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We determine magnon spectra of an atomic bilayer magnet with ferromagnetic intra- and both ferro- and
antiferromagnetic interlayer coupling. Analytic expressions for the full magnon band of the latter case reveal
that both exchange interactions govern the fundamental magnon gap. The inter- and intralayer magnetic ordering
are not independent: a stronger ferromagnetic intralayer coupling effectively strengthens the antiferromagnetic
interlayer coupling as we see from comparison of two bilayer systems. The trivial topology of these exchange-
anisotropy spin models without spin-orbit interaction excludes a magnon thermal Hall effect.

DOI: 10.1103/PhysRevB.103.155430

I. INTRODUCTION

Two-dimensional van der Waals magnets (2DvdWM) [1]
are a unique platform to study magnetism in 2 + ε dimen-
sions [2–4]. Two-dimensional order is associated with strong
intrinsic thermal fluctuations [3,5] and characteristic quan-
tum phases [3], offering a possible test bed for competing
interactions, such as Heisenberg and anisotropic exchange
[6] with different range, Dzyaloshinskii-Moriya interaction
(DMI) [7,8] and other spin-orbit couplings [9,10], and mag-
netodipolar interactions [11,12] in a rich variety of elements
and crystal structures. The parameters of many properties are
highly tunable by electric gating [13,14] or by strain [15,16].
Of particular interest is the control of the magnetic anisotropy
that modulates the spin fluctuations and allows us to study
crossovers between different types of spin Hamiltonians [3].
2DvdWM can be stacked with themselves or other materials
into multilayers [17–20] or structured into nanodevices and
directly accessed by scanning probe microscopy or other sur-
face sensitive experimental techniques [21].

In this young field, many basic questions are still open.
Only recently the magnon energy dispersion has been calcu-
lated, which is essential for understanding the spin dynamics
and transport [22]. For compounds with a hexagonal lattice
such as CrI3 and CrBr3 [23] as considered here, we may
expect a magnon dispersion relation similar to that of the
π -electron bands of graphene—a minimum at k = 0 and
two degenerate Dirac points per unit cell at an intermediate
energy. This was confirmed by an analytic expression for
a 2DvdWM with ferromagnetic (FM) exchange interactions
[24–26]. However, bilayers with FM intra- and inter-layer
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exchange interaction show characteristic differences with bi-
layer graphene in terms of the degeneracy and dispersion
close to the Dirac points [22]. To date, the magnon dispersion
for bilayers with antiferromagnetic (AFM) coupling has to
the best of our knowledge been computed only numerically
[22,27].

Here we extend previous theories by including a more
general form of the perpendicular plane magnetic anisotropy.
For the bilayer with FM intra- and AFM interlayer exchange,
we report analytical results for the full spectrum by a method
introduced by Colpa [28]. We analyze the interplay of FM
intra- and AFM interlayer couplings as reflected in the funda-
mental gap and total energy. The analytic solutions facilitate
access to nontrivial topological properties such as the magnon
Hall effect. For the class of perpendicular-plane anisotropy
models without magnetization texture or spin-orbit interaction
the topology is trivial, however.

The manuscript is organized as follows: In Sec. II, we
define the most general spin Hamiltonian of 2DvdWM. In
Sec. III, we review results on magnon spectra of an FM mono-
layer with different types of anisotropy and a bilayer with
FM intra-and interlayer coupling. In Sec. IV we present our
main results, i.e., an analytic derivation of the dispersion for a
bilayer with FM intra-and AFM interlayer exchange coupling.
We consider first isotropic exchange coupling for different
spin configurations and subsequently include perpendicular
spin anisotropy. We analyze the effect of the magnetic order
on the fundamental gap as well as total energy. Finally we
compute the magnon Chern numbers of the energy bands.
Section V summarizes our conclusions and gives an outlook.

