

vector f e is computed in terms of the reference integration
element as:

(37)

17



S. J. van den Boom et al.

A global coordinate x, in terms of the isoparametric
mappings of the integration and parent elements, can be
written as:

x = xᵀ
e Ne(ξ e) = xᵀ

pN(ξp), (38)

where Ne are the linear Lagrange shape functions
associated to the nodes of the integration element, with
global coordinates xe. Similarly, N are the shape functions
associated to the parent’s nodes with global coordinates xp.

The Jacobians of these mappings and their determinants
are computed as:

J e = ∂x

∂ξ e

= xᵀ
e

∂Ne(ξ e)

∂ξ e

, je = det (J e) , (39)

and

J = ∂x

∂ξp

= xᵀ
p

∂N(ξp)

∂ξp

, j = det (J ) , (40)

respectively, where xe contains the integration element
nodes and xp contains the parent element nodes.

Numerical integration is performed in the reference inte-
gration element by means of Gauss quadrature. Using (38),
it is straightforward to map the Gauss integration point’s
reference coordinates ξ e to its corresponding global coordi-
nates x. The inverse mapping from x to the location in the
parent reference coordinate system ξp is more involved. For
a 2-D triangular element, the procedure can be written as:

x =
[

xi,1 xj,1 xk,1

xi,2 xj,2 xk,2

]
⎡

⎣
1 − ξ1 − ξ2

ξ1

ξ2

⎤

⎦

x =
[

xi,1 + ξ1(xj,1 − xi,1) + ξ2(xk,1 − xi,1)

xi,2 + ξ1(xj,2 − xi,2) + ξ2(xk,2 − xi,2)

]
,

x−
[

xi,1

xi,2

]
=

[
xj,1 − xi,1 xk,1 − xi,1

xj,2 − xi,2 xk,2 − xi,2

]

︸ ︷︷ ︸
A

[
ξ1

ξ2

]

(41)

Inverting this isoparametric mapping leads to the following
equation for the integration point in parent coordinates ξp

ξp =
[

ξ1

ξ2

]
= A−1x − A−1

[
xi,1

xi,2

]
. (42)

Appendix C: Derivatives of the Jacobian
inverse and determinant

In the sensitivity computation discussed in Section 2.3.1,
the derivative of the Jacobian inverse and determinant
are required. According to Jacobi’s formula (Magnus and
Neudecker 2007), the derivative of the determinant of a
matrix can be computed as the trace of the adjugate of the
matrix (adj (J e) = jeJ

−ᵀ
e ), multiplied by the derivative of

the matrix. For the Jacobian determinant je, the derivative
can thus be computed as:

∂je

∂xn

= Tr

(
adj (J e)

∂J e

∂xn

)
, (43)

The sensitivity of the Jacobian inverse can be computed
by realizing that J eJ

−1
e = I :

∂J eJ
−1
e

∂xn

= ∂J e

∂xn

J−1
e + J e

∂J−1
e

∂xn

= ∂I

∂xn

= 0, (44)

and solving for ∂J−1
e /∂xn:

∂J−1
e

∂xn

= −J−1
e

∂J e

∂xn

J−1
e . (45)

For both (43) and (45), the sensitivity of the Jacobian
is required; as the Jacobian of the integration element is
computed as J e = x

ᵀ
e ∂Ne/∂ξ e, it can be computed as:

(46)

where ∂xe/∂xn is simply a selection array consisting of
zeros except for a one on the entries of interest for enriched
node n.

References

Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level
set based mesh evolution method. Comput Methods Appl Mech
Eng 282:22–53. https://doi.org/10.1016/j.cma.2014.08.028. http://
www.sciencedirect.com/science/article/pii/S0045782514003077

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194(1):363–393. https://doi.org/10.1016/j.jcp.2003.09.032. http://
www.sciencedirect.com/science/article/pii/S002199910300487X
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Moës N, Dolbow J, Belytschko T (1999) A finite element method
for crack growth without remeshing. Int J Numer Meth-
ods Eng 46(1):131–150. https://doi.org/10.1002/(SICI)1097-0207
(19990910)46:1<131::AID-NME726>3.0.CO;2-J
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