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Research Article
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Abstract: Gravity recovery and climate experiment (GRACE)
and GRACE Follow-On (GRACE-FO) are Earth’s gravity
satellite missions with hydrological monitoring applica-
tions. However, caused by measuring instrumental pro-
blems, there are several temporal missing values in the
dataset of the two missions where a long gap between
the mission dataset also exists. Recent studies utilized
different gap-filling methodologies to fill those data
gaps. In this article, we employ a variety of singular
spectrum analysis (SSA) algorithms as well as the least
squares-harmonic estimation (LS-HE) approach for the
data gap-filling. These methods are implemented on six
hydrological basins, where the performance of the algo-
rithms is validated for different artificial gap scenarios.
Our results indicate that each hydrological basin has its
special behaviour. LS-HE outperforms the other algo-
rithms in half of the basins, whereas in the other half,
SSA provides a better performance. This highlights the
importance of different factors affecting the deterministic
signals and stochastic characteristics of climatological time
series. To fill the missing values of such time series, it is

therefore required to investigate the time series behaviour
on their time-invariant and time-varying characteristics
before processing the series.

Keywords: Gap-Filling, GRACE Follow-On, Gravity Recovery
And Climate Experiment (GRACE), Least Squares-Harmonic
Estimation (LS-HE), Singular Spectrum Analysis (SSA)

1 Introduction

Gravity Recovery And Climate Experiment (GRACE), as a
joint mission between the National Aeronautics and
Space Administration (NASA) and Deutsches Zentrum
für Luft- und Raumfahrt (DLR), was launched in March
2002 and ended its science mission in October 2017. The
GRACE satellite mission aimed to monitor time-variable
gravity field of the Earth (Tapley et al. 2004). The mission
measured Earth’s mass changes due to hydro-climato-
logical variations such as groundwater storage changes
(Syed et al. 2008, Landerer and Swenson 2012, Feng et al.
2013), ice melting (Chambers et al. 2007, Chen et al. 2007,
Nahavandchi et al. 2015), Glacial Isostatic Adjustment (Pel-
tier 2004, Chambers et al. 2010, Wahr and Zhong 2013),
etc. After decommission of GRACE, the GRACE Follow-On
(GRACE-FO) mission, as a collaboration of NASA and Geo-
ForschungsZentrum (GFZ), was launched on 22 May 2018.
The GRACE-FO satellite mission is similar to its predecessor
GRACE, though employed more advanced measuring instru-
mentations such as laser interferometry.

The main temporal resolution of GRACE and GRACE-
FO in time-variable gravity field recovery (level-2 and
level-3 dataset) is 30 days. However, because of several
instrumental problems in both missions, the dataset suf-
fers from missing values. In particular, there is about
one-year data gap between GRACE and GRACE-FO. This
temporal gap starts from July 2017 and ends in May 2018.
Several recent research works have tried to fill the missing
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values in the GRACE and GRACE-FO time series and the
long gap between them.

Rietbroek et al. (2014) used GNSS-derived loading
inversion technique to bridge the gaps within GRACE
satellite mission data series, where three methods were
employed: (1) GPS-I, that is based on GNSS inverting data
and additionally constrained over the ocean area by a
new regularization method, (2) GPS-C, which is a con-
strained GNSS solution where additional correction para-
meters were applied to GNSS data and (3) using seasonal
gap-filler method by fitting a trend and a seasonal signal
to the data series to bridge the gaps. In evaluation of
these methods, the third approach outperformed the
others, while GPS-C showed a lower Root Mean Square
Error (RMSE) compared to GPS-I. Li et al. (2020) imple-
mented different data-driven techniques to reconstruct
(1992-2002) and predict (2017- 2018) GRACE-like gridded
Total Water Storage Changes (TWSC) using the climate
inputs. They used the combination of data-driven methods,
such as Principal Component Analysis (PCA) (Wold et al.
1987), Independent Component Analysis (ICA), Least
Squares (LS) (Durbin and Watson 1992), Seasonal and
Trend decomposition using Loess (STL), Artificial Neural
Network (ANN), autoregressive exogenous (ARX), Multiple
Linear Regression (MLR) and additional dataset, such as
precipitation, land surface temperature, climate indices,
and Sea Surface Temperature (SST) data. In that work,
the authors found that ARX and ANNmethods work better
than MLR algorithm in simulation of the target variables,
although because of overfitting problems, they are not
robust enough for prediction. Furthermore, they indicated
that PCA-LS-MLR is the most robust combination method
for prediction and reconstruction of GRACE-like TWSC
over all river basins.

Several studies employed other existing satellite
missions for the recovery of time-variable gravity field.
Among those works, Satellite Laser Ranging (SLR) geo-
detic observations provide lower degrees of spherical har-
monic coefficients of the Earth’s gravity field. Sośnica et al.
(2015) recovered time-variable Earth gravity field through
SLR observations through up to nine geodetic satellites:
LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, LARES,
Larets, BLITS, and Beacon-C. In their research, they showed
that low-degree coefficients can be derived from SLR observa-
tions which carry good information about large-scale mass
transport in the Earth system.