II. THE MODEL

Our starting point is the Heisenberg Hamiltonian with
anisotropic terms that for a magnetic monolayer has the form
[4]

Hsl = −
∑

〈i, j〉,α

(
Ji j �Si · �S j + �αS(α)

i S(α)
j

) −
∑

i

A
(
S(z)

i

)2
. (1)
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Here Ji j is the exchange interaction between spins that fa-
vor ferromagnetic (Ji j > 0) or antiferromagnetic (Ji j < 0)
order of the classical ground state, respectively. Because the
exchange interaction is short-ranged, that between nearest
neighbors 〈i j〉 dominates, while more distant ones can be
disregarded. A is the single-ion anisotropy perpendicular to
the plane, and �α parameterizes an anisotropy in the exchange
interaction in a direction α. These parameters depend on the
material and can be tuned externally such as by an applied
magnetic field or a gate voltage. In this paper we disregard
the single-ion anisotropy (A = 0) but retain the anisotropic
exchange assuming out-of-plane anisotropy, �z = �, �x =
�y = 0, noting that to leading order A and � are equivalent.
We disregard any spin-orbit interactions at this stage.

III. REVIEW OF FM MONO- AND FM BILAYERS

We first review the Holstein-Primakoff transformation, the
method of choice to treat the low frequency spectrum of
spin Hamiltonians, as applied to FM monolayers [6,22] with
isotropic exchange interaction (Sec. III A). Afterwards, we
review different types of anisotropy in the FM coupling of
the monolayer [6] (Sec. III B). Finally we consider a FM
bilayer for isotropic exchange coupling as well as out-of-plane
anisotropy and review the dispersion (Sec. III C) [22]. This
section serves essentially for fixing the geometry and the
notation.

A. General method

The Holstein-Primakoff (HP) transformation of the Hamil-
tonian (1) replaces the local spin operators S j in favor of
Boson operators a j [29,30]:

S+
j =

√
2s

(
1 − a†

j a j

2s

)1/2

a j ,

S−
j =

√
2sa†

j

(
1 − a†

j a j

2s

)1/2

,

S(z)
j = s − a†

j a j . (2)

At low temperatures or weak excitation we may disregard all
but the zeroth order in a/

√
2s in the series expansion of the

square root. A single boson excitation 〈a+a〉 = 1 changes the
spin projection �Sz = h̄ parallel to the quantization axis z
and perpendicular to the plane. After subtracting the constant
ground state energy, the Hamiltonian with FM exchange in-
teraction and zero anisotropy (� = A = 0) reads

H = −2Js
∑
〈i, j〉

a†
j ai + 2JsZn.n

∑
i

a†
i ai. (3)

Zn.n = 3 is the number of nearest neighbors of magnetic
cations on a hexagonal lattice. The lattice can be spanned by a
triangular Bravais lattice with a two-atomic basis (see Fig. 1).
Transformation to momentum space leads to noninteracting
magnons

H =
∑

k,r=±
h̄ωr,ka†

r,kar,k , (4)

FIG. 1. Direct triangular Bravais lattice with a two-atomic basis
A, B (crosses). Basis vectors �a1, �a2 span the primitive unit cell as
indicated by dashed lines. Blue circles indicate lattice point and a is
the lattice constant.

with energies [6]

E±(k) = h̄ω±,k = 2Js(3 ± |ck|). (5)

Here ck = 1 + e−i�k�a1 + e−i�k�a2 is the structure factor of the
lattice with unit cell vectors �a1, �a2, as depicted in Fig. 1. This
dispersion is isomorphic with the π -electrons in monolayer
graphene, as shown in Fig. 2 for the first Brillouin zone (BZ).
It has a minimum and maximum at the � point (k = 0) and
two nonequivalent Dirac cones at the K and K ′ corners at
energy 6Js with conical dispersion.

B. Anisotropies

In CrI3 [18] the magnetic anisotropy has an easy axis
along ẑ, i.e., perpendicular to the plane of the material. The
Hamiltonian (1) becomes

Ĥ = −J
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j

) − (J + �)
∑
〈i, j〉

Sz
i Sz

j (6)

with �, J > 0. The dispersion [6]

E±(k) = (6(J + �)s ± 2Js|ck|) , (7)

is shifted by 6�s compared to the isotropic case. This shift
reflects the suppression of the Goldstone mode of rotationally
symmetric systems by opening a spin wave gap at the � point.
In the expansion of the HP-transformation, we restricted to
leading order, thereby neglecting magnon-magnon interac-
tions that become relevant at finite temperature. A mean-field

FIG. 2. Energy dispersion of an FM monolayer with isotropic
exchange coupling along high symmetry directions in the first BZ.
K , K ′ are the inequivalent Dirac points.
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FIG. 3. Energy dispersion for an FM monolayer with easy-plane
anisotropy � = −J . For further explanation see the text.

treatment of higher order bosonic operators renormalizes the
exchange coupling constants, and thereby also the spin wave
gap [6].

