
Project Report

An Extension of
CodeFeedr

Team 1Up

Project Report
An Extension of

CodeFeedr
by

Roald van der Heijden,
Matthijs van Wijngaarden,

Wouter Zonneveld

in order to obtain the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on the 5th of February 2020, 10:30

Project duration: November 11, 2019 – January 31, 2020
Thesis committee: Dr. G. Gousios, Client, TU Delft

Dr. A. Katsifodimos, Supervisor, TU Delft
Dr. H. Wang, Bachelor Project Coordinator, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Introduction 4
2 CodeFeedr 5

2.1 Overview . 5
2.2 Architecture. 5
2.3 Dependencies. 6

3 Research Report 7
3.1 Overview . 7
3.2 Problem Description . 7
3.3 Design Goals . 8
3.4 Requirement Analysis . 9
3.5 Development Methodology . 10
3.6 Related Work . 11
3.7 Design Choices . 12

4 Software Architecture 15
4.1 Design Patterns . 15
4.2 Plugins . 15
4.3 SQL REPL . 17

5 Implementation 18
5.1 Plugins . 18
5.2 SQL REPL . 22

6 Software Testing 24
6.1 Testing approach . 24
6.2 Test types . 24
6.3 Test results . 25

7 Product Evaluation 28
7.1 Deployment. 28
7.2 Software evaluation . 32
7.3 SIG evaluation . 33
7.4 Ethical Evaluation. 34

8 Process Evaluation 35
8.1 Scrum. 35
8.2 Client meetings . 35
8.3 Coach meetings . 35
8.4 Personal evaluations . 35

9 Conclusion 37
Appendices 38
A Project description 39
B Project Info Sheet 40
C Overview SQL Tables of CodeFeedr Plugins 41
D Feedback SIG 46

D.1 1st Evaluation moment: week 2.6 . 46
D.2 2nd Evaluation moment: week 2.9 . 47

Bibliography 48

1

Foreword

This document is part of the effort to obtain a Bachelor’s degree in Computer Science at Delft University of
Technology. It describes the design, process, result, and evaluation of the Bachelor project.

This report is structured as follows: Chapter 1 starts with an introduction to the report. Chapter 2 gives an
overview of CodeFeedr, a streaming analytics tool used for mining software repositories, that is to be extended
in this project. Chapter 3 follows by describing the preliminary research done by team 1Up, culminating in
the MoSCoW requirements for the extensions to CodeFeedr. Chapters 4 and 5, describe the design and imple-
mentation of the extensions respectively. Details on testing can be found in chapter 6. The product evaluation
on CodeFeedr’s extensions can be found in chapter 7 along with an ethical evaluation. The evaluation of the
process of the Bachelor Project along with a personal evaluation of the team members are described in chap-
ter 8. Finally, chapter 9 will give recommendations on the future of CodeFeedr.

During the BEP we received help from many people whom we would like to thank. Georgios Gousios intro-
duced us into the exciting field of Mining Software Repositories (MSR) and gave us the opportunity to work
on a product meant to be deployed in a production environment. His constructive feedback as client was
valuable as well. Wouter Zorgdrager was helpful with his willingness to clarify any misunderstanding we had
with the previous version and by devoting time to help us deploy CodeFeedr on TU Delft’s Sallab server clus-
ter. Our coach, Asterios Katsifodimos, gave us tips to guide us through this project, for which we are grateful.
Lastly we would like to thank Liam Clark, for showing us how to perform a proper retrospective in practice
and giving us tips on how to tackle dealing with extending an existing codebase.

Matthijs, Roald & Wouter
Delft
24th January 2020

2

Summary

CodeFeedr is a Mining Software Repository (MSR) tool designed to efficiently mine massive amounts of
streaming data of projects from various sources using Flink’s streaming framework in combination with Kafka.
Commissioned by researchers at TU Delft on the field of Data Science and Software Engineering, the goal of
this project is to expand further on the product, as it already existed in a development stage. At the start of the
project, CodeFeedr consisted of a core pipeline functionality and a limited amount of plugins which process
data sources.

CodeFeedr-1Up, as this development team calls itself, aimed to achieve two goals: the first goal is increas-
ing the current amount of available plugins, defined by usable software repository sources, to be used by the
client; the second goal is to implement a REPL functionality which requests user-friendly SQL-like queries
and outputs the queried data stream.

Maven, Cargo, NPM and ClearlyDefined have been developed and have extended the CodeFeedr tool.
Furthermore, querying on the aforementioned data sources depending on their data structure is possible for
sequential pipelines. With user aid and documentation in mind, logical data models of a plugin’s internal
structure have been drawn and supplied in the report.

3

1
Introduction

Data is generated and gathered at a rapidly increasing pace [23]. Real-time data analysis is an ever growing
field in computer science which aims to gather insights from these large of data in a timely fashion [10].

A subfield of real-time data analysis is Mining Software Repositories (MSR). MSR is the field of study be-
tween Data Mining and Software Engineering and is interested in questions such as:

• Which developers are most important to project Y?

• Which developer sent in more than 5 consecutive commits within one day?

• Which open source maven repository is most affected by security bug 102?

The goal of MSR is to make the software development cycle more efficient and to produce code of higher
quality. To achieve this goal, MSR analyses data from projects, code reviews, build reports from Continuous
Integration systems, Q&A sites and more [9] [26].

An example of a MSR tool is CodeFeedr [4]. More precisely, CodeFeedr is a software tool for real-time
streaming analytics employing a pipeline abstraction in order to be able to deal with multiple sources of
information and can combine this with existing state. This report specifically focuses on how to improve
CodeFeedr and make it a more useful tool for MSR researchers.

The goal of this report is to describe the current state of CodeFeedr and explore which options are avail-
able to extend CodeFeedr. The report furthermore describes the work done to achieve these goals and giving
recommendations on possible future work.

4

2
CodeFeedr

This chapter first gives a high level overview of CodeFeedr. Afterwards, both the current architecture of Code-
Feedr and its most important dependencies are described. A more detailed description of CodeFeedr and its
dependencies is given by J. Kuijpers et al. [29].

2.1. Overview
CodeFeedr is a framework built on top of Apache Flink [22]. Apache Flink allows for high performance data
streaming, but can take up a lot of time to set up. CodeFeedr therefore aims to ease the setup process of
streaming jobs. If a user wishes to set up a streaming job, he does so by creating a pipeline. A pipeline
consists of one or more stages which are connected via buffers as a Directed Acyclic Graph (DAG). There
are three types of stages: input stages, transformation stages, and output stages. An input stage takes in data
from a data source and feeds this through to the next stage in the pipeline. A transformation stage performs
a transformation operation on the incoming data. An output stage is the end of a pipeline, and stores or
displays the result by e.g. printing the result in a terminal or writing to a file.

Figure 2.1 shows the a high level overview of CodeFeedr’s design. However, not all parts are implemented
yet. As seen in Figure 2.1, a pipeline can take in several streaming sources as inputs. In CodeFeedr’s streaming
processor, several Flink jobs combine the inputs in a user specified manner. The output of the streaming
processor can be stored in data silos. The data stored, can later be used as input to perform stateful stream
processing, i.e. new events will be processed based on the data which was already collected. The query engine
allows users to interact with the system and receive feedback from their queries.

A CodeFeedr pipeline can be run in three different modes: mock, local, or clustered. When using mock,
only sequential pipelines are possible as no message broker is used, but instead everything is kept in memory.
The main purpose of this mode is to test newly added functionality. Local and clustered mode do use message
brokers and thus enable more complex DAGs to be run. The difference between these modes is that local
runs all stages on a single thread, whereas in clustered mode each stage is started separately in a new Flink
environment.

2.2. Architecture
CodeFeedr is built up of two packages namely core and plugins. The core package contains the building
blocks which are necessary to build pipelines such as storing and managing keys, buffers, and serialization.
These building blocks are used in the plugins which are used for particular data inputs. An example of an
implemented plugin is GHTorrent which monitors and obtains data from Github’s public event timeline and
converts this stream into usable data for pipelines in CodeFeedr [24]. Because of the separation of the core
and plugin packages, it is possible for users to create their own plugin. A new plugin only needs to contain
the functionality to process the desired data source(s), as it relies on the core package which provides the
necessary pipeline implementation.

5

2.3. Dependencies 2. CodeFeedr

Figure 2.1: A high level overview of CodeFeedr’s architecture. Taken from [18].

2.3. Dependencies
CodeFeedr is a framework built on Apache Flink. Flink allows for distributed processing for stateful compu-
tations over unbounded and bounded data streams [27]. Since CodeFeedr uses the result of one stream as
the input for another stream, a (distributed) message broker is needed. For this both Apache Kafka and Rab-
bitMQ are available. Key management is necessary as public APIs only allow for a limited amount of calls per
time interval per key. To maintain a stream of live data, key managers track the remaining usages for multiple
keys. Both Redis and Apache Zookeeper are available for key management. For deploying streaming jobs in
a distributed setting, containerization is used. Since Docker allows for complex setups and has ready-to-use
images for many popular services, Docker is used for containerization.

6

3
Research Report

The research phase of the Bachelor End Project (BEP) encompasses inspecting the existence and viability of
different solutions to the problem statement given by the client, which can be found in appendix A. The final
product is based on design choices and goals made in this report.

3.1. Overview
This research report first describes and analyses the problem given by the client. The problem description
is listed in section 3.2. In section 3.3 different design goals are outlined which will be adhered to when cre-
ating the product to solve this problem. Furthermore, in section 3.4 a requirements analysis is performed to
give a more detailed overview of the required features of the product. The development process is given in
section 3.5, followed by a comparison with related work in section 3.6. The current implementation of Code-
Feedr along with a brief description of its dependencies is given in chapter 2. Finally, several major design
decisions which were made at the beginning of this project are motivated in section 3.7.

3.2. Problem Description
This section describes the context of the project and proceeds to give the problem definition. Finally this
problem definition is followed by a more detailed analysis of the problem.

3.2.1. Problem Context
CodeFeedr is a project which aims to integrate existing state with (near) real time streaming events, which
can be queried by users [40]. The core framework of CodeFeedr has been created in a previous Bachelor End
Project and was later expanded upon. However, in its current state CodeFeedr is missing essential implemen-
tation details which are required for users to use CodeFeedr with ease:

1. Difficult setup: The setup and execution of a data pipeline requires considerable effort from the user,
especially if the user has no knowledge of Scala or the surrounding tooling involved with CodeFeedr
such as Kafka, Zookeeper, Redis, Flink & Docker.

2. Missing data sources: CodeFeedr’s codebase has the core functionality to enable data scientists to create
their own connectors to other data sources, but it does not provide these data sources in its current
state.

3. Missing output functionality: CodeFeedr is able to output to a Kafka topic, but is missing functionality
to output to for example a CSV file. This has to be done in a separate process, thus increasing the effort
which has to be put in by the user.

4. Ease of interaction: CodeFeedr requires the user to setup a pipeline using Scala. This requires functional
programming experience. It would be much better to be able to use a declarative language such as SQL,
to be able to specify what results you want in stead of how you want results to be computed.

