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Introduction

Although only a subject of science fiction a few decades ago, unmanned aerial vehicles, or more com-
monly drones, have become a widely known commonplace by the 2020s. From toys on the consumer
market to sensor platforms in professional applications, they are more present in all aspects of life
each year. Originally remotely piloted, recent advances in sensor and computing technology have led
these flying robots down the path of autonomy. The proliferation of drones must be accompanied with
improved safety measures, via providing the remote pilot with increased situational awareness, or to
enable the robot to navigate our world in a safe manner.

The solution is better sensors on the drones and smarter processing of the acquired data. Miniature
cameras are a popular payload for small drones. They are light weight, commercially available, and
their video feed has a wide range of applications. One of these applications is depth perception, which
may be used for obstacle detection and collision avoidance. The goal of this research is to further
improve the capability of robots, and more specifically small autonomous aircraft, to safely travel and
interact with the world around us. In this thesis article, we investigate the strengths and weaknesses
of vision-based depth estimation techniques and propose a novel way to enhance current solutions.
Specifically, the following research question will be explored and answered in detail:

Can the fusion of monocular and stereo depth cues through a learning-based approach enhance the
performance of its input monocular and stereo networks?

This document is structured as follows: Part | includes the thesis article that outlines our proposed
depth fusion solution, details the experiments conducted, and presents our conclusions. In part Il, a
review of the relevant literature is provided. Chapter 1 highlights the importance of Micro Aerial Vehicle
(MAV) technology in today’s world. Chapter 2 discusses the challenges related to collision avoidance in
MAVs. The development of monocular and stereo depth estimation, along with the current State-of-the-
Art, are examined in chapter 3. Finally, chapter 4 deconstructs the research question and summarizes
the related research objectives.
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Convolutional Neural Network for Stereo

and

Monocular Depth Estimation

Déniel Téth, Tom van Dijk and Guido de Croon

Abstract—This paper presents an encoder-decoder-style con-
volutional neural network (CNN) for the purpose of improving
monocular and stereo depth estimation (SDE) estimates, by
combining them with the corresponding monocular estimates
through a fusion network, assisted by prior information to
provide context for the fusion. Video cameras are commonly
used for depth perception in robotics, especially weight-sensitive
applications, such as on Micro Aerial Vehicles (MAV). The
two primary paradigms for vision-based depth perception are
monocular and stereo depth or disparity estimation, each hav-
ing their own strengths and weaknesses. These strengths and
weaknesses seem to be complementary, and thus a fusion of
the two may result in more accurate predictions. In this paper,
we investigate this fusion by training a CNN that combines
stereo and monocular depth or disparity estimates. The fusion
network is agnostic to the choice of the input networks, providing
great flexibility. It was found that such a fusion network, while
increasing the computational complexity of the depth perception
pipeline, indeed improves the accuracy of the estimates. The
number of outlier predictions has been significantly decreased,
while also limiting some fundamental limitations of both stereo
and monocular methods, such as errors arising from occluded
regions.

I. INTRODUCTION

Depth perception is a crucial ability in all autonomous
vehicles for navigation and collision avoidance. It has further
uses, such as 3D reconstruction and mapping. LIDAR has
been a popular sensor for depth perception, but its weight,
price, and power requirement limit its practicality on smaller
robots, especially micro aerial vehicles (MAV)[1]. Cameras,
on the other hand, seem like attractive alternatives due to
their light weight, low cost, and the possibility of denser depth
maps (100% density in modern, learning-based solutions)[1].
However, retrieving accurate depth information from color
images is a non-trivial task. The two primary methods for
generating depth maps from still images are monocular and
stereo depth estimators.

Depth may also be estimated from motion cues, such as
optical flow (i.e. the disparity between two images with
a temporal offset)[2]. However, such methods suffer from
numerous key limitations that render them impractical for
use in autonomous vehicles. Most importantly, optical flow-
based depth perception relies on good knowledge (accurate and
frequent measurements) of the vehicle velocity vector at any
given time, which is not a given due to inaccuracies and biases
of the accelerometer[3], [4]. Moreover, optical flow-based
methods are not instantaneous; they rely on both a temporal
offset and translational motion of the camera. Furthermore, the
flow converges to zero in the direction of ego-motion, leading
to larger errors in the area of highest interest[5]. For these
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Fig. 1. Scenes from KITTI2015 evaluation dataset, and the corresponding
disparity estimates of the triple encoder - triple decoder fusion network with
left-view image and confidence map assistance.

reasons, optical flow is not given any further consideration in
this paper.

The goal of this research is to show the feasibility of
learning-based fusion of monocular and stereo depth maps
to improve their accuracy. Although fusion has been widely
applied to the problem of depth completion, in the field
of depth estimation[6], only rule-based fusion has been
investigated [7], [8]. To the best of our knowledge, this
paper is the first to investigate deep learning based fusion
of monocular and stereo depth cues, in order to estimate
depth. Due to the proof-of-concept nature of this research,
the pursuit of the highest-quality results was not the priority.
Thus, the proposed algorithm often features design elements
motivated by ease of implementation, rather than performance.

Stereo depth estimation (SDE) attempts to match pixels be-
tween the images of a stereo pair to calculate the correspond-
ing disparities. The disparities can then be easily converted
to depth values with information on the focal lengths and the
baseline between the two cameras that produced the image
pair. When the pixels are matched correctly, stereo methods
are likely to produce high-quality depth estimates. However,
matching is a difficult task in areas with low texture or



repeating patterns [9]. Additionally, it is an outright impossible
task at areas of occlusions, i.e. parts of the scene that are only
visible to one of the cameras, but not both. Such regions are
referred to as “occluded” regions.

Monocular depth estimation (MDE) is the mathematically
ill-defined problem of retrieving depth from a single still
image, relying on monocular visual cues. The difficulties arise
from the fact that an infinite number of 3D scenes can produce
the same 2D projection, leaving monocular estimators prone
to error[10].

As pixel matching is not part of the underlying process,
estimates from monocular methods are not fundamentally
hampered in textureless regions or areas featuring repetitive
patterns. At the same time, stereo methods have no problems
retrieving accurate depth values when correct pixel matching
can be achieved. Thus, the two approaches may be able to
make up for each other’s shortcomings when combined ad-
equately. Despite these potential synergies, stereo-monocular
depth fusion has not been studied extensively. The works of
Martins et al.[7] and Facil et al.[8] achieved good results in
the combination of monocular and stereo depth cues, their
fusion strategies were based on hand-crafted rules. As the main
contribution, this research shows that even state-of-the-art SDE
predictions can be improved when they are properly fused
with MDE predictions. Some examples of output depth maps
are presented in Figure 1. Our fusion network (see Figure 2
for the high-level design), featuring an encoder-decoder CNN
architecture with skip connections (a.k.a. U-net), was assisted
with additional contextual information, namely the gray-scale
left-view image, and reconstruction error-based confidence
maps corresponding to the SDE and MDE input estimates. As
part of the ablation study, multiple versions of the algorithm
(combinations of different depths and inputs) were evaluated,
and their results relative to each other were analyzed, in order
to provide information about the effect and impact of each
individual design feature.

II. RELATED WORK
A. Stereo depth estimation

Finding the disparity at distinct points, such as edges
and corners, is quite straightforward, and non-learning-
based computational methods were developed before the
popularization of deep learning techniques. Such model-
based algorithms, like Semi-Global Matching (SGM)
[11], are simple to implement, do not need training (and
consequently can be deployed in any environment) and
require low computing power. Substantial improvement in
terms of precision was achieved with the adoption of deep
convolutional networks, DispNetCorr [12] being one of the
pioneering works. It used a fairly large network, reminiscent
of the encoder-decoder architecture, where the encoder and
decoder layers are connected with skip connections. Such an
architecture is referred to as U-net and has become a proven
method in dense prediction tasks. GCNet of Kendall et
al.[13] makes use of a much more efficient pipeline, building
on traditional stereo matching algorithms: first calculate
the matching costs between pixels and then optimize for

the lowest matching cost. In GCNet, the stereo pair is fed
into a feature extractor. Each feature extracted from one
image is concatenated with the corresponding feature of
the other image, forming a 4D tensor, called cost volume.
The matching cost is then computed for each feature vector.
Kendall et al. claim that the use of such cost volumes leads to
better performance compared to direct distance or correlation
computation between the features. Additionally, the matching
of extracted features leads to better results compared to
matching the image pixels directly. For regularization, aimed
at refining the disparity estimates by learning the context,
GCNet makes use of a 3D encoder-decoder network. This
pipeline has been commonly used by more modern SDEs,
including the state-of-the-art LEASterero [14]. CRD-Fusion
[15] is a self-supervised deep stereo matching network,
which uses an initial disparity map from a traditional
stereo matching algorithm for guidance. A confidence map is
generated from the initial disparity to identify incorrect pixels.
This confidence is calculated from the intensity differences
between the right-view image and the shifted left-view image.
Using a stereo matching algorithm reminiscent of GCNet,
a cost volume is created from the extracted features of the
stereo pair, which is then aggregated through a series of 3D
convolutional layers, leading to the fused disparity estimate.
The final fused disparity is computed as the weighted average
of the learning-based and model-based disparities, with the
corresponding confidence values serving as the weights.
Although learning-based stereo algorithms have improved a
lot compared to previous traditional methods, the fundamental
limitations of stereo matching still remain. Li et al. [16]
identified the three primary challenges of learning-based
stereo matching, such as dealing with imperfect rectification;
accurately estimating the disparity in areas with repeating
or no texture; and accurately estimating the disparity in fine
details, such as nets.

It is clear that even the state-of-the-art stereo depth algo-
rithms struggle with areas of low texture, or partially occluded
regions, as accurate matches are very difficult or outright
impossible to make. The proposed fusion network aims to
improve the stereo estimates on these aspects.

B. Monocular depth estimation

Although there are a multitude of ingenious model-based
solutions to retrieve some sort of depth information from
a single still image, such as convolving with hand-crafted
feature filters [17] or sky segmentation [18], they are limited
in practice. The true breakthrough in monocular depth
estimation came with the proliferation of convolutional
neural networks. The two-scale network of Eigen et al. [19]
fuse their two convolution stacks by refining a crude, but
global, initial estimate with a finer one. The pioneering
works of Garg et al. [10] and Laina et al. [20] adapted the
encoder-decoder architecture of autoencoder CNNs for the
task of depth estimation from a single still image. Select
layers of the encoder and decoder are connected via skip
connections, leading to U-net-style networks. Encoders
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Fig. 2. Outline of the proposed fusion network: The stereo image pair is used to generate a pair of preliminary disparity map estimates via monocular and
stereo networks. These are then concatenated along with the reconstruction error-based confidence maps and the left-view image, which are fused into the

refined disparity map through the fusion network.

incrementally increase the receptive field of the convolutional
operator by reducing the spatial resolution of the feature
space via downsampling (spatial pooling). The original spatial
resolution is then incrementally retrieved through the decoder
layers via deconvolutional or up-convolutional operations.
In this way, the network can work with long-range (spatial)
information, such as perspective or relative size [21]. The
primary limitation of such architectures is the loss of detail
in the deep encoder layers. To mitigate this effect, skip
connections are commonly utilized, fusing early layers back
into the decoder [10], [20], [22], [23]. An alternative way to
address the loss of granularity at the deep encoder levels is
the use of larger convolutional kernels [24]. Although such
large kernels greatly increase model size and computational
complexity, this can be somewhat mitigated through dilated
convolution, that is, convolution with a sparse kernel [25].

Although more recent research involving visual transform-
ers (such as dense prediction transformers[26]) promises a so-
lution to the problem of loss of detail of pure CNNs, accurate
prediction of the global scale remains a fundamental challenge
of monocular methods. The proposed fusion network aims
to fix this shortcoming by introducing information about the
global scale from stereo disparity estimates, which infer this
information from the baseline distance between the cameras.

C. Depth prediction via fusion

Just as in the case of stereo and monocular methods,
the transition from model-based approaches to learning-based
approaches may lead to substantial improvements in the fusion
of SDE and MDE depth or disparity maps. Despite the
promising synergy between monocular and stereo methods,
their fusion has received relatively little scientific attention
from the scientific community.

Facil et al. [8] fuses a semi-dense depth map of a traditional
stereo matching algorithm with a dense depth map of a monoc-
ular CNN. Each pixel in the output depth map is the weighted
interpolation of the depths over the available stereo estimates.
The weight for each monocular depth pixel attempts to capture

the likelihood of it belonging to the same local structure as any
of the stereo estimates. It is made up of the relative distance
and similarity in gradients between nearby monocular depth
estimates. The justification is that a monocular estimate near
a stereo one, both of them having similar depth gradients, is
likely to be part of the same local structure, and thus their
depth values should be similar. Martins et al. [7] proposed
a rule-based fusion, where the expected precision of dense
stereo and monocular depth estimates in given regions of
the input scene is determined through a set of hand-crafted
functions. These functions attempt to capture global scale,
contrast, occlusion, and texture. These are then used as weights
to average the monocular and stereo depth maps. In addition
to fusion, stereo estimates are also used to compute the loss
while training their monocular estimator in a self-supervised
manner.

Depth completion is the task of creating a dense depth
map from a single still image and a corresponding sparse
but reliable input depth map (such as a LIDAR point cloud).
As this task possesses similarities with MDE-SDE fusion
(especially when additional guidance, such as color image,
is used), it is worth mentioning in this context. One of the
simplest approaches, termed early fusion by Jaritz et al. [6]
is the method of concatenating the sparse map and the RGB
image before feeding it into a learning network. Mat et al. [27]
did just that, with the deep network following an encoder-
decoder architecture. Late fusion is the process of applying
feature extractors with independent weights to each of the
two inputs to translate them into a joint representation and
to upscale the fused feature map into the desired dense depth
map, as was done by Jaritz et al. [6]. As the extracted feature
spaces share modalities, they are simply summed up elemen-
twise before being fed into the decoder. Similar multi-branch
architectures are preferred to deal with the differing modalities
between inputs. The feature extractor branches were expanded
to complete encoder-decoder networks in PENet[28], each
processing one of the two modalities (color and depth).
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Fig. 3. Outline of the basic version of the fusion network, with feature
depths (channel dimension) indicated. The blue arrows represent the shortcuts
between residual blocks, and the red arrows represent the skip connections
between the encoder and the decoder. Note that two separate confidence maps
are generated, corresponding to the SDE and MDE inputs.