We model an easy-plane anisotropic FM with J > 0 and
� < 0 in the Hamiltonian (1). We eliminate the nonbilinear
terms of the bosonic operators ak by a Bogoliubov transfor-
mation [31], which leads to quadratic forms of Bose operators
assigned to at most to two sublattices with spectrum:

E± = Js
√

R ± S ,

R = 36 + 4

(
1 + �

J

)
|ck|2,

S = 24

(
1 + �

2J

)
|ck|. (8)

� = −J recovers the XY model with dispersion [6,25]

E± = 6Js

√
1 ± |ck|

3
, (9)

plotted in Fig. 3. The general monolayer Hamiltonian (8) was
recently studied in Ref. [26]. Note that E± is proportional to
the square root of the energy in the isotropic case. The easy-
plane anisotropy was observed in a monolayer of CrCl3 [2,32–
34], which should therefore be a good system to study phase
transitions in 2D.

C. FM bilayer

For a bilayer with FM intra- and interlayer coupling
J‖, J⊥ > 0 and without anisotropies we arrive at the Hamil-
tonian

Ĥ = −2J‖
∑
〈i, j〉

�Si · �S j − 2J⊥
∑
〈i, j〉

�Si · �S j, (10)

where the first and second terms describe intra- and interlayer
coupling, respectively. We adopt the ratio of J⊥ = 0.26J‖ as
predicted for CrI3 by first-principles calculations [18]. We
consider here AB type stacking of 2D hexagonal lattices
with a lateral shift by [2/3, 1/3] unit vectors (see Fig. 4)
[18], which corresponds to the FM low-temperature crystal-
lographic phase of bulk CrI3 [17,19,20]. We chose a unit cell
for a bilayer with four atoms, A atoms A1 in the bottom-layer
(1) and A2 in the top-layer (2) as well as B atoms B1 and B2
(see Fig. 4). Each A-(B) atom has three nearest neighbors in
the same layer belonging to the B-(A) sublattice. The atoms A2
on top of B1 form another pair of nearest neighbors per unit

FIG. 4. A bilayer with AB stacking as for example in bulk BiI3

crystals. The primitive unit cell (dashed blue lines) contains four
atoms, A1 (green-rimmed black dot) of bottom layer (label 1), B2
(red-green) of top layer 2 and the stacked pair of atoms B1-A2
(black-green cross) with A2 on top of B1. The basis vectors �a1, �a2 of
the bilayer-lattice are the same as for the monolayer and are shown
as blue arrows.

cell. The magnon band structure consists now of four rather
than two energy bands [22]

E [1]
± = 12J‖s ± 4J‖s|ck|, (11)

E [2]
± = 12J‖s + 4J⊥s ± 4s

√
J2
⊥ + J2

‖ |ck|2 , (12)

which reflects the more complex unit cell. The lowest band
E [1]

− is gapless at the origin because in the absence of any
anisotropy the system is invariant with respect to a global
spin rotation. At the Dirac points K , K ′, the structure factor
vanishes and E [2]

+ = (12sJ‖ + 8sJ⊥), E1 = 12sJ‖, where E1 is
threefold degenerate. This spectrum differs from that of the
π -electrons in bilayer graphene, which are twofold degenerate
at the K and K ′ points with parabolic dispersion [35]. The
wave functions at the Dirac points read

	
[1]
K (′) = 1√

N

∑
j

eiK (′) �Rj a†
j,A1|0〉, (13)

	
[2]
K (′) = 1√

N

∑
j

eiK (′) �Rj a†
j,B2|0〉, (14)

	
[3]
K (′) = 1√

2N

∑
j

eiK (′) �Rj (a†
j,B1 + a†

j,A2)|0〉, (15)