7

3.3. Design Goals 3. Research Report

3.2.2. Problem Definition
The last point mentioned in subsection 3.2.1 is seen by the Software Analytics lab as a large impediment to use
CodeFeedr. To ease the interaction between a user and CodeFeedr, the Software Analytics Lab desires an SQL
Read-Evaluate-Print-Loop (REPL). A REPL is an interactive shell where a user can type in statements in some
language that are Read, Evaluate, after which the results of evaluation are Printed, after which the systems
Loops back and the process can repeat until a user selects to quit the program. The REPL should compile a
user-provided query and turn this into a corresponding pipeline in CodeFeedr. This pipeline should then be
deployed and results should be displayed back to the user.
Furthermore, the client has requested more streaming sources to be added as plug-ins for CodeFeedr. Among
these the client is especially interested in the package managers Maven, NPM, and Cargo, licensing informa-
tion from Clearly Defined, and vulnerability information from Snyk.io

3.2.3. Problem Analysis
What the team discerned after talking with the client and brainstorming, as underlying parts of the problem,
are the following items:

• Easy to use REPL
In its current state setting up the pipelines in CodeFeedr requires the user to program the desired
pipelines themselves in Scala. The improvements of this project upon the existing CodeFeedr base
should make it possible for someone with the following prior knowledge, to setup and run the pipeline
and analyze its results: 1) using a terminal, 2) basic Git commands, 3) SQL statements. The REPL re-
moves the need for knowing extensive functional programming in Scala.

• More plugins
For adding additional plugins a pre-existing template can be used which is provided at CodeFeedr’s
Github page [41]. One of the desired goals mentioned by the client is being able to query more data
sources and being able to output them similar to Libraries.io Open Data [8].

• Pipeline management
To obtain the desired functionality of the REPL, a user should be able to combine the results of different
pipelines. Therefore it would be useful for users to be able to manage existing pipelines, i.e. get an
overview of currently running pipelines and the option to stop them.

3.3. Design Goals
In this section, design goals will be set for this project. The goals are divided into different key properties
envisioned for the system.

3.3.1. Maintainability
Since CodeFeedr is under constant development, newly implemented features should be easily extendable
and maintainable. New features should furthermore be thoroughly tested on both an individual and integra-
tion level. Helpful to this goal is the fact that The code quality will be checked twice during the project by the
Software Improvement Group (SIG). To further help extendability, concise documentation greatly improves
the ability of future developers to understand CodeFeedr. This documentation should be present in both the
source code (comments) and external documents such as a user guide on how to setup the project.

3.3.2. Usability
As the goal of the REPL is to ease the interaction between the user and the program, usability is a key focus
for this project. This means that the whole process of setting up a query and executing it should be easy to
understand and perform. In CodeFeedr’s current state setting up the project can take up a lot of time which
could discourage users from using CodeFeedr.

3.3.3. Scalability
Queries run on CodeFeedr should be able to scale up to an environment or down towards a project. The
extent to how much data CodeFeedr can handle in large queries will be examined by benchmarks. These
benchmarks will be performed at the end of the project, after the REPL has been created.

8

3.4. Requirement Analysis 3. Research Report

3.3.4. Security
As a REPL deals with user input, the input should be validated to prevent attacks on CodeFeedr. Input valida-
tion, among other things, prevents malicious users to obtain information about the system which they should
not be able to obtain. Malicious users could obtain this information when they know about vulnerabilities of
the system and when the input is not correctly validated.

3.3.5. Performance
As CodeFeedr is dealing with real-time stream processing, achieving high performance is crucial to keep up
with the data being generated. The REPL should not negatively affect the performance of CodeFeedr. No
performance tests on CodeFeedr have been recorded so far, so a zero-measure of CodeFeedr’s current state
should be performed.

3.3.6. Ethics
During the development of a previous project by the client, there was quite the commotion surrounding
privacy, which got known as the GHTorrent issue 32 incident [25]. To prevent a negative impact on people
who’s data is being analyzed by CodeFeedr, Value Sensitive Design (VSD) [17] should be used. An example of
a VSD principle is that data should be anonymised.

3.4. Requirement Analysis
In this section the product requirements will be given according to the MoSCoW method. Furthermore, the
success requirements are given which will state the minimal criteria which the final product should meet for
this project to be deemed a success.

3.4.1. Requirements
After talking to the client and brainstorming among team members our team thought of the following pre-
liminary MoSCoW requirements:

• Must haves: The requirements building up to a Minimum Viable Product (MVP).

– Plugin for Maven package manager

– Plugin for NPM (Node Package manager)

– Plugin for Cargo package manager

– Plugin for Clearly defined (licensing information)

– Implement the Read functionality for SQL statements in a Read-Eval-Print loop

– Implement the Evaluation functionality for SQL statements in a Read-Eval-Print loop

– Implement the Print functionality for SQL statements in a Read-Eval-Print loop

– Terminal-based REPL

– The setup of the application has to be user-friendly with minimal technical background

– The application has to have decent documentation, in order for someone with a minimum amount
of technical knowledge to setup and run queries on the available datasets to CodeFeedr

• Should haves: Important requirements of which most should be present in the final product.

– Plugin for Snyk.io (security information for open source packages)

– Plugin for deploying a web-based REPL in the form of a Jupyter Notebook

– Help or documentation: A user must should be able to consult documentation when encounter-
ing CodeFeedr’s REPL system for the first time

• Could have: Desirable features implemented when time permits it.

– Stream processing for Bug tracking (e.g. Jira, Bugzilla)

– Stream processing for Code review tools (Gerrit)

9

3.5. Development Methodology 3. Research Report

– The ability to determine differential metrics on a stream of events coming from a package man-
ager stream. This means that the metrics of a live incoming stream, can be compared to corre-
sponding metrics of the current state

• Won’t have: Features which are considered but deemed not viable for the scope of this project.

– Additional plugins (Bower, Composer, NuGet)

– Plugins for extra version control systems, e.g. Gitlab, Bitbucket.

– Stream processing CVs mapped onto package level

– A binary application with extensive UI

3.4.2. Success requirements
For this project to be a success, all the Must haves and at least one of the Should haves must be implemented in
the final product. The Could haves are not a necessity for this project to be a success, but are an enhancement
which would further improve the product. All the implemented features should furthermore adhere to the
design goals described in section 3.3.

3.5. Development Methodology
This section deals with how the team plans to undertake the project. It elaborates on the process the team
has picked to bring this project to a success.

Figure 3.1: The intended development path.

• General Process
From the start of this project, an agile approach is chosen, as this project will have a small team and an
agile approach will ensure that the team can quickly react to changes. Sprints of one week are used as
the project only lasts ten to eleven weeks which includes a research and report phase, which both take
roughly two weeks.
Having multiple sprints in the project helps to set small milestones within the project which are good

10

3.6. Related Work 3. Research Report

indicators whether or not the team is still on schedule. Sprint boards are tracked on Asana which con-
tain all tasks which should be completed in a particular sprint. At the end of a sprint, an evaluation will
be conducted of how the ending sprint turned out.

• Communication
The communication within the team will mostly be done in person as all members work together daily
on the TU faculty. For any pressing matters WhatsApp will be used to contact each other. Since for the
majority of the time, all members work together on location, an equal workload distribution is ensured.

• Version Control
For Version Control, Github will be used for pull-based development. During the sprint, features will
be developed in separate branches. Once a feature is completed and tested, a Pull Request (PR) will be
opened to the development branch. A PR must be inspected and approved by at least one other team
member before it will be merged into a development branch. The development branch will be merged
in the master branch once per week which will be the release of a sprint. Both the development and
master branch will have Continious Integration which enforces that the project is always in a working
state.

3.6. Related Work
Mining Software Repositories is the sub field of Computer Science lying in the intersection between Software
Engineering and Data Science. Both fields have a very big interest in combining data to gain insight. Code-
Feedr was developed as a tool to be able to achieve this goal. CodeFeedr is however not unique in combining
data from different data sources to gain insight. In this section other similar systems are discussed.

3.6.1. CODEMINE
CODEMINE is a platform developed by Microsoft to collect and analyze engineering process data [16]. CODEM-
INE uses data from source code, process information, build and test results, code reviews, the organization,
and work items. This data is retrieved by data loaders and stored to later be queried. Microsoft uses CODEM-
INE to, among others, understand onboarding processes, optimize individual processes, and to optimize
overall code flow. Similar to CodeFeedr, data is mined from repositories, however the key difference between
CodeFeedr and CODEMINE is that CodeFeedr incorporates live data whereas CODEMINE requires all the
data to first be loaded into the system to later be processed in a batch.

3.6.2. CodeAware
CodeAware is a system for code monitoring and management which is similar to a sensory network defin-
ing software versions of monitors and actuators to achieve a fine-grained distributed artifact analysis [1]. Its
aimm is to efficiently and proactively prevent faults in stead of what the authors see as fault localization and
fixing. The benefits of CodeAware are its ability to monitor at a fine as well as a coarse-grained level. The
drawback is that it’s a theoretical system aimed at opening up discussion for future CI ecosystem improve-
ments.

3.6.3. Alooma
Alooma is a real-time data pipeline as a service that can combine multiple data sources such as databases,
application data and API [2]. It features a fault-tolerant, high availability ETL system with features such as
visualizations of streams of data, managed schema changes and output to Google BigQuery or Amazon Red-
shift or S3. It supports an API written in Python. In terms of competition, this could be considered the biggest
competitor to CodeFeedr. It has recently been taken over by Google, thus it has a great potential userbase.
In terms of features and visualizations, it seems richer than CodeFeedr. However, it is aimed at connecting
streaming data with data from applications or an API in general and does not have a focus on being a MSR
tool.

3.6.4. Amazon Kinesis
Amazon has its own infrastructure for real time stream processing and visualization [3]. Within the AWS
environment, Amazon Kinesis is responsible for collecting, processing and analyzing real-time streaming
data. AWS infrastructure itself, although advertising scalability and ease of setup is still a commercial option
and also is not aimed at MSR specifically.

11

3.7. Design Choices 3. Research Report

3.6.5. SQLStreams
SQLStreams is very rich in functionality and has multiple possible compatible streaming sources including
Apache Kafka, AWS Kinesis, HTTP, Web and network sockets [37]. They style themselves as "Blazingly Fast,
Easy-To-Use and Analyst-Ready" [36]. The main difference with CodeFeedr is also SQLStreams’ biggest prob-
lem, namely its corporate background and subsequently, the pricing. There are three different types of pack-
ages that can be chosen: free, standard and pay (as-you-go). The former is a type of freemium software, where
the use of SQLStreams is limited to 1GB of messages a day. The standard packet starts at 51.000 dollars. The
last option is price variable, which is not made clear by the company selling the product.

3.6.6. WSO2 Stream Processor
Similar to SQLStreams, WSO2 Stream Processor is a cloud native, lightweight stream processing platform
that can digest streaming SQL queries [7]. Similar to CodeFeedr’s design goal, WSO2SP emphasizes its simple
deployment for users. Furthermore, the software is ran on a Siddhi application and unlike SQLStreams, this
product is not connected to a hefty price tag. Its open source nature warrants a free download link on their
website. However there is a drawback in this stream processing platform which is the lack of continuous
access to improvements, bug fixes, security updates and performance enhancements if the user has only the
trial version acquired.

3.7. Design Choices
This section describes the different design choices which were made before the implementation phase of the
BEP. For each design choice, advantages and limitations for different implementations are discussed and a
conclusions is made.

3.7.1. Platform REPL
From brainstorm sessions in the first week, and meetings with the client and coach, several platforms on
which the REPL will run came up as possibilities. The next subsections mention the benefits and the draw-
backs of each of the designated options for creating a SQL REPL.

3.7.1.1. Local Terminal
A local terminal means having a SQL REPL on your own computer, either from within an IDE like IntelliJ or
Eclipse, or running it standalone as a SQL Command Line Interface. An advantage of a local terminal is that
it is the easiest for the development team to implement. This is because no external connectors have to be
written.
However, the main drawback of a local terminal is that CodeFeedr would become bound to the computer it is
installed on. Using a local terminal also puts the most effort on the user as he has to install the program and
all its dependencies.

