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ABSTRACT

Networks of coupled systemsmay exhibit a form of incomplete synchronization called partial synchronization or cluster synchronization, which
refers to the situation where only some, but not all, systems exhibit synchronous behavior. Moreover, due to perturbations or uncertainties in
the network, exact partial synchronization in the sense that the states of the systems within each cluster become identical, cannot be achieved.
Instead, an approximate synchronization may be observed, where the states of the systems within each cluster converge up to some bound, and
this bound tends to zero if (the size of) the perturbations tends to zero. In order to derive su�cient conditions for this robusti�ed notion of
synchronization, which we refer to as practical partial synchronization, �rst, we separate the synchronization error dynamics from the network
dynamics and interpret them in terms of a nonautonomous systemof delay di�erential equationswith a bounded additive perturbation. Second,
by assessing the practical stability of this error system, conditions for practical partial synchronization are derived and formulated in terms of
linear matrix inequalities. In addition, an explicit relation between the size of perturbation and the bound of the synchronization error is
provided.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5111745

Synchronization is a form of collective behavior in networks of
coupled dynamical systems that plays an important role in a vari-
ety of natural and man-made systems. In some networks, par-
tial synchronization—cluster synchronization—may be observed,
that is, the network can be divided into clusters such that syn-
chrony of the dynamical systems is only observed within each
cluster. In this paper, we derive su�cient conditions for the pres-
ence of a relaxed form of partial synchronization in delay-coupled
networks, where within a cluster, synchrony only needs to be
reached up to some bound. This allows us to take into account the
e�ect of modeling errors and perturbations on the systems and
network, which creates more heterogeneity and renders (exact)
partial synchronization impossible.

I. INTRODUCTION

In the recent decades, the synchronization of networks of inter-
acting dynamical systems has attracted intensive attention. This phe-
nomenon has been widely observed in various �elds, ranging from
nature to engineering. The unambiguous form of synchronization

is full synchronization, which refers to the phenomenon where all
the systems behave identically. However, networks may also show a
formof incomplete synchronization, called partial synchronization or
cluster synchronization, which refers to the phenomenon where some
but not all systems behave identically. Partial synchronization often
occurs in large, complex systems. One typical example concerns the
synchronous activities of neurons in parts of the human brain (see,
e.g., Gray, 1994). Another example involves the so-called chimera
state, which describes the coexistence of coherence and incoherence
in systems of coupled oscillators, introduced in Abrams and Strogatz
(2004). Chimera states have been seen in a variety of networked sys-
tems such as chemical oscillators (Kuramoto, 1984 and Tinsley et al.,
2012), electronic circuits (Schmidt et al., 2014), mechanical oscilla-
tors (Martens et al., 2013), optical experiments (Hagerstrom et al.,
2012), neural networks (Sawicki et al., 2019), etc.

Sometimes, there may exist time-delays in and between the
systems, for instance, due to the transmission time of signals among
the systems, which may induce partial synchronization. Several
papers have been devoted to studying partial synchronization of net-
worked systems with delayed coupling (see, e.g., Dahms et al., 2012,
Orosz, 2014, Steur et al., 2016, and Ryono and Oguchi, 2015).
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From a mathematical point of view, a prerequisite for partial
synchronization is the existence of the so-called partial synchroniza-
tion manifolds, which are positively invariant sets (given a dynamical
system, a subset of its state space is called a positively invariant set if
it satis�es the property that when the system’s state is inside this set
at time t0, the state will remain within this set for all t > t0) in the
state space of the delay-coupled systems, characterized by the par-
tially synchronized motion. In addition to its existence, the stability
of such amanifold is also required for partial synchronization, which
guarantees the convergence of whole network states to it (Steur et al.,
2012). These concepts are illustrated in Fig. 1. One commonmethod
to access the stability of partial synchronization manifold is to ana-
lyze an error system describing the deviation between the systems’
states within each cluster, which is also called the system of synchro-
nization errors. Therefore, to characterize partial synchronization in
delay-coupled systems, two essential steps are needed: (1) identify
partial synchronization manifolds and (2) assess the stability of the
corresponding synchronization error dynamics given the manifolds.
But, for the �rst step, the conditions used to �nd partial synchroniza-
tion manifolds can easily become invalid if a small perturbation is
present in the network or the systems.

In Steur et al. (2016) and Su et al. (2018), necessary and su�cient
conditions for the existence of partial synchronization manifolds are
given. However, the existence conditions in these works are fragile,
in the sense that they may be violated by in�nitesimal perturba-
tions on coupling weights and delays, as well as perturbations to
the dynamical systems at the nodes that create more heterogeneity.
As a consequence of such perturbations, the coupled systems may

only show an approximate form of synchronization, which means
the states (or outputs) of the systems are not completely identical,
but remain close to each other within some bound that depends on
the size of the perturbation. Inspired of the notion of practical stabil-
ity, this robust version of synchronization is referred to as practical
synchronization. Figure 1 also illustrates an example of such a form
of synchronization. As the �gure shows the solution may become
unable to stay on the manifold because of perturbations. The actual
reason behind this is that the system of synchronization errors loses
its zero equilibrium due to the perturbations. Without the zero equi-
librium, an intuitive expectation is that the errors will stay close to
zero if the perturbation is small. However, this is not always the case,
for example, when the system is in the vicinity of a perturbation point.
Hence, it is important to develop methods to guarantee practical
partial synchronization. In addition, due to network imperfections,
modeling error, etc., perturbations are often present in the network
of coupled systems, thus marking it important to study this type of
synchronization. One application of practical synchronization has
been shown in Steur et al. (2015), where practical synchronization is
used to improve the performance of a neuronal network based con-
troller for driving a mobile robot in an unknown environment while
avoiding obstacles.

Several studies have been performed to investigate practical syn-
chronization in delay-free coupled systems. In Steur et al. (2015)
and its supplementary material (Steur et al., 2016), the theoretical
results on practical synchronization of delay-free, di�usively cou-
pled nonidentical systems with application to Hindmarsh-Rose neu-
rons are presented. It is shown that when the coupling strength is

FIG. 1. Exact and practical partial syn-
chronization in a network of three coupled
first-order systems. Assume systems 1
and 2 are synchronized. Trajectory A
corresponds to the situation where exact
partial synchronization occurs. The exis-
tence of partial synchronization manifold
M = {(x1, x2, x3)|x1 = x2} guarantees
that a solution initialized on the manifold
(middle plane, in red) stays on this
manifold. The stability of the partial
synchronization manifold guarantees that
neighboring trajectories are attracted to
the manifold. Trajectory B corresponds
to practical partial synchronization when
perturbations are present. In such a
case, the trajectory is unable to stay on
the middle plane (in red), but it remains
inside the space between the two outer
planes (in blue), representing the set
Mµ = {(x1, x2, x3)|‖x1 − x2‖ ≤ µ}.
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su�ciently large, the systems achieve practical synchronization by
using the property of semipassivity and convergent system theory.
In Panteley and Loria (2017), some preliminary results on practical
synchronization of delay-free interconnected heterogeneous oscil-
lators are presented, where the product between the input matrix
and output matrix is assumed to be positive de�nite and the zero
dynamics subsystem is convergent. In Montenbruck et al. (2015), by
assuming the QUAD property (a system represented by ẋ = f (x, t),
f : R

n × R
+ → R

n, is said to be QUAD if ∀x, y ∈ R
n,

(x − y)>[f (x, t)− f (y, t)] ≤ (x − y)>(P − ωIn)(x − y), where P is a
n × n diagonal matrix and ω is a real positive scalar; see DeLellis
et al., 2011) for each system, conditions on the interconnection struc-
ture of networks of perturbed nonlinear systems with undelayed
di�usive couplings are derived to achieve practical synchronization.
The bene�t of the results in Panteley and Loria (2017), Vromen
et al. (2016), Steur et al. (2015), and Montenbruck et al. (2015) is
that they provide conceptual insights into the collective behavior
of network-interconnected systems with model heterogeneity. How-
ever, few work has been done on the quantitative analysis of practical
partial synchronization of interconnected systems, in particular, in
the presence of delayed couplings.