	
[4]
K (′) = 1√

2N

∑
j

eiK (′) �Rj (a†
j,B1 − a†

j,A2)|0〉, (16)

where | jα〉 denotes the position of the site on sublattice α.
The eigenstate 	

[1]
K (′) (	

[2]
K (′) ) is localized to sublattice A1(B2)

in layer 1(2). The sublattices A2 and B1 are coupled by J⊥,
which generates an in phase or acoustic mode 	[3] with lower
energy E1 or out-of-phase π -shifted optical mode 	[4] at
higher energy E [2]

+ .
	[1], 	[2], 	[3] correspond to excitations in which the

spins on the same sublattice and layer, separated by a along
(1, 0) or (− 1

2 ,
√

3
2 ), precess with a relative phase shift 2π

3 . The
spin precession therefore reflects the structure of the hexag-
onal lattice bonds at the Dirac points. In the Appendix we
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demonstrate that these modes also solve the Landau-Lifshitz
equation for coupled classical spins.

A perpendicular anisotropy can be modeled by the cou-
pling constants J (zz)

‖ , J (zz)
⊥ and blue shifts the frequencies,

E [1]
± = 12sJzz

‖ + 2s
(
Jzz
⊥ − J⊥

)
± 2s

√(
Jzz
⊥ − J⊥

)2 + 4J2
‖ |ck|2, (17)

E [2]
± = 12sJzz

‖ + 2s
(
Jzz
⊥ + J⊥

)
± 2s

√(
Jzz
⊥ + J⊥

)2 + 4J2
‖ |ck|2. (18)

Moreover, the triple degeneracy at the Dirac points is reduced
to a double one.

IV. BILAYER WITH FM INTRA- AND AFM INTERLAYER
EXCHANGE COUPLING

We first derive results for the dispersion for a bilayer with
FM intralayer and AFM interlayer isotropic exchange interac-
tions (Sec. IV A). Subsequently, we include a perpendicular-
plane anisotropy and focus on the analysis of the fundamental
gap at � (Sec. IV B). The topology in terms of the Berry
curvature is subject of Sec. IV C.

A. Isotropic exchange interaction

Several papers discuss the impact of stacking [2,18–20,36]
on interlayer magnetic coupling of a CrI3 bilayer. Depending
on the type of involved interlayer orbital hybridizations, the
corresponding coupling of the modeling spin Hamiltonian is
FM or AFM type. For AB stacking, it has been shown by
density functional theory calculations [19] that both nearest
neighbor (NN) and next-nearest-neighbor (NNN) interactions
determine the order of the bilayer ground state: There are one
NN neighbor and 16 NNN within a unit cell, the NN con-
tributing with AFM coupling whereas the NNN contributing
with FM coupling, so that in total, interlayer magnetism in AB
stacking is strongly FM. As magnetic interlayer order can be
tuned by application of an electrostatic gate [14] or a magnetic
field [21], however, we find it instructive to discuss both types
of interlayer coupling (FM and AFM) for the same type of
stacking. Here we choose AB stacking for simplicity and an
AFM interlayer magnetism of the bilayer, as is induced by the
NN couplings of the AB stacking.

We first calculate the energy dispersion of a bilayer with
isotropic exchange coupling for different spin directions and
intra/interlayer coupling strengths J‖/J⊥. The Hamiltonian
reads with J‖, J⊥ > 0

Ĥ = −2J‖
∑

〈i, j〉∈{intra}
�Si · �S j + 2J⊥

∑
〈i, j〉∈{inter}

�Si · �S j . (19)

Again, the first sum includes the three in-plane nearest neigh-
bors of a local moment on site i, while the second sum runs
over closely spaced dimers A2, B1 between the layers. When
Sz = s for the spins in the top layer (2), Sz = −s in the bottom
layer (1) minimizes the classical ground state energy E0. The
magnons a+

i , ai are the excitations. We apply the HP transfor-
mation and expand Eq. (19) to leading order in the magnon
operators, thereby disregarding magnon-magnon interactions,

which is valid at low temperatures. In a mean-field approxi-
mation, higher terms only renormalize the exchange constants
[37], as confirmed by experimental work on bilayer CrI3 [21],
at a temperature T = 0.033 J . Therefore

S+(−)
i,α2 =

√
2sa(+)

i,α2, Sz
i,α2 = s − a+

i,α2
ai,α2, (20)

S−(+)
i,α1 =

√
2sa(+)

i,α1, Sz
i,α1 = −s + a+

i,α1ai,α1. (21)

The subscripts refer to atom α ∈ {A, B} of lattice cell i in layer
ν ∈ {1, 2}. The magnon Hamiltonian then reads

Ĥ − E0 = −2sJ‖
∑

〈(i,αν),( j,α′ν)〉,α 
=α′
(a+

j,α′νai,αν + H.c.)