Low Earth Orbiter (LEO) satellites, equipped with an
accelerometer, star camera tracker, and geodetic GNSS
receiver, can be employed to recover time-variable gravity
field. The European Space Agency Earth Explorer mission
Swarm is one of these constellations. Swarm Satellite

mission consists of three satellites. A pair of them
(Swarm-Alpha and Swarm-Charlie) fly side-by-side in
a circular, near-polar orbit with an initial altitude and
inclination of 450 km and 87.4. The separation between
the satellites is around 1–1.5 in the direction of east-
west, in longitude (equivalent to approximately 10 sec
delay in orbit). The higher satellite (Swarm-Bravo) flies
in a circular and near-polar orbit as well, where its
altitude and inclination are respectively 530 km and
86.8, and its right ascension of ascending node is close
to that of the two other satellites (Friis-Christensen et al.
2008). Jäggi et al. (2016) used the Celestial Mechanics
Approach to recover the time variable and static gravity
field from Swarm kinematic orbit. They analysed the effect
of severe ionosphere activity on precise orbit determina-
tion of the Swarm satellite mission. Moreover, they com-
pared their results with the gravity field recovered from
GRACE where they concluded that the Swarm satellite mis-
sion can recover long-wavelength time-variable gravity sig-
nals (up to degree 20).

Lück et al. (2018) used three methods to fill several
types of artificial gaps of single, 3 and 18 months. Those
methods included the following: (1) interpolating existing
monthly GRACE solutions, (2) using monthly Swarm solu-
tions, (3) using the CTAS (directly estimating constant,
trend, and annual and semi-annual signal terms) Swarm
solution. In their research, in most cases, the third method
outperformed the first and second approaches, although it
depended on the length of the gap. In the case of single-
month or three-month gaps, the first method showed
better performance, while the third approach outper-
formed the others in 18-month gap scenario. It is of impor-
tant tomention that several previous studies indicated that
Swarm has the capability to recover time-variable gravity
field of the Earth at lower spherical harmonic degrees (up
to d/o 12), i.e., coarser spatial resolution with more noise.
Their results showed that trend and annual variations and
seasonal components of mass changes can be retrieved
from the kinematic orbit of the Swarm mission. However,
in this way, there is no benefit to use accelerometer data
and kinematic baseline from Swarm satellite missions in
gravity inversion; therefore, only GPS-derived kinematic
orbit has been utilized for the Earth’s gravity recovery. It
should be mentioned here that the GPS antenna on Swarm
spacecraft is 8-channel antenna and cannot collect GPS
data more than a particular amount; this is an important
problem and limitation in precise orbit determination of
Swarm satellite mission, especially for the kinematic orbit
of the Swarm satellites and consequently for the gravity
recovery from the kinematic orbit (ESA 2014, Zangerl 2014,
Jose van den IJssel 2015, van den IJssel 2016). Therefore,
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the gravity field derived from Swarm kinematic orbit
cannot substitute the gravity field derived from GRACE
and GRACE-FO satellite missions. In fact, because of
Swarm coarse spatial resolution and its high level of
noise in the lower level data (kinematic orbits), it is pre-
ferable to seek a robust mathematical method to bridge the
missing values in GRACE and GRACE-FO time series and the
long gap between them. For more details, see Bezděk et al.
(2016) and Da Encarnação et al. (2016, 2019, 2020).

Forootan et al. (2020) used ICAmethod to fill the gaps
between GRACE and GRACE-FO and the long gap between
them. In their study, using ICA, they merged GRACE TWSC
with the low spatial resolution TWSC from Swarm, where
the aim was to bridge the gaps and missing values and
improve the spatial resolution of Swarm TWSC. They
employed two approaches in their study, where the first
approach was based on the reconstruction of Swarm
dataset in the spatial domain and the second approach
implemented the reconstruction in the temporal domain.
Their results showed that the gap-filling by use of the ICA-
based method and merging GRACE and Swarm gravity
field dataset has a good performance. In their evaluation,
the second approach in the temporal domain outper-
formed the first approach in the spatial domain.

Yi and Sneeuw (2021) employed SSA to fill the missing
values in GRACE and GRACE-FO dataset and the long
gap between them. Their work made use of a methodology
based on a gap-filling method through SSA in an itera-
tion. This approach is the so-called zero-filling SSA which
was proposed by Kondrashov and Ghil (2006). In their
research study, they used the dataset of GRACE and
GRACE-FO in the spectral domain, i.e., spherical harmonic
coefficients of the time variable gravity field for the global
solution.