In this paper, we study the practical partial synchronization of
delay-coupled networks. We start with exact partial synchronization
as a nominal case. For this, previous results on (exact) partial syn-
chronization in Steur et al. (2016) and Su et al. (2018) are recalled, in
particular on the existence of (exact) partial synchronization mani-
folds. Subsequently, we focus on the case where there are perturba-
tions on the coupling. It is shown that when the perturbations are
present, exact partial synchronization becomes, in general, impos-
sible. More precisely, the perturbations typically cause the loss of
zero equilibrium of the synchronization errors dynamics. Without
the zero equilibrium, the methods used on most works on synchro-
nization,which require a linearization around the equilibriumare not
applicable. Here, by connecting the practical partial synchronization
with the practical stability of the synchronization error dynamics, we
derive conditions for practical partial synchronization. In this prac-
tical stability analysis, an equilibrium of the synchronization error
dynamics is not required. To this end, �rst, the dynamics of syn-
chronization errors are isolated from the network dynamics with
inclusion of the perturbation; second, by viewing the synchroniza-
tion error dynamics as a time-delay system a�ected by perturbations,
conditions for the practical stability of such an error system, cor-
responding to the conditions for practical partial synchronization
of the network, are derived. The conditions are formulated in the
form of LMIs, which can be e�ciently solved by several numerical
tools.

The remainder of this paper is organized as follows. In Sec. II,
some de�nitions and assumptions are presented, which are used in
the subsequent sections. In Sec. III, the exact practical synchroniza-
tion is introduced as a nominal case for practical partial synchroniza-
tion. In addition, an example is used to explain the relevant concepts.
It is also shown that small perturbations on the coupling can make
exact synchronization impossible and lead to practical partial syn-
chronization. In Sec. IV, the main problem addressed in this paper is
formulated, and in Sec. V, the main results are presented. In Sec. VI,
a numerical example is presented. Finally, the conclusions are given
in Sec. VII.

II. PRELIMINARIES AND ASSUMPTIONS

In this paper, we consider networks of systems interacting via
linear di�usive time-delay couplings. For such coupled systems, we
adopt the settings from Steur et al. (2016). These networks are
represented by a directed graph G = (V,E,A), where

• V = {1, 2, . . . ,N} is a �nite set of nodes with cardinality |V | = N;
• E ⊂ V × V is the ordered set of edges, where the edge (i, j) points
from node j to node i; and

• A =
(

aij
)

∈ R
N×N is the weighted adjacency matrix, where aij > 0

represents the weight of edge (i, j) when (i, j) ∈ E, and aij = 0
when (i, j) /∈ E.

Besides, the networks considered are simple and strongly con-
nected. A graph is simple if it contains neither self-loops normultiple
edges, where self-loops are edges connecting a node to itself, andmul-
tiple edges are two or more edges connecting a same ordered pair of
nodes (Gibbons, 1985). A graph is strongly connected if, for any pair
of its nodes i, j, there exist a directed path from i to j and a directed
path from j to i (Bollobas, 1998).

Every node in the networks hosts a dynamical system of the
form

{

ẋi(t) = fi(xi(t))+ Biui(t),
yi(t) = Cixi(t),

(1)

where i ∈ V states xi(t) ∈ R
n, su�ciently smooth functions fi :

R
n → R

n, inputs ui(t) ∈ R
m, outputs yi(t) ∈ R

m, input matrices
Bi ∈ R

n×m, and output matrices Ci ∈ R
m×n, i = 1, . . . ,N. Here, we

assume all CiBi are similar to positive de�nite matrices, which guar-
antees all the systems are left-invertible (the system input-out maps
are injective). Left-invertibility is introduced to make the su�cient
condition (presented in Sec. III) for the existence of partial synchro-
nization manifolds necessary. One common choice of the matrices
Bi and Ci is Bi = Ci = I, which corresponds to the case of full state
feedback.

Systems (1) interact via the following coupling:

ui(t) = k
∑

j∈Ni

aij[yj(t − τ)− yi(t)], (2)

where Ni is the neighboring set of node i, i.e., Ni := {j ∈ V | (i, j)
∈ E}, and τ and k are, respectively, the time-delay and coupling
strength.

The state space of the coupled systems (1) and (2) is denoted by
C([−τ , 0],RNn), which is the space of continuous functionsmapping
the interval [−τ , 0] into R

Nn. The network state is de�ned as below

xt ∈ C([−τ , 0],RNn), xt = x(t + θ), θ ∈ [−τ , 0]. (3)

Next, we introduce the concept of semipassivity to be used to
guarantee the boundedness of solutions of the networked systems.
The boundedness is later on used in the derivation of conditions for
practical partial synchronization. We would like to add that many
systems, especially, physical and biological systems, are semipassive.

De�nition 1 (Pogromsky, 1998). System (1) is called strictly
semipassive if there exist a continuously di�erentiable, non-negative
storage function V : R

n → R
+ and a scalar function S : R

n → R,
which is positive outside some ball B = {x ∈ R

n| ‖x‖ < R} such that
V̇(x(t)) ≤ y>(t)u(t)− S(x(t)). (4)
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Throughout the paper, we make the following assumption.
Assumption 1. Systems (1) are strictly semipassive with a radi-

ally unbounded storage function V , i.e., V(x) → ∞ as ‖x‖ → ∞.
It has been shown in Steur and Nijmeijer (2011) that Assump-

tion 1 guarantees all solutions of systems (1) coupled via (2) to
be ultimately bounded independently of k and τ . More precisely,
it has been pointed out in Steur and Nijmeijer (2011) that under
this assumption, there exists a bounded set �, positively invariant
under the dynamics (1) and (2), which attracts all solutions in �nite
time.

III. EXACT PARTIAL SYNCHRONIZATION MANIFOLDS

In this section, we summarize the results from Steur et al. (2016)
and Su et al. (2018) on exact practical partial synchronization, which
serve as a nominal case in sections IV–VII. In particular, existence
conditions of partial synchronizationmanifolds are recalled. In addi-
tion, an example is presented, which shows these conditions can
easily become invalid due to a small perturbation. In such a situa-
tion, exact synchronization is no longer possible, and only practical
synchronization may occur.

For the coupled systems (1) and (2), a solution x(t) =
[x1(t)

> · · · xN(t)>]
>
is a partially synchronous solution if there exist

i, j ∈ V with i 6= j such that

xi(t) = xj(t), ∀t ≥ t0 − τ . (5)

When a partially synchronous solution exists, the nodes can be
grouped into clusters such that the nodes inside each cluster have
equal states. To describe this clustering, the concept of partition is
used. A partition ofV is a set of nonempty, disjoint subsets ofVwhose
union is V. The subsets are called parts of the partition which repre-
sent the clusters of the nodes. In what follows the total number of
parts is denoted by κ . A partition P can also be described by an
N × N permutation matrix 5 such that nodes i and j belong to the
same part of the partition if the ijth entry of5 is equal to 1. Note that
κ = dim ker(IN −5).

By using matrix5, the conditions of form (5) can be expressed
as xt ∈ M(5) for all t ≥ 0, where

M(5) := {φ ∈ C([−τ , 0],RNn) |φ(θ)
= col(φ1(θ), . . . ,φN(θ)),φi(θ) ∈ R

n, i = 1, . . . ,N,

φ(θ) = (5⊗ In)φ(θ), ∀θ ∈ [−τ , 0]}

is the set of partially synchronous states induced by the permutation
matrix 5. We are now ready to introduce the concept of the partial
synchronization manifold.

De�nition 2 (Steur et al., 2016). SetM(5) with permutation
matrix 5 for which 1 < κ < N is a partial synchronization manifold
for the coupled systems (1) and (2), if and only if it is positively invariant
under the dynamics (1) and (2).

A partitionP associated with5 is called viable if the setM(5)

is a partial synchronization manifold. However, identifying a viable
partition can be challenging since a direct veri�cation of the invari-
ance property is di�cult. In what follows, by introducing another
permutation matrix R, algebraic conditions for checking the viability
of a partition are provided in Lemma 1, which can be easily veri�ed.

Given a partition, the nodes can be relabeled by cluster such
that the �rst κ1 nodes belong to the �rst cluster, the second κ2 nodes
belong to the second cluster, and so on. Mathematically, this can be
done by using another permutation matrix R referred as reordering
matrix, which can be determined such that

R>5R =











5C(κ1) 0
5C(κ2)

. . .
0 5C(κκ)











, (6)

where 5C(κi), i = 1, . . . , κ are κi × κi-dimensional cyclic permuta-
tion matrices, that is,

5C(κi) =

















0 0 · · · 0 1
1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0

















∈ R
κi×κi (7)

and5C(1) = 1.
The reordered adjacency matrix can be constructed as

R>AR =











A11 A12 · · · A1κ

A21 A22 · · · A2κ

...
. . .