III. METHODOLOGY

The high-level framework of the fusion augmented depth
estimator is shown in Figure 2. The SDE and MDE are pre-
trained networks with either scaled depth or raw disparity
maps as outputs. These outputs are converted appropriately to
match the label or the desired output type (i.e., depth or dis-
parity). For this research, the stereo and monocular estimators
were chosen as LEAStereo [14] and BTS [29], respectively.
They both have publicly accessible PyTorch implementations
and are also performing well on the KITTI benchmark. Both
models are pre-trained on KITTI2015 stereo [30], and the
much larger KITTI mono depth[31] respectively. Although
multiple BTS models have been published, the one that uses
DenseNet161 was chosen to be used in this investigation, as
it showed the best performance during their ablation study.
Note that the proposed algorithm may be used with any other
depth or disparity estimator, as they only serve to produce the
input estimates. The input models are pre-trained, and their
parameters are not modified any further during the training
process of the fusion network.

The fusion network takes the SDE and MDE preliminary
estimates, and either or both the grayscale left-view image
(shortened as LV) and confidence maps (refered to as SSIM)
corresponding to the stereo and monocular estimates. SSIM
stands for structural similarity index measurement and will
be further explained in subsection III-A. Unless specified
otherwise, all presented results and examples are produced
via the deepest network (3x encoder, 3x decoder), with both
additional inputs, as this set-up showed the best performance
during experiments. To help the fusion algorithm successfully
identify regions to be improved on both input estimates, further
contextual information can be provided. To fulfill this purpose,
we chose the left-view image from the input stereo pair. The
grayscale image is used instead of the original RGB image
to keep the number of input channels low. It is assumed
that the primary information in an image for depth/disparity
estimation is the intensity and texture, both of which are
preserved in the grayscale version. In fact, the use of grayscale
input instead of RGB has been shown to lead to only a
minor accuracy degradation [32]. This additional input will

be referred to as LV for left view. The confidence map is
yet another optional pair of inputs: These are intended to
provide a rough estimate of the correctness corresponding to
the monocular and stereo depth maps. The details of how these
are obtained are given in subsection III-A. This additional
input will be referred to as SSIM, for structural similarity
index measure. All fusion inputs (SDE and MDE estimates,
the corresponding confidence maps, and the left-view image)
are all concatenated along the channel dimension before being
passed to the initial layer of the fusion algorithm. Note that
these inputs have different modalities: depth for the SDE and
MDE estimates, confidence scaled from O to 1, and the 8 bit
grayscale image. Concatenation has been successfully used in
depth completion tasks for multi-modal fusion before, such as
in Ma et al. [33].

Although there are more sophisticated methods for mul-
timodal fusion, such as a two-branch method [28], [34],
the simple concatenation, agnostic to the modality of the
inputs, allows easy implementation of any kind of additional
information as input channels, improving the modularity of the
proposed algorithm. Additionally, multi-branch methods have
significantly more learning parameters, leading to much larger
models.

Fig. 4. Double-mapping artifact from image reconstruction, and the masked
out areas after validity check

A. Confidence Map

Supplying confidence maps to the fusion algorithm is as-
sumed to help the fusion by providing insight into which areas
of the input disparity maps might be prone to error. Such a
confidence map is presented in Figure 5. The intended behav-
ior of the fusion is to be less prone to make large corrections
at areas of high confidence. Additionally, the algorithm may
better fuse areas where one source has considerably higher
confidence than the other. The confidence maps are based
on the reconstruction error introduced by Garg et al. [10].
Reconstruction error is a convenient confidence metric, as its
computation does not rely on true depth. The initial disparity
map dy, is used to create a synthetic left-view image I}
by shifting the pixels of the right-view image Ip along the
horizontal, x axis. This transformation is shown in Equation 1.

I (x,y) = Ir(z +dp(z,y),y) (1)

Note that all depth and disparity estimates in this work
correspond to the left-view image. The structural similarity



map is then calculated between the synthetic and true left-
view images via Equation 2 [35], where x and y are the two
images, and p, o2, and 04y are the mean, variance, and cross-
correlation of pixel values. These are evaluated by sliding a
3x3 window over the two images, with a stride and zero-
padding of 1.

(2uzpby + 1) (2024 + c2)
(124 p2 +c1) (02 402+ ¢2)

SSIM(z,y) = 2)

Reconstruction of an image from its stereo pair and the
corresponding disparity map is prone to an artifact called
“texture-copy” by Godard et al.[36]. Examples of such artifacts
are shown in Figure 4. In reconstruction, texture-copy occurs
at depth discontinuities, such as the edge of a nearby object
against distant backgrounds. In such cases, regions of the
background are visible for one of the cameras but are occluded
for the other. So, the nearby object will be mapped once to
its correct location (high disparity area), and once more to
the occluded area (low disparity area). If two pixels on the
synthetic left-view image originate from the same location
on the right-view image, the one with the largest disparity
is invalid [37]. An incorrectly mapped pixel can be identified
by the algorithm below.

: minShift < 4

1

2: maxShift < 192

3: wnwalid < False

4: for n < minShift, maxShift do

5: shifted < shift(disparity,n)

6: loeDif «+ (shifted — disparity — n)
7: if absoluteValue(locDif) < 0.5 then
8: invalid < True

9: end if
10: end for

In this algorithm, the shift function shifts the given array
along the horizontal axis by a number of pixels. The minimum
disparity taken into account is 4 to prevent unnecessary noise
filtering in the input disparity map. The maximum number
of pixels for shifting is set to 192, which is the maximum
disparity that can be predicted by the chosen SDE and MDE
models. The confidence map values for the pixels identified
as invalid are set to zero. Note that the presence of the for
loop means that this algorithm is not parallelized, significantly
impacting the runtime performance of the fusion, further
discussed in subsection I'V-C.

B. Fusion Network Architecture

The proposed algorithm falls into the category of early
fusion (according to the definition of Jaritz et al. [6]), where
the multi-modal inputs are concatenated along the channel
dimension, reminiscent of the depth completion network of Ma
et al. [27]. Our fusion algorithm employs a deep convolutional
neural net, which follows the U-net-style architecture, inspired
by Garg et al. [10] and Laina et al. [20]. as shown in Figure 3.
Based on this shallow base architecture, a number of alternate,
deeper networks were also implemented and tested. These

Fig. 5. Example for input depth prediction and the corresponding confidence
maps. From top to bottom: label, stereo estimate, and stereo estimate confi-
dence map. Brighter pixels on the confidence map represent higher confidence
values. Note the black patches around some objects, the result of reconstructed
pixel invalidation.

follow the same design, only with increased size, making them
considerably deeper. The network is designed to be trained in
a supervised manner, with smooth L1 loss [38].

The role of the encoder is to serve as a feature extractor. By
incrementally downsizing the feature maps through increased
stride, the receptive field of the convolution operator is effec-
tively increased. This allows the network to aggregate to more
global (i.e., long spatial range) relationships. Similarly to the
depth completion network of Ma et al. [27], the encoder is
based on ResNet18 [39], with the final fully connected layers
removed. In alternate ResNet networks (e.g. ResNet34), where
the encoder size is increased, the number of residual blocks
is simply doubled or tripled, but the distribution of layers
are kept the same. Thus, while the doubled encoder has the
same number of residual blocks as ResNet34, they are not
completely equivalent.

In order to obtain the desired full scale depth or disparity
map, the encoder’s deep feature space is passed through a
series of upconvolutional layers, the decoder. The upscaling
follows the same increments as the downscaling in the encoder,
allowing for skip connections between the two. The finer
details of the encoder input, while still present in the early
layers, are then lost during repeated downsampling operations.
This leads to lower-quality predictions. This loss of spatial res-
olution can be mitigated through the use of skip connections,
fusing the encoder layers with the corresponding decoder lay-
ers [22]. In the proposed fusion network, the skip connections
are concatenated with the intermediate outputs of the decoder,
just before the upsampling operation. The concatenated feature
space is passed through a size 1 convolution, halving the num-
ber of channels, in order to maintain the appropriate feature
dimensions. The use of transposed convolution results in what
are known as checkerboard artifacts in the output [40]. There-
fore, instead of using transposed convolution, deconvolution
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Fig. 6. The basic (1x en - 1x de) and best performing (3x en - 3x de)
architectures

is performed through separate upsampling (nearest-neighbor
interpolation) followed by a size 3 convolution. Decoder layers
making use of transposed convolution will be referred to as
deconvolution, while the ones with upscaling followed by
separate convolution will be referred to as upconvolution.
Instead of ReLU, the decoder makes use of the exponential
linear units (ELU) [41] as activation functions, which was
found to be performing better in the decoder of a pixel-to-pixel
predicting encoder-decoder network [42]. The only exception
is the final layer, where a sigmoid function is used, in order
to obtain strictly positive depth or disparity predictions. After
scaling, these correspond to the minimum and maximum
estimates. While the encoder’s convolutions incorporate biases
as per the ResNet architecture, the decoder omits them, as
the presence of batch normalization layers means that biases

would be ignored anyways [43]. The doubled and tripled
versions of the decoder include one or two extra convolutional
layers after each upconvolutions, correspondingly. The simple
and the triple-depth architectures are shown in Figure 6, and all
considered architectures are presented in section A in detail.

IV. EXPERIMENTAL RESULTS

The fusion algorithm described above was implemented in
the PyTorch machine learning framework, trained, and evalu-
ated on the KITTI2015 stereo disparity estimation dataset [30].
KITTI2015 contains 200 color image pairs with corresponding
sparse ground truth disparity (captured with and converted
from LIDAR sensors) for the learning process. The ground
truth disparity maps are sparse and only include labels for
the bottom two-thirds of the scene. The dataset is split into
a training batch of 180 images and an evaluation batch of
20 images. The original data set includes sequential images;
these are, however, not included in either the training or the
evaluation set. Although there are 200 additional test images,
these are used for benchmarking on the KITTI leaderboard,
and their labels are not publicly accessible. The images have
a resolution of 1242x375, which is then cropped down to
1216x352, according to the KITTI benchmark specifications.
The ground truth disparity maps do not have valid labels
in the top one-third band of each scene. When this upper
area is included in the training images, the resulting model
learns to produce completely invalid estimates for that section,
as can be seen in Figure 7. Although this artifact does not
influence the metrics during evaluation, as the predictions
are only evaluated where valid labels are available, it is still
considered undesirable. In order to deal with it, the training
images are cropped to 1216x224 pixel resolution, removing
the top one-third of the scene. These are further cropped to
a resolution of 704x224, where the center of the cropping
is chosen randomly for each case. This serves both as data
augmentation and reduces the computing load in training. The
setup of the stereo camera rig used for these images is well
documented, allowing the conversion between disparity and
depth. The results presented here are from the evaluation batch,
after training the fusion network on the training batch for 100
epochs (note that the input networks are pre-trained, and their
parameters are not modified any further during the training
process of the fusion network). The hardware used for training
and evaluation is a NVIDIA T4 and 12.7GB RAM via the
cloud computing service of Google Colab.

A. Quantitative analysis

The primary results are listed in Table I. With the ground
truth and prediction for pixel ¢ being y; and ¥; , and n number
of pixels in a scene with valid label, the metrics shown on that
table are defined as follows [19]:

« absolute relative error (abs. rel.); 2= (¥i—9:l/v:)

T — 08 s
« square relative error (sq. rel.): M

« root mean square error (RMSE): 1/ M

« end point error (EPE): Zn”%



Network Fusion depth  Additional data | —ppror—c ngiwerl{hbsegef T—rem % - ngh%rQ is bettelsrs
Fusion TX en-decoder - 0.044 0313 2083 1094 0067 0959 0983 0092
Ix en-decoder LV 0.043 0.198 1975 1014 0062 0968 0994 0.998
Ix en-decoder  SSIM 0.044 0303 2041 1067 0064 0963 0988 0.99
Ix en-decoder ~ SSIM+LV 0.044 0233 2083  1.097 0067 0961 0992 0.998
Fusion 2x en-decoder  SSIM+LV 0.040 0.199 1.904 0.931  0.056 0.971 0994  0.998
Fusion 3x en-decoder  SSIM+LV 0.040 0.194 1017 0928 0055 0974 0093 0.998
MDE (BTS) N/A N/A 0.235 9929 7891 5812 0362 0846 0926 0050
SDE (LEAStereo) N/A N/A 0.038 0226 2399 0943 0.036 0976 0988 0092
Martins et al. [2018]F  N/A N/A 0.20 3.00 547 - - 085 096 0098
TABLE I

EXPERIMENTAL RESULTS OF SOME SELECT ARCHITECTURES, AVERAGED OVER THE 20 SCENE EVALUATION SET FROM KITTI2015. THE BEST RESULTS
ARE BOLDFACED, AND THE SECOND-BEST ONES ARE IN RED.
* AS REPORTED

(b)

Fig. 7. Fused disparity estimate before ((a)) and after ((b)) removing the top
band with no valid labels from the training data. Although fixing the non-
sensical top band has no impact on the performance metrics, as these regions
are not evaluated due to the lack of ground truth, it does improve the visual
appeal of the fused disparity maps.

« three pixel error (3px err.):
1— count(|y; —9:|<3 V |yi —9:]<0.05%y;)
n

o threshold § < 1.25 (d1):

coum((max(ﬁ Yi )<1425)

n
count((max(%’f,g—"f)) <1.252)
i Vi

o threshold § < 1.252 (85): o
o threshold § < 1.25% (63): Coum((max(%‘%»d%s)

The MDE and SDE in Table I are pre-trained models,
which were evaluated the same way as the fusion. However,
the metrics for Martins et al. [7] are taken directly from
their published article. Their monocular estimator was trained
through self-supervised learning and, for the stereo estimator,
a traditional stereo matching algorithm was chosen.