+ 6sJ‖
∑
i,αν

a+
i,ανai,αν

+ 2sJ⊥
∑

i

(a+
i,A2a+

i,B1 + H.c.)

+ 2sJ⊥
∑

i

(a+
i,A2ai,A2 + a+

i,B1ai,B1). (22)

As common for antiferromagnetic order, the classical ground
state is not an eigenstate of the Hamiltonian since

a+
i,A2a+

i,B1|↓〉1|↑〉2 ∝ |↑〉1|↓〉2 
= 0. (23)

We can accommodate this issue by writing the Hamiltonian in
reciprocal space as [28]

Ĥ − E0 = Ec +
∑

�k
(�a+

�k , �a−�k )D(�a�k, �a+
−�k )T , (24)

where �a�k = (a�k,A1, a�k,B1, a�k,A2, a�k,B2), Ec a constant to be dis-
cussed later, and D is the 8 × 8 matrix

D =
(

A B
B A

)
(25)

in which

A=

⎛
⎜⎝

3J‖s −J‖sc∗
k−J‖s ck 3J‖s + J⊥s

0

0
3J‖s + J⊥s −J‖sc∗

k−J‖sck 3J‖s

⎞
⎟⎠,

(26)

FIG. 5. Dispersion of a bilayer with AFM interlayer and FM
intra-layer coupling, isotropic exchange coupling constants and a
ratio of inter- vs intralayer coupling J⊥ = 0.26 J‖. We observe a gap
of order J⊥s at the Dirac points with quadratic instead of the linear
dispersion of the FM monolayer in Fig. 2.
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B =

⎛
⎜⎝

0

0
0 J⊥s

J⊥s 0 0

0

⎞
⎟⎠, (27)

and ck is again the structure factor of the hexagonal lat-
tice. Kowalska’s framework [31] is not applicable for four
sublattices. Instead, we diagonalize the Hamiltonian by a
para-unitary transformation T of operators (�a�k, �a+

−�k )T to the
bosonic operators �γ�k [28]:

(�γ�k, �γ +
−�k )T = T(�a�k, �a+

−�k )T , (28)

such that

Ĥ − E0 − Ec =
∑

�k
(�a+

�k , �a−�k )T†(T†)−1DT−1T(�a+
�k , �a−�k )†

= h̄
∑

�k
(�γ +

�k , �γ−�k )diag(ω1, .., ω4, ω1, .., ω4)

× (�γ +
�k , �γ−�k )†

= 2
4∑

�k,r=1

h̄ωr

(
γ +

r,�kγr,�k + 1

2

)
, (29)

provided that D is positive definite. Ec is a further constant
that will be specified below. T is paraunitary in the sense that

TηT† = η, (30)

with η = diag(I4,−I4), where In is the unit matrix with
dimension n, which ensures that the γ

(+)

r,�k obey bosonic com-
mutation relations. (λ1, ..., λ8) := (ω1, .., ω4,−ω1, ..,−ω4)
are the para-values of D

(D − λiη)�vi = 0 (31)

with paravectors �vi. Equation (31) can be written as an eigen-
value problem by multiplying by η from the left

(ηD − λiI )�vi = 0. (32)

Diagonalizing the non-Hermitian matrix ηD leads to a set of
four positive and four negative eigenvalues ±λi corresponding
to the 2 twofold degenerate energy bands

E± = s

√
3J‖J⊥ + 9J2

‖

(
1 + |ck|2

9

)
±

√
3J‖

√
3J2

⊥ + (12J2
‖ + 4J‖J⊥)|ck|2 . (33)

The difference in energy bands for bilayers with AFM and
FM order can be traced to the matrix η. In physical terms, two
AFM-coupled sublattices (A2-B1) generate two mode families
that are exchanged by a π rotation of the bilayer and hence are
degenerate. The additional symmetry is also responsible for
the degenerate ground state of the AFM bilayer. Breaking the
interlayer symmetry by perpendicular electric and magnetic
fields removes the degeneracy [22].