3.7.1.2. Jupyter Notebook
Having a local terminal is ok, but having the ability of a web-based terminal is even better, since it allows for
multiple access from any location in stead of having the REPL run on a local computer. Since MSR is a field
lying on the intersection between Software Engineering and Datamining, tools for gaining insight working
web-based were investigated. As Jupyter Notebooks are the major tool among Javascript tools for datamining,
no other Javascript tools were considered.
Jupyter Notebooks can be created and then shared, to be run on a local instance of a web server or on a
central web server. These created documents are able to combine live code, visualizations, and text. This
enables teaching or interactive documentation, a form called literate programming [28]. Using Python these
notebooks are frequently used by data scientists to visualize and share data. Jupyter Notebooks are powerful,
if they can be connected to CodeFeedr by transforming data from Kafka into a CSV or NumPy array, all Python
tools becomes available to perform data science on the query results. Or an alternative is to use Python-lenses
to query real-time streaming sources like Kafka and gaining the ability to query using SQL in Jupyter. Another
advantage of Jupyter Notebooks is that they can be written and hosted on different machines, making it more
portable than a local SQL REPL. Furthermore, Jupyter Notebooks are open-source. This is a big advantage in
perspective of security, having more eyes prying into source code and the ability of a fast expanding userbase
by allowing user contributions. However, there is no experience among the team members in setting up
Jupyter Notebooks. Experience in Python is also limited among the team which could increase the time it
takes to successfully integrate these notebooks with CodeFeedr.

12

3.7. Design Choices 3. Research Report

3.7.1.3. Choice of platform
The final choice for platform development will be that we will implement both options. First, the team will
start with a local terminal, since that is easiest to implement. Then, the team sets out to create a Jupyter
Notebook-based REPL in order to have all the power of Jupyter available.

3.7.2. Language
The design choice on which language will be used for this project will be split up into two parts: plugins and
REPL.

3.7.2.1. Plugins
For each plugin, a new project can be created by using an existing template provided on CodeFeedr’s Github
[41]. This project will use Scala. As this template is specifically created for CodeFeedr plugins, all plugins will
be written in Scala.

3.7.2.2. Language of REPL
As CodeFeedr is programmed in Scala, two programming languages come up as candidates for implementing
new features, namely Scala and Java. Scala is a candidate as this is consistent with the current implementation
of CodeFeedr. Java is an option as Scala can be compiled into a jar file which can be used in a Java project. In
order to stay consistent, have less boiler plate code and keep maintainability up, the language of choice will
be Scala initially. Depending on how the project evolves, a choice might be made to implement more than
just the local SQL REPL. The advantage of having a Jupyter Notebook hosted with some way of running SQL
queries in it and having the results returned as objects which Python can handle are many. The complete
arsenal of NumPy and SciPy could be at the user’s disposal making it a great option for data scientists. Having
a webpage with an SQL REPL in for example Javascript is also a good option. The language for the webpage
option isn’t set in stone yet, so during the project the team will look at possible alternatives when they get to
this point.

3.7.2.3. Choice of languages
The final choice for REPL was a local terminal and a web-based one in Jupyter Notebook. Considering the
existing codebase for the local terminal we will use Scala and for the web-based REPL we will employ Python
in Jupyter Notebook to develop the web-based REPL.

3.7.3. Streaming SQL
The REPL will use SQL to process user queries, however since the input data comes as a stream, traditional
SQL will not be sufficient. Traditional SQL assumes the input is bounded whereas streams are typically un-
bounded. Streaming SQL is created to query unbounded data and output results as new data comes in. This
section describes different Streaming SQL frameworks of which one will be picked to be used in this project.

3.7.3.1. SamzaSQL
While SamzaSQL does provide the functionality to process streams at a massive scale, it is important to note
right off the bat that this framework was built upon the Apache Samza framework [31]. This framework is dif-
ferent from the one the original Codefeedr was built upon, namely the Apache Flink framework. While Samza-
SQL does provide interesting and useful functionalities such as defining stream processing logic declaratively
as an SQL query, among other things, it will not be too useful to dive deeper into this topic due to its inappli-
cability with CodeFeedr.

3.7.3.2. Calcite
Since Calcite is already being used in CodeFeedr and has Streaming SQL capabilities, Calcite seems like a
good choice for this project. While calcite does show some promising functionality in their documentation
[11], not all of it is implemented yet. Features such as tumbling and hopping windows to deal with computed
aggregate functions do exist, but much more vital and important features such as the JOIN operation for
stream-to-table and stream-to-stream functionality is lacking documentation.

13

3.7. Design Choices 3. Research Report

3.7.3.3. Kafka KSQL
Similar to SamzaSQL, Kafka SQL, or KSQL, enables real-time data processing without the need to write code
in a programming language like Java [14]. This language is built upon the Apache Kafka framework. One
important thing to note of KSQL is the available JOIN functionality which Calcite currently lacks [15]. To be
exact, as of starting this project KSQL supports INNER, LEFT OUTER and FULL OUTER joins for Stream-
Stream. For Stream-Table, INNER and LEFT joins are available. While this means not every tool would be
available in the development process of CodeFeedr, this is a considerable step up compared to Calcite’s built-
in join operations. Some other functionalities in KSQL include transforming, aggregating, windowing and
sessionization.

3.7.3.4. Conclusion
In conclusion, since the original version of CodeFeedr was already heavily dependent on functionality of
Flink’s SQL language, this extension has built further upon that framework. The creation of tables based off of
the structure of a object inside a DataStream object and the subsequent querying on such tables are all Flink
SQL functionalities. Therefore we chose to continue using this library, despite initial concerns about missing
and inconsistent documentation.

14

4
Software Architecture

This chapter describes the architecture of the software and different design patterns that have been imple-
mented, supported by explanations of those design pattern choices. Furthermore, it explains the different
design decisions that were made during the project with regard to both the plugins and the SQL REPL sec-
tions of Codefeedr.

4.1. Design Patterns
In order to deliver a sound product with high maintainability, certain design patterns have been taken into
consideration during the development process.

4.1.1. Strategy Pattern
Due to the overlapping nature of the plugins, the Strategy design pattern was utilized [34]. This choice was
made due to the plugins being very cohesive, but simultaneously completely independent of each other. To
realize the Strategy design pattern the choice was made to perform an abstract coupling of some of the shared
plugin functionality with shared parent classes. The same goes for each plugin’s configuration class, as well
as the plugin-specific SQLStage functionality. With the amount of shared functionality in each individual
plugin’s source files, this design choice reduced a lot of code duplication. By using proper inheritance and
low coupling, the use-case of fixing a bug in the future for one plugin and forgetting about or overlooking it
in other plugins is simpler, due to much of its implementation now being located in a shared, abstract parent
class. As a result, maintainability of Codefeedr’s codebase is improved.

4.1.2. Singleton
Furthermore, multiple Singletons are used per plugin [33]. Some parts of the code, such as parsers for JSON
and SQL table structure creators, are all collectively used as utility classes where only a single instance is
necessary. On use, it loads (lazy) variables to be kept track of as a global instance and therefore ensures no
other instances initialized. For example, each plugin has the Protocol object, which acts like a singleton and
defines the internal data structure of a plugin’s object in a data stream.

4.1.3. Adapter
Adapter design patterns are also implemented to deal with the problem of sharing functionality per plugin
but minimizing the coupling [32]. Specifically, when dealing with the question on how to best implement the
registering of SQL table information for multiple different plugins with different data structures. This problem
was tackled by creating an adapter class and function, which all plugins could connect to, and depending on
the plugin’s type input, supplied the proper functionality.

4.2. Plugins
The design of the plugins inherited much of the structure of CodeFeedr. However, much of its functionality
had to be altered and modified in order for the plugin to function properly with accordance to Codefeedr’s
overarching architecture, so some critical design decisions still had to be made. For example, some plugins

15

4.2. Plugins 4. Software Architecture

have two input stages, while others have one. The decisions and the reasoning behind them will be discussed
per plugin. Furthermore, each plugin’s data structure has been carefully examined and through extensive
testing been put in numerous tabled structures. This process and its results will be discussed extensively in
chapter 5.

4.2.1. Maven
The Maven plugin contains the functionality of reading a RSS feed of updated/new Maven artifacts, and with
a second web request retrieves further project information. However, it became clear that finding an update
stream of all new and updated artifacts was challenging. Eventually an update stream was found but this
stream does not contain all updated packages, merely a chunk of them. For this reason the Maven plugin
was split in two stages. The first stage parses the RSS feed, thus retrieving updated/new artifacts. The second
stage takes the first stage as input and retrieves the project information of these artifacts. By designing this
plugin in this way, whenever a better update stream is created, the workload required to connect the different
polling source to the existing second stage will be minimized.

4.2.2. Node Package Manager
The Node Package Manager (NPM) plugin enables reading an update stream of all updated/new NPM projects
and retrieving their project information. Although the update stream of NPM is complete, its uptime is lack-
ing. At seemingly random intervals the website can’t be accessed for a couple of minutes. While this is cer-
tainly a disadvantage to the sourcing of a data stream, it only partially hinders the functionality of this plugin,
since intervals of downtime are often followed shortly after with uptime. If the list of the update stream still
has the updated package, then all lost packages are then retrieved and processed with a single poll, as long as
the polling interval has a reasonable size. While certainly a downside taken under close consideration by the
team, no better alternatives were found for now. It is possible that a more reliable update stream is found in
the future. For the same reason as with Maven, namely the possibility of a different update stream being used
and implemented in the foreseeable future, the section of retrieving the update stream was separated from
obtaining specific package information.

4.2.3. Cargo
Cargo is the package manager and crate registry service for the Rust community [12]. Due to its open-source
nature, the update stream of new and updated packages are freely and easily available online. Codefeedr uti-
lizes this update stream by instantly obtaining key information pieces on a particular crate (package). With a
check on the latest item polled and processed, the crates which have not been processed yet are then exten-
sively polled by a second, extended web request, thereby obtaining the full package information. By design,
Crate has a minimized version, which is used in the first stage of polling the update stream, and an extended
version, which is only obtained if not previously processed. By design, this will drastically reduce network
payload. Unlike the previous two package managers, Cargo’s plugin architecture is not split in two different
stages (basic and extended), because the plugin’s update stream is reliable and complete. There is a split
between a ’CrateFromPoll’ and a ’CrateRelease’, but this is processed within the same underlying pipeline
stage.

4.2.4. Clearly Defined
Clearly Defined is a project by its parent organization, the ’Open Source Initiative’, to help make FOSS (Free
and Open Source Software) projects more attractive [13]. This is done by publishing information on the soft-
ware such as licensing and source location and therefore making it, like the name suggests, more clearly
defined. The ClearlyDefined plugin gathers information about ClearlyDefined-registered projects. Unlike
the previously mentioned plugins, this data source has a single stream containing both the names of all the
new and updated projects, as well as their project information. When looking at the proposed architectural
design for this plugin, one important factor with this plugin compared to the other plugins is that there is no
need for a second web request for an individual package. All the package information is stored in the same
polling stream as the fetcher. While this is a dubious design choice by the ClearlyDefined organization, since
the result of a single poll is a rather large and convoluted JSON string, this is what Codefeedr will have to deal
with. Therefore it follows logically that a single poll will instantly retrieve, process and output the JSON into a
fully filled ClearlyDefined object. As with Cargo, ClearlyDefined will therefore have one input stage only.