Between the SDE and MDE input networks, the former is
clearly better. This is not surprising, as stereo matching is a
considerably easier task than monocular estimation, due to the
mathematically constrained nature of the problem. Note that
in contrast to LEAStereo SDE, the BTS MDE was trained on
the KITTI depth prediction/completion dataset [31], a much
more extensive array of depth-annotated images. As this and
KITTI2015 share the same environment and scenery, it was
assumed that the model can generalize between the two dataset
without issues. However, both LEAStereo and BTS have not
performed as well compared to their reported metrics.

Examining the metrics in Table I, it is evident that the fusion
improved the stereo estimates according to several metrics.
Considering that fusion exhibits better performance in outlier
ratios of a wider threshold (d5, d3) and in RMSE (which is
more sensitive to outliers due to the square term), the fusion
seems to reduce the number of predicted pixels that are far off
from their ground truth values. However, the fusion lost some
accuracy when it came to pixels that SDE predicted with high
precision. This can be deduced from the reduced performance
in the outlier measures with tighter thresholds (three-pixel-
error and §7). The assumption that this particular method of
fusion leads to fewer outliers but also fewer high-accuracy
pixels is further reinforced by the fact that it achieves a better
score in square relative error but worse score in absolute
relative error. Like with RMSE, the former is more sensitive to
outliers than the latter. Between the absolute relative error and
the end-point error, the former is less penalizing for the same
disparity error with a corresponding high disparity ground
truth (i.e. nearby objects). As the fusion network presents
a lower EPE but higher absolute relative error compared to
the input SDE, the fused disparity maps are more accurate at
sections close but slightly worse at larger distances.

Note that due to the small size of the evaluation set, the
above-mentioned results are highly skewed by a single data
point, the predicted depth map corresponding to the dark
tunnel scene (shown in the last row of Figure 10). One would
expect that any vision-based depth estimation would perform
poorly in such low-visibility conditions. It is nearly impossible
to see and distinguish objects that are used to provide a frame
of reference, thus it is not surprising that the MDE performs
so poorly. The SDE on the other hand, while greatly suffering
from a lack of discernible pixels to match, is able to produce a
fairly accurate depth map. An examination of the data revealed
that such dark scenes are not at all represented in the training
set, and thus the fusion was unable to learn to properly deal
with similar situations. Due to the low number of images in
the validation set, even a single outlier can substantially skew
the results. In fact, when the fusion network is evaluated on a
modified validation set, where the dark tunnel is not included,
its detrimental effect on the averaged metrics becomes clear.
As can be seen in Table II, both the MDE and the Fusion
networks present increased accuracy, with the latter improving
the input SDE with respect to all metrics considered, except for
the three-pixel-error. Thus, while the SDE maintains a slight



Network Fusion depth Additional data Abs. Rel. Sq. R];?. werléi/[bse};ter EPE 3px i % 5 ngh?gls bett%rs

Fusion 3x en-decoder ~ SSIM+LV 0.036 0.165 1.772 0.822 0.038 0.978 0.995 0.998

MDE (BTS) N/A N/A 0.132 1.252 4.684 2966  0.328 0.885 0.964 0.984

SDE (LEAStereo) N/A N/A 0.038 0.231 2416 0.920  0.031 0975 0987 0.992
TABLE II

AVERAGED RESULTS ON THE VALIDATION SET WITH THE DARK TUNNEL SCENE REMOVED.

edge in predicting high accuracy pixels, the fusion network
is competitive in that regard as well, as long as it is used
in a well-lit environment. Note that while the SDE and the
fusion networks were trained on the same training-evaluation
split, the MDE was trained on the much more extensive KITTI
monocular estimation dataset.
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Fig. 8. Confidence map related correlation coefficients with the horizontal
depicting a series of KITTI images, used as the evaluation set: (a) shows the
correlation between the confidence maps and the absolute difference between
the corresponding MDE and SDE input, and fused disparity maps; while (b)
shows the correlation between the confidence maps corresponding to the stereo
and monocular methods.

The extent to which the fusion exploits the available con-
fidence maps in order to improve on the initial estimate is
measured through the correlation coefficient between the said
confidence map and the corresponding change map (i.e. the
absolute disparity difference between the initial estimate and
the fused one). This coefficient is expected to be negative in
optimal cases (anti-correlation), as areas of high confidence

should not be changed much by the fusion. A positive corre-
lation coefficient may indicate that the fusion network made
significant changes to estimates that were found to have a high
level of certainty by the reconstruction error-based confidence
mechanism. From 8a, it can be seen that for most evaluation
cases, the fusion network could take only a limited advantage
of the confidence maps, as most of the data points hover in
the low negative range. The fact that the above correlations
are significantly lower in magnitude for the SDE than for the
MBDE indicates that the fusion relies on the former more than
on the latter. This is to be expected, as the chosen stereo
method outperforms the monocular one (see Table I). Note
that there are a few outliers (most importantly, cases 000073
and 000198), with considerably high, positive coefficients. It
was found that at certain scenes, the confident predictions of
SDE largely overlap with the ones of the MDE, and vice versa.
This overlap was measured through the correlation coefficient
between the two confidence maps, which is shown in 8b.
Lower correlation between the confidence maps indicates a
better utilization of this additional information by the fusion
network, as it suggests that the two input networks perform
better in different sections of the scene, which can then be
harnessed in the fusion. However, a high correlation coefficient
may be a sign that the two input methods produce similarly
uncertain estimates corresponding to the same areas of the
input image.

B. Qualitative analysis

When taking a close look at the fused estimates (e.g. in
Figure 9), the synergistic combination of MDE and SDE
becomes clear: on the one hand, the errors due to occlusion
from the stereo estimates are greatly reduced; while on the
other, artifacts from the ambiguity of monocular cues are
disregarded in favor of the more reliable stereo matching.

As discussed in subsection II-A, stereo matching in regions
that are not visible for both cameras is limited at a fundamental
level. Thus, it is expected that the SDE that makes predictions
for the left-view image will have large errors at the left edges
of objects, as these pixels are not present in the right-view
image. SDE disparity maps are expected to accumulate larger
errors than usual in scenes where objects are in the foreground,
close to the camera. The effect of occlusion is more prevalent
in such cases, because the disparities are larger and the
occluded areas take up a larger portion of the image. This
can be clearly seen in 9b, where the occluded sections of the
vehicle contour show up brightly on the error map, indicating
large discrepancies with respect to the label. However, this is
significantly (although not completely) reduced on the fused
disparity map, 9d. In low texture areas, the stereo matching
algorithm was expected to produce lower quality predictions



(a) Input and ground truth

(b) SDE

(c) MDE

(d) Fusion

Fig. 9. Row (a) shows a section of an input scene and the corresponding
ground truth. Rows (b), (c) and (d) show the resulting stereo, monocular, and
fused disparity and error maps. Note, how fusion greatly improves the errors
corresponding to occlusion in SDE and reflection in MDE. The disparity and
the error maps use two different color scales, in order to make the erronous
regions more apparent.

than the MDE, the opposite was found to be the case. SDE
disparities in smooth surfaces, such as asphalt roads and car
bodywork, had lower error and higher values on the confidence
map than the ones from MDE. From the above, it is concluded
that the primary limitation of current state-of-the-art SDE is
occlusion, which can be addressed by the fusion network.
Some undesired artifacts of monocular methods are cor-
rected as well. in 9c, one can see that the MDE makes the
wrong predictions at the car windows. Due to the reflecting
or see-through nature of glass windows, the corresponding
monocular cues are utterly misleading, resulting in much larger
depth estimates than the true distance. Seemingly, such image
sections do not pose a problem for LEAStereo (see 9b). This
difference between the two methods was successfully captured
in the fusion algorithm model, as the disparities at the car
windows in 9d are correctly predicted. Further examples of the
same artifact can be seen in the 3rd and 4th rows of Figure 10
However, the fused disparity maps depict a glaring short-
coming: the edges of scene objects are markedly more blurred
in comparison to the input disparity maps, particularly those
derived from the stereo solution. This has an obvious negative

impact on both accuracy and visual ”looks” of the disparity
maps. The source of this problem is two fold: the loss of local
structure (small-scale details, such as object boundaries) as
the feature map is gradually downscaled through the encoder
section; [44], [45] and the insensitivity regular depth losses
(such as L1) to prediction shifts in the spatial directions.
The former can be mitigated by augmenting the standard
loss function with a gradient-based term, which is more
penalizing for errors around edges [44]. The latter, which is a
fundamental weakness of CNNs, was expected behavior, the
mitigation of which was attempted via skip connection, as
explained in subsection III-B. Evidently, skip connections at
their current placement were not enough. Note from Figure 3,
that the first skip connection is already preceded by the initial
downsampling layer two ResBlocks of the encoder. Thus, it
is possible that the skip connection with the highest spatial
resolution is already too deep and lacking the local structure
for a sharp disparity map. The alternative solution found by
Hu et al.[44] and Chen et al. [45] is the use of multi-scale
schemes, as opposed to the more traditional encoder-decoder
architecture.

C. Ablation study

For the ablation study, all combinations of several net-
work depths and additional information were considered. The
network depth is varied by combining an encoder and a
decoder of certain depths. The base network, as presented in
subsection III-B, is a combination of the smallest encoder and
decoder. Larger networks are made up of a combination of
single-, double-, or triple-sized encoders and decoders. The
detailed design of each of these is given in section A. These
result in nine different encoder-decoder combinations, with
an increasing number of learning parameters. Furthermore,
two different priors, the grayscale left-view image and the
confidence maps corresponding to the SDE and MDE maps,
may be used as additional channels in the input. These led
to a total of 36 unique architectures, which were tested,
examining their performance in inference time and prediction
accuracy. The detailed numerical results of these experiments
are presented in section C.

Regarding the inference time, the network depth (i.e. the
number of parameters), and the number and type of additional
information all have an impact on the performance. Each
additional 107 parameter was found to increase the inference
time by around 1.4 milliseconds, as can be seen in 1la.
Considering that the number of parameters of the tested
networks ranges between 1.43 * 107 and 4.10 x 107, this is
relatively insignificant. However, the inclusion of SSIM-based
confidence maps has a substantial impact, as it increases the
inference time by more than 50 milliseconds. The extra cost
comes from the computational complexity of the windowed
SSIM operation (see Equation 2), and the reconstructed pixel
validity checking algorithm (see subsection III-A).

When it comes to network depth, bigger is not always better.
As shown in Table III, smaller networks frequently surpass
larger ones in performance. However, the largest network,
comprising a 3x encoder and a 3x decoder, is arguably the



(a) Input

(b) SDE

(c) MDE (d) Fusion

Fig. 10. Some additional results: Column (a) shows the input scene, and columns (b), (c) and (d) show the SDE, MDE and fused disparity maps, respectively.

For each row, the color scale of the predictions are the same.
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Fig. 11. Inference time for each case considered in the ablation study: 9 different network depths and 4 different combinations of additional data.The general

trend with respect to the network depth and the additional information are shown on (a) and (b), respectively.

best, as indicated in Table VI. Interestingly, the combinations
with balanced encoders and decoders (i.e. len - 1de, 2en - 2de,
3en - 3de) tend to outperform the rest. Note that the number
of parameters between the encoder and decoder is widely
different, with the encoder increasing in size by 125 x 10°
between the single and double, and the double and triple
variants, while the decoder only increases by 7.84 % 105. Thus,
it is assumed that an even distribution in parameters between
the encoder and decoder is not necessary. On the contrary, a
ratio of about 16 : 1 in favor of the encoder may be closer
to optimal. The ratio in the number of convolutional layers
between the encoder and the decoder is 17 : 9 and 49 : 17
in the len - lde and the 3en - 3de architectures. The large
disparity in parameters is due to the fact that ResBlocks in the
encoder include weights and biases, while the upconvolutional
layers in the decoder only include weights.

Finally, it can be determined from Table V, that the right
information as additional channels has a positive impact on the
accuracy of the disparity in general. Including the left-view

image in the input gives a significant boost to the accuracy
of the estimation. It is assumed that it provides contextual
information to the fusion network, in order to better recognize
areas in the scene that may be problematic for either the
SDE or the MDE. Surprisingly, the confidence maps not only
do not improve accuracy on their own, but even degrade
the quality of the fused disparity map. The fused estimate,
however, is further improved by supplying the confidence
maps in addition to the left-view image, leading to the top
performing architecture, 3en - 3de with SSIM+LV.

V. CONCLUSION

In this paper, an encoder-decoder style CNN was presented
for the purposes of improving dense monocular and stereo
depth estimates through the fusion of the two. When tested
on the KITTI2015 stereo benchmark, it was found that such
an algorithm can fulfill this task, when sufficient contextual
information is provided alongside the stereo and monocular
estimates. The network was tested with the gray-scale image



Additional data Lower is better | Higher is better Lower is better
Abs. Rel.  Sq. Rel. RMSE EPE 3pxeerr. | &1 0o 03 Inference time [s]
len - 1de 0.046 0.302 2.081  1.081 0.065 0.963 0.990 0.997 0.260
2en - lde 0.047 0.319 2.137  1.138 0.067 0963 0.987 0.996 0.282
len - 2de 0.052 0.474 2382 1.294 0.068 0.959 0.984 0.994 0.268
2en - 2de 0.044 0.308 2.032  1.041 0.061 0.966 0.988 0.994 0.270
3en - lde 0.061 1.809 2.689  1.458 0.074 0963 0.986 0.993 0.294
len - 3de 0.058 0.807 2489  1.371 0.068 0.954 0.980 0.991 0.272
2en - 3de 0.051 0.587 2330 1.233 0.064 0962 0.984 0.993 0.287
3en - 2de 0.057 0.624 2403  1.331 0.071 0960 0.985 0.993 0.292
3en - 3de 0.048 0.477 2.254  1.166 0.063 0964 0.988 0.995 0.288
TABLE III

Additional data Lower is better Higher is better Lower is better
Abs. Rel.  Sq. Rel. RMSE  EPE 3pxeerr. | &3 P 03 Inference time [s]
len - 1de 0.044 0.209 2.015 1.048 0.063 0966 0.993  0.998 0.199
2en - lde 0.044 0.245 1.981  1.020 0.063 0968 0.990 0.997 0.250
len - 2de 0.045 0.302 2.093  1.064 0.059 0965 0.988 0.996 0.215
2en - 2de 0.040 0.199 1.904  0.931 0.056 0971 0.994 0.998 0.231
3en - lde 0.044 0.233 1.966  1.053 0.063 0967 0.991 0.997 0.271
len - 3de 0.050 0.377 2218 1.170 0.060 0.959 0.985 0.996 0.213
2en - 3de 0.043 0.205 1.953  1.010 0.058 0972  0.993  0.998 0.220
3en - 2de 0.043 0.219 2.004  1.036 0.063  0.968 0.993  0.998 0.257
3en - 3de 0.040 0.194 1917 0928 0.055 0974 0.993 0.998 0.245
TABLE IV

RESULTS ARE BOLDFACED, AND THE SECOND-BEST ONES ARE IN RED.