The dispersion (33) is plotted in Fig. 5. We find a difference
�E between the the zero-point energy of the magnon sys-
tem and the classical ground state energy E0 = −12NJ‖s2 −
2J⊥Ns2

�E = Ec +
∑

�k

4∑
r=1

h̄ωr = −Ns(12J‖ + 2J⊥) +
∑

�k

4∑
r=1

h̄ωr,

(34)
see also Eq. (29). The first term on the right-hand side Ec =
E0/s, arises from quantum fluctuations of the z component,
while the second term reflects transverse fluctuations cause.
In the following we disregard these zero-point fluctuations,
but recommend their study in a future project.

Around the Dirac points K, K ′, the dispersion can be ex-
panded up to second order in k as

E+(k) =
√

3J‖s

√
3 + 2

J⊥
J‖

+ 3

8
a2J‖s

3 + 6 J‖
J⊥√

9 + 6 J⊥
J‖

k2,

E−(k) = 3J‖s − 1

8
a2J‖s

(
1 + 6

J‖
J⊥

)
k2. (35)

The AFM coupling J⊥ therefore opens a gap of the order
sJ⊥ at K , K ′, leading to a quadratic rather than the linear
dispersion found for the FM monolayer, but different effec-
tive masses. This gap implies a possible nontrivial topology.
However, the Chern numbers are found to be zero for each
branch, which we indicate in Sec. IV C.

B. Anisotropy

Next, we introduce an out-of-plane anisotropy with Jzz
‖ >

J‖, Jzz
⊥ > J⊥. The matrix A then reads

A =

⎛
⎜⎜⎝

3Jzz
‖ s −J‖sc∗

k

−J‖sck 3Jzz
‖ s + Jzz

⊥ s
0

0
3Jzz

‖ s + Jzz
⊥ s −J‖sc∗

k

−J‖sck 3Jzz
‖ s

⎞
⎟⎟⎠,

while B is not affected. We can still derive an analytic expression for the energy dispersion

E± = s√
2

√
18Jzz2

‖ + 6Jzz
‖ Jzz

⊥ + Jzz2

⊥ − J2
⊥ + 2J2

‖ |ck|2 ±
√(

6Jzz
‖ Jzz

⊥ + Jzz2

⊥ − J2
⊥
)2 + [(

12Jzz
‖ + 2Jzz

⊥
)2 − 4J2

⊥
]
J2
‖ |ck|2. (36)
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FIG. 6. Magnon dispersion of a bilayer with AFM inter-layer and
FM intralayer coupling with anisotropic exchange coupling Jzz 
=
Jxx = Jyy = J . Here the interlayer couplings J⊥ = 0.26 J‖, Jzz

⊥ =
0.56 J‖ and intralayer coupling Jzz

‖ = 1.3 J‖.

and plot them in Fig. 6 for coupling constants Jzz
‖ =

1.3J‖, Jzz
⊥ = 0.56 J‖, J⊥ = 0.26 J‖. Here we adopt again a

ratio of 0.26 between inter- and intralayer coupling. We as-
sume that FM and AFM ordered layers are both AB stacked
and that the ratio between inter- and intra-layer coupling (0.26
for FM CrI3 [18]) only changes sign. Actually, AFM ordered
CrI3 has both a different (AB′) stacking and the interlayer
exchange is smaller with an inter/intra layer ratio of −0.018.
Other constants are known for monolayer CrI3 [6,38] and can
be tuned, for example, by an electrostatic gate [14]. Here
we chose them to enhance the visibility of the effects in the
figures.

The anisotropy blue-shifts the lower band edge ∼J‖s
relative to the zero-point energy E0 − Ns (12Jzz

‖ + 2Jzz
⊥ ) +∑N

�k=1

∑4
r=1 h̄ωr and increases the gap at the Dirac points

(∼J⊥s for the isotropic AFM bilayer) to ∼Jzz
⊥ s.