16

4.3. SQL REPL 4. Software Architecture

4.3. SQL REPL
The SQL REPL uses a newly implemented SQLStage which extends CodeFeedr’s OutputStage. Like Code-
Feedr’s output stages, an SQLStage can take in one to four inputs. The SQLStage is a generic class, meaning it
accepts a data stream of any class. The SQLStage first registers the incoming data streams into tables. By reg-
istering data streams into tables, the streams can now be queried much like regular databases. The query can
be passed to the SQLStage as an argument when running the application. The output of a query is returned
as a data stream which can be outputted to a file, printed to a console, or by using a custom SinkFunction.

4.3.1. Registering tables
Although the SQLStage is generic, registering a table needs a specific implementation for each incoming
class. Classes from plugins are often complex and contain list types. For the newly added plugins (Clearly
Defined, Cargo, Maven, and NPM), each complex field and list types are registered as a new table with a
foreign key relation to its parent. The result is a database in second normal form [19]. Because the database
is in first normal form, queries are easier to write as there are no repeating groups. Furthermore, redundancy
is eliminated which improves the performance.

When a stream is used as input but no implementation of registering its class to a table is present, an
exception will be thrown.

17

5
Implementation

This chapter describes the implementation details of the additions to CodeFeedr. Section 5.1 first outlines
the details of the plugins, followed by section 5.2 which provides a description of the SQL REPL.

5.1. Plugins
Certain facets of the implementation process of the plugins overlapped, such as the polling of an update
stream, the necessity to create plugin-specific data structures and the filtering of packages after polling.

5.1.1. Polling
When implementing the plugins, it was important to keep in mind that the process of polling packages from
a package source, as well as the parsing of a package had to be built efficiently. Depending on the plugin,
the polling interval decided how much time passed between two polls, meaning that if a polling interval
was short due to a very active software repository, the efficiency of the aforementioned process was crucial.
Therefore, during implementation of the various plugins for Codefeedr, extra focus and effort was put in the
development of a most efficient retrieval of package data as possible.

5.1.2. Data Structure
Since every plugin represents a different type of package, the content of each package varies. A protocol class,
containing fields with the field name and its corresponding data types is created for every plugin. This class
defines the internal structure of a single package using case classes. However not every project specifies the
same information even within the same plugin. Where certain fields might be specified in some projects, they
could be omitted in others. Due to Scala’s Option[] type, these so called nullable fields could be implemented
by wrapping an Option around the field. However, during implementation the information on which fields
to define as an Option was not available. When running a plugin which processed a package with a field
which otherwise was thought to be non-nullable to suddenly have a nulled value crashed the plugin. It took
a number of weeks of trial-and-error and extensive debugging to be confident with the current state of each
plugin’s protocol data structures.

case class MavenProject(
modelVersion: String,
groupId: String,
artifactId: String,
version: String,
parent: Option[Parent],
dependencies: Option[List[Dependency]],
licenses: Option[List[License]],
repositories: Option[List[Repository]],
organization: Option[Organization],
packaging: Option[String],
issueManagement: Option[IssueManagement],

18

5.1. Plugins 5. Implementation

scm: Option[SCM])

An example of a case class from Maven\protocol\Protocol.scala

5.1.3. Filtering
During the polling of an update stream of any software repository, it is highly likely that multiple of the pack-
ages, if not all packages have already been processed by Codefeedr. To prevent duplication of packages and
simultaneously improve the performance of the system, only packages which had not previously been pro-
cessed will go through the extended processing and added to the output stream. This is done in all plugins
by keeping track of the latest package processed. When the update stream is polled and a number of pack-
ages are pending processing, the update field with a Date type is compared to the latest processed package.
If the Date is earlier than the saved package, it is skipped, otherwise it will be processed and it replaces the
’checkpointed’ package.

def sortAndDropDuplicates(items: Seq[CrateFromPoll]): Seq[CrateFromPoll] = {
items
.filter((x: CrateFromPoll) => {
if (lastItem.isDefined)
lastItem.get.crate.updated_at.before(x.updated_at)

else
true

})
.sortWith((x: CrateFromPoll, y: CrateFromPoll) => x.updated_at.before(y.updated_at))

}

An example of filtering packages from CargoReleasesSource.scala

5.1.4. Cargo
The Cargo plugin utilizes the update feed from Crates.io’s own website. The feed, available at
https://crates.io/api/v1/summary, shows a continuously updated string in the retrieved HTML body. Among
other interesting information, the polled string contains basic information on ten of the newest crates (pack-
age in Rust’s package manager) as well as ten of the most recently updated crates. In the plugin’s implemen-
tation, these parts of the string are parsed and filtered into CrateFromPoll objects, which saves only the crate’s
name and date when it was added or updated. A crate’s name functions as the primary key in Cargo, and the
date field can then be used to filter packages out of a poll as described earlier.

When a crate is processed further for the data stream, another web request is sent out to
https://crates.io/api/v1/crates/X, where X is the name of the crate. The response is another string in JSON for-
mat describing the full crate with complete information. This information is then parsed into Cargo’s data
structure using a static utility class called JsonParser.scala. Unlike the other plugins, which use libraries to
instantly deserialize the JSON string into a case class, Cargo’s deserializer is hard-coded due to development
complications.

During implementation it was made clear that a particular field in Cargo’s data structure was both incom-
prehensible and inconsistent in regard to field names and field values, namely the Badge object. After some
consideration it was chosen not to include this field to the plugin.

The result of the Cargo plugin is the implementation of a new stage on the pipeline with an output stream
of complex Cargo objects. A snippet of an example Cargo object can be seen in Figure 5.1. The complete
logical data model of Cargo can be found in appendix C

5.1.5. Clearly Defined
The ClearlyDefined plugin implements a stage for Codefeedr that outputs a DataStream[ClearlyDefinedRelease].
ClearlyDefined’s polling location is singular, with all information on recent packages centralized at the same
source, namely https://api.clearlydefined.io/definitions?matchCasing=false&sort=releaseDate&sortDesc=true.
The response of this webrequest contains full information on a hundred ClearlyDefined projects in JSON
format. As a result, the serialized string is very large compared to the other plugin sources.

19

5.1. Plugins 5. Implementation

Figure 5.1: A logical data model of the Cargo parent class and one of its children

With each single poll, a packageAmount number of packages are polled out of the hundred. This variable is
currently set to 10, and is configurable in the code source only. It is not recommended to increase this value
due to the slow nature of ClearlyDefined releases. For each package polled, the Release->meta->updated field
was used to determine filtering and sorting. Deserializing the processed packages to the desired case class
was handled by the Jackson JSON library in Scala.

The result of the ClearlyDefined plugin is the implementation of a new stage on the pipeline with an
output stream of complex ClearlyDefined objects. A snippet of an example ClearlyDefined object can be seen
in Figure 5.2. The complete logical data model of ClearlyDefined can be found in appendix C.

Figure 5.2: A logical data model of the ClearlyDefined parent class and two of its children.

5.1.6. NPM
The NPM plugin implements a stage to the pipeline of Codefeedr which outputs NPM objects. Much like
Cargo, the process of retrieving the update stream and requesting complete package information is bipartite.
The URL used to obtain the names of all the most recently updated and created packages is https://npm-
update-stream.libraries.io/. The list of NPM package names is then intersected with an existing list of previ-
ously processed packages. The remaining packages are then polled at http://registry.npmjs.com/X, where X is
the qualified package name.

20

5.1. Plugins 5. Implementation

It is important to note that the update stream is highly unstable. It often happens that the website is un-
available for some consecutive moments. This is why an automatic re-request is sent if the first fails. Another
important divergent aspect is that this source is third-party, meaning we aren’t fully independent and have to
rely on the completeness of what is offered.

For that reason, the NPM plugin splits the staging of data streams in two. The first stage is the process
of retrieving the information from the source and deserializing the information into case classes, much like
the previously explained plugins. However, the deserialization of the data has only been done on limited
information, into an NpmRelease object. The next stage then takes the aforementioned object as input, and
outputs an NpmReleaseExt object, with much more complete information. By splitting the stages in two, core
functionality can be left unaltered when future changes might apply. There is a realistic chance that a better
update stream is discovered in the future which would then only require a programmer to edit the first stage
of the plugin.

During implementation it was noticed that many NPM packages are set as unpublished, meaning they
lack critical information. For this reason they are of little use and are unable to be properly processed. Many
packages will be filtered out due to this complication.

The result of the NPM plugin is the implementation of two new stages on the pipeline with an output
stream of complex NpmReleaseExt objects. A snippet of an example NPM object can be seen in Figure 5.3.
The complete logical data model of NPM can be found in appendix C.

Figure 5.3: A logical data model of the NpmProject parent class and one of its children.

5.1.7. Maven
The input stage of the Maven plugin reads information from an RSS feed found at
https://mvnrepository.com/feeds/rss2.0.xml. This feed contains an XML structure with information about the
title, link, description, and publication date of newly added/updated Maven artifacts. As discussed in sub-
section 4.2.1, this feed is not complete.

From the retrieved project names, the project information is retrieved at
https://repo1.maven.org/maven2/. From this site, the .pom file is retrieved which again contains an XML struc-
ture. For the parsing of XML no external library is used. Although libraries which extract Scala case classes
from XML exist (such as Xtract [30]), making these libraries work requires a lot of boilerplate code, resulting in
no advantages using them. Therefore the team decided to manually extract the necessary information from
the XML. Which values are extracted from the .pom file can be found in Listing 5.1.2.

The result of the Maven plugin is the implementation of two new stages with an output stream of com-
plex MavenReleaseExt objects which contains all relevant information from Maven artifacts. A snippet of the
structure of a Maven object can be found in Figure 5.4. The full structure can be found in appendix C.

21

5.2. SQL REPL 5. Implementation

Figure 5.4: A logical data model of the Maven parent class and one of its children.

5.2. SQL REPL
The implementation details of the SQL REPL is split in two parts. First the Streaming SQL aspect will be
discussed. Hereafter the required data normalization is examined.

5.2.1. Streaming SQL
The implementation of the SQLStage enables the use of Streaming SQL (SSQL) in CodeFeedr and works as
followed: First a Flink StreamTableEnvironment is created [7]. Secondly, each structure of the incoming data
stream is registered into tables in the created StreamTableEnvironment. Finally the query is executed again
using the StreamTableEnvironment. A downside to the Flink dependency is that it the dependency still under
development which means that not all intended features are already implemented. For example, as of now,
case classes from Scala are not supported to perform queries on. Since in CodeFeedr case classes are used,
this complicated the process of performing queries. For the Cargo, Clearly Defined, Maven and NPM plugins,
a conversion from their Scala case classes to a Plain Old Java Object (POJO) is implemented since POJOs are
supported by Flink. Although this was a necessity to make SSQL work, it doubles the size of the Protocol
object for each plugin.

Another issue, which was only encountered late in the implementation phase of the project, is that Flink’s
SSQL dependencies don’t give output when using Kafka topics. This issue was not foreseen as both Flink and
Kafka are products of Apache, and as different running modes of CodeFeedr don’t alter the call graph of the
SQLStage. The root of the issue appears to lay in a changed physical execution plan of the query. As seen in
Figure 5.5, two different execution plans are generated for the same query: SELECT title FROM Maven. When
using Kafka an additional data source is added along with a data sink. Why this is done is unknown to the
team even after many hours of debugging.