Additional data Lower is better Higher is better Lower is better
Abs. Rel.  Sq. Rel. RMSE  EPE 3pxeerr. | &3 0o 03 Inference time [s]
N/A 0.053 0.544 2323 1.264 0.068 0.959 0.983 0.993 0.240
LV 0.048 0.406 2.208 1.158 0.065 0965 0989 0.996 0.249
SSIM 0.062 1.418 2722 1.495 0.071 0957 0.980 0.989 0.303
SSIM+LV 0.046 0.275 2.069 1.074 0.063  0.965 0.989 0.997 0.334
TABLE V

BOLDFACED, AND THE SECOND-BEST ONES ARE IN RED.
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METRICS AVERAGED ACROSS ALL COMBINATIONS OF ADDITIONAL DATA, WITH THE DIFFERENT ARCHITECTURE SIZES USED IN THE EXPERIMENTS. THE
BEST RESULTS ARE BOLDFACED, AND THE SECOND-BEST ONES ARE IN RED.

BEST METRICS AMONG ALL COMBINATIONS OF ADDITIONAL DATA, WITH THE DIFFERENT ARCHITECTURE SIZES USED IN THE EXPERIMENTS. THE BEST

METRICS AVERAGED ACROSS ALL ARCHITECTURE SIZES, WITH THE DIFFERENT ADDITIONAL DATA USED IN THE EXPERIMENTS. THE BEST RESULTS ARE

Additional data Lower is better Higher is better Lower is better
Abs. Rel.  Sq. Rel. RMSE EPE 3pxerr. | &1 o2 03 Inference time [s]
N/A 0.043 0.346 2.006  1.003 0.059 0955 0979  0.990 0.199
LV 0.043 0.205 1.953  1.010 0.058 0.957 0984 0.991 0.220
SSIM 0.044 0.266 2.035 1.063 0.064 0968 0.990 0.996 0.289
SSIM+LV 0.040 0.194 1.904 0.928 0.055 0974 0994 0.998 0.306
TABLE VI

BEST METRICS AMONG ALL ARCHITECTURE SIZES, WITH THE DIFFERENT ADDITIONAL DATA USED IN THE EXPERIMENTS. THE BEST RESULTS ARE

BOLDFACED, AND THE SECOND-BEST ONES ARE IN RED.

and a pair of reconstruction error based confidence maps
corresponding to the input disparity maps, and was found that
it performs the best with the combination of both. The fusion
algorithm represents an improvement on the input (reference)
algorithms in almost all metrics. Compared to the input
stereo disparity maps, while the fusion outputs feature fewer
extreme outliers, accuracy of some very precise prediction
from the stereo input is washed out. The network managed
to successfully address fundamental limitations of both stereo
matching and single-view methods by relying on the other one
at the problematic areas: it was proven to mitigate the errors
resulting from occlusion and reflecting or see-through glass
windows. These improvements, however, come at a cost. The
inference time, especially considering that the fusion network
(0.355 second per scene) relies on the outputs of two other
deep neural nets (0.212 and 0.073 seconds per scene for the

MBDE and SDE, respectively), limits its application in robotics
or in tasks where real-time prediction is required. Additionally,
in the dark tunnel scene, while the SDE managed to produce
a reasonably good disparity map in a scene not represented
in the training set, the fused disparity was considerably less
accurate. This suggests a deteriorated generalization capability
of the fused network compared to the input stereo matching
network.

During experiments, a number of points of improvement
were identified regarding the fusion network. The SDE, MDE
and fusion inference times are measured as separate entities,
i.e. each of them having their own separate overhead (such
as dataloaders, and pre- and post-processing algorithms). As
they perform similar tasks with similar input data, the com-
bined inference time can probably be significantly reduced
via more thorough integration. Furthermore, the confidence



map generation may be completely parallelized, as it currently
includes a for-loop in the reconstructed pixel validity check,
creating a significant bottleneck. The currently blurry fused
depth map output may be refined by including a gradient-
based term in the loss function, or by adopting a multi-scale
refinement architecture for fusion, such as the feature pyramid
of Chen et al.[45]. Finally, a more sophisticated architecture,
such as the two-branch backbone of PENet[28], may be used
to improve the fusion performance when the left-view image
or confidence maps are included as additional data, as the
simple concatenation is less efficient in multi-modal fusion.
This, however, will increase the computational complexity, and
thus, the inference time.

With the above being stated, learning-based fusion is clearly
beneficial for accurate depth or disparity measurements, but
future work in either or both the hardware and the network
itself is necessary for wide-spread deployment in robotics, and
autonomous vehicles in particular.
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Layer | Input Input Resolution | 1x encoder
MDE+SDE [2, 352, 1216]
Conv2d(kernel=7, stride=2, padding=3)
MDE+SDE+LV [3, 352, 1216] MaxPool2d(kernel=3, stride=2, padding=1)
en0
MDE+SDE+SSIM [4, 352, 1216] Eathll}I(\gormw()
e
MDE+SDE+SSIM+LV | [5, 352, 1216]
enl en0 [64, 88, 304] ResBlock(downsample=False)
ResBlock(downsample=False)
en2 enl [64, 88, 304] ResBlock(downsample=True)
ResBlock(downsample=False)
en3 en2 [128, 44, 152] ResBlock(downsample=True)
ResBlock(downsample=False)
en4d en3 [256, 22, 76] ResBlock(downsample=True)
ResBlock(downsample=False)
TABLE VII

DETAILED OVERVIEW OF THE SIMPLE (1 X ENCODER) ENCODER ARCHITECTURE USED IN THE EXPERIMENTS

Layer | Input Input Resolution | 2x encoder

MDE+SDE [2, 352, 1216] ) )

Conv2d(kernel=7, stride=2, padding=3)

en0 MDE+SDE+LV [3, 352, 1216] MaxPool2d(kernel=3, stride=2, padding=1)

MDE+SDE+SSIM [4, 352, 1216] Eafgl(\;ormZD()

e

MDE+SDE+SSIM+LV [5, 352, 1216]

enl en0 [64, 88, 304] ResBlock(downsample=False)

ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

en2 enl [64, 88, 304] ResBlock(downsample=True)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

en3 en2 [128, 44, 152] ResBlock(downsample=True)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

en4d en3 [256, 22, 76] ResBlock(downsample=True)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

TABLE VIII
DETAILED OVERVIEW OF THE DOUBLE (2X ENCODER) ENCODER ARCHITECTURE USED IN THE EXPERIMENTS



Layer | Input Input Resolution | 3x encoder

MDE+SDE [2, 352, 1216]
Conv2d(kernel=7, stride=2, padding=3)
en0 MDE+SDE+LV [3, 352, 1216] MaxPool2d(kernel=3, stride=2, padding=1)
MDE+SDE+SSIM [4, 352, 1216] Ea;fgl(\gormm()
e
MDE+SDE+SSIM+LV | [5, 352, 1216]
enl en0 [64, 88, 304] ResBlock(downsample=False)

ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

en2 enl [64, 88, 304] ResBlock(downsample=True)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

en3 en2 [128, 44, 152] ResBlock(downsample=True)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

end en3 [256, 22, 76] ResBlock(downsample=True)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)
ResBlock(downsample=False)

TABLE IX
DETAILED OVERVIEW OF THE TRIPLE (3X ENCODER) ENCODER ARCHITECTURE USED IN THE EXPERIMENTS



Layer | Input | Input Resolution | 1 x decoder 2 x decoder 3 x decoder
interpolate(scale=2, mode=nearest)
interpolate(scale=2, mode=nearest) gﬁ%ﬁdd{cmd:g, stride=2, padding=1)
interpolate(scale=2, mode=nearest) Conv2d(kernel=3, stride=2, padding=1) BatchNorm2D()
e, o o ELU() Y e i R
del end 512, 11, 38] EE%\}Q)d(kcmclfs, stride=2, padding=1) BatchNorm2D() gillljvéd(kcmclfs, stride=1, padding=1)
BatchNorm2D() Conv2d(kernel=3, stride=1, padding=1) BatchNorm2D()
ELU() ) )
. Conv2d(kernel=3, stride=1, padding=1)
BatchNorm2D() ELU()
BatchNorm2D()
del 256, 22, 76] concat(del, en3) concat(del, en3) concat(del, en3)
skipl en‘37 [25(; 22' 76]’ Conv2d(kernel=3, stride=1, padding=1) | Conv2d(kernel=3, stride=1, padding=1) | Conv2d(kernel=3, stride=1, padding=1)
» &% ELU() ELU() ELU()
interpolate(scale=2, mode=necarest)
interpolate(scale=2, mode=nearest) g?rggd(kemeI:S, stride=2, padding=1)
interpolate(scale=2, mode=nearest) Conv2d(kernel=3, stride=2, padding=1) Blalt('hNoerD()
X e N ELU() . N o L
de2 skipl | [256, 22, 76] EEIBI(Z)d(kerneLS, stride=2, padding=1) BatchNorm2D() E(L)llavéd(kernelfi)’, stride=1, padding=1)
BatchNorm2D() Conv2d(kernel=3, stride=1, padding=1) BatchNorm2D()
g!:t[gl(l)NOl'anD() Conv2d(kernel=3, stride=1, padding=1)
ELU()
BatchNorm2D()
de2 128, 44, 152] concat(de2, en2) concat(de2, en2) concat(de2, en2)
skip2 0112’ [125; 44 152]’ Conv2d(kernel=3, stride=1, padding=1) | Conv2d(kernel=3, stride=1, padding=1) | Conv2d(kernel=3, stride=1, padding=1)
4 ELU() ELU() ELU()
interpolate(scale=2, mode=nearest)
interpolate(scale=2, mode=nearest) EE%Véd(kemd:S’ stride=2, padding=1)
interpolate(scale=2, mode=nearest) Conv2d(kernel=3, stride=2, padding=1) BatchNorm2D()
nv2d(kernol—3. stride—?. paddine—1) | EFU0 el stride—l. paddine—
de3 skip2 | [128, 44, 152] gﬁltl;/(Z)d(kernelf?y, stride=2, padding=1) BatchNorm2D() E(I)Jr{;(Z)d(kelnelf& stride=1, padding=1)
BatchNorm2D() Conv2d(kernel=3, stride=1, padding=1) BatchNorm2D()
g'l(;t[il(l)Nm‘m?D() Conv2d(kernel=3, stride=1, padding=1)
ELU()
BatchNorm2D()
103 concat(de3, enl) concat(de3, enl) concat(de3, enl)
skip3 ;21‘ (128, 88, 304] Conv2d(kernel=3, stride=1, padding=1) | Conv2d(kernel=3, stride=1, padding=1) | Conv2d(kernel=3, stride=1, padding=1)
' ELU() ELU() ELU()
interpolate(scale=2, mode=nearest)
interpolate(scale=2, mode=nearest) gzr[}vgd(kernelzé, stride=2, padding=1)
interpolate(scale=2, mode=nearest) gilg;ﬁd(kernel:?). stride=2, padding=1) Conv2d(kernel=3, stride=1, padding=1)
Conv2d(kernel=3, stride=2, padding=1) . . ELU()
’ ’ Conv2d(kernel=3, stride=1, padding=1) " _
» , ELU() ‘ ) ) ELU() BatchNorm2D() ) )
de4 skip3 | (64, 88, 304] Conv2d(kernel=3, stride=1, padding=1) Conv2d(kernel=3, stride=1, padding=1)
ELU() BatchNorm2D() ELU()
Conv2d(kernel=3, stride=1, padding=1) Conv2d(kernel=3, stride=1, padding=1) BatchNorm2D()
Sigrr\lloid() e s ELUQ) Conv?d(ll(lcrneI:S stride=1, padding=1)
Conv2d(kernel=3, stride=1, padding=1) ELU() e ’
Sigmoid () Conv2d(kernel=3, stride=1, padding=1)
Sigmoid ()
Output [1, 352, 1216]

Fig. 12. Detailed overview of all decoder architectures used in the experiments
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APPENDIX B
HYPERPARAMETERS AND TRAINING DETAILS