. . .
...

Aκ1 Aκ2 · · · Aκκ











, (8)

with Aij ∈ R
κi×κj .

Existence conditions for partial synchronization manifolds are
formulated in the lemma below.

Lemma 1 (Su et al., 2018). Given an adjacency matrix A and
a permutation matrix 5 of the same dimension, assume that CiBi,
i = 1, . . . ,N are similar to positive de�nite matrices, then the following
statements are equivalent:

(1) M(5) is a partial synchronization manifold for (1) and (2) and
(2) all blocks of the reordered adjacency matrix (8) have constant row-

sums and, in addition, F,B, and C de�ned by

F :=











f1(·)
f2(·)
...

fN(·)











, B :=











B1

B2

...
BN











, C :=











C>
1

C>
2
...
C>
N











satisfy the conditions

F = (5⊗ In)F, B = (5⊗ In)B, C = (5⊗ In)C. (9)

Conditions (9) in Lemma1 express that all the nodes in the same
cluster host systems with the same dynamics. Note that this lemma is
an extension of Theorems 3 and 4 in Steur et al. (2016), where only
networks of identical systems were considered.

Chaos 30, 013126 (2019); doi: 10.1063/1.5111745 30, 013126-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. The network of Example 1 with adjacency matrix An.

Example 1. Consider a network of four nodes shown in Fig. 2.
The adjacency matrix of this network is

An =







0 2 0.1 1
4 0 2 0.3
0.1 1 0 2
3 0.3 3 0






. (10)

We assume that every node hosts a nonlinear system of the
following form:



























ẋi,1(t) = −εxi,1(t)+ xi,2(t)− xi,1(t)(x
2
i,1(t)+ x2i,2(t))+ ui,2(t),

ẋi,2(t) = −xi,1(t)− εxi,2(t)− xi,2(t)(x
2
i,1(t)+ x2i,2(t))+ ui,1(t),

yi,1(t) = xi,2(t),

yi,2(t) = xi,1(t), i = 1, 2, 3, 4, ε ∈ R,
(11)

and that the systems are coupled via (2).
By applying Lemma 1 to all possible partitions of this network,

we �nd the only viable partition P = {{1, 3}, {2, 4}}. Software pro-
gram (available on http://twr.cs.kuleuven.be/research/software/delay
-control/manifolds/), based on Lemma 1, is also available for
automatically detecting partial synchronization manifolds. As the
network here is relatively simple, the viability of this partition can
be easily done by hand. First, since all the systems are identical,
conditions (9) are satis�ed. Second, the constant row-sum require-
ment is also met. The corresponding permutation matrix5 and the

reordering matrix R are given by

5 =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






, R =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.

The reordered adjacency matrix is

R>AnR =









0 0.1 2 1
0.1 0 1 2
4 2 0 0.3
3 3 0.3 0









.

Each block in this matrix has constant row-sum.
Remark 1: First, wewould like to emphasize that in this example

with (10), no full synchronizationmanifold exists. By de�nition, a full
synchronization manifold is always a subset of any partial synchro-
nization manifold. Therefore, to have partial synchronization, the
stability conditions of the partial synchronization manifold should
not coincide with the stability conditions of the full synchronization
manifold. If no full synchronizationmanifold exists, this requirement
is readily met. Second, from the reordered adjacency matrix, we can
see that the coupling of the nodes within clusters is weak and that the
coupling of the nodes between clusters is strong (see the ordered adja-
cency matrix). In fact, this property favors the exact partial synchro-
nizationmanifold to be stable in the network withAn for some (k, τ).
It might sound counterintuitive but can be explained by the presence
of the delay and the sensitivity of high gain feedback with respect
to it. Thus, while in the delay-free case high gain coupling favors
synchronization, the situation is opposite in the presence of delay
(see Su et al., 2018). Without a stable exact synchronization mani-
fold for the nominal network, the practical partial synchronization
is unlikely to happen when the network is perturbed. This example
network is revisited in Sec. VI for practical partial synchronization
study; therefore, we choose this adjacency matrix (10).

To validate the result, a simulation of this network with
k = 0.3, τ = 2, ε = −0.2 has been performed. The results are plotted
in Fig. 3. The network is initialized on the partial synchroniza-
tion manifold, i.e., x1(θ) = x3(θ), x2(θ) = x4(θ),−τ ≤ θ ≤ 0. From
Fig. 4, we can see that the systems 1 and 3, 2 and 4 remain perfectly
synchronized. The states remain on the partial synchronizationman-
ifold since they start on the manifold. However, as mentioned before,
the existence conditions of such a manifold is fragile. For instance,
a small perturbation on the coupling can cause violation of these
conditions. Assume there exists a perturbation1A on the adjacency
matrix

A = An +1A =







0 2 0.1 1
4 0 2 0.3
0.1 1 0 2
3 0.3 3 0







+







0 0.2 0 0
0.2 0 0 0.05
0 0 0 0
0.1 0 0.2 0






. (12)

With this adjacency matrix, the row conditions in Lemma 1 are
not satis�ed. The simulation of this perturbed network is shown in
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FIG. 3. Simulation of the network corresponding to Example 1, with adjacency matrix An.

Fig. 4. As can be seen from Fig. 4, the sates of systems 1 and 3,
2 and 4 are not identical, but remain close to each other, that is,
practical synchronization occurs. This is also con�rmed in Fig. 5,
which shows the synchronization errors de�ned as e1 = x3,1 − x1,1,
e2 = x3,2 − x1,2, e3 = x4,1 − x2,1, and e4 = x4,2 − x2,2. In this �gure,
to better indicate the sizes of these errors, they are expressed as the
percentages of maximum magnitudes of the relevant state variables
(

e1
max
t

|x1,1(t)|
× 100%, e2

max
t

|x1,2(t)|
× 100%, e3

max
t

|x2,1(t)|
× 100%, e4

max
t

|x2,2(t)|

× 100%

)

. Besides, we can observe that ei = 0 is not an equilib-

rium of the synchronization error dynamics when the perturba-
tion is present. The results above may not be very surprising. For
small perturbations to the nominal adjacency matrix corresponding
to the coupling, one would intuitively expect the solutions remain
almost synchronized within the clusters. However, this intuitionmay
also fail, for instance, if the system is close to a bifurcation point.
Therefore, it is important to develop tools that guarantee the required

robustness of the synchronizationwith respect to the perturbation. In
Sec. IV, this situation with perturbation on coupling impacting the
partial synchronization of delay-coupled systems is generalized and
forms the main problem addressed in this paper.

IV. PROBLEM FORMULATION

In this section, we introduce the concept of practical partial syn-
chronization, addressing the case where there are perturbations on
the coupling. In addition, the synchronization error dynamics are
also derived, which lay the basis for the stability analysis in Sec. IV A.

A. Practical partial synchronization

Suppose that there exists a viable partitionP for the network of
systems represented by the graph G = (V,E,An) and assume that the
adjacency matrix of the network is perturbed to A = An +1A, with
perturbation bound

‖1A‖∞ ≤ δ, (13)
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FIG. 4. Simulation of the network corresponding to Example 1, with adjacency matrix A.

where ‖ · ‖∞ denotes the ∞ induced matrix norm [the ∞
induced norm of matrix A = (aij) ∈ R

N×N is de�ned as ‖A‖∞ =
max1≤i≤N

∑N
j=1 |aij|]. Note that the perturbed adjacency matrix A

should preserve the basic properties of the adjacency matrix: non-
negative entries and zero diagonal elements. That is, 1A is con-
strained such that a1ij = 0 if i = j and a1ij ≥ −anij if i 6= jwith a1ij being
the entries of1A and anij the entries of An.