5.2.2. Data Normalization
In order to properly query on incoming data from different streams using the query tables, some changes to
the original data structure have been made. The biggest challenge was that all data structures contained lists
of objects. This would be impossible to query on. The solution to this problem was to extract the objects in a
list in a separate streaming table. This was done with a simple flatmap operation on the list value.

However, this created the problem that a user would be unable to link the values of the list to the parent
object the list once belonged to. Therefore the identifying field of the object was taken and manually inserted
in the newly created table. By applying this technique to all list fields, we transformed our data-stream-table
structure into 1NF, since at processing time it is already ensured that each row is unique using the previously
described filtering technique.

Furthermore, due to each plugin’s data structure, parent objects can have multiple child objects. However,
since the data was extracted from JSON where the tree structure was inherent, there were no identifying keys
in child objects which would allow a user to connect a child with a parent. For that reason id fields have been
inserted in children, manually adding foreign key constraints to the plugin’s main identifier, which was often
the name of the package. As can be seen in the logical data models in appendix C, users will now be able to
properly query on package fields originating from various layers within the same object and perform joins if
they wish. Additionally, as a result of all four plugins having singular primary key columns, the stream-table

22

5.2. SQL REPL 5. Implementation

(a) Result query without using Kafka.

(b) Result query using Kafka.

Figure 5.5: Difference in physical execution plan using the same query: SELECT title FROM Maven

structure transformed into 2NF. 3NF was not achieved in this project, as it would prove very difficult for us to
determine which fields shared a transitive, functional dependency, and it was not a top priority in this project.

23

6
Software Testing

This chapter describes all relevant information related to testing within this Bachelor project. Section 6.1
gives a general overview of how testing was tackled during development, followed in section 6.2 by a de-
scription of the different kind of tests that were employed. Section 6.3 describes the test results and gives
recommendations for improvements.

6.1. Testing approach
“Testing shows the presence, not the absence of bugs.” is a famous quote by Edsger Dijkstra [38]. Indeed
writing tests does not guarantee the absence of bugs, but it does give a developer a certain level of confidence
in his written code. During this project, tests were written from the start to improve confidence in newly
added code. Although no Test Driven Development approach was taken, tests were a prominent review part
when merging Pull Requests (PRs). For all new code tests should be present. Occasionally the project suffered
from some technical debt in terms of testing [35]. However a great effort was made to pay this debt in the
next sprint. Continuous Integration was provided by setting up a Github Workflow for Scala/SBT. Github.com
automatically ran tests when pushing local commits to its respective branch on the central repository or when
performing a PR to ensure a working build on the development/master branch.

6.2. Test types
Software testing is done on multiple levels. Some tests are aimed to stress test a system whilst others aim to
uncover bugs in edge cases. This section describes what type of tests are used in this project.

6.2.1. Unit testing
The vast majority of tests in the test suite of this product consist of Unit tests. Unit tests execute small pieces
of code (e.g. a single method) and confirm that the code works according to expectation. Unit tests should
furthermore be modular, i.e. the execution of test A, should not affect test B. In this project unit tests were
among others used to test for situations where external sources would not respond as foreseen. For example,
a website could be temporarily unreachable.

6.2.2. Integration testing
The test suite furthermore contains integration tests. Integration tests don’t test on a modular level, but inte-
grate several pieces of code and confirm that the pieces are working conjointly. In practise this could mean
that the interaction between two or more classes is tested.

6.2.3. System testing
Besides automatically run test suites, system testing has been performed by making an effort to imitate a real
life usage scenario. An instance of Kafka and Zookeeper was installed on Ubuntu 19.04 running on an Intel®
Core™ quadcore i5-3470 CPU @ 3.20GHz with 16 GB of internal memory and 320 GB of hard drive space
available. This setup was used to perform a dry run of deployment for an extended period of time. Although
this setup pales in comparison to the cluster setup of the client, having this setup was still useful.

24

6.3. Test results 6. Software Testing

The plugins were deployed on this private server before actual deployment on the cluster of the client, in-
specting logging information and checking any unusual situation. Since this server could run for a far longer
time than any of the developers laptops, this helped potentially clear the most high-profile bugs before actual
deployment.
After this first system test, the plugins were deployed on the TU Delft Sallab cluster, on which the software
has been running for almost two weeks as of writing this report.

6.3. Test results
This section presents the results of testing. First coverage result are listed, followed by a discussion of potential
pitfalls of missing coverage, ending with a description of the results of actual deployment testing. The code is
covered by an overall of 266 unit and integration tests and about a week of deployment testing.

6.3.1. Coverage results
Testing was aimed to be as automated as possible, in order to prevent having to test manually, which is slow,
expensive and prone to errors.As test coverage measure, line coverage was selected as it is a simple, yet effec-
tive and widely applied measurement. A minimal line coverage of 85% was set at the beginning of the project
by the team. 85% was chosen as this was often told to be a good aim during the Software Quality and Testing
course. As seen in Figure 6.1, this goal was reached by a rather large margin.

(a) Overall coverage: 93%.

(b) Coverage of plugins: Minimum of 94%.

(c) Coverage of REPL: 73 %.

Figure 6.1: all attained coverage results.

Although exhaustive testing is usually impossible, aiming for high coverage is nonetheless a valuable goal.
There are mainly three reasons for our software product to have lower coverage in certain areas:

1. Functions or code which can’t be tested
Some of the code we developed are extensions of base variants in the CodeFeedr core. It turned out to
be impossible to mock these situations so some lines in the stages and operators packages cannot
be tested. For specific classes coverage dropped to about 80% but overall on the plugins the results are
considered adequate.

2. Full coverage but not full line coverage
To achieve full coverage on a Scala case class, many tedious tests need to be written. The methods
toString, hashCode, and unapply need to be tested for all case classes to reach full coverage. Since this
takes up a lot of time and clutters the test code with lots of irrelevant code, the team decided this was
not worth the effort.

3. Work in progress
Part of the REPL was developed by the team slightly differently than the client had envisioned. This
resulted in functionality which was not necessary for the product but could still prove to be useful in

25

6.3. Test results 6. Software Testing

the future. Because this code was not vital for the product however, no time was invested in testing this
functionality. This led to a slightly lower degree of coverage of the REPL package.

6.3.2. System testing results on local server
After the team’s server was setup and configured to run Kafka and Zookeeper locally four instances of IntelliJ
were fired up. At that moment the plugins still had different repositories so it was easy to run them separately
and in parallel.

• Cargo was initially the most successfully deployed plugin. Being the first in having a complete imple-
mentation, it was run on the server before all other plugins and it ran for 56 hours before the team saw
an error message pop up in the system log. This turned out to be a small mistake in having a field as
required, were it actually was optional. This situation occurred as well with the other plugins, except
for ClearlyDefined.

• ClearlyDefined has a well defined structure. This plugin has no optional fields and therefore after con-
ferring with the client what fields were desirable to extract, didn’t give any error before being deployed
on the cluster.

• Maven also ran without any issues at all. Optional fields were assessed correctly from the beginning so
no surprise exceptions came up during the dry run of this plugin.

• NPM turned out to be the plugin with the most difficulties. This was due to a number of different
reasons:

1. Popularity vs polling interval Npm is by far the most popular language of the created plugins,
which can be noticed from the number of update events received in comparison to the other
plugins; It’s at least one order higher than the other plugins. NPM was initialized to fetch in near
real-time by polling the found update stream every second. As a result the system log got flooded
with error messages about http request failures and projects not being pulled. At first the team
thought the polling interval was too short, but as it turned out after tweaking the update stream’s
up-time isn’t consistent. The team believes this to be a problem at the side of the update stream’s
server. However, as discussed in subsection 4.2.2, this is no real issue.

2. Error:Not Found Some packages turned out not to exist in the NPM registry. In these cases the
update stream simply returned "Error: not found". A simple check mitigates propagation of any
raised exception on this specific package when polling the list of updated packages.

3. Unpublished packages Other packages turned out to have a completely different structure than the
standard package information in JSON format as required by the Node Package Manager. These
packages raised Jackson (the JSON parser) exceptions. These packages however had the peculiar-
ity that they contain a version field named "Unpublished". After discussion with the client these
packages were omitted since they are of no interest.

4. NPM not enforcing structure At some point all authors were unknown. This had to do with the
fact that older versions of NPM allowed a field author of type String containing a name, optional
email and optional url. In newer versions of NPM this is a complex JSON-object with a required
name and optional email and url. The library for reading JSON values, called Jackson, isn’t able
to distinguish between String and complex objects. Therefore all authors got parsed as a String
type, which in most cases wasn’t filled. This resulted in a None value in the author field. After
discussing with the client the team set out at first to manually parse the author in a union type,
but having to check all possible variations for author String, quickly switched to parsing only the
complex object as this field was used for nearly all new projects.

6.3.3. System testing results on Sallab cluster
Since the deployment on the team’s private server had taken place before actual deployment on the client’s
server, most of the issues had already been ironed out. Cargo, ClearlyDefined, and Maven were running
perfectly, but NPM had one issue.

NPM suffered from what can be called an ingestion time bug. As the update stream doesn’t provide any
time stamp whatsoever the team decided, after discussion with the client, to use ingestion time for the min-
imum releases and to update the time field by manually extracting it from the JSON package information.

26

6.3. Test results 6. Software Testing

This worked fine, until both stages were deployed on the server. Within minutes there were more than 2000
releases, which didn’t make sense. This turned out to be a bug. Every release from the update stream got
an ingestion timestamp and due to the way the update stream was handled every time the team polled the
update stream, every package got recognized as being new. To properly identify new packages, the difference
between consecutive polls is now taken instead.

27

7
Product Evaluation

In this chapter the final product is evaluated. This is done by firstly showing results of the plugins running in
production. Secondly it is assessed if the design goals set in section 3.3 are met. Furthermore, the evaluations
from SIG are examined and it is discussed how their feedback is incorporated. Finally an ethical evaluation
of the product is given.

7.1. Deployment
All the new plugins were deployed and on TU Delft’s clusters have been running for almost two weeks as
of writing this document. For each plugin, results will be shown and discussed. The results are taken from
Grafana which runs on TU Delft’s server.

7.1.1. Cargo

Figure 7.1: Results Cargo.

Cargo has one stage connected to the cargo_releases Kafka topic. As seen in Figure 7.1, the Cargo plugin has
collected roughly 2000 projects in two weeks. These contain both updated and new packages. As there are
only 35000 crates in total, 2000 is a substantial amount.

28

7.1. Deployment 7. Product Evaluation

7.1.2. Clearly Defined

Figure 7.2: Results Clearly Defined

Releases of Clearly Defined projects are stored in the clearlydefined_releases Kafka topic. Figure 7.2 shows
that there are approximately 225 Clearly Defined releases processed by the plugin. This is a relatively low
amount compared to the other plugins. The reason for this is that there are few packages released on Clearly
Defined.

29

7.1. Deployment 7. Product Evaluation

7.1.3. Maven

(a) Results Maven minimal releases.

(b) Results Maven extended releases.

Figure 7.3: Results of the Maven plugin.

Maven is separated in two stages, therefore we got two different Kafka topics, maven_releases_min and
maven_releases. Figure 7.3 illustrates that whenever maven_releases_min retrieves projects, maven_releases
also fetches projects. The reason for this is that the second stage takes the output of the first stage as its
input. The difference in total amount of projects between the two topics is caused by the fact that the
maven_releases stage was temporarily stopped and could thus not retrieve any projects in that interval. As of
writing this report, there have been 68000 jars published in 2020 according to the central maven repository
[6]. This would average to roughly 100 jars per hour. However as seen in Figure 7.3, over a period of 3 hours,
only about 10 projects have been collected. The reason for this is the incomplete update feed as discussed in
subsection 4.2.1.