Name Value
batch_size 4
num_epochs 100

init_learning_rate  le-4
end_learning_rate -1

weight_decay le-2
adam_eps le-3
min_disp le-3
max_disp 192

APPENDIX C
ABLATION STUDY DETAILS
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UNet depth Parameters Additional data |SlLog| absrel| sqrel| rmse] EPE | 3pxacc | d11 d2 1 d3 1t Inference time [s] |
1x encoder - 1x decoder 1.43E+07 N/A 8.561 0.050 0.462 2.186 1.110 0.064 0.963 0.985 0.994 0.199
2x encoder - 1x decoder 2.68E+07 N/A 8.933 0.054 0.486 2.421 1.374 0.076 0.956 0.981 0.993 0.250
1x encoder - 2x decoder 1.51E+07 N/A 9.170 0.062 0.680 2.604 1.544 0.079 0.955 0.979 0.991 0.223
2x encoder - 2x decoder 2.76E+07 N/A 7.939 0.043 0.346 2.006 1.003 0.059 0.967 0.988 0.995 0.231
3x encoder - 1x decoder 3.94E+07 N/A 8.601 0.044 0.349 2.089 1.053 0.064 0.964 0.987 0.994 0.277
1x encoder - 3x decoder 1.59E+07 N/A 8.318 0.051 0.560 2.342 1.243 0.060 0.959 0.983 0.993 0.213
2x encoder - 3x decoder 2.84E+07 N/A 8.873 0.055 0.694 2.437 1.318 0.066 0.960 0.981 0.990 0.261
3x encoder - 2x decoder 4.02E+07 N/A 9.447 0.063 0.815 2.552 1.472 0.073 0.955 0.979 0.990 0.257
3x encoder - 3x decoder 410E+07 N/A 8.400 0.054 0.506 2.266 1.259 0.067 0.956 0.982 0.993 0.252
1x encoder - 1x decoder 1.43E+07 LW 8.324 0.044 0.209 2.015 1.048 0.063 0.966 0.993 0.998 0.232
2x encoder - 1x decoder 2.68E+07 LW 8.822 0.046 0.280 2.112 1.095 0.066 0.961 0.988 0.996 0.250
1x encoder - 2x decoder 1.51E+07 LW 9.416 0.052 0.429 2.487 1.309 0.069 0.957 0.986 0.996 0.215
2x encoder - 2x decoder 2.76E+07 LW 8.373 0.043 0.208 1.923 0.968 0.059 0.971 0.992 0.997 0.257
3x encoder - 1x decoder 3.94E+07 LW 8.602 0.049 0.254 2.115 1.194 0.071 0.963 0.991 0.997 0.271
1x encoder - 3x decoder 1.59E+07 LW 8.391 0.050 0.377 2.218 1.170 0.070 0.957 0.985 0.996 0.249
2x encoder - 3x decoder 2.84E+07 LW 8.085 0.043 0.205 1.953 1.010 0.058 0.972 0.993 0.998 0.220
3x encoder - 2x decoder 4.02E+07 LW 8.386 0.043 0.219 2.004 1.036 0.063 0.968 0.993 0.998 0.262
3x encoder - 3x decoder 410E+07 LW 8.972 0.055 0.975 2.750 1.380 0.064 0.964 0.984 0.991 0.245
1x encoder - 1x decoder 1.43E+07 SSIM 8.166 0.044 0.303 2.041 1.067 0.064 0.963 0.988 0.996 0.290
2x encoder - 1x decoder 2.68E+07 SSIM 8.173 0.044 0.266 2.035 1.063 0.064 0.968 0.990 0.996 0.291
1x encoder - 2x decoder 1.51E+07 SSIM 8.560 0.055 0.694 2.497 1.349 0.069 0.954 0.980 0.991 0.289
2x encoder - 2x decoder 2.76E+07 SSIM 8.423 0.050 0.484 2.342 1.260 0.065 0.959 0.984 0.993 0.298
3x encoder - 1x decoder 3.94E+07 SSIM 9.589 0.051 0.479 2.293 1.261 0.069 0.956 0.978 0.987 0.303
1x encoder - 3x decoder 1.59E+07 SSIM 10.557 0.103 6.399 4.586 2.524 0.097 0.956 0.976 0.983 0.309
2x encoder - 3x decoder 2.84E+07 SSIM 9.292 0.073 1.732 3.047 1.742 0.067 0.949 0.971 0.982 0.307
3x encoder - 2x decoder 4.02E+07 SSIM 8.985 0.061 1.165 2.727 1.459 0.068 0.956 0.979 0.989 0.299
3x encoder - 3x decoder 4.10E+07 SSIM 9.801 0.074 1.240 2.930 1.728 0.080 0.949 0.975 0.985 0.344
1x encoder - 1x decoder 1.43E+07 SSIM+LW 8.418 0.044 0.233 2.083 1.097 0.067 0.961 0.992 0.998 0.319
2x encoder - 1x decoder 2.68E+07 SSIM+LW 8.368 0.045 0.245 1.981 1.020 0.063 0.967 0.990 0.997 0.337
1x encoder - 2x decoder 1.51E+07 SSIM+LW 8.296 0.045 0.302 2.093 1.064 0.059 0.965 0.988 0.996 0.337
2x encoder - 2x decoder 2.76E+07 SSIM+LW 8.102 0.040 0.199 1.904 0.931 0.056 0.971 0.994 0.998 0.306
3x encoder - 1x decoder 3.94E+07 SSIM+LW 8.295 0.047 0.233 1.966 1.062 0.063 0.967 0.991 0.997 0.331
1x encoder - 3x decoder 1.59E+07 SSIM+LW 8.769 0.057 0.560 2.350 1.330 0.075 0.951 0.980 0.992 0.322
2x encoder - 3x decoder 2.84E+07 SSIM+LW 8.711 0.046 0.284 2.201 1.143 0.065 0.959 0.984 0.995 0.357
3x encoder - 2x decoder 4.02E+07 SSIM+LW 8.647 0.046 0.222 2.124 1.089 0.066 0.967 0.993 0.998 0.341
3x encoder - 3x decoder 4.10E+07 SSIM+LW 7.994 0.040 0.194 1.917 0.928 0.055 0.974 0.993 0.998 0.355

Fig. 13. Experiment details of the ablation study
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Micro Aerial Vehicles around us

The mobility provided by aviation has been exploited by humanity for over a century. Not having to
accommodate crew allows drones to be smaller, and thus more agile in their employment. Once the
hardware on-board required for remote control or autonomous operation is smaller and lighter than the
human crew it is replacing, the deployment of such machines becomes potentially more economical.
This is especially true for flying vehicles, where an increase in local mass always leads to a 3-6 times
greater increase in the total mass of the aircraft [9], a phenomenon known as the snowball effect. By
eliminating the need for a crew, these vehicles can safely go to places that would otherwise be danger-
ous or even inaccessible to humans.

The fact that in the last 7 years, the global UAV market increased 11 times the size it was in 2015'
indicates that drones have proven their usefulness for many purposes. Four major areas of applica-
tion can be identified: hobby, industrial and commercial, public services, and military. Civilian use for
hobby purposes includes aerial photography and racing?3, among others. Many public services make
use of the mobility and birds-eye view provided by rotary wing aircraft (helicopters). UAVs may take
over some of these applications where the large size and the human crew are not necessary, being a
cheaper alternative to manned crafts. Such applications include wildfire detection in support of fire de-
partments 4. Search & rescue party may make use of UAVs to cover a large area®, which would require
an expensive fleet of manned aircraft otherwise. According to Silvagni et al. [52], in addition to locating
missing persons through visible and thermal cameras, UAVs can fill other domain and task-specific
niches, such as initiating controlled avalanches or delivering emergency survival kits. One of the most
well-known commercial applications of drones is aerial delivery, as companies such as Amazon have
shown serious interest in the technology®. There is much more potential and already established ap-
plications for commercial drones, especially in the inspection and maintenance of infrastructure. As
proposed by Quater et al. [48], UAVs equipped with thermal sensors can be used to detect several
failure modes of photovoltaic plants. Small UAVs (such as Micro Aerial Vehicles) are also used for in-
spection of indoor ducts, interiors of pressure vessels, and other hard-to-access areas ’. The concept
of wind turbine blade inspection via UAVs has been tested and validated by Car et al. [7], expanding
the potential application of drones even further.

The small mass and dimensions of micro aerial vehicles (or MAVs, small lightweight drones, some-
times as small as the 3 gram DelFly [14]), offer these aircraft a high level of transportability and the
ability to deploy them on short notice, with very little specialized equipment and infrastructure [19]. Ad-
ditionally, due to their light weight (when coupled with slow speed), MAVs are unlikely to cause serious

www.statista.com/statistics/913668/projected-global-uav-market-size/ [Retrieved on 16/11/2022]
www.thedroneracingleague.com/ [Retrieved on 16/11/2022]
www.multigp.com/ [Retrieved on 16/11/2022]
www.dronewatch.eu/chc-and-vrnhn-drones-wildfire-monitoring/ [Retrieved on 16/11/2022]
www.visionaerial.com/drones-for-search-and-rescue/ [Retrieved on 16/11/2022]

6yww . aboutamazon . com/news/transportation/how-amazon-is-building-its-drone-delivery-system [Retrieved
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injury or damage in collision ([26]). The inherently safer design means a simpler authorization process
for operation according to EASA regulations [2], as the risks are considerably lower to begin with. In
case of a remotely piloted MAV, the vehicle would fall into the open category due to its small size and
weight. In the case of autonomous operation, the MAV would fall into the specific category, requiring
official authorization after a meticulous risk assessment process. As the energy and dimensions of the
MAVs are smaller than those of other larger UAVs, the intrinsic ground risk of the UAS will be lower;
thus, fewer and simpler risk mitigation measures may be required to obtain authorization for the same
operation.



Collision avoidance 1n the air

While MAVs can be designed to be inherently safe, they also are expected to operate at very low altitude
(due to their limited range and endurance), where they are likely to encounter a dynamic and obstacle-
ridden environment. EASA regulations on UAV operations require the use of detect and avoid systems
for tactical air risk mitigation measure, when the UAV is operating beyond visual line-of-sight, in an
airspace where the chance to encounter a manned aircraft is any higher than extremely low [2] . Safe
operation must be pursued even beyond the level set out by regulation, in order to further improve the
feasibility of autonomous vehicles, and their perception by the public. Thus, drones should preferably
be equipped with some kind of collision avoidance system, when applicable. This subsection provides
a quick overview of the primary methods used for sensing obstacles.

Trajectory conflict resolution in traditional aircraft is done in a cooperative manner. In order to
detect a conflict, aircraft continuously share information about their state (location, altitude, heading,
speed, etc.), while also receiving similar information from nearby aircraft. The evasion maneuvers are
then agreed upon and executed by the aircraft involved. This procedure is often facilitated by the Air
Traffic Services or on-board systems, such as TCAS [1]. Cooperative methods build on the assump-
tion that objects involved in a trajectory conflict broadcast state information and will collaborate in the
evasion. As these are often not given at low-altitude operation, small drones must be prepared for
non-cooperative collision avoidance: the aircraft must be able to independently sense its environment,
recognize potential obstacles, project the future state of obstacles, identify trajectory conflicts, and plan
and execute an appropriate evasion maneuver, when necessary [4].

Yasin et al. [62] divide non-cooperative sensing methods into two categories, based on whether it
makes use of active or passive sensors. The former emits some radiation which reflects off of objects
and is then picked up by a receiver. Several properties of the object can be conferred from knowledge
of the emitted and received signals. Most importantly, the bearing is found from the receiver orientation
when the reflected signal is detected, and the range is calculated from the time that passed between
the transmission and reception of the signal [12]. More advanced systems may be able to find addi-
tional information, such as relative speed, calculated from the Doppler shift between the emitted and
received signal [3]. Laser-based LIDAR, radio wave-based RADAR, and sound-based SONAR are a
few commonly used methods of this category. Active sensors tend to be accurate and require little
processing power. They have the additional advantage of not having to rely on external sources for
illumination.

Passive sensors rely on signals emitted by the scenery, which are then reflected by objects, or sig-
nals emitted by the objects themselves. The signals are captured and processed by the aircraft in order
to create a picture of its environment. These sensors are cameras that are most commonly operating in
the visible, infrared, and ultraviolet ranges. Passive methods are not exclusive to the electromagnetic
domain; Mizumachi et al. [44] for example experimented with the detection of car traffic with acoustic
sensors. Traditional cameras, which are a very common consumer product, are well developed and
inexpensive. In addition, they are small, lightweight and can capture high-resolution images in three
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channels. However, they are heavily dependent on environmental conditions, such as illumination and
a clear atmosphere. Infrared sensors are not limited to daylight, but are most often more blurry and of
lower resolution than traditional cameras. Both types of cameras capture a very large amount of infor-
mation, the processing and interpretation of which is a challenging problem. This research attempts to
address this challenge.

The performance of a sensor must be measured against the associated size, weight, required power
and cost (SWaP-C)'. It is useful to describe these properties with a single metric, as often one can be
traded for the other three. SWaP-C is of special concern for drones, as additional size and weight leads
to the snowball effect similar to other aircraft, power is often limited on UAVs, and the use of expensive
components degrades one of the primary selling points of drones, the low cost. Active sensors have a
prohibitively high SWaP-C for deployment in small UAVs [62]. Thus, most research, including this one,
investigates detection with passive sensors, such as cameras.
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Vision-based depth perception

In this chapter, the theoretical background and the evolution of learning-based depth estimation are
discussed icomplementins of monocular and stereo vision. Only solutions with available publications
detailing the design, implementation and testing of the program are considered. As primary perfor-
mance indicators, absolute relative error, root mean square error, and run time are used, as reported
by the authors on the KITTI2015 or NYU-DepthV2 dataset for monocular networks and KITTI stereo
for stereo networks. In section 3.1 and in section 3.3, the evolution and the state-of-the-art in deep
learning-based monocular and stereo depth estimation are presented, respectively. In section 3.5, a
few more algorithms are introduced, which were assumed to perform better with the limited compute
available on-board of MAVs. Section 3.6 discusses the few architectures in which the fusion of multiple
different branches has been utilized in depth estimation. Finally, section 3.7 discusses the relevance
of self-supervision and presents a couple of studies that have achieved notable results with it.

Depth perception is the ability of the observer to judge the distance of an object'. In computer vi-
sion, the task of dense depth estimation is to find the pixel-wise depth map associated with a projection
of the scene. There are three subcategories of this task, the depth estimation from a single image,
images taken at the same time with multiple cameras, and consecutively taken images with a single
camera as it traverses in space. This subsection introduces the underlying principles, advantages, and
disadvantages of each of these.