In this case, the row-sum conditions in Theorem 1 may be vio-
lated even for arbitrarily small perturbations, and exact partial syn-
chronization may become impossible. However, using the following
relaxation of the set M(5) for µ ≥ 0:

Mµ(5) := {φ ∈ C([−τ , 0],RNn) |φ(θ) = col(φ1(θ),

. . . ,φN(θ)),φi(θ) ∈ R
n, i = 1, . . . ,N, ‖φ(θ)

− (5⊗ In)φ(θ)‖ ≤ µ, ∀θ ∈ [−τ , 0]},

we can analyze an approximate form of partial synchronization,
formally de�ned as follows:

De�nition 3. For a network of systems (1) and (2) represented
by the graph G = (V,E,An), given a partition P, permutation matrix
5, and perturbation bound δ in (13), the network is practically par-
tially synchronized with respect to the clustering represented by P if
there exist a classK [a continuous function β : [0, a) → R≥0 is of class
K if it is strictly increasing and β(0) = 0; Khalil, 2001] function β(δ)
and a function T = T(φ, δ) such that whenever the adjacency matrix
is perturbed to An +1A with ||1A||∞ ≤ δ, the solutions satisfy

xt(φ) ∈ Mµ(5), ∀φ ∈ C([−τ , 0],RNn), ∀t > T,

where µ = β(δ).
Note that since β ∈ K, Mµ=0(5) = M(5); hence, practical

partial synchronization implies partial synchronization of the nomi-
nal network.
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FIG. 5. Synchronization errors of the
network corresponding to Example 1, with
A and An.

B. Synchronization error dynamics

Here, the synchronization error dynamics are derived for both
nominal and perturbed networks. By comparing the synchronization
error dynamics of these two cases, the impacts of the perturbations
are shown, which explain why exact partial synchronization becomes
impossible in the presence of perturbations.

1. Nominal network

Let us start with the nominal network using the procedure in
Su et al. (2018). Suppose that there exists a viable partition P for
the networked systems with the graph G = (V,E,An). Without loss
of generality, we assume that the systems have been preordered into
clusters according to the partition P associated with5 as follows:

x1,1, x1,2, . . . , x1,κ1 cluster 1,
x2,1, x2,2, . . . , x2,κ2 cluster 2,

...
...

xκ ,1, xκ ,2, . . . , xκ ,κκ cluster κ .

If we give the systems associated with x1,1, . . . , xκ ,1, the role of
reference systems of their clusters, we can de�ne the synchronization
errors by

Ei =







ei,2
...

ei,κi






=







xi,2 − xi,1
...

xi,κi − xi,1






, i = 1, . . . , κ . (14)

We denote Ri,j as the row-sum of the �rst row of ijth block of the
adjacency matrix for i, j ∈ {1, . . . , κ}. Note that these blocks have
constant row-sums for the viable partition P. Besides, the nodes
in each cluster host the same dynamical system. We denote the

dynamics of the nodes in cluster i by f̃i, B̃i, C̃i, i = 1, 2, . . . , κ ,

where f̃1 = f1 = f2 = · · · = fκ1 , B̃1 = B1 = B2 = · · · = Bκ1 , C̃1 = C1

= C2 = · · · = Cκ1 , f̃2 = fκ1+1 = fκ1+2 = · · · = fκ1+κ2 , B̃2 = Bκ1+1

= Bκ1+2 = · · · = Bκ1+κ2 , C̃2 = Cκ1+1 = Cκ1+2 = · · · = Cκ1+κ2 , and
so on.

Letting

Ri =
κ
∑

j=1

Ri,j, i = 1, . . . , κ ,

X(t) =







E1(t)
...

Eκ(t)






∈ R

Nn−κn, Xr(t) =







1κ1−1 ⊗ x1,1(t)
...

1κκ−1 ⊗ xκ ,1(t)






∈ R

Nn−κn,

the error dynamics of the nominal network can be expressed as

Ẋ(t) = F(X(t),Xr(t))− kA0X(t)+ kA1X(t − τ), (15)

where F, A0, and A1 are speci�ed in Appendix A. Roughly speaking,
F is related to the di�erences of the nonlinear terms fi between the
systems in each cluster, A0 is related to the dynamics of the refer-
ence systems, and A1 is related to the network structure. Note that
F(0,Xr(t)) = 0.
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As a consequence of the viability of the partition, X(t) = 0 is
an equilibrium point of the synchronization error dynamics (15).
More speci�cally, because of the row-sum conditions and condition
(9) in Lemma1, the other two terms containingXr(t) andXr(t − τ),
respectively, are canceled during the derivation of (15), which are not
zero when X(t) = 0. The stability of partial synchronization man-
ifolds can be inferred from the stability of this equilibrium, which
is necessary for networks to exhibit exact partial synchronization in
practice.

2. Perturbed network

Let us now look into the e�ect of the perturbation in (13) on the
synchronization error dynamics (15). In the presence of the perturba-
tion, the row-sums of the blocks in (8) are not anymore constant. Let
us keep associating x1,1, . . . , xκ ,1 with the role of reference systems.
Hence, we continue to denote Ri,j as the row-sum of the �rst row of
ijth block of the adjacency matrix for i, j ∈ {1, . . . , κ}, while the sums
of the other rows becomes Rij +1ij,l with l = 2, . . . , κi. That is, for
the block Aij in (8), its row-sums are denoted by











Rij

Rij +1ij,2

...
Rij +1ij,κi











, (16)

where by the assumption that ‖1A‖∞ ≤ δ, |1ij,l| ≤ δ for i,
j = 1, . . . , κ , l = 1, . . . , κi. The collection of 1ij,l is denoted by 1 ∈
R
(N−κ)×κ as below

1 =



























111,2 112,2 · · · 11κ ,2

...
...

...
...

111,κ1 112,κ1 · · · 11κ ,κ1
...

. . .
. . .

...
1κ1,2 1κ2,2 · · · 1κκ ,2

...
...

...
...

1κ1,κ1 1κ2,κ1 · · · 1κκ ,κ1



























. (17)

Then, the synchronization error dynamics can be expressed as

Ẋ(t) = F(X(t),Xr(t))− kA0X(t)+ kA1X(t − τ)

+ n(Xr(t),Xr(t − τ),1), (18)

where the additional term compared to (15) is given by

n(Xr(t),Xr(t − τ),1) = A2(1)Xr(t)+ A3(1)Xr(t − τ), (19)

with A2(1) and A3(1) speci�ed in Appendix A, which satis�es the
property

n(Xr(t),Xr(t − τ), 0) = 0. (20)

As a consequence of Assumption 1, all solutions of systems
(1), coupled via (2), converge to a positively invariant set �. Hence,
without loosing generality, we can assume that the initial conditions
satisfy x0 ∈ �, implying xt ∈ � for all t ≥ 0. Meanwhile, ‖A2‖ and
‖A3‖ depend on1, in such away that they can be uniformly bounded

for all xt ∈ �. Therefore, we can assume that the perturbation term
is also bounded,

‖n(Xr(t),Xr(t − τ),1)‖ ≤ γ , (21)

where γ = η(δ) and function η belongs to class K. Furthermore,
there exists a bounded set �r , independent of δ such that xt ∈ �
implies Xr ∈ �r .

In summary, the perturbation on the coupling introduces an
additional bounded item in the equation for the synchronization
error dynamics. The item becomes zero, in general, if and only if the
perturbation becomes zero.Moreover, due to this term, the zero point
is generally not an equilibrium of the synchronization error dynam-
ics. All the above allow us to connect the problem of practical partial
synchronization with practical stability of the error system, in the
sense of De�nition 1 in Villafuerte et al. (2011).

De�nition 4. Given a partitionP, permutationmatrix5, and
perturbation bound γ , the network is practically partially synchro-
nized with the clustering represented byP if system (18)withXr ∈ �r

and the initial data X0 = 9 is globally practically stable, i.e., there
exist functions β(γ ) ∈ K and T = T(γ ,9) ≥ 0 such that, whenever
‖n(t)‖ ≤ γ and Xr(t) ∈ �r for all t ≥ 0, we have

‖X(9)(t)‖ ≤ β(γ ), ∀9 ∈ C([−τ , 0],R(N−κ)n), ∀t ≥ T(γ ,9).

(22)

In Sec. V, we derive tractable su�cient conditions for practical
stability of (18), accompanied by the explicit construction of func-
tion β . It is important to note that the “additive perturbation” n in
(18) perturbs the zero equilibrium point. As a distinctive feature of
this work, this in turn implies that in the stability analysis, a lineariza-
tion around the equilibrium, which is a cornerstone inmost works on
exact (partial) synchronization, is no longer possible.