30

7.1. Deployment 7. Product Evaluation

7.1.4. NPM

(a) Results NPM minimal releases.

(b) Results NPM extended releases.

Figure 7.4: Results of the NPM plugin.

The NPM plugin has collected the most packages by more than ten fold. Like Maven, NPM consists of
two stages although unlike Maven, the number of collected projects differs greatly. This difference is caused
by two reasons. The first reason is that the update stream contains unpublished projects. These unpublished
projects are structured differently which would complicate fetching projects. However the client indicated
he is not interested in unpublished projects, so the decision was made to not retrieve the information about
unpublished projects. The second reason is that no project information is available in the NPM registry.
Nevertheless, the project information of around 55000 projects was retrieved in two weeks time.

31

7.2. Software evaluation 7. Product Evaluation

7.2. Software evaluation
This section evaluates whether or not the MoSCoW requirements and design goals are met and supports why
this was or was not the case.

7.2.1. MoSCoW requirements
Requirement Met?
Must haves:
Plugin for Maven package manager X
Plugin for NPM (Node Package manager) X
Plugin for Cargo package manager X
Plugin for Clearly defined (licensing information) X
Read functionality of REPL Partial
Evaluate functionality of REPL Partial
Print functionality of REPL X
Terminal-based REPL Partial
User-friendly setup X
Decent documentation for CodeFeedr X
Should haves:
Plugin for Snyk.io No
Plugin for web-based REPL No
Help or Documentation X
Could haves: No

Although not all of the must haves have been implemented in the way the team envisioned, CodeFeedr does
have the ability to be queried using SQL. The team first set out to create a REPL, but after detailed discussion
with the client found out that the pipeline creation as they had envisioned it was not in line with the clients’
wishes. The client clearly indicated that CodeFeedr needed the ability to be queried using SQL, which it now
does. Furthermore, the must-have requirements regarding the plugins have been properly met, as has the
documentation regarding source code.

The REPL can cluster-wise be shown as a proof of concept. Users with limited technical background can
still query the data sources of the TU Delft cluster. The technology behind streaming SQL and integration
with Flink is still relatively new, so advances here will impact the ability of CodeFeedr to provide an SQL REPL
greatly as well. However, the complication with evaluating the query were bugs the team was confronted with
for multiple weeks without a proper solution. When attempting to deploy CodeFeedr using non-sequential
pipelines via Kafka clusters rather than local system memory, an unknown factor added a Kafka sink to the
staged execution plan, instantly ’cancelling’ the evaulation of a data stream.

Exporting the project to a JAR in order to let users deploy the program with variables as their query also
proved difficult, which is why the terminal-based REPL is only partially complete. While it is possible in an
IDE-based terminal, as of writing the report it is impossible to run the program as a standalone.

Snyk.io did not allow derivative works unfortunately with its privacy policy, despite it being a wish from
our client. The team agreed to skip this requirement due to having no other options. Other requirements,
like the web-based REPL, were left out due to the time it took to deal with unforeseen impediments, such as
the JAR-bug and the startLocal-bug. Sufficient documentation for users was supplied in the form of logical
diagrams of all implemented plugins, on top of the source code documentation.

7.2.2. Design goals
This section reiterates the design goals set in section 3.3, checks if they have been attained or gives argumen-
tation why this didn’t happen.

• Maintainability: The first evaluation by SIG showed a market average maintainability upon which
could be improved by tackling unit size and duplication. These two points have been tackled, test code
has been created for newly added or changed code so the team is pretty confident the 2nd evaluation
by SIG will be positive on this point.

• Usability: The biggest issue for usability according to the team was the lacking documentation. Chang-
ing existing documentation was indicated to be out of scope by one of the Bachelor Project Coordina-
tors so the team didn’t focus on it. But to improve usability for the plugins a readme.md in Markdown

32

7.3. SIG evaluation 7. Product Evaluation

notation has been added, describing what the plugins do, how to set them up and how to get data out
of them. This improves usability.

• Scalability & Performance: The final product is positively scalable, as it has been deployed on a kafka
cluster and no problems have been encountered with retrieving packages and processing them into
extended releases in appended stages. Performance-wise the product is optimized in such a way that,
depending on the plugin, the polling intervals are short enough not to skip packages, and long enough
not to strain the network too much. Much of the work is done during initialization, such as the register-
ing of StreamTables, and since CodeFeedr is a product designed to be turned on once and left running,
a large chunk of the program is unimportant regarding performance.

• Security: As this product will be supplied to a single user only, or users within the same academic facil-
ity, the precautions developers must take when distributing software to the wide public aren’t as high
priority as otherwise. Furthermore, as this software in essence collects data and inserts the data into
Kafka topics based on a query, SQL injections are not a concern due to the streaming nature.

• Ethics: The client clearly indicated the desire for as much information possible, including publicly avail-
able data on authors. The team advises to tackle violating GDPR by following the same steps the client
undertook for GHTorrent as described in subsection 7.4.2

7.3. SIG evaluation
During the course of the project, SIG evaluated the code at two occasions, firstly in week six, and secondly
in week nine. The aim of these evaluations is to identify points of improvement in terms of code quality.
Furthermore, it will be examined if the feedback of the first evaluation, is implemented before the second
evaluation.

7.3.1. First evaluation
The first evaluation scored 3.7 out of 5 stars which indicates that the code has a maintainability of the market
average. The main areas of improvements were code duplication and unit size. Code duplication is bad for
maintainability because having more code, means there is more code to maintain. Furthermore, whenever
the duplicate code is changed, it needs to be changed at several places. If one those places is missed, bugs
could arise. The following classes were mentioned as having duplicate code:

• CargoReleasesSource.scala - ClearlyDefinedReleasesSource.scala

• getNewCratesFromSummary - getUpdatedCratesFromSummary

A big unit size indicates pieces of code which have a larger than average size, e.g. a long method. Larger
unit sizes can reveal that a method has more than one task. Smaller unit are thus more desirable since each
method will only task, and all methods are automatically documented by their method names. Methods
which had a big unit size were:

• NpmService.getProject

• Protocol.MavenProjectPojo.fromMavenProject

• RetrieveProjectAsync.asyncInvoke

It was furthermore noted that the presence of testcode early on in the development stages was promising,
along with the recommendation to keep writing new tests when adding new code.

7.3.2. Second evaluation
Before the second evaluation, other than adding new code, the code which was sent to SIG in the first eval-
uation was refactored according to SIG’s feedback. To eliminate code duplication, a abstract parent class
PluginReleasesSoruce was created which contains all functionality which was shared between the plugins.
The mentioned methods getNewCratesFromSummary and getUpdatedCratesFromSummary were also refac-
tored into a single method. Furthermore, all methods which were indicated to be too long were split into two
or more smaller methods to both reduce method length and to split functionality.

33

7.4. Ethical Evaluation 7. Product Evaluation

The received second evaluation of SIG confirms these findings. The feedback indicates a grown codebase
with increased maintainability. Duplication was tackled well, as was Unit size, but due to newly added meth-
ods, this point was partly undone. SIG praised the amount of test code added for new production code, as
testing usually gets less attention when a project progresses, but it was positive that was not the case during
our project. SIG concludes by stating their recommendations have been included during development.

7.4. Ethical Evaluation
Aside from the usual evaluation based on the wishes of the client, the design goals & design choices, a broader
view on the deployment and use of CodeFeedr is necessary. This section will describe ethical implications of
CodeFeedr, discuss possible concerns, and recommend ways to help remedy these concerns.

7.4.1. Publicly Available Data versus Personal Privacy
The rise of online social networks in different areas (LinkedIn, Facebook, Github) and the emergence of big
data processing has impacted personal privacy in a big way. The amount of data that can be collected, the
speed at which this can be done and the duration it can be retained as well as the kind of information that
can be gathered and acquired is at a scale never seen before [39]

7.4.2. Privacy related concerns
Our client has had previous experiences pertaining to ethics with another MSR-tool, called GHTorrent. GHTor-
rent is a tool to monitor the Github public timeline and for each event, scrape the content and dependencies
and store these. One of the issues of GHTorrent in particular, issue 32, raised concerns with Github develop-
ers about their privacy [25]. Github, an online collaboration platform for development, has the property that
email addresses are published. It turned out that after aggregation and redistribution by GHTorrent, devel-
opers were the target of unwanted emails with survey requests and profiling. Developers wanted their emails
deleted and this created a very heated discussion between developers of GHTorrent and Github users. It even
got attention from renowned IT Lawyer Arnoud Engelfriet, who mentioned it on his blog [20] and popular law
& IT forum [21]. To remedy the situation, the client choose to employ an opt-out mechanism.

7.4.2.1. Application to CodeFeedr
CodeFeedr could face similar issues, since it is processing open source data concerning users, such as names,
email addresses and links to (personal) websites. The data of for example a package of Node package manager
(NPM) is publicly available, so collecting this information on these packages will consist of collecting personal
data as well.

To prevent negative consequences like for example spam or recruiters judging future hired developers on
their personal data, the EU has deployed the General Data Protection Regulation (GDPR) [5]. These comprise,
among others, a strict set of guidelines to which a controller of personal data must adhere. Two of those are
the right to be forgotten (so having their personal data removed) and the right to alter their own personal
data. The GDPR also does not allow processing of personal data simply using the guise of "doing scientific
research" but does allow the processing if the controller can demonstrate an urgent need for this data. In the
case of CodeFeedr we can claim that even old data is relevant so the right to be forgotten does not prevail
over this claim. Complicating things even more is that CodeFeedr employs Kafka, an append only log for real
time stream processing. This means that alterations to this log are nearly impossible. Using an opt-out isn’t
a useful option to implement. There are two reasons for this. Apart from the technical difficulty of having
to change many lines in an append only stream per user request, there is another complication which com-
pletely negates the right to be forgotten. Although we can remove personal data from CodeFeedr, it still is
possible to retrace an event to a user, at least for example with NPM. Having only the id and version of the
project is enough to query the NPM repository for this specific data. Removing personal data means someone
with less well intentions has to do an extra step, but it is possible nonetheless. The only way to anonymise
the data is to anonymise the project id as well, but that will hinder the presentation of scientific results enor-
mously.
How to solve this dilemma is still unclear, but the GDPR states that an organisation or controller of this per-
sonal data has to do everything in its power to make this available as much as possible. For CodeFeedr we
would recommend to clearly review which data of interest is necessary for scientific research. Use special
Kafka topics for internal use and if CodeFeedr is published along with certain Kafka topics as public data, it
should be ensured that these adhere to the GDPR by inspected the privacy concerns of each data field.

34

8
Process Evaluation

This chapter evaluates the development methodology used during the BEP. Firstly the scrum method is dis-
cussed, followed by an evaluation of the meetings with both our client and our coach. Lastly personal evalu-
ations of each of the team members are given.

8.1. Scrum
During the project an agile approach was taken with sprints of one week. This was experienced to be suiting
to the project as it allowed for enough evaluation moments to assess whether the team was still on schedule.
Although the sprint reviews were not too extensive, all important points of the previous week were covered
and each member gave his opinion on both his personal progress and the progress which was made as a team.

Sprint boards were set out to be tracked in Asana, however during the project it became clear that ZenHub
was more flexible to use. ZenHub is a plugin for Github which allows for the tracking of several Github project
boards in one central place. Furthermore, by using Zenhub, PRs could be linked to issues. The tracking of the
sprint boards was sometimes mediocre as the team would start a sprint, and sometimes update the board
only at the end of the sprint. This would make it unclear how the sprint was progressing when looking at the
sprint board. This was however not a big problem for the team, as all members were working daily in the
same room. Therefore there was enough communication within the team to keep each other updated on the
progress.