3.1. Stereo depth estimation

Figure 3.1: The principles of disparity in stereo vision has been harnessed for depth estimation for much longer than the
emergence of computer vision. "Target practice. Range finder at work.” by Harris & Ewing, 19132

"https://www.aao.org/eye-health/anatomy/depth-perception [Retrieved 22/11/2022]
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Stereo depth estimation (SDE) works with multiple cameras with a known and fixed focal length
and offset. Due to this offset between the cameras, when a pair of pictures is taken simultaneously, the
position of objects on the produced image pairs is shifted. The shift in corresponding pixels between
the images is the disparity. After obtaining the disparity, the depth of the corresponding pixel can
be computed through triangulation as shown in figure 3.2. This leads to the expression 2 = B f d~ !,
where Z is the estimated depth. The baseline B and focal length f are both known. The choice of these
properties will affect the performance of the setup. For example, a wider baseline generally results in
more accurate long-distance measurements but also requires a larger structure to mount the cameras
on. Given the above expression, the challenge of SDE is to obtain an accurate and reliable disparity
for each pixel that makes up the disparity map. The depth map is limited to the field-of-view (FoV)
overlap of the two cameras. Consequently, traditional stereo matching is not able to resolve points that
are occluded to one of the two cameras. The reliability of pixel matching is greatly reduced in areas of
repetitive, fin, or no texture, since the algorithm is likely to find several similarly good matches. When
relying only on discrete disparities, the disparity error will have a theoretical lower limit of 0.5 pixel
([46]). Disparity errors have a larger impact on the depth estimate for distant pixels (as the disparity
decreases inversely with increasing range), and so the maximum range of practical stereo matching
is limited by the camera resolution. This can be mitigated both on the hardware and software level.
The former means higher resolution cameras, cameras of larger focal length, or longer baseline. On
the software level, instead of discrete disparities, calculating continuous disparities (for example, via
soft argmin[32]) improves the sub-pixel level accuracy. Finally, the addition of a second camera and
the corresponding structure for spacing them result in an increase in weight compared to monocular
methods.
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Figure 3.2: Relation between depth z, disparity d = z» — z, distance between cameras B, and focal length 13

3.2. Model-based stereo matching

Finding the disparity at distinct points, such as edges and corners is quite straight forward, and non-
learning-based computational methods were developed before the popularization of deep learning tech-
niques. Local methods calculate the matching cost (often based on the color and intensity of the pixel)
for each pixel between the two images. Patches centered on the pixel in question instead of individual
pixels may be used for matching in order to obtain a more robust cost. Global methods find the minimum
of a single cost function defined by the disparities corresponding to every pixel. This is often referred
to as the energy function. Hirschmuller[28] proposes an in-between solution, semi-global matching
(SGM). The cost for a given pixel is defined as the sum of the pixel matching cost and a smoothness
constraint, penalizing disparity changes of the neighboring pixels. The aggregated cost for a pixel is
the sum of the costs to reach that pixel from 8 directions. The disparity of that pixel is for which this ag-
gregated cost function is minimum. The disparity is found at the minima of the aggregated cost function.

https://www.loc.gov/pictures/item/2016864982/ [Retrieved 09/06/2024]
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3.2.1. Convolutional Networks in stereo matching

While due to their ease of application, semi-global matching algorithms stay relevant today, they pro-
duce noisy results, littered with outliers. Model-based matching algorithms such as SGM stay relevant
even today, due to their ease of application, no required training, and consequently their ability to gener-
alize to all domains. Substantial improvement in terms of accuracy was achieved with the proliferation
of deep convolutional networks. One of the first solutions for disparity map estimation from stereo im-
age pairs via CNNs was DispNetCorr (a version of their base architecture DispNet, with modified for the
task of disparity estimation), a demonstrator network by Mayer et al.[42] for their stereo scene flow train-
ing dataset. An image pair is first passed through a feature extractor involving a single convolutional
layer. The two produced feature spaces are then fused via 1D correlation along the epipolar line. The
rest of their architecture follows the traditional encoder-decoder style fully convolutional network with
skip connections. It is worth noting that the decoder is made of alternating convolutional and upconvo-
lutional layers, as opposed to pure upconvolutions. In training, their dataset was augmented via spatial
and chromatic transformations, such as cropping, and color, contrast and brightness filters. GCNet by
Kendall et al.[32] manage to achieve better accuracy through more elaborate architecture design, based
on engineering insight into the geometry of disparity calculation. Consequently, the GCNet pipeline is
reminiscent of that of traditional stereo matching algorithms. Once again, instead of using raw image
pixels, the stereo pair is fed into a feature extractor. For each image, a 4D cost volume is constructed
by concatenating each extracted feature with their corresponding feature from the other image. Kendall
et al.[32] find that the use of such cost volumes leads to better performance than the direct distance or
correlation computation between the features (as it is done in DispNetCorr). The cost volume includes
the matching cost for each pixel for each possible disparity. The regularization, aimed at refining the
disparity estimates by learning the context, is performed via a 3D encoder-decoder network. The use
of 3D convolutions greatly increases the computation cost compared to 2D convolutions. At the same
time, however, subsampling also decreases the feature space much faster, as it is done along all three
dimensions. Such encoder-decoder architecture comes with the same drawback as the CNNs used for
MDE: the fine details are washed out at the deeper layers. This was addressed in GCNet via the use
of skip connections between the encoder and decoder layers with outputs of the same scale. Finally,
in order to obtain the disparity map from the final feature space, the differentiable operator soft argmin
is defined as ZizoDm” d x o(—cq), where D,,,.. is the maximum disparity, and ¢, is the predicted cost
for disparity d. It has the advantages over the traditional argmin operator that it is differentiable and
continuous, allowing back-propagation training and sub-pixel level disparity estimation.
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Figure 3.3: The general procedure that is commonly utilized by cost volume-based stereo matching algorithms: extraction of
features, construction of a cost volume, residual encoder-decoder of 3D convolutions, and the solution to the cost minimization
problem.

The methodology and pipeline of GCNet is commonly used by other stereo matching algorithms,
making use of the 3D convolutional regularization module of a cost volume. A more general architec-
ture following the same concept is shown in figure 3.3.
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Li et al.[34] identify the three primary challenges of SDE as (1) dealing with imperfect rectification, (2)
accurately estimating the disparity in areas with repetitive or no texture, and (3) finding an accurate dis-
parity in fine details such as thin nets. In their proposed architecture, CREStereo, Li et al.[34] address
each of these difficulties. (1) In cases where some distortion remains in the image pair even after rectifi-
cation, the corresponding points will often not be on the same search line. To address this vulnerability
of SDE, a windowed local search is applied along the epipolar line, with alternating linear and square
search windows. Due to the local correlation computations, the generated 3D cost volume is much
smaller than the 4D cost volume of GCNet in the previous paragraph. (2) In an attempt to reduce the
disparity error in repetitive or textureless areas, the sample points in the search window are offset by a
certain amount. The offset parameters are learned during the training phase. (3) Finally, the matching
of fine and high detail points needs to happen at high resolution and high level features, as such details
would wash out at the lower scales of deep levels. Thus, a cascaded recurrent network is adopted,
which upsamples the previous, lower scale predicted disparity map and uses it as the initialization of
the disparity map, predicted from the larger-scale input image. The very first cascade is initialized
with a zero space at the 1/16th scale of the original input. As Li et al.[34] conclude, such a network is
highly dependent on the careful design of the training data, while also suffering from efficiency issues,
asitis not able to run in real time on small devices. Still, this algorithm runs over twice as fast as GCNet.

Cheng et al.[11] build on the idea of constructing a large cost volume and processing it via 3D
convolutions, similar to GCNet and the mock architecture in figure 3.3. The four major steps of the
pipeline are the extraction of image features with a 2D convolutional feature net, the construction of the
cost volume from the left and right feature maps, the refinement of this volume via a 3D convolutional
feature net, and the disparity prediction (note that, as opposed to Kendall et al.[32], Cheng et al.[11]
refer to the volume constructed from the left and right features as "feature volume”, and the output of
the 3D convolutional net as "cost volume”). Instead of carefully designing the feature extraction network
and the matching network, they apply neural architecture search (NAS) to automatically design them.
The search operates on two hierarchical levels. First, on the cell level, it defines what operation shall
be performed in a cell. A cell may have two inputs, three operations, and one output. The possible
cell operations are skip connection and 2D or 3D convolution for the feature net and the matching net,
respectively. Second, on the network level, specifying the spatial resolution of each layer. The search
space for the network level search is constructed by defining the lowest spatial resolution and the
number of desired layers. By constraining the search space that the NAS has to parse through (limiting
the possible operations in the cells, and pre-defining the smallest scale and the depth of the networks),
the GPU memory requirement is kept at a manageable level. The architecture search revealed a
number of lessons that can be learned for future stereo matching networks. The feature extraction
network does not need to be very deep (as LEAStereo already achieves good results with a depth of
six layers). However, keeping the resolution high during the feature extraction and thus constructing a
larger volume from the extracted features was found to lead to better accuracy. And finally, the encoder-
decoder structure, which is made from a series of convolution operations, followed by deconvolution
operations, was found to be not necessary for either the feature extraction or the matching net, as the
architectures found by the NAS include both at a seemingly random order. LEAStereo[11] by Cheng et
al. represents the state of the art on the KITTI stereo benchmark.

3.3. Monocular depth estimation

Monocular depth estimation (MDE) is the task of dense depth estimation from a single view image.
While humans innately perform well in this task (relying on monocular visual cues such as occlusion,
perspective, relative size of familiar objects, etc.), it has been a challenging problem in robotics: since
infinitely many different 3D scenes can produce a given 2D projection, the reconstruction of depth is a
mathematically ill-posed problem. Using task-specific insight and prior knowledge of the environment,
some depth information can be extracted from simple machine learning approaches, such as sky seg-
mentation. First proposed by McGee et al. in 2005,[43] a sky segmentation algorithm classifies each
pixel of the input image as either sky or no-sky, where the everything falling into the latter category is
considered to be obstacles. The classification is based on hand-crafted weights calculated from the
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Figure 3.4: The miniature aircraft appear to be much bigger and thus further away than they really are. Madurodam in 2007,
by Malis - Ondfej Malek*

color of the pixels. Such algorithms are limited in scope and provide only crude estimates. For example,
the sky segmentation approach is only viable with a visible sky (thus only operable outdoors), and the
depth resolution is limited to two extremes: very large (sky) and relatively small (no-sky)[13].

When looking at approaches estimating the true depth, one of the primary challenges of MDE is the
fact that most monocular visual cues, such as interposition (or occultation), perspective, or relative size,
only describe the relative depth between the objects. The global scale is captured through familiar size,
relating objects of known size to all others in the scene. For this task, the MDE algorithm must also
consider contextual information and long (spatial) range dependencies in order to produce an accurate
depth map. For example, semantic information may be utilized to improve the depth estimate[51, 20].

Saxena et al.[50] realized the importance of contextual information, which they attempted to capture
by extracting features from an image (via hand-crafted convolutional filters) and relating them to each
other via the Markov Random Field method. Although still relying on task-specific prior knowledge
(shown in the design of the convolutional filters), the Make3D of Saxena et al.[50] was intended to be
general purpose, not limited to a single type of environment. With the rise of popularity of deep neural
networks, MDE has drawn a lot of attention as it offers more alternatives to extract features and capture
contextual information in an image. MDE only requires a single camera, promising a very low weight
solution for range estimation (see ?7?), which is always of special interest in aviation. In addition, it is
a standalone system that does not require any knowledge of the state of the vehicle it is deployed on.
In theory, MDE does not have a limited depth range, and can predict the distance to both very far and
very close points. However, it struggles to predict the global scale of the scene. MDEs use the scale of
objects with known size as they appear in the image to determine the scale of the scene[40]. However,
the familiar object used as reference may not have the same size as inferred from prior knowledge or
training data. For example, the presence of people in the background and the miniature aircraft in the
foreground of figure 3.4 create an uncertainty of global scale. This significantly increases the absolute
error of the estimated depth map. Finally, reliance on known objects limits the generalization capability
of learning-based MDEs, making them reliable only in domains that are well represented in the training
data.

Some of the first and arguably the most influential pioneers of tackling MDE via deep learning algo-
rithms were Eigen et al.[18]. In their paper, they propose a convolutional neural network (CNN) with
two branches: a coarse and a fine network. The coarse-scale convolutional network increases the
receptive field of the convolution operator via a series of pooling operations, in order to extract global
information. The last layer in this branch is a fully connected layer, which rescales the 4096 chan-
nel deep feature space into a single channel depth map. The fine-scale network does not downscale
anymore after an initial convolution with pooling, which reduces the resolution of the feature space
to match the one of the coarse output. The course depth map is concatenated with the fine feature
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space, which is then passed through two more layers of convolutions. As mentioned before, these do
not involve pooling, thus the resolution is retained. Note that the final depth map is still considerably
smaller in resolution than the input image, e.g. an input of 576x172 pixels from the KITTI benchmark
only leads to a 142x27 depth map. The other major contribution of this paper is the scale-invariant er-
ror, equation (3.1) where y; and y; are the predicted and the ground truth depths, respectively, at pixel
i. This measure represents the depth error of the pixels relative to each other. This means that the
prediction of the global scale, which accounts for about one-fifth of the total error, has less of an impact
on the scale-invariant error. This measure, or some versions of it, still remains a popular option both
in benchmarking and as a training loss function. Incorporating the scale-invariant error in the training
loss has the beneficial effect of forcing the system to focus on more accurate relative depth prediction,
which MDEs are generally good at.