V. MAIN RESULTS

In this section, su�cient conditions for practical partial syn-
chronization are derived through the stability analysis of the synchro-
nization error dynamics. A Lyapunov(-Krasovskii) theorem is used
for the stability analysis and the obtained conditions are expressed in
form of LMIs.Whether or not the LMIs are satis�ed can be e�ciently
determined with numerical tools.

As mentioned above, the solutions of coupled systems (1) and
(2) are bounded, that is, x ∈ � with � being a bounded set. Hence,
for every cluster, we have xi,j ∈ �x, i = 1, . . . , κ , j = 1, . . . , κi with�x

being a bounded set induced by �. Additionally, the functions fi
are su�ciently smooth. Therefore, a Lipschitz condition [A function
f : � → R

n satis�es a Lipschitz condition if there exists a L ∈ R+
such that ‖f (x)− f (y)‖ ≤ L‖x − y‖, ∀x, y ∈ �. A Lipschitz condi-
tion is satis�ed for any smooth function f (x), x ∈ � with � being
a bounded set.] is satis�ed for each component of F(X(t),Xr(t)),

‖f̃i(xi,j + ei,j)− f̃i(xi,j)‖ ≤ Li,j‖ei,j‖, Li,j ∈ R+, ∀xi,j + ei,j, xi,j ∈ �x.
(23)

Combining (23) with the structure of (A1), we can also conclude
that there exists an L ∈ R+ such that for all possibleXr(t) andX(t),

‖F(X,Xr)‖ ≤ L‖X‖. (24)
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Using the above Lipschitz condition, we extend the method in
Villafuerte et al. (2011) to analyze the practical stability of the
time delay system (18), which includes a nonlinear component
F(X(t),Xr(t)). In Villafuerte et al. (2011), only linear time-delay
systems are considered. Through this stability analysis, the condi-
tions for practical partial synchronization are derived, which also
yield an explicit expression of µ as a K function of γ , as stated in
the theorem below.

Theorem 1. Consider a network of systems (1) and (2) repre-
sented by the graph G = (V,E,A). For a partition P, if there exist
positive de�nitematrices P,Q ∈ R

(N−κ)n×(N−κ)n and a positive constant
σ such that the inequalities (for a symmetric matrix M, the inequali-
ties M < 0 and M ≤ 0 denote that M is negative de�nite, respectively,
negative semide�nite)

M(P,Q)+ 2σN(P) < 0, (25)

L <
λmin(P)

λmax(P)
σ , (26)

hold, where

M(P,Q) =
[

−kPA0 − kA>
0 P + Q kPA1

kA>
1 P −e−2στQ

]

, N(P) =
[

P 0
0 0

]

(27)

and L is the Lipschitz gain de�ned in (24), then error system (18), corre-
sponding to this partition, is globally practically stable, i.e., the network
is practically partially synchronized with respect to P.

Furthermore, functionsβ andT in (22) can be constructed from
the solutions of (25)–(27) (see Appendix B).

The proof of Theorem 1 is given in Appendix B. In the
proof, the Lyapunov-Krasovskii method is used, which involves a
“energy” functional called Lyapunov-Kraosvskii functional v(Xt).
As its naming indicates, v(Xt) is a function of the functional stateXt .
Similar to a Lyapunov function for a delay-free system, the Lyapunov-
Krasovskii functional should be positive de�nite and its derivative
with respect to time along the trajectories of the system should be
negative de�nite. A typical Lyapunov-Kraosvskii functional includes
a quadratic term and some integral terms. Depending the choice
of the integral terms, delay-independent or delay-dependent stabil-
ity conditions can be derived. To prove Theorem 1, the following
Lyapunov-Krasovskii functional is chosen, which provides delay-
dependent conditions:

v(Xt) = X
>(t)PX(t)+

∫ 0

−τ
X

>(t + θ)e2σθQX(t + θ)dθ . (28)

We refer to Appendix B for the details.
Although the LMIs are not very transparent, in the sense that

they do not explicitly reveal a relation between practical partial
synchronization and the network parameters (k and τ ), some conclu-
sions can still be drawn by looking into the structure of the LMIs. For
exact partial synchronization, it has been shown in Steur et al. (2012)
that there exist positive constants k̄ and ρ̄ such that if k > k̄ and kτ <
ρ̄, the exact partial synchronization manifold is stable, as illustrated
in Fig. 6. Similar conclusions are also expected for practical partial
synchronization. First, k should be large enough to achieve practical
partial synchronization. From the item −kPA0 − kA>

0 P + Q at the

FIG. 6. Exact partial synchronization region (blue-colored area) in (k, τ) space
(Steur et al., 2012).

upper-left corner ofM(P,Q), we can see that a larger k can contribute
to the negative de�niteness ofM(P,Q). Second, k should also be lim-
ited. Let us focus onM(P,Q). ForM(P,Q) to be negative de�nite, the
Schur complement of −e−2στQ should also be negative de�nite, i.e.,

− kPA0 − kA>
0 P + Q + k2PA1e

2στQ−1A>
1 P < 0. (29)

Note that the last term contains k2. Therefore, when k is too large,
the last item becomes dominant, thus making the above inequality
di�cult to ful�ll. Third, τ can be small. A smaller τ helps the term
−e−2στQ in M(P,Q) to remain negative de�nite. Finally, large τ is
not desired. Clearly, for large τ , −e−2στQ goes to zero, thus making
LMIs (25) di�cult to be satis�ed.

In the derivation of the analysis conditions in Theorem 1, we
have included all information about the nonlinearity of functions fi
into a single Lipschitz gain which needs to be compensated by the
coupling. This approach facilitates the formulation of analysis con-
ditions; however, it also leads to the additional restriction on the
upper bound of L in (26), which indicates that Theorem 1 is applica-
ble for systems with mild nonlinearity. To reduce the restriction, we
propose another theoremwheremore information on (the bounded-
ness of) the nonlinearity is exploited. To this end, we introduce the
bounds of the nonlinearity componentwise such that the bounded-
ness of the nonlinearity is captured by a series of bounds instead of a
single constant L.

Let us reformulate X(t),Xr(t) and F(X(t),Xr(t)) as follows:

X(t) =







X1(t)
...

XNn−κn(t)






, Xr(t) =







Xr,1(t)
...

Xr,Nn−κn(t)






,
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F(X(t),Xr(t)) =







ψ1(X1(t),Xr(t))
...

ψNn−κn(XNn−κn(t),Xr,Nn−κn(t))






,

where X`(t),Xr,`(t) ∈ R and ψ` : R × R → R, ` = 1, . . . ,
Nn − κn.

Since functions fi are su�ciently smooth and the solutions xi(t)
are bounded, there exist F−

` and F+
` such that

F−
` ≤

ψ`(X`(t),Xr,`(t))

X`(t)
≤ F+

` , for ` = 1, . . . ,Nn − κn, (30)

or equivalently,

(ψ`(X`(t),Xr,`(t))−F−
` X`(t))(ψ`(X`(t),Xr,`(t))−F+

` X`(t))≤0.
(31)

With F+
` and F−

` speci�ed, another set of conditions for practical
partial synchronization is provided in the theorem below.

Theorem 2. Consider a network of systems (1) and (2) rep-
resented by the graph G = (V,E,A). For a partition P, if there exist
symmetric positive de�nite matrices P, Q, Z, W ∈ R

(N−κ)n×(N−κ)n, a
positive de�nite diagonal matrix V ∈ R

(N−κ)n×(N−κ)n, and a positive
constant σ such that the inequality

2+ H1PH2 + H>
2 PH

>
1 + τ 2H>

2 ZH2 < 0 (32)

holds, where

2 =







2σP + Q − e−2στZ − F1V e−2στZ F2V 0
∗ −e−2στQ − e−2στZ 0 0
∗ ∗ −V 0
∗ ∗ ∗ −W






,

H1 = [I 0 0 0]>,

H2 = [−kA0 kA1 I I],

F1 = diag{F−
1 F

+
1 , F

−
2 F

+
2 , . . . , F

−
Nn−κnF

+
Nn−κn},

F2 = diag

{

F−
1 + F+

1

2
,
F−
2 + F+

2

2
, . . . ,

F−
Nn−κn + F+

Nn−κn

2

}

,

(33)
then the corresponding system (18) is globally practically stable.
That is, the network is practically partially synchronized with respect
to P. Furthermore, functions β and T in (22) can be chosen as
for (1) if ‖9‖s ≤ γ√

2σα2λmin(W)
, then

µ = β(γ ) =
γ

√
2σα1λmin(W)

, T = 0; (34)

for (2) if ‖9‖s > γ√
2σα2λmin(W)

, then

µ = β(γ ) =
kµγ√

2σα1λmin(W)
,

T =
1

2σ
ln

(

2σα2‖9‖2s − γ 2λmax(W)

2σα1µ2 − γ 2λmax(W)

)

, (35)

with 1 < kµ <
1
γ

√

2σα2
λmax(W)

‖9‖s.
Here, ‖9‖s is the supremum norm of the initial data ‖9(θ)‖s :=

supθ∈[0−τ ] ‖9(θ)‖ α1 = λmin(P), α2 = λmax(P)+ τλmax(Q)+
τλmax(Z), and ∗ denotes the symmetric terms in symmetric matrices.