We now analyze the fundamental gap h̄ω−(�k = 0) [see
Eq. (36)] plotted in Fig. 7(a) as a function of the FM coupling
strength J‖ for J⊥ = 1.0 J0, Jzz

‖ − J‖ = 1.0 J0 and Jzz
⊥ − J⊥ =

0.3 J0. In a simple FM the gap

�FM ∝ s
(
Jzz
‖ − J‖

)
(37)

depends on J‖ only via anisotropy. The anisotropy gap in a
pure AFM, on the other hand,

�AFM ∝ s
√(

Jzz
⊥ − J⊥

)(
Jzz
⊥ − J⊥ + 2J⊥

)
(38)

FIG. 7. (a) Magnon gaps for a realistic (black line) and a hypo-
thetical bilayer (blue line) as a function of FM coupling strength J‖.
The anisotropy is constant with Jzz

‖ − J‖ = 1.0 J0, Jzz
⊥ − J⊥ = 0.3 J0

and J⊥ = 1.0 J0. (b) (left) Realistic bilayer schematic with coor-
dination numbers ZAFM = 1 and ZFM = 3. (b) (right) Hypothetical
bilayer schematic with ZAFM = 0.5 and ZFM = 3.

depends not only on the anisotropy Jzz
⊥ − J⊥, but also on the

AFM coupling strength J⊥ [39]. The increase of the intra-
layer FM coupling increases the gap E−(�k = 0) according to
Eq. (36), which by the reduced number of thermal magnons is
equivalent to an enhanced AFM coupling.

We analyze this effect by computing the gap of a hypothet-
ical structure in which the contributions from Eq. (37) of the
FM and Eq. (38) of the AFM coupling at �k = 0 are clearly
separated. The stacking of two ferromagnetic monolayers in
this “bilayer (II)” is slightly shifted such that there are two
AFM-coupled dimer pairs A2 − B1 and A1 − B2 with coor-
dination number ZAFM = 0.5 [see Fig. 7(b) (right)] compared
to the original coordination number ZAFM = 1 for the single
dimer-pair in bilayer (I) [see Fig. 7(b) (left)]. The gap of this
modified system

E−(k = 0) = s
√((

Jzz
‖ − J‖

)
ZFM + (

Jzz
⊥ − J⊥

)
ZAFM )

((
Jzz
‖ − J‖

)
ZFM + (Jzz

⊥ − J⊥
)
ZAFM + 2J⊥ZAFM

)
(39)

does not depend explicitly on J‖, but on Jzz
‖ − J‖, see Fig. 7(a)

(blue line) and Eq. (39). For J‖ = 0, the gap 3J0s = s(Jzz
‖ −

J‖)ZFM of bilayer (I) is governed by the anisotropy of the FM
intralayer exchange only, while the AFM coupling does not
contribute to the gap. The gaps converge to ∼3.61J0s only
when the FM coupling in bilayer (I) J‖ � 5J⊥. This result
suggests that a strong FM intralayer coupling in the realistic
structure (I) increases the AFM interlayer coupling, while in
the limit of weak FM coupling, the AFM order of the classical
GS is less stable than in bilayer (II) [see green arrows in
Fig. 7(b)].

This statement is corroborated by the finite-wave vector
magnon dispersion �Ek,0 = E−(�k) − E−(�0) as a function of
the FM coupling. The zero-k-magnon is that of an interlayer
AFM in its classical GS. As �Ek,0 measures the energy cost
of exciting a finite-k-magnon, it thereby measures the AFM
coupling strength. The right panel of Fig. 8 shows an �Ek,0,
which indeed increases with J‖ for both bilayers (I) and (II).
The left panel of Fig. 8 shows the difference �Eh

k,0 − �Er
k,0

of a hypothetical and a real bilayer for different points along
the � − K direction in the first BZ, which decreases with
increasing J‖, confirming that the real bilayer approaches the
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FIG. 8. (Left) Difference �Eh
k,0 − �Er

k,0 between the hypothet-
ical and a realistic bilayer structure as a function of FM coupling
as a function of (kx, 0)[ π

a ] along the � − K direction in the first BZ.
(Right) Energy difference �E−

k,0 between a magnon with wave vector
(1.2, 0)[ π

a ] and zero wave vector in the lower band as a function of
FM coupling strength J‖ for bilayers I (green) and II (violet).

effective AFM coupling strength of the hypothetical bilayer
for large J‖. This shows that in the limit of strong intralayer
coupling, magnetic order no longer depends on the choice of
stacking in our specific case.