2
1 1
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Fully convolutional networks in monocular depth estimation

The major breakthrough in the evolution of MDE was the adoption of fully convolutional networks with ar-
chitecture resembling the encoder-decoder scheme of autoencoders. Such architectures, also known
as U-nets, were pioneered by Garg et al.[24] and Laina et al.[33] Early U-nets often made use of al-
ready existing deep networks, originally designed for other tasks such as semantic segmentation or
image classification, as the encoder (also referred to as backbone). For example, Laina et al.[33] build
on ResNet-50[27] as the backbone. Encoders incrementally increase the receptive field of the con-
volutional operator by reducing the spatial resolution of the feature space via down-sampling (spatial
pooling) at each layer. In the meantime, the number of channels is increased in order to retain more
information. A typical encoder-decoder architecture is shown in figure 3.5. A large receptive field is
essential for dense pixel-wise prediction tasks, since global information can only be evaluated when the
receptive field is sufficiently large. MDE infers the global scale by comparing the relative size of known
objects (from training) to the scene[40]. The spatial resolution of such networks at the deepest layers is
too small to be used in accurate, pixel-wise prediction, thus an additional step is required: the decoder.
Using a fully connected layer for transforming the deep feature map into a high spatial resolution depth
map would lead to an unreasonably large number of parameters. Instead, Laina et al.[33] replace the
fully connected layers of ResNet with a series of deconvolutional layers (convolution with up-sampling),
making up the decoder section of the architecture. The deep feature space is passed through a series
of deconvolutional layers (convolution with up-sampling) in order to obtain a spatial resolution matching
the input. When properly trained, the result is a dense depth map with considerably higher resolution
than before.

Two commonly used techniques for lessening the loss of spatial resolution in the encoder are the
use of skip connections between the encoder and the decoder, and the use of a multi-scale network.
The architecture proposed by Long et al.[38] for semantic segmentation is an encoder-like CNN with
a single up-convolution layer to obtain a pixel-wise prediction. They hypothesized that finer details of
the feature space, while still present in the upper layers, are lost at the deeper layers. This was proven
correct, as they managed to obtain more detailed semantic maps by fusing the output of an earlier layer
with the final prediction layer through a skip connection. It was also found that the earlier layer output
(i.e. feature map with higher spatial resolution) they fuse, the finer the final semantic map will be, further
proving their hypothesis. Garg et al.[24] adopted this idea and applied it to their encoder-decoder with
AlexNet backbone. As can be seen in figure 3.5, skip connections are used to take the output of the
second and fifth layers of the encoder and merge them into the second and third layers of the decoder.
Following the coarse-to-fine approach, the decoder feature maps are upsampled by a factor of 4 (twice
both width and height), while the encoder feature space is collapsed into a single channel feature map
via a 1-by-1 convolution. The two are then added together element-wise to reach the refined feature
map. Similarly, Xie et al.[59] sample their deep convolutional network at five different depths, before
each pooling operation. These are brought to the same scale through deconvolution and merged via
element-wise addition. The resulting feature map is then used to synthesize a right-view image from a
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Figure 3.5: The encoder-decoder architecture of Garg et al.[24]. The colored blocks represent layer operations, specifically
red being convolution, yellow being pooling, purple being normalization, green being fully connected layers, and blue being
upsampling.

left-view image (more about image warping and left-right consistency in section 3.5.2).

Multi-scale networks have already been touched upon, as the work of Eigen et al.[18] makes use of
a two-scale architecture. This was then taken one step further by Eigen and Fergus[17] via the addition
of a third scale, and was shown to produce good results with fine details. Many modern multi-scale
MDE CNNSs are based on pyramid pooling (for example DORNI[23], or the architectures by Song et
al.[53] and Chen et al.[10]) This method was first adopted to dense pixel-wise prediction in PSPNet by
Zhao et al.[64], in order to improve the processing of global information. As noted by Chen et al.[10],
the challenges in semantic segmentation are often very similar to those of MDE. They build a feature
pyramid by scaling the input and then extracting features via a deep convolutional encoder. The small-
est feature space is decoded with a residual convolutional network in order to obtain an initial coarse
depth map estimate. This is then progressively up-scaled and refined by concatenating subsequent
levels of the feature pyramid and passing it through a residual convolutional network.

Ranftl et al.[49] state that the inherent problem with the deep CNN encoder is the loss of feature
resolution and granularity at the deepest layers. As opposed to classification tasks (which most com-
monly used backbone architectures were originally designed for), for dense pixel-wise prediction a
large spatial resolution (to preserve detail and nuance in the resulting depth map) and a large recep-
tive field (to account for long-range relationships in the image and/or feature map) are both essential
for accurate predictions. The latter may be addressed by increasing the kernel size[45]. Still, a large
and dense kernel quickly increases the number of parameters to an unreasonable level. This can
be somewhat mitigated via dilated convolution, as proposed by Yu and Koltun[63]. The dilated con-
volution increases the size of the kernel, and thus the receptive field of the convolution, while keep-
ing the number of parameters the same. This is achieved by skipping every I-th pixel, according to
(F*k)(p) => s+1-t=pF(s)k(t), where | is the dilation factor. Fu et al.[23] have successfully ap-
plied this concept to MDE in their DORN network.

Transformers in monocular depth estimation

However, the accuracy of fully convolutional MDE networks was limited by drawbacks in the backbone.
On one hand, deep architectures were necessary in order to increase the receptive field of the con-
volution to identify long-range relationships. On the other hand, the repeated downsampling needed
to achieve this leads to the loss of detail and granularity that the decoder struggles to retrieve[49, 61].
This granularity is essential for accurate pixel-to-pixel mapping of the input image to the output depth
map[18]. The solution came with the invention of the Transformer module. Transformers were originally
intended for the field of natural language processing; the concept was adopted for image processing,
in order to harness its outstanding ability to capture long-range relationships. The visual Transformer
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(ViT) was first introduced by Dosovitskiy et al.[16] for the task of image classification. ViT applies the
concept of “bag-of-words” from natural language processing by splitting the image into non-overlapping
square regions. These patches are flattened into vectors of the same size via a trainable linear projec-
tion. The vectors are appended with a positional embedding. Ranftl et al.[49] was among the first to
successfully apply Visual Transformers to the task of MDE. They found that better performance can be
achieved when a convolutional feature extractor is applied to the image instead of directly embedding
the image patches. In this case, the desired vectors are created by applying the trainable embedding
function to the resulting feature space. Every “word” is related to all others through the multi-headed
self-attention mechanism of the Transformers, giving ViT a global receptive field. Since the “words”
perfectly correspond to their image region of origin, ViT outputs can simply be reconstructed by order-
ing the “words” according to the original spatial location. Multiple layers of Transformers are used in
order to create a multi-scale feature pyramid. The “words” are then reassembled into an image-like
feature map at multiple scales of the original input image. The multi-scaled feature maps are fused into
each other via a series of convolutions and upsampling operations. Ranftl et al.[49] outperformed the
state-of-the-art solutions of the time, with only a minor increase in computational cost.

When it comes to accuracy in learning-based MDE, the current state of the art is dominated by solu-
tions incorporating both convolutional layers and Transformers. The validity of the combination of these
two methods is shown by Yang et al.[60], referring to "lack of spatial inductive bias” of pure Transformer
architectures, a weakness that was noted by Dosovitskiy et al.[16] previously. In such a combination
network, the convolutional operators are commonly used for feature extraction and the fusion and up-
sampling of multi-scaled feature maps after the Transformer-based architecture. Researchers have,
however, found a variety of ways to apply Transformers in MDE architectures. In the pilot study of Li
et al.[36], they observed that architectures using ViT in their encoders perform better on distant ob-
jects than fully convolutional ones. Interestingly enough, this is switched when estimating the depth on
near objects. In order to capture the best of both methods, they make use of two separate encoder
branches, one based on Transformers (proceeding patch embedding, just as described in the previous
paragraph) aimed at modeling long-range spatial correlations, and a CNN encoder aimed at extracting
local information. As the CNN branch is only supposed to collect local information in this architecture, it
is kept very shallow, only incorporating the first block of ResNet. This improves the runtime, and avoids
the loss of detail. The fusion of the outputs of these two independent branches is not an easy task,
as they operate on different "languages”, so one must “interpret” between the two. The hierarchical
aggregation and heterogeneous interaction (HAHI) module designed for the DepthFormer[36] fulfills
this purpose: HAHI learns to model the affinity between the features of the two branches via cross-
attention. Finally, the decoder is a regular up-convolutional network. One drawback of this architecture
is the liberal use of Transformers, leading to elevated memory requirements. The authors mitigated this
issue via the use of Swin Transformers[37] replacing regular ViT. To further reduce the memory cost of
such large-scale attention, a deformable attention operation is proposed, which only attends only to key
sampling vectors, the selection of which is done in a learnable manner. A contribution of DepthFormer
from Li et al.[36] which is of special interest to the topic of fusion of stereo and monocular depth cues,
is the fact that the HAHI module, being input-agnostic, may be used to enhance a monocular estimator
with the features of a stereo one.

So far, most discussed solutions have framed MDE as a regression problem, i.e. the architecture
is trained to predict the exact depth value corresponding to a pixel. An alternative way to frame the
problem is classification, where the architecture is trained to select one from a predefined set of cate-
gories (classes) which it predicts is the most likely to fit the input data. In terms of depth prediction as a
pixel-wise classification problem, the set of categories is often defined as discrete intervals of depth[23].
These intervals will be referred to as bins. Such classifiers, while managed to achieve better overall
accuracy than previous regression models, are, however, limited in depth resolution due to pre-defined
discrete bins. Bhat et al.[6] propose a classification-regression architecture named AdaBins, which
sets the intervals through predicting the depth distribution of a given input. Instead of making use of
predefined bins, it uses this predicted distribution to define the intervals, making the bins adaptive. Bhat
et al.[6] note the susceptibility of this classification strategy to depth artifacts and propose to calculate
the final depth for each pixel as a linear combination of bin centers and the probability corresponding to
those bins (Softmax from the classifier). BinsFormer by Li et al.[35] improves on AdaBins by achieving
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a better global understanding of the scene for bin generation, through the integration of the Transformer
module with the convolutional encoder-decoder. Instead of placing the CNN and the transformer mod-
ule one after the other, the transformer inputs are taken from the convolutional decoder layers. In
this way, the bins are generated by attending to the multi-scale decoder feature pyramid. Additionally,
there is a major difference in the way AdaBins and BinsFromer use the convolutional features. The
CNN module of the former produces a deep feature representation with multiple channels only to be
used for bin generation. The latter, however, finds a similarity map between output of the convolutional
branch and the bin embeddings (similarity is calculated via the dot product), from which the probabil-
ity distributions are calculated (via softmax, just like in AdaBins). Thus, a higher level of integration
between the CNN and the transformer branches is achieved both for the bin generation and the final
depth prediction. At the writing of this summary, BinsFormer achieves the lowest Slerror and lowest
RMSE on the KITTI and the NYU-Depth v2, respectively.

3.4. Optical flow

<«

oTo
Figure 3.6: Shift in feature location between images with temporal offset and one-dimensional ego-motion

The third option is the use of optical flow. Similarly to stereo vision, it calculates the depth from
the shift in feature positions between an image pair. The image pairs are produced by a single camera
traversing through space, taking pictures, one after the other. Thus, the shift in image features between
images is the result of a temporal offset in the camera trajectory. In such a case, instead of disparity,
the shift is called optical flow. With accurate knowledge of the camera trajectory, the scene depth
can be calculated via triangulation, similar to stereo matching[47]. A simplified example can be seen
in figure 3.6, where the observer is limited to forward motion only. « denotes the location where the
feature appears on the image. The depth estimate 2 can be found as z = uoﬁ, where Au = uqy —
ug. There are three very important limitations to the application of this method. First, the disparity-
to-depth operation relies on accurate knowledge of the motion of the camera. Drones commonly rely
on fused measurements from inertial sensors and satellite-based positioning systems for navigation.
The position estimate error of such a set-up can be measured in the order of 10~![m] or higher[8,
58]. Second, the optical flow is approaching zero near the direction of the velocity vector (Focus of
Expansion). When the optical flow is small, even small errors in flow estimation can lead to large errors
in depth. This is very troubling, as obstacles in that exact area are the most likely to make contact
with the vehicle. Finally, depth estimation from optical flow is only possible when all objects in the
scene are stationary or if their position is known at all times. Otherwise, the extra flow resulting from
the unknown motion of the object will lead to erroneous depth estimates. Based on these limitations,
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optical flow-based methods will not be considered for the proposed solution of this research project.

3.5. Accuracy-runtime Pareto optimal depth estimation

Until this point, section 3.5.1 and section 3.5.2 have been exploring the evolution and the currently
best performing solutions in depth estimation with respect to precision. While the state-of-the-art may
produce amazingly detailed depth maps, they are often designed with little or no regard to the hardware
limitations constraining their real-world application. When making use of depth prediction on board of
MAVs, the processing of images must be done in real time, with computers and batteries light enough
so that the drone can maintain its mobility. Thus, a trade-off must be made between accuracy and
runtime when choosing from possible depth estimation solutions. The Pareto frontier is constructed
for all mono and stereo depth estimators (see figure 3.7). Both plots have been cropped for better
readability. A selection of corner cases are to be concisely introduced in this subsection. A trend can
be found, which generally applies to both MDE and SDE solutions: high accuracy architectures tend
to be designed for CPUs, while architectures with fast runtime tend to utilize GPUs. Additionally, SDE
solutions appear to be almost an order of magnitude faster than MDE solutions. Note, however, that
direct comparison is difficult, as MDE and SDE use different metrics to evaluate accuracy.
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Figure 3.7: Accuracy - runtime plots, with Pareto frontier and some select corner cases

3.5.1. Monocular Depth Estimation

Both the DepthFormer and the BinsFormer have been introduced in section 3.5.1. SideRT[51] is based
on the creation of a feature pyramid via a set of Swin Transformers, which are pre-trained on ImageNet
by Deng et al.[15] The linearly embedded non-overlapping image patches are direct inputs to the trans-
formers, as opposed to applying a convolutional feature extractor first. Swin Transformers are used as
more efficient (in terms of memory) alternatives to ViTs. The feature pyramid of 4 levels corresponds to
decreasing scales and increasing channel dimensions. The lowest scale feature map is then progres-
sively fused with the higher scale feature maps in order to refine the prediction. This fusion is performed
in two stages. Cross attention between the two adjacent feature maps is used for the first fusion, which
was shown to be able to capture dependencies of long spatial range, such as semantic information.
The second stage of the fusion is designed to focus on local details. After upsampling the lower scale
feature map to match its neighbor, the two are summed up element-wise. The resulting map is further
refined by passing it through a relatively shallow network of perceptrons. This is intended to correct for
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aliasing that may have occurred in upsampling. This second step of upsampling and anti-aliasing is
repeated until the desired output resolution is reached. SideRT achieves a good compromise between
accuracy and speed: when making use of Swin-T (the smallest of Swin Transformers), it runs 2.5 to
5 times faster than solutions of similar accuracy (DPT[49] and LapDepth[54], respectively), reaching
over 83 images processed per second, on an NVIDIA GeForce RTX 2080 Ti GPU, i.e. a runtime of
0.012 seconds.