The proof of Theorem 2 is given in Appendix C. As with the
proof of Theorem 1, the Lyapunov-Krasovskii method is used. A
Lyapunov Krassovskii (energy) functional of the following form is
used:

v(Xt) = X
>(t)PX(t)+

∫ t

t−τ
X

>(θ)e2σ(θ−t)QX(θ)dθ

+ τ

∫ 0

−τ

∫ s

t+s

Ẋ
>
(θ)e2σ(θ−t)ZẊ(θ)dθds. (36)

We refer to Appendix C for the details.
As with Theorem 1, similar conclusions on the parametric

dependence of the practical partial synchronization can also be
drawn fromTheorem2. Let us focus the block at the upper-left corner
of the matrix2+ H1PH2 + H>

2 PH
>
1 + τ 2H>

2 ZH2, which is given by

− kPA0 − kA>
0 P + τ 2k2AT

0ZA0 + 2σP + Q − e−2στZ − F1V . (37)

For the LMIs to be solvable, it is desired for this matrix to be negative
de�nite. Apparently, we can see that a su�ciently large k helps the
matrix (37) to be negative de�nite due to the part −kPA0 − kA>

0 P.
However, due to the part τ 2k2AT

0ZA0, kτ should be limited such that
(37) can be negative de�nite.

Remark 2: Similarly as in Villafuerte et al. (2011), an “expo-
nential estimate” of the synchronization errors X is provided when
deriving these two theorems, which indicates how fast solutions of
the coupled systems converge to the setMµ. σ is related to the expo-
nential decay rate estimate. A larger value of σ indicates a faster decay
of the synchronization errors. In addition, as can be seen from the
expressions of β(γ ), σ is also inversely related to ampli�cation of
the perturbation. Thus, a larger value of σ results in a smaller bound
of the synchronization errors µ. However, the LMIs (25) and (32)
may become unsolvable (infeasible) for a large σ , due to the pres-
ence of such terms as 2σN(P),−e−2στQ in (25) and 2σP,−e−2στZ in
(32), respectively. Furthermore, because of the presence of the terms
−e−2στQ and−e−2στZ, a smaller value of time-delay τ is required for
a larger value of σ . Therefore, there exists a trade-o� when choosing
the value of σ . A practical way to handle this trade-o�, when using
the theorems, is to start with a small σ for the sake of the LMIs feasi-
bility and then increase it incrementally to a desired value (e.g., for a
small enough bound of the synchronization errors µ) for which the
LMIs are still feasible with an acceptable time-delay τ .

VI. NUMERICAL EXAMPLE

In this section, we revisit Example 1 presented in Sec. III with
the focus on the perturbed network, which is analyzed by using the
results from Sec. V.

The network is shown in Fig. 7. Recall that the adjacencymatrix
is perturbed with1A such that

A = An +1A =







0 2 0.1 1
4 0 2 0.3
0.1 1 0 2
3 0.3 3 0






+







0 0.2 0 0
0.2 0 0 0.05
0 0 0 0
0.1 0 0.2 0






.

(38)

It can be proved that systems (11) of the network are semipassive
for any real value of parameter ε (see Appendix D). In what follows,
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FIG. 7. The network of Example 1 with adjacency matrix A.

we take ε = −0.2. Recall that for the nominal adjacency matrix An,
partitionP = {{1, 3}, {2, 4}} is a viable partition. However, due to the
perturbation 1A, no viable partition exists for this network with A.
The corresponding synchronization error dynamics of form (18) are
derived accordingly. The key matrices A0 and A1, which are required
to construct the LMIs (32) in Theorem 2, are given by

A0 :=
[

R1BC 0
0 R2BC

]

−
1

k

[

As 0
0 As

]

,

A1 := Ared ⊗ BC,

where

R1 = 3.3, R2 = 6.55,

As =
[

−ε 1
−1 −ε

]

=
[

0.2 1
−1 0.2

]

, B = C> =
[

0 1
1 0

]

,

Ared =
[

−0.1 1
1.2 −0.35

]

.

Note thatmatrixAs represents the linear components of systems (11).
Matrix A0 is extended to include these linear components.

For a given pair (k, τ), we can use Theorem 2 to check if the
network is practically partially synchronized in two steps: (1) esti-
mate the values of F+

` and F−
` by using numerical simulations of the

network and (2) check the feasibility of the LMIs in Theorem 2 for
a given σ . As mentioned in Secs. II–VI, the states of the network
dynamics converge to a positively invariant set in �nite time. There-
fore, in order to reduce conservatism, at the �rst step, only the data
after some time are used for estimation. Here, we use the data after

600 time units for estimation. In particular, we �nd that the LMIs (32)
are solvable for k = 0.3, τ = 2 with σ = 0.22 by using the MATLAB
toolboxes of SDPT3 (Toh et al., 1999) and YALMIP (Lo�erg, 2004).
In detail, �rst, with this pair of (k, τ), we construct F1 and F2 using
the estimated values of F+

i and F−
i given by









F+
1

F+
2

F+
3

F+
4









=







−0.0064
0.0009
1.4035
0.0372






,









F−
1

F−
2

F−
3

F−
4









=







−0.0480
−0.0255
−0.0963
−0.1279






. (39)

Now, the values of H1, H2, F1, F2, τ , and k are available for solving
the LMIs. Second, with the help of the YALMIP and SDPT3 tool-
boxes, the LMIs in (32) are cast into an optimization problem with
the matrices P, Q, Z, W, and V as design variables, then MATLAB
automatically construct the matrices if it �nds suchmatrices exist for
a given σ . To �nd the maximum possible value of σ , the second step
is repeated for a series of values of σ starting from 0.01 with an incre-
mental step of 0.01. It turns out that until σ = 0.22, these matrices
exist for k = 0.3, τ = 2, and their values are presented inAppendix E.
It is important to point out that for these values of (k, τ), the zero
solution (xi = 0) of the coupled network dynamics is (locally) expo-
nentially unstable, which can be veri�ed by checking the spectral
abscissa (rightmost eigenvalues) of the linearized dynamics of the
whole coupled network. Notice that there does not exist a partial
synchronization manifold corresponding to full synchronization.

As a validation of the obtained results, we have done a sim-
ulation of the network with k = 0.3, τ = 2, and the adjacency
matrix A de�ned in (38), using the dde23 solver from MATLAB
with relative and absolute tolerance of 1e−3 and 1e−6, respectively.
The simulation runs over 1000 time units. Unlike in Sec. III, ini-
tial data outside the partial synchronization manifold are used in
this simulation such that we can also investigate the stability of
partial synchronization. The values of the initial data are used
are x1(θ) = [0.0170 0.0365]>, x2(θ) = [0.0035 0.0190]>, x3(θ) =
[0.0208 0.0462]>, x4(θ) = [0.0283 0.0378]>,−τ ≤ θ ≤ 0, which are
randomly chosen in the interval of [0, 0.05].