C. Topology

The topology of the magnon spectrum is reflected by the
Berry curvature �n�k = ∇�k × 〈un�k|i∇�k|un�k〉 of the n = ± bands
(36), where un�k is the periodic (Bloch) part of the wave
function [40]. For a Dirac-like spectrum, the Berry curvature
is large in the vicinity of the Dirac points, which dominate
the topological properties [27] as illustrated by Fig. 9. Their
signs are opposite at Dirac points K , K ′, which means that
the Chern number vanishes for each band. The topology for
the bilayers in the anisotropic exchange model without spin-
orbit interaction is therefore trivial, without protected edge
states inside the gap. The thermal Hall conductivity, which
is often used to probe topological properties of systems with
a Dirac-like spectrum, is proportional to the product of the
Bose distribution function times the Berry curvature �xy;n(�k)
integrated over the first BZ [41] and vanishes as well.

FIG. 9. The Berry curvature �xy;n(�k) for the bands E+ (left)
and E− (right) of a bilayer with AFM interlayer and FM intralayer
coupling. The exchange coupling constants are chosen as in Fig. 6.

This corresponds to the general fact that a nonvanish-
ing thermal Hall conductivity has so far been predicted for
CrI3 monolayer systems with the anisotropy contributions
to the spin Hamiltonian of the Kitaev model [26] or the
DMI [25,42]. More generally, Costa et al. [43] described
magnons in monolayer CrI3 by an itinerant fermion model
based on first-principles calculations, thereby circumventing
model assumptions for the anisotropy. They showed that the
spin-orbit coupling of iodine is essential for a nontrivial
topology.

V. CONCLUSIONS

We report analytical expressions for the magnon band
structure of bilayers of two-dimensional ferromagnets with
(anti-) ferromagnetic interlayer exchange coupling and per-
pendicular anisotropy, complementing previous numerical
analysis [22]. An analytic expression for the fundamental gap
reveals AFM and FM contributions that can be modeled by
an effective coordination number. As the comparison of the
spectral properties between our real bilayer system and the
hypothetical toy model have shown, an increasing FM cou-
pling in the real bilayer leads effectively to a stronger AFM
interlayer coupling. The spectral properties refer to the anal-
ysis of the spectral gap as well as the energy cost associated
with adding an additional magnon to the system. Both results
agree with respect to the effect of stronger AFM coupling.

A natural extension of the present work would be to include
next-nearest-neighbor exchange interactions, which have been
shown to have an impact on magnetic interlayer coupling
[18] for the AB-type stacking considered in this work. We
have shown that the Chern number vanishes in the exchange-
anisotropy spin model considered here, so that there is no
magnon thermal Hall effect in the absence of spin-orbit in-
teraction or complex spin texture.
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APPENDIX: CLASSICAL CONSIDERATION OF
FM-BILAYER EIGENMODES

Here we show that the magnon modes at the Dirac points
can be derived from a purely classical torque cancellation
argument.

Central to the Landau-Lifshitz equation is the torque �τ
experienced by a spin by a magnetic field �H :

�τ = d �Si

dt
= γμ0 �Si × �H , (A1)

where γ = −gμB < 0 is the gyromagnetic ratio for the elec-
tron and μ0 the permeability of free space. The coupling to
neighboring spins can be taken into account by an effective
field �Heff [30]

�Heff = − 2

gμ0μB

∑
j∈〈i〉

Ji j �S j, (A2)
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where μB is the Bohr magneton and g the Landé factor. Then

d �Si

dt
= γμ0 �Si × �Heff . (A3)

When a spin belongs to a classical ground state that does not
precess, the torques cancel

0 = J‖ �Si × (�S1 + �S2 + �S3) (A4)

= J‖s êz × �Stot (A5)

or

0 =
∑
j∈〈i〉

Sx
j =

∑
j∈〈i〉

Sy
j .

In modes (13)–(16) the excitation is equally distributed over
the lattice, so that the in-plane components S‖

1 = S‖
2 = S‖

3.
The only solution is then given by a relative phase shift of
2π
3 which agrees with the eigenmodes at Dirac points K, K ′

obtained by diagonalizing the magnon Hamiltonian.
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