8.2. Client meetings
Client meetings took place once every week or once every two weeks depending on the need for feedback.
Our client Georgios Gousios would give feedback on new features and the team could ask questions on how
to implement new features for the next sprint(s).

8.3. Coach meetings
Meetings with our coach Dr. A. Katsifodimos, occurred once every two weeks. During these meetings newly
implemented features were shown to which feedback was given. When the team ran into problems, A. Katsi-
fodimos would give advice on how to tackle these problems. Overall these meetings were appreciated by the
team and experienced as very helpful.

8.4. Personal evaluations
This section gives personal evaluations of the project as a whole. In these evaluations, each member will
reflect on what he found challenging during the project and what went well. Each member will also give his
opinion of the result of the project.

35

8.4. Personal evaluations 8. Process Evaluation

8.4.1. Roald van der Heijden
What I really am glad about is that as a team we were able to output a decent set of useful plugins for our
client. That, intra team communication and the reports went well, which is something I’m very proud of.
I hope my team appreciates the extras I tried to take care of to improve the process (the rooms, our own
deployment test server and communication to external parties).

What do I feel could be improved? Just before writing this evaluation I read a really nice quote: "Don’t
stop when you’re tired, stop when you’re done." I found this applicable since Asterios Katsifodimos helped
me deal with this. Taking a rest when I needed it and performing better during the day is something which
sounds natural but can be lost in the crowdedness of every day life. Unfortunately at the time of writing this
report, we’re still not where we want to be, but seeing that the technology used is relatively new, the framework
distributed and the documentation at times really bad, I can only look at that quote and just think: We’re not
done.

Another thing that has astounded me is to see how much time and effort real life deployment costs in
order to run really smooth. This was something I didn’t expect with my current set of learned skills. Learning
by doing can mitigate this and I hope to do a lot of both of them in the near future.

8.4.2. Matthijs van Wijngaarden
I personally joined the 1Up group a week later than the rest and vowed to work extra hard to make up for the
lost time. The progress done before my entrance was mostly the research report, so I had the chance to dive
right into the codebase. I am quite happy with what we have achieved in the following weeks as a team. The
work on the Plugins were certainly a small challenge at first, but once we realized the gist of it, it was quite
doable. By implementing design patterns, collaborating through peer programming and every now and then
even attempt some test driven development, all in combination of an attempted agile scrum environment,
this project definitely felt like a personal development experience for me.

When the second half of the project came around the corner however, bugs seemed to plague us. While
certainly less enjoyable than the first half due to lower output, this also helped me develop a stronger work
ethic towards situations which could be deemed frustrated. Although in the end I’m not too satisfied with the
final product, as there are still some nasty bugs I would have loved to have solved, I think that what we now
deliver, combined with the process and teamwork behind the scenes is something I can be proud of.

8.4.3. Wouter Zonneveld
The project started out with a research phase. Since I took the course Bachelor Seminar last period, this was
a rather familiar process. Because of this the research phase went smooth and without any major issues. The
implementation phase of the project was more challenging. This was because instead of starting from an
empty project, which is usually the case, we had to build upon an existing project, namely CodeFeedr. Since
CodeFeedr is a project with many external dependencies, it was hard to fully grasp how all the different parts
work together. Although Wouter Zorgdrager gave us a high level explanation on how CodeFeedr works at the
start of the project, many of the details only became clear during the course of the project. Furthermore,
I personally spent a considerable amount of time on the streaming SQL parts which I found challenging.
This is mostly because the streaming SQL dependencies are still in early stages of development. As a result,
documentation is limited and code extracts which are available are often in older versions and no longer
work.

Overall I am semi-satisfied with the result of the project. Mainly I would have liked to been able to export
the project as a jar, and to have the SQL stages working with Kafka. However the root of both of these issues
seemed to be in external dependencies which made them hard for us to solve.

36

9
Conclusion

Currently, CodeFeedr has implemented four additional plugins to be able to be used on the pipeline. Each
one of them is able to process incoming packages in a streaming fashion, and output them in a custom out-
put stage; Whether that is a JSON stage or an SQL stage is up to the user. Furthermore, the 1Up development
team has introduced data structures to the CodeFeedr product. Incoming data streams of the implemented
plugins are now translated into table structures, enabling querying for the REPL.

However, since only seven weeks of the project could be spent on programming, there are many features
which are not yet implemented but would make CodeFeedr a better product. Firstly if the project could suc-
cessfully be exported to a jar, the project would become more accessible. Furthermore, the easiest way to run
something on the TU Delft cluster is to upload and then run this jar. Another high priority addition would be
to fix the bug in the interaction between streaming SQL and Kafka described in subsection 5.2.1. Solving this
bug would turn the SQL REPL from a proof of concept to a production ready product.

A web-based REPL would be a great addition to enhance the usability of CodeFeedr. A user could connect
to a website, which is connected to the TU Delft cluster, input a query and monitor the result. This would
circumvent the process of connecting to the TU Delft cluster and running a jar with input arguments.

More plugins for CodeFeedr would be another addition to increase CodeFeedr’s value. For example, tracking
information such as Jira or Bugzilla would be beneficial plugins. Code review information such as Gerrit
would be valuable to have in a plugin as well. Package managers are another type of plugin which are useful
for CodeFeedr. Currently Pypi, Maven, Clearly Defined, Cargo, and NPM are implemented, but many more
software repository providers exist. Examples of interesting package managers are Go, NuGet, Packagist,
RubyGems, and Bower.

37

Appendices

38

A
Project description

In this chapter, the problem description from Project Forum (formerly BEPSys, the Bachelor Project admin-
istration tool) is given.

Project title
A REPL loop for the CodeFeedr project (Offered by Software Analytics Lab - TU Delft)

Project description
Codefeedr is a platform for streaming (software) analytics. It is built upon Apache Flink, a stream processing
platform. Codefeedr allows users to build pipelines (DAGs) of stream processing steps, by combining smaller
steps and sharing data inputs and outputs. Using those pipelines, one can express stream processing queries,
such as “find me the developer that wrote the line that crashes for all stacktraces that show up more than 5
times per second”. The pipeline abstraction, while useful requires the user to write the program in Scala,
compile it and deploy it on the Flink cluster. This is very inconvenient when we just want to check a simple
query. A better way to do such queries is an SQL REPL loop. In such a scenario, the SQL REPL loop compiles a
user-provided query down to a CodeFeedr pipeline, deploys it and reads the results back to the user console.

Several components required for building a Codefeedr REPL loop exist: SQL parsing is handled by Apache
Calcite; Codefeedr automatically exposes live data types to a centralized location; a way to deploy a Codefeedr
program on a Flink cluster is part of Codefeedr. The purpose is to combine those existing components in a
high-quality engineering project; the end result will be open source and of high value to the stream processing
community. Besides the SQL REPL loop, SERG would like to see the following improvements to CodeFeedr:
Connecting more streaming sources, connecting more historic sources, improve upon its architecture and
improve setup & documentation.

39

B
Project Info Sheet

Title of the project: A REPL for CodeFeedr
Name of the client organization: Software Analytics LAB (part of SERG TU Delft)
Presentation Date: 5th February 2020
Final report: Can be found here

• Description: This project aims to expand upon the current state of CodeFeedr, a Mining Software
Repository (MSR) tool for performing realtime streaming analytics on publicly available package in-
formation. Goals are to add more streaming sources and to build a REPL to let researchers query data
sources using Streaming SQL.

• Challenge: Integrating several existing systems, namely CodeFeedr, Flink SQL, and Kafka.

• Research: Focused on which streaming sources were important, design goals and MoSCoW require-
ments needed for the updated version and the choice of Streaming SQL framework to employ.

• Process: Scrum with iterations of one week were used. Test Driven Development was not fully em-
ployed, but the team focused on paying technical debt by extensive testing.

• Product: CodeFeedr has four new plugins running on TU Delft’s Sallab’s server cluster with positive
results. The SQL REPL only works for sequential pipelines running on a local computer.

• Outlook: The plugins are thoroughly tested before deployment but could be improved by developing
side output for debugging inspections. Following development of Streaming SQL in Flink could be
useful in getting the REPL to work with non-sequential pipelines and a clustered setting.

Team Roles:

Roald van der Heijden, Contributions: Project Developer: NPM plugin, Process & Deployment Testing
Matthijs van Wijngaarden, Contributions: Project Developer: Cargo & Clearly Defined plugins, SQL REPL
Wouter Zonneveld, Contributions: Project Developer: Maven plugin, SQL REPL

Client, Coach

Name and affiliation of the client: Georgios Gousios, Software Engineering Research Group (SERG) TU Delft
Name and affiliation of the coach: Asterios Katsifodios, Web Information Systems, TU Delft

Contact

Georgios Gousios, g.gousios@tudelft.nl

40

https://repository.tudelft.nl/islandora/object/uuid

C
Overview SQL Tables of CodeFeedr Plugins

This appendix contains an overview of all tables used for the SQL Stage of each written plugin by team 1Up.

41

C. Overview SQL Tables of CodeFeedr Plugins

Figure C.1: Overview of table structure for the Cargo plugin

42

C. Overview SQL Tables of CodeFeedr Plugins

F
ig

u
re

C
.2

:O
ve

rv
ie

w
o

ft
ab

le
st

ru
ct

u
re

fo
r

th
e

C
le

ar
ly

D
efi

n
ed

p
lu

gi
n

43

C. Overview SQL Tables of CodeFeedr Plugins

F
ig

u
re

C
.3

:O
ve

rv
ie

w
o

ft
ab

le
st

ru
ct

u
re

fo
r

th
e

M
av

en
p

lu
gi

n

44

C. Overview SQL Tables of CodeFeedr Plugins

F
ig

u
re

C
.4

:O
ve

rv
ie

w
o

ft
ab

le
st

ru
ct

u
re

fo
r

th
e

N
P

M
p

lu
gi

n

45

D
Feedback SIG

D.1. 1st Evaluation moment: week 2.6
De code van het systeem scoort 3.7 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
marktgemiddeld onderhoudbaar is. We zien Duplication en Unit Size vanwege de lagere deelscores als mo-
gelijke verbeterpunten.

Bij Duplication wordt gekeken naar de hoeveelheid gedupliceerde code. We kijken hierbij ook naar de ho-
eveelheid redundantie, dus een duplicaat met tien kopieën zal voor de score sterker meetellen dan een du-
plicaat met twee kopieën. Vanuit het oogpunt van onderhoudbaarheid is het wenselijk om de hoeveelheid
gedupliceerde code zo laag mogelijk te houden. Na verloop van tijd zal de gedupliceerde code moeten worden
aangepast. Dit leidt niet alleen tot extra werk, aangezien op dat moment alle kopieën tegelijk moeten worden
veranderd, maar is ook foutgevoelig omdat de kans bestaat dat één van de kopieën per ongeluk wordt ver-
geten.