The evolution of the states xi,1, i = 1, 2, 3, 4 is depicted in Fig. 8
in the time interval [0, 100] (before partial synchronization is fully
established) and Fig. 9 in the time interval [990, 1000] (after par-
tial synchronization is fully established). As can be seen from those
�gures, x1,1 and x3,1, respectively, x2,1 and x4,1 converge to each other
(up to a tolerance which is barely visible). In addition, Fig. 9 also
shows the solutions converge to a limit cycle, which is induced by
the nonlinear terms −xi,1(t)(x

2
i,1(t)+ x2i,2(t)) and −xi,2(t)(x

2
i,1(t)+

x2i,2(t)) in (11). To compare exact synchronization with practical syn-
chronization, we have also simulated the network with the same
values of (k, τ) and the nominal adjacency matrix An. The synchro-
nization errors e1 = x3,1 − x1,1, e2 = x3,2 − x1,2, e3 = x4,1 − x2,1, and
e4 = x4,2 − x2,2 of the networks with A and An are shown in Figs. 10
and 11.As in Fig. 5, the errors are scaled by themaximummagnitudes
of the relevant variables in these �gures. Clearly, the synchroniza-
tion errors of the network with A are larger than that of the network
with An. Besides, the �gures also indicate that the practically syn-
chronized states only converge to each other up to some bound but
cannot become exactly identical in the network with A.
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FIG. 8. The states xi,1 of the network with k = 0.3, τ = 2 in the time interval
[0, 100].

To demonstrate the relation between the size of the per-
turbation and the bound of the synchronization errors, we run
a series of the simulations of this network with the same k
and τ , but with a series of di�erent adjacency matrices de�ned

FIG. 9. The states xi,1 of the network with k = 0.3, τ = 2 in the time interval
[990, 1000].

below

A = An + k1 ·1A, (40)

with An,1A de�ned in (38), and k1 = 0, 0.05, 0.10, . . . , 0.5.

FIG. 10. Synchronization errors of the
network with A (practical synchronization,
blue colored) and An (exact synchroniza-
tion, red colored).
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FIG. 11. Synchronization errors of the
network with A (practical synchronization,
blue colored) and An (exact synchroniza-
tion, red colored).

The relation between ‖ei‖ and δ = ‖k11A‖∞ obtained from
these simulations is shown in Fig. 12. Here, the signals x1,1, x2,1,
x1,2, x2,2, x3,1, and x4,1 are sampled in the time interval [990, 1000]
to compute the synchronization errors ei. Figure 12 shows that the

FIG. 12. Synchronization errors with different sizes of perturbations.

synchronization error grows with the size of perturbation, and it
converges to zero when the perturbation goes to zero.

VII. CONCLUSIONS

In this paper, practical partial synchronization of delay-coupled
systems is studied. First, the synchronization error dynamics are sep-
arated from the whole network dynamics for the case where there are
perturbations on the coupling, which render exact synchronization
impossible. Second, the notion of practical partial synchronization is
introduced and su�cient conditions, formulated in terms of LMIs,
are provided. The relation between the bounds on the synchroniza-
tion errors and those of the perturbations is made explicit. From
a methodological point of view, a main challenge in the analysis is
that the zero solution is no longer an equilibrium point of the syn-
chronization error system. Finally, a numerical example is presented,
where the conditions for a network of nonlinear systems to be practi-
cally partially synchronized are derived by using one of the theorem
proposed in this paper.

The study of practical partial synchronization in this paper is
under the assumption of perturbations of the adjacency matrix. It is
worth noting that this methodology can also be applied to other situ-
ations where the bounded perturbations or uncertainties are present
in other components of the network that lead to a violation of the
existence conditions for the partial synchronization manifold under
consideration (for instance, the vector �elds fi, input matrices Bi,
output matrices Ci).
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APPENDIX A: SYNCHRONIZATION ERROR DYNAMICS

Function F and matrices in (15) are speci�ed as follows:

F(X(t),Xr(t)) =





























f̃1(x1,1(t)+ e1,2(t))− f̃1(x1,1(t))
...

f̃1(x1,1(t)+ e1,κ1(t))− f̃1(x1,1(t))
...

f̃κ(xκ ,1(t)+ eκ ,2(t))− f̃κ(xκ ,1(t))
...

f̃κ(xκ ,1(t)+ eκ ,κκ (t))− f̃κ(xκ ,1(t))





























, (A1)

A0 =







Iκ1−1 ⊗ (R1B̃1C̃1) 0
. . .

0 Iκκ−1 ⊗ (Rκ B̃κ C̃κ)






,

A1 = B̃(Ared ⊗ Im)C̃, (A2)

with

B̃ = diag(Iκ1−1 ⊗ B̃1, . . . , Iκκ−1 ⊗ B̃κ),

C̃ = diag(Iκ1−1 ⊗ C̃1, . . . , Iκκ−1 ⊗ C̃κ),

and

Ared = T1AT
T
1 − T2AT

T
1 , (A3)

where T1,T2 ∈ R
(N−κ)×N are de�ned as

T1 = diag(T11, . . . ,T1κ), T2 = diag(T21, . . . ,T2κ),

with

T1i =











0 1 · · · 0
...

. . .
...

1 0
0 · · · 0 1











, T2i =











1 0 · · · 0
1 0 · · · 0
...

...
...

1 0 · · · 0











∈ R
(κi−1)×κi .

For more information on the derivation and a detailed interpretation
of T1AT

>
1 and T2AT

>
1 , refer to Su et al. (2018).

When taking into account perturbations on the adjacency
matrix, the additional terms in (18) are described by

A2(1) = k







diag
(
∑κ

l=111l,2, . . . ,
∑κ

l=111l,κ1

)

⊗ B̃1C̃1 0
. . .

0 diag
(
∑κ

l=111l,2, . . . ,
∑κ

l=111l,κκ

)

⊗ B̃κ C̃κ






, (A4)

A3(1) = kB̃(A1 ⊗ Im)C̃, (A5)

where

A1 =







diag(111,2, . . . ,111,κ1) · · · diag(11κ ,2, . . . ,11κ ,κ1)

...
. . .

...
diag(1κ1,2, . . . ,1κ1,κκ ) · · · diag(1κκ ,2, . . . ,1κκ ,κκ )






.

(A6)

APPENDIX B: PROOF OF THEOREM 1

Proof . Considering a Lyapunov-Krasovskii functional

v(Xt) = X
>(t)PX(t)+

∫ 0

−τ
X

>(t + θ)e2σθQX(t + θ)dθ , (B1)

we have

α1‖X(t)‖2 ≤ v(Xt) ≤ α2‖Xt‖2s , (B2)

where α1 = λmin(P) and α2 = λmax(P)+ τλmax(Q).

Then,

d

dt
v(Xt) =2X>(t)P[F(X(t),Xr(t))− kA0X(t)

+ kA1X(t − τ)+ n(t, τ ,1)]

+ X
>(t)QX(t)− X

>(t − τ)e−2στQX(t − τ)

− 2σ

∫ 0

−τ
X

>(t + θ)e−2σθQX(t + θ)dθ . (B3)

Here, 2X>(t)Pn(t, τ ,1) ≤ 2‖X(t)‖‖P‖‖n‖, which implies

2X>(t)Pn(t) ≤ 2
γ ‖P‖
√
α1

√

v(Xt).

The other term

2X>(t)PF(X(t),Xr(t)) ≤ 2‖X
>(t)‖‖P‖L‖X(t)‖ ≤ 2

v(Xt)

α1
‖P‖L.
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Then, we arrive at

d

dt
v(Xt) ≤

[

X(t)
X(t − τ)

]>

M(P,Q)

[

X(t)
X(t − τ)

]

− 2σ

∫ 0

−τ
X

>(t + θ)e2σθQX(t + θ)dθ

+ 2
γ ‖P‖
√
α1

√

v(Xt)+ 2
‖P‖L
α1

v(Xt).

Note that the functional can be rewritten as

v(Xt) =
[

X(t)
X(t − τ)

]> [
P 0
0 0

] [

X(t)
X(t − τ)

]

+
∫ 0

−τ
X

>(t + θ)e2σθQX(t + θ)dθ .