3.5.2. Stereo Depth Estimation

With HITNet, Tankovich et al.[55] developed an SDE architecture that is able to generate accurate pre-
dictions at a fast pace, allowing for real-time application. Both images of the pair are passed through
a relatively shallow encoder-decoder style CNN for feature extraction. The encoder layers of each
scale are connected to the corresponding decoder layers with skip connections. The feature maps of
different scales from the decoder layers form a multi-scale feature pyramid. The disparity between the
feature map pairs (from the left and right images) at each scale is calculated in a windowed manner,
producing a set of local disparity maps. While the matching cost is computed for all disparities, only the
location of the best match is kept, eliminating the need to store and process a large 3D cost volume.
These crude disparity estimates will be used as initializations for each scale for further refinement. The
disparity maps are refined from small to large. Using a CNN module, the confidence in the prediction of
the disparities is calculated for each tile, and the full map is upscaled to match the resolution of the next
disparity map. For each location, between the tiles of the upscaled prediction and the initial prediction,
the one with the highest confidence is selected. The final refinement step is performed two more times
in order to reach the input resolution. In the ablation study (in the supplementary material® of Tankovich
et al.[55]), it was found that a larger network, i.e. a deeper feature extractor with more scales and thus
more refinement steps, does not lead to better results on the KITTI dataset due to overfitting. The
runtime of HITNet for a stereo pair from KITTI was found to be 0.019 seconds when tested on the Titan
V GPU.

Ferrera et al.[21] propose a fairly shallow (and thus light weight) CNN named Dil-Net. It generates
a disparity map from the stereo image pair, reinforced with preliminary disparity predictions from a
model-based branch (such as SGM, introduced in section 3.5.2) and a data-based branch (a CNN,
pre-trained on the benchmark dataset). The full architecture, including the fusion module and the 2
branches, is named FD-Fusion. The three sources of data (the image pair and the two preliminary
disparity maps from the two branches) are concatenated and are passed through Dil-Net. Although the
spatial resolution is reduced by a factor of 4 at first, instead of further gradual downsampling, it achieves
a sufficiently large receptive field through the use of dilated convolution (introduced in section 3.5.1).
The extra information obtained from the model-based branch enables the employed neural networks to
remain relatively shallow. The use of dilated convolution further limits the number of parameters, which
is essential for fast runtime.

3.6. Fusion

As mentioned in chapter 3, the strengths and weaknesses of the stereo and monocular methods are
such that the two could potentially complement each other very well when fused properly. Very little
research has been done on the explicit fusion of stereo and monocular methods in deep learning-based
depth estimation. One of the first to consider the topic was Facil et al.[20]. Their solution creates two
separate depth estimates, one via a convolutional MDE, and one with a traditional model-based stereo
matching algorithm. The two are then fused based on a hand-crafted rule, a weighted interpolation of
depths for pixels calculated by their traditional stereo matcher. The weighing model is intended to cap-
ture semantic information, in order to assign similar depths to neighboring pixels, when those are likely
to belong to the "same local structure”. The calculation of the probability of pixels belonging to the same
structure is based on their relative proximity and depth gradients. Martins et al.[41] proposed a network
fusing two dense depth maps, one from a monocular CNN and one from model-based stereo matching
algorithm. Just like before, the fusion follows a set of hand-crafted rules: the stereo measurements

Syww. openaccess.thecvf.com/content/CVPR2021/supplemental/Tankovich_HITNet_Hierarchical_Iterative_CVPR_
2021_supplemental.pdf [Retrieved on 16/11/2022]
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are used where its confidence is high or where the measured depth is similar to the corresponding
MDE estimate; and the MDE estimate is used at occluded areas, and where the confidence of the
corresponding stereo measurement is low. Unlike the interpolated fusion of Facil et al.[20], the fusion
of Martins et al.[41] results in a sort of patchwork of stereo measurements and monocular estimates.

The general fusion of feature maps is a much more studied topic. One of the simplest ways to
merge two feature maps, as demonstrated by Ferrera et al.[21], is to just concatenate them, and have
a deep convolutional network to merge them into an improved feature map. The convolutional SDE
network of Zhong et al.[65] concatenates the feature map extracted from one image with the feature
map of the other, but shifted by a disparity in a given range. This is repeated until the full disparity
range is exhausted, resulting in a 4D feature volume, which is then processed with a 3D CNN. Finally,
DepthFormer[36] makes use of fusion to combine the benefits of fully convolutional and transformer-
based networks for MDE. They accomplish this fusion of two separate branches at the deep feature
level, i.e. at the bottleneck of encoder-decoder structure. As the two branches learn very different fea-
ture representations, a cross-attention based hierarchical aggregation and heterogeneous interaction
(HAHI) module is proposed to resolve the difference.

Depth completion is the task of creating a dense depth map from a single still image and a corre-
sponding sparse but reliable input depth map (such as a LIDAR point cloud). Solutions for this task
most often involve some sort of fusion between an image, and the corresponding sparse depth map.
One of the simplest approaches, termed “early fusion” by Jaritz et al.[31] is the method of concatenat-
ing the sparse map and the RGB image before feeding it into a learning network. Mat et al.[39] did just
that, with the deep network following an encoder-decoder architecture. “Late fusion” is the process
of applying feature extractors with independent weights to each of the two inputs in order to translate
them into a joint representation and upscaling the fused feature map into the desired dense depth map,
as was done by Jaritz et al.[31]. As the extracted feature spaces share modalities, they are simply
summed up element vise before being fed in the decoder. A visual representation of the general early
and late fusion networks is shown in figure 3.8. Similar multi-branch architectures are preferred in order
to deal with the differing modalities between the inputs. The branches were expanded to two complete
encoder-decoder branches in PENet[30], a "color-dominant” and a "depth-dominant” one, each gener-
ating a depth map estimate. The former takes the concatenated RGB image and sparse depth map as
inputs in order to generate one depth estimate. This is then concatenated with the sparse depth map
in order to generate another depth map estimate through the "depth-dominant” branch. The two depth
map estimates are summed element-wise, resulting in the fused depth map. Since the "color-dominant”
branch takes multi-modal inputs (concatenated RGB image and sparse depth map), this part of the ar-
chitecture falls in the early-fusion category. Hu et al. found that early fusion (i.e. their color-dominant
branch) is sensitive to change in color or texture of the input image, lowering the confidence of the
depth estimate at certain areas of the scene.
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Figure 3.8: Early and late fusion of multi-modal channels, as defined by Jaritz et al.[31]

3.7. Self-supervised learning for depth estimation

Data-based depth estimators achieving the best results are generally trained in a supervised manner.
This requires labeled data, i.e. a reference for the algorithm to learn what the desired output is for each
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input. Due to the large number of parameters in deep neural networks, proper training requires a large
amount of training data. The labeling of this data is expensive and time-consuming, making sufficiently
large training datasets for depth estimation scarce, and the domains represented by them limited. For
example, the KITTI dataset was recorded with equipment mounted on a car, resulting in images pri-
marily showcasing roads, traffic, and built-in areas. Such a domain is not fully representative of the
environments in which MAVs are expected to operate. As was shown by Hochreiter and Schmidhu-
ber[29], supervised learning-based convolutional algorithms suffer from generalization: Compared to
their benchmark performance, their accuracy is greatly degraded when tested on images from different
environments. Synthetic dataset, such as MidAir by Fonder and Droogenbroeck[22], can provide di-
verse and highly realistic computer-generated images while also being much cheaper than traditionally
labeled ones. However, even the most diverse training set can only prepare the algorithm for antic-
ipated domains, and thus supervised depth estimators will never be truly domain-independent. The
solution is to have an algorithm generate its own labels for a given input. This process is based on ad-
ditional information (e.g. stereo image pair instead of single view image) and task-specific knowledge.
This is known as self-supervised or unsupervised learning. Online learning, i.e., the act of adapting to
new domains during operation instead of solely relying on the parameters learned prior to deployment,
is an additional challenge that will be beyond the scope of this thesis project[57]. In this subsection,
three self-supervision strategies will be presented, used for the training of both SDE and MDE networks.
The main challenge of self-supervised depth estimation is the generation of reliable labels. The archi-
tecture of the deep network making use of the labels is of secondary importance. Thus, the rest of the
subsection will focus on the way the labels are generated but will ignore the estimation networks.

Garg et al.[24] was one of the pioneering solutions for self-supervised depth estimation. It makes
use of a stereo image pair, one of which, namely the left image, is put in an encoder-decoder convo-
lutional MDE. The produced depth map (or disparity map as there is an inverse correlation between
the two) is then used to warp the right image into a synthetization of the left image. This warping
Ij(z) = I,(z + Bfd'~!(z)) (where I,.(z) is a pixel of the right image at location z along the scan line, I]
is the synthesized left image, d’(z) is the predicted depth at location =, and B and f are the baseline
and the focal length of the stereo setup respectively), is based on the inverse of the operation that is
used to generate depth maps from disparity maps, as explained in chapter 3. The synthesized left
image is then compared to the original, input left image in order to calculate the reconstruction error.
This, along with a regularization term to encourage smoothness, is then used to train CNN.[25] found
that the above method often produces artifacts at depth discontinuities, at the boundaries of objects.
They took the reconstruction method a step further in order to address this issue: the encoder-decoder
CNN was designed to predict both the left-to-right and the right-to-left disparity maps with only a single
image as input. These disparity maps were then used to synthesize both the right and the left images.
The reconstruction errors of both are then included in the training loss.

Aleotti et al.[5] propose a nested self-supervised solution: the final depth map is produced by a
stereo matching network, supervised by a monocular completion network, which in turn is supervised
by a model-based matching algorithm (namely semi-global matching) . An initial depth map is cal-
culated via traditional matching algorithms. The left-right consistency check is used to filter out the
unreliable points of this initial prediction, resulting in a semi-dense but highly reliable depth map. A
randomly selected subset of these points is then fed into a monocular completion network, the training
of which is supervised via the reliable semi-dense depth map. As the completed depth prediction is still
likely to contain artifacts and inconsistencies, the above procedure is applied to a set of augmented
image pairs, generated through randomly exposing the original stereo pair to color augmentation and
horizontal flipping, resulting in an ensemble of depth estimates. As the augmentation should not affect
the depth in theory, it is assumed that any inconsistency in the ensemble is the result of artifacts, and
thus can safely be ignored. Thus, a combined semi-dense depth map can be created: a given pixel of
the combined map takes the value of the corresponding ensemble pixel average only if those pixel val-
ues have a variance less than a certain cut-off value. The pixel is left blank otherwise. This combined
semi-dense depth map is then used to supervise the training of an SDE network.

Finally, the Pyramid Voting Module designed by Wang et al.[56] is used to generate labels in their
self-supervised stereo depth estimation network, PVStereo. Once again, the goal of the label generator
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is to produce a semi-dense disparity map, devoid of unreliable points and artifacts. The mechanism
behind the Pyramid Voting Module is based on the assumption that when the disparity is calculated
at multiple scales, if their values are similar and their matching costs are consistent at every scale,
the calculated disparity will be accurate and reliable. So, disparity maps of a given multi-scale image
pair are calculated via some model-based stereo matching algorithm. Then a point on the resulting
disparity map is accepted when the root mean square difference both in value and in normalized inverse
matching cost is under a certain threshold. If a pixel does not meet either of the two criteria, it is left
blank, leading to a semi-dense disparity map of confident values. The above method is applied to
generate both a left-to-right and a right-to-left semi-dense disparity map, which are checked against
each other via left-right disparity consistency check for further vetting. The final semi-dense disparity
map is used to supervise the deep convolutional stereo matching network of PVStereo.



Research Questions and Objectives

This chapter specifies the goal of this research. The research question and the sub-questions following
from it are listed in section 4.1. In order to find the answer to these questions, a number of research
objectives need to be met, which are described in section 4.2.

4.1. Research Question
The primary research question is stated in bold, with the additional sub-question broken down beneath.

1. Can the fusion of monocular and stereo depth cues through a learning-based approach
enhance the performance of its input monocular and stereo networks?

(a) How does the proposed depth estimator (simply referred to as the estimator) perform on the
KITTI Stereo 2015 benchmark?

i. What kind of accuracy can be achieved with the estimator?
ii. How does the accuracy of the fused monocular and stereo estimates compare to the

monocular and stereo input estimates?
iii. How does the addition of the fusion network affect the inference time?

4.2. Research Objective

The objective of this research is to explore if the supervised learning based fusion of monocular and
stereo methods of disparity estimates results in improved performance. The proposed architecture is
expected perform better than the baseline monocular and stereo estimators. The inference time impact
of the addition of the proposed fusion network shall be investigated, as that may pose a bottleneck in
its application in small robotic and autonomous vehicles.

The above primary objective can be broken down into smaller milestones or sub-objectives. The
first objective is to gain insight into the strengths and weaknesses of the currently existing monocular
and stereo depth and disparity estimation solutions. This will guide the design decisions of the fusion
network. The architecture design of a set of proposed fusion networks must be completed after the
evaluation of prior research on fusion in dense estimation networks in the field of computer vision.
Finally, the affect of the fusion is to be analyzed by comparing test results of the proposed architectures
with comparable, but purely monocular and purely stereo solutions. In this way, the impact of the fusion
module on the architecture performance can be analyzed by directly comparing it to the performance
of the base networks.

Note that the goal is to produce a proof-of-concept fusion network, and the research is considered
successful, as long as the proposed network offers improvements to the input networks. Thus, design
choices that favor simplicity and ease of implementation or testing may be preferred over alternatives.
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