Voorbeelden in jullie project:

• CargoReleasesSource.scala versus ClearlyDefinedReleasesSource.scala

• JsonParser.scala (getNewCratesFromSummary versus getUpdatedCratesFromSummary)

Bij Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Dit kan verschillende
redenen hebben, maar de meest voorkomende is dat een methode te veel functionaliteit bevat. Vaak was de
methode oorspronkelijk kleiner, maar is deze in de loop van tijd steeds verder uitgebreid. De aanwezigheid
van commentaar die stukken code van elkaar scheiden is meestal een indicator dat de methode meerdere
verantwoordelijkheden bevat. Het opsplitsen van dit soort methodes zorgt er voor dat elke methode een
duidelijke en specifieke functionele scope heeft. Daarnaast wordt de functionaliteit op deze manier vanzelf
gedocumenteerd via methodenamen.

Voorbeelden in jullie project:

• NpmService.getProject

• Protocol.MavenProjectPojo.fromMavenProject

• RetrieveProjectAsync.asyncInvoke

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid testcode ziet er ook goed
uit, hopelijk lukt het om naast toevoegen van nieuwe productiecode ook nieuwe tests te blijven schrijven.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van de
ontwikkelfase te realiseren.

46

D.2. 2nd Evaluation moment: week 2.9 D. Feedback SIG

D.2. 2nd Evaluation moment: week 2.9
[Hermeting]

In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoudbaarheid
is gestegen. De grootste verbetering op het gebied van deelscores zit bij Duplication, wat in de feedback
op de eerste upload ook als één van de verbeterpunten werd genoemd. We zien dat jullie bij het andere
aandachtsgebied, Unit Size, ook maatregelen hebben genomen. Die zijn echter weer deels ongedaan gemaakt
omdat in de nieuwe code ook weer lange methodes zijn toegevoegd.

Op het gebied van testcode zien we dat jullie bijna net zoveel nieuwe testcode als nieuwe productiecode
hebben geschreven. Dat is positief, meestal zie je dat unit testen minder aandacht krijgt naarmate een project
loopt.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie zijn meegenomen
in het ontwikkeltraject.

47

Bibliography

[1] Rui Abreu, Hakan Erdogmus, and Alexandre Perez. Codeaware: Sensor-based fine-grained monitoring
and management of software artifacts. 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, 2:551–554, 2015.

[2] Alooma. Alooma | enterprise data pipeline platform. https://www.alooma.com/, 2019. Accessed:
2019-11-30.

[3] Unknown author. Amazon kinesis. https://aws.amazon.com/kinesis/, 2019. Accessed:
2019-11-30.

[4] Unknown author. http://codefeedr.org/, 2020. Accessed: 2020-01-29.

[5] Unknown author. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation,
2020. Accessed: 2020-01-29.

[6] Unknown author. https://mvnrepository.com/repos/central, 2020. Accessed: 2020-01-25.

[7] Unknown author.
https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/common.html, 2020.
Accessed: 2020-01-29.

[8] Unknown author. https://libraries.io/data, 2020. Accessed: 2020-01-29.

[9] Unknown author. https://2020.msrconf.org/, 2020. Accessed: 2020-01-29.

[10] Unknown author. https://www.sisense.com/glossary/real-time-analytics/, 2020. Accessed:
2020-01-29.

[11] Apache Calcite. Streaming.
https://calcite.apache.org/docs/stream.html#joining-streams-to-tables, 2019.
Accessed: 2019-11-29.

[12] Cargo. crates.io: Rust package registry. https://crates.io/, 2019. Accessed: 2019-11-29.

[13] ClearlyDefined. https://clearlydefined.io/about, 2019. Accessed: 2019-11-29.

[14] Confluent. Ksql: Streaming sql for apache kafka | confluent.
https://www.confluent.io/product/ksql/, 2019. Accessed: 2019-11-30.

[15] Confluent. Join event streams with ksql - confluent platform. https://docs.confluent.io/
current/ksql/docs/developer-guide/join-streams-and-tables.html, 2020. Accessed:
2020-01-07.

[16] Jacek Czerwonka, Nachi Nagappan, Wolfram Schulte, and Brendan Murphy. Codemine: Building a
software development data analytics platform at microsoft. IEEE Software, July 2013. URL
https://www.microsoft.com/en-us/research/publication/
codemine-building-a-software-development-data-analytics-platform-at-microsoft/.

[17] Janet Davis and Lisa P Nathan. Value sensitive design: Applications, adaptations, and critiques.
Handbook of ethics, values, and technological design: Sources, theory, values and application domains,
pages 11–40, 2015.

[18] SERG TU Delft. Software analytics. https://se.ewi.tudelft.nl/softanalytics.html, 2019.
Accessed: 2019-11-18.

48

https://www.alooma.com/
https://aws.amazon.com/kinesis/
http://codefeedr.org/
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://mvnrepository.com/repos/central
https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/common.html
https://libraries.io/data
https://2020.msrconf.org/
https://www.sisense.com/glossary/real-time-analytics/
https://calcite.apache.org/docs/stream.html#joining-streams-to-tables
https://crates.io/
https://clearlydefined.io/about
https://www.confluent.io/product/ksql/
https://docs.confluent.io/current/ksql/docs/developer-guide/join-streams-and-tables.html
https://docs.confluent.io/current/ksql/docs/developer-guide/join-streams-and-tables.html
https://www.microsoft.com/en-us/research/publication/codemine-building-a-software-development-data-analytics-platform-at-microsoft/
https://www.microsoft.com/en-us/research/publication/codemine-building-a-software-development-data-analytics-platform-at-microsoft/
https://se.ewi.tudelft.nl/softanalytics.html

Bibliography Bibliography

[19] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Pearson, 7th edition,
2015. ISBN 0133970779.

[20] Arnoud Engelfriet. https://blog.iusmentis.com/2016/02/29/
mag-ghtorrent-openbare-data-github-aggregeren-als-onderzoeksdataset/, 2016.
Accessed: 2020-01-25.

[21] Arnoud Engelfriet. https://legalict.com/2016/02/28/
is-it-legal-for-ghtorrent-to-aggregate-github-user-data/, 2016. Accessed: 2020-01-25.

[22] The Apache Software Foundation. https://flink.apache.org/, 2019. Accessed: 2020-01-25.

[23] John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital shadows, and
biggest growth in the far east. IDC iView: IDC Analyze the future, 2007(2012):1–16, 2012.

[24] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, pages 233–236, Piscataway, NJ, USA, 2013. IEEE Press. ISBN
978-1-4673-2936-1. URL http://dl.acm.org/citation.cfm?id=2487085.2487132.

[25] Georgios Gousios. The issue 32 incident – an update.
http://gousios.org/blog/Issue-thirty-two.html, 2016. Accessed: 2020-01-19.

[26] Ahmed E Hassan. The road ahead for mining software repositories. In 2008 Frontiers of Software
Maintenance, pages 48–57. IEEE, 2008.

[27] P Carbone Asterios Katsifodimos, S Ewen Volker Markl, and S Haridi Kostas Tzoumas. Apache flinktm:
Stream and batch processing in a single engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng, 36(4),
2015.

[28] D. E. Knuth. Literate Programming. The Computer Journal, 27(2):97–111, 01 1984. ISSN 0010-4620. doi:
10.1093/comjnl/27.2.97. URL https://doi.org/10.1093/comjnl/27.2.97.

[29] Quist Joris Kuijpers, Jos and Wouter Zorgdrager. Codefeedr, connecting streaming jobs. Technical
report, Delft University of Technology, 2018.

[30] Thayne McCombs. https://www.lucidchart.com/techblog/2016/07/12/
introducing-xtract-a-new-xml-deserialization-library-for-scala/, 2016. Accessed:
2020-01-29.

[31] Samza. Samza- samza sql.
https://samza.apache.org/learn/documentation/latest/api/samza-sql.html, 2020.
Accessed: 2020-01-28.

[32] Alexander Shvets. Adapter design pattern.
https://sourcemaking.com/design_patterns/adapter, 2020. Accessed: 2020-01-28.

[33] Alexander Shvets. Singleton design pattern.
https://sourcemaking.com/design_patterns/singleton, 2020. Accessed: 2020-01-28.

[34] Alexander Shvets. Strategy design pattern.
https://sourcemaking.com/design_patterns/strategy, 2020. Accessed: 2020-01-28.

[35] Harry M. Sneed. Dealing with technical debt in agile development projects. In Dietmar Winkler, Stefan
Biffl, and Johannes Bergsmann, editors, Software Quality. Model-Based Approaches for Advanced
Software and Systems Engineering, pages 48–62, Cham, 2014. Springer International Publishing. ISBN
978-3-319-03602-1.

[36] SQLstream. Sqlstream | streaming sql analytics for kafka & kinesis. https://sqlstream.com/, 2019.
Accessed: 2019-12-03.

[37] SQLstream. Capabilities - streaming analytics platform | sqlstream.
https://sqlstream.com/capabilities/, 2019. Accessed: 2019-12-03.

49

https://blog.iusmentis.com/2016/02/29/mag-ghtorrent-openbare-data-github-aggregeren-als-onderzoeksdataset/
https://blog.iusmentis.com/2016/02/29/mag-ghtorrent-openbare-data-github-aggregeren-als-onderzoeksdataset/
https://legalict.com/2016/02/28/is-it-legal-for-ghtorrent-to-aggregate-github-user-data/
https://legalict.com/2016/02/28/is-it-legal-for-ghtorrent-to-aggregate-github-user-data/
https://flink.apache.org/
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://gousios.org/blog/Issue-thirty-two.html
https://doi.org/10.1093/comjnl/27.2.97
https://www.lucidchart.com/techblog/2016/07/12/introducing-xtract-a-new-xml-deserialization-library-for-scala/
https://www.lucidchart.com/techblog/2016/07/12/introducing-xtract-a-new-xml-deserialization-library-for-scala/
https://samza.apache.org/learn/documentation/latest/api/samza-sql.html
https://sourcemaking.com/design_patterns/adapter
https://sourcemaking.com/design_patterns/singleton
https://sourcemaking.com/design_patterns/strategy
https://sqlstream.com/
https://sqlstream.com/capabilities/

Bibliography Bibliography

[38] Rod Stephens. Beginning Software Engineering. Wrox Press Ltd., GBR, 1st edition, 2015. ISBN
1118969146.

[39] Herman T. Tavani. Ethics and Technology: Controversies, Questions, and Strategies for Ethical
Computing. Wiley Publishing, 4th edition, 2012. ISBN 1118281721.

[40] Enrique Larios Vargas, Joseph Hejderup, Maria Kechagia, Magiel Bruntink, and Georgios Gousios.
Enabling real-time feedback in software engineering. In Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results, pages 21–24. ACM, 2018.

[41] Wouter Zorgdrager. codefeedr/codefeedr-plugin-template.g8: This is the official (giter) template to
create your own codefeedr plugin.
https://github.com/codefeedr/codefeedr-plugin-template.g8, 2019. Accessed: 2019-11-18.

50

https://github.com/codefeedr/codefeedr-plugin-template.g8

	Introduction
	CodeFeedr
	Overview
	Architecture
	Dependencies

	Research Report
	Overview
	Problem Description
	Design Goals
	Requirement Analysis
	Development Methodology
	Related Work
	Design Choices

	Software Architecture
	Design Patterns
	Plugins
	SQL REPL

	Implementation
	Plugins
	SQL REPL

	Software Testing
	Testing approach
	Test types
	Test results

	Product Evaluation
	Deployment
	Software evaluation
	SIG evaluation
	Ethical Evaluation

	Process Evaluation
	Scrum
	Client meetings
	Coach meetings
	Personal evaluations

	Conclusion
	Appendices
	Project description
	Project Info Sheet
	Overview SQL Tables of CodeFeedr Plugins
	Feedback SIG
	1st Evaluation moment: week 2.6
	2nd Evaluation moment: week 2.9

	Bibliography