So, we can derive

d

dt
v(Xt)+ 2

(

σ −
L‖P‖
α1

)

v(Xt)− 2
γ ‖P‖
√
α1

√

v(Xt)

≤
[

X(t)
X(t − τ)

]>
(

M(P,Q)+ 2σN(P)
)

[

X(t)
X(t − τ)

]

,

(B4)

with M(P,Q) and N(P) de�ned in Theorem 1.
We can conclude from the above arguments that if condition (7)

holds, then

d

dt
v(Xt) ≤ −2

(

σ −
L‖P‖
α1

)

v(Xt)+ 2
γ ‖P‖
√
α1

√

v(Xt). (B5)

If L < α1
‖P‖σ = λmin(P)

λmax(P)
σ , it can be shown that

‖Xt‖ ≤
√
λmax(P)+ τλmax(Q)√

λmin(P)
e
−
(

σ− Lλmax(P)
λmin(P)

)

t‖9‖s

+
γ λmax(P)

σλmin(P)− Lλmax(P)

(

1 − e
−
(

σ− Lλmax(P)
λmin(P)

)

t

)

. (B6)

It follows that if L < λmin(P)

λmax(P)
σ , system (18) is practically stable withµ

and T chosen as below
for ‖9‖s ≤ γ λmax(P)

(σ− Lλmax(P)
λmin(P)

)
√
λmin(P)[λmax(P)+τλmax(Q)]

,

µ = β(γ ) =
γ λmax(P)

σλmin(P)− Lλmax(P)
,

T = 0,

(B7)

for ‖9‖s > γ λmax(P)

(σ− Lλmax(P)
λmin(P)

)
√
λmin(P)[λmax(P)+τλmax(Q)]

,

µ = β(γ ) =
kµγ λmax(P)

σλmin(P)− Lλmax(P)
,

T =
1

σ − Lλmax(P)
λmin(P)

ln

((

σ − Lλmax(P)
λmin(P)

)√
λmin(P)[λmax(P)+ τλmax(Q)]‖9‖s − γ λmax(P)

(

σλmin(P)− Lλmax(P)
)

µ− γ λmax(P)

)

,

(B8)

where kµ satis�es the condition 1 < kµ <
(

σ− Lλmax(P)
λmin(P)

)√
λmin(P)[λmax(P)+τλmax(Q)]‖9‖s
γ λmax(P)

, and ‖9‖s is the supremum
norm ‖9(θ)‖s := supθ∈[0−τ ] ‖9(θ)‖. �

APPENDIX C: PROOF OF THEOREM 2

Proof . Consider a Lyapunov-Krasovskii functional

v(Xt) = X
>(t)PX(t)+

∫ t

t−τ
X

>(θ)e2σ(θ−t)QX(θ)dθ

+ τ

∫ 0

−τ

∫ s

t+s

Ẋ
>
(θ)e2σ(θ−t)ZẊ(θ)dθ ds. (C1)

In fact, this Lyapunov-Krasovskii functional is de�ned inC([−2τ , 0],
R

Nn−κn), which is a subspace of C([−τ , 0],RNn−κn). Hence, the con-
ditions derived from this functional is still su�cient for the stability
problem on [−τ , 0].

Obviously, we have

α1‖X(t)‖2 ≤ v(Xt) ≤ α2‖Xt‖2s , (C2)

where α1 = λmin(P) and α2 = λmax(P)+ τλmax(Q)+ τλmax(Z), and
we can derive

v̇(Xt) ≤ 2X>(t)P(F(X(t),Xr(t))

− kA0X(t)+ kA1X(t − τ)+ n(t, τ ,1))

+ X
>(t)QX(t)− e−2στ

X
>(t − τ)QX(t − τ)

− 2σ

∫ t

t−τ
X

>(θ)e2σ(θ−t)QX(θ)dθ

+ τ 2Ẋ
>
(t)QẊ(t)− τe−2στ

∫ τ

t−τ
Ẋ

>
(θ)ZẊ(θ)dθ

− 2στ

∫ 0

−τ

∫ s

t+s

Ẋ
>
(θ)e2σ(θ−t)ZẊ(θ)dθds.
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Using Jensen’s inequality, it follows that

v̇(Xt) ≤ 2X>(t)P(F(X(t),Xr(t))− kA0X(t)+ kA1X(t − τ)

+ n(t, τ ,1))+ 2σX
>(t)PX(t)+ X

>(t)QX(t)

− e−2στ
X

>(t − τ)QX(t − τ)+ τ 2Ẋ
>
(t)QẊ(t)

− e−2στ (X(t)− X(t − τ))>Z(X(t)− X(t − τ))

− 2σv(Xt).

With the inequalities (31) in mind, we have for any diagonal matrix
V > 0

[

X

F(X(t),Xr(t))

]> [
F1V −F2V
∗ V

] [

X

F(X(t),Xr(t))

]

≤ 0.

On the other hand, we have from (32) that







X(t)
X(t − τ)

F(X(t),Xr(t))
n(t, τ ,1)







>

[

2+ H1PH2 + H>
2 PH

>
1 + τ 2H>

2 ZH2

]

×







X(t)
X(t − τ)

F(X(t),Xr(t))
n(t, τ ,1)






< 0. (C3)

Combining (C) with (C3), we can conclude

v̇(Xt) < −2σv(Xt)+ n(t, τ ,1)>Wn(t, τ ,1).

Hence,

v̇(Xt) < −2σv(Xt)+ λmax(W)γ 2.

Using Grönwall’s inequality, we arrive at

v(Xt) < v(9)e−2σ t −
γ 2

2σ
λmax(W)(e−2σ t − 1). (C4)

Now, it follows from (C2) that

‖Xt‖ ≤

√

γ 2

2σα1
λmax(W)+ e−2σ t

(

α2

α1
‖9‖2s −

γ 2

2σα1
λmax(W)

)

.

(C5)

Observe that for an initial condition9 such that ‖9‖s ≤ γ

√

λmax(W)

2σα2
,

we have

‖Xt‖ ≤ µ = γ

√

λmax(W)

2σα1
, ∀t ≥ 0. (C6)

For an initial condition9 such that ‖9‖s > γ

√

λmax(W)

2σα2
, we have

‖Xt‖ ≤ µ, ∀t ≥ T(µ,9), (C7)

where µ = kµγ
√

λmax(W)

2σα1
, 1 < kµ <

1
γ

√

2σα2
λmax(W)

‖9‖s, and the time

T(µ,9) is obtained from the condition

0 < e−2σ t

(

α2

α1
‖9‖2 −

γ 2

2σα1
λmax(W)

)

< µ2 −
γ 2

2σα1
λmax(W),

(C8)

thus,

T =
1

2σ
ln

(

2σα2‖9‖2s − γ 2λmax(W)

2σα1µ2 − γ 2λmax(W)

)

. (C9)

�

APPENDIX D: PROOF OF SEMIPASSIVITY OF

SYSTEM (11)

Equation (11) is of the form (1) with

{

ẋi(t) = f (xi(t))+ Biui(t),

yi(t) = Cixi(t),
(D1)

where

xi =
[

xi,1
xi,2

]

, yi =
[

yi,1
yi,2

]

, ui =
[

ui,1
ui,2

]

,

f (xi) =
[

−εxi,1 + xi,2 − xi,1(x
2
i,1 + x2i,2)

−xi,1 − εxi,2 − xi,2(x
2
i,1 + x2i,2)

]

, Bi =
[

0 1
1 0

]

,

Ci =
[

xi,2
xi,1

]

.

De�ne the so-called storage function V(xi) as

V(xi) =
1

2
(x2i,1 + x2i,2) (D2)

and the scalar function S(xi) as

S(xi) = 2εV(xi)+ 4V2(xi), (D3)

which is positive outside the ball B = {xi ∈ R
2| V(xi) ≤ max(−ε,0)

2
}.

Then, we have

V̇(xi) = xi,1ui,2 + xi,2ui,1 − [ε(x2i,1 + x2i,2)+ ki(x
2
i,1 + x2i,2)

2
]

= y>u − 2εV(xi)− 4V2(xi)

≤ y>u − S(xi).

That is, condition (4) is satis�ed.

APPENDIX E: SOLUTION OF LMIs (32) IN EXAMPLE 1

IN SEC. VI

P =







19.6194 1.8757 4.7948 2.5742
1.8757 19.8934 0.9150 7.3896
4.7948 0.9150 17.8032 10.0527
2.5742 7.3896 10.0527 23.7725






,
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Q =







11.1995 2.3924 1.2749 0.5651
2.3924 9.2019 0.5942 3.8496
1.2749 0.5942 8.6784 4.5230
0.5651 3.8496 4.5230 15.9833






,

Z =







0.2907 0.0351 0.2097 0.0774
0.0351 0.3373 0.1165 0.4194
0.2097 0.1165 0.2348 0.2100
0.0774 0.4194 0.2100 0.6446






,

V =







350.6328 0 0 0
0 386.4757 0 0
0 0 16.2167 0
0 0 0 148.6860






,

W =







354.5293 0.9549 −135.9724 −19.9116
0.9549 410.8246 −24.8248 −116.4935

−135.9724 −24.8248 391.4282 64.0708
−19.9116 −116.4935 64.0708 302.1782






.
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