There are several techniques to use SSA to forecast
and fill the missing values in time series. These techni-
ques are based on the reconstruction of time series from
the original signals, regardless of the noise (Golyandina
and Zhigljavsky 2013). However, Khazraei and Amiri-Sim-
kooei (2019) proposed Monte Carlo SSA algorithm, intro-
duced by Allen and Smith (1996), to differentiate between
the oscillation parts of a time series including noise
through decomposition. The algorithm employs Least
Squares-Variance Component Estimation (LS-VCE) to
estimate noise model parameters and generates surro-
gate data using Cholesky decomposition.

Rodrigues and De Carvalho (2013) provided a recurrent
imputation method (RIM) based on a weighted average
between forecast and hindcast, to bridge time series gaps
and missing values. Mahmoudvand and Rodrigues (2016)
introduced a new algorithm for gap-filling of a time series,

where themethod was based on RIM, although it uses boot-
strap resampling and a given weighting scheme by sample
variances. These two estimates are combined to produce a
unique estimation for missing values. Least Squares-Har-
monic Estimation (LS-HE) is, on the other hand, a para-
metric and stationary method for time series analysis,
developed by Amiri-Simkooei (2007) and Amiri-Simkooei
et al. (2007). This method as a generalized form of the
classic Least-Squares Spectral Analysis (LSSA) considers
a general linear trend and also the stochastic model of the
time series. Moreover, Amiri-Simkooei and Asgari (2012)
developed the multivariate LS-HE (MLS-HE), where they
implemented their method on time series of total electron
content (TEC) in the ionosphere. They detected several
significant signals in the time series of TEC, such as
diurnal and annual signals with periods of 24/n hours
and 365.25/n days (n = 1, 2 …), along with their higher
harmonics and their modulated variants.

In summary, several recent studies focused on using
external dataset and different methodologies to fill the
missing values and long gaps in time-variable gravity
field of GRACE and GRACE-FO satellite missions. Our
study, however, aims to evaluate and compare the per-
formance of three main methods in gap-filling of the
missing values in GRACE and GRACE-FO time series
and prediction of the long gap between the two missions.
Our focus in this research work is on a few hydrological
basins where the special behaviours of each basin may
play an important role in the gap-filling procedure. To
this end, we assign six scenarios of artificial gaps. The
algorithms are implemented in five large water catch-
ments and one sub-catchment. The case studies are
selected from various regions of the world that have dif-
ferent hydrological behaviours to reflect the essential
application of different techniques for data gap-filling
in hydrological dataset, e.g. GRACE and GRACE-FO time
series. For this purpose, as it was mentioned earlier, we
choose six case studies that are (i) Amazon basin, (ii)
Congo river basin, (iii) Gavkhouni (or Gavkhuni) sub-
basin, (iv) Aravalli basin, (v) Rhine river basins, and
(vi) Tigris river basin. To have more information about the
selected study areas, the reader is referred to subsection 3.2.
The performance of the aforementioned methods on each
artificial gaps is assessed in this research, where a kind of
inter-validation is conducted for filling the real gaps. In the
Amazon catchment, an additional dataset of the Swarm time
variable gravity field is also employed for validation.

The main contribution and novelty of this study are to
use the signal characteristics of each individual catchment
learnt from the gap-filling of the artificial gaps, to fill the
original gaps in the time-series. In this way, it is expected
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that the hydrological characteristics of each case study are
taken into account for the data gap-filling of that specific
area which influences the selection procedure of the gap-
filling algorithm. We believe that our research work can
contribute to any other research field where the character-
istics of the signals can be employed for prediction and
gap-filling of the missing values in a time series.

This article is organized as follows. In Section 2, we
present the methodologies employed for the data gap-
filling of our research. Section 3 introduces data and
study areas of the work, while the results are discussed
in Section 4. Finally, Section 5 summarizes and con-
cludes the research.

2 Methodology

Three different gap-filling methods are introduced in this
section: (i) RIM-SSA, (ii) zero-filling SSA, and (iii) LS-HE.

First, SSA is introduced as a general method for time
series analysis. Then, the recurrent singular-spectrum
procedure is presented as a time-series gap-filling approach.
Afterward, we describe an iterative zero-filling SSA algorithm.
At the end, LS-HEmathematical formulation for filling the time
series missing values is discussed.

2.1 Singular Spectrum Analysis (SSA)

SSA is a data-driven non-stationary method for signal pro-
cessing and time series analysis. SSA and PCA are both
based on Karhunen–Loeve theory of random fields and of
stationary randomprocesses, where SSA uses Singular Value
Decomposition (SVD) of a Hankel matrix, constructed from
the main time series (Ghil et al. 2002). This method can be
implemented on time series to decompose it in temporal
patterns such as trend, oscillatory signals, and random
noise. In the Hankel matrix, the diagonal elements equal
together, i.e. i + j = const→ aij = const, and are constructed
from the time series in the embedding step. After embed-
ding and applying SVD on the Hankel matrix, the modes
are grouped, extracted from eigentriples into interpre-
table signals such as the annual and seasonal signals
and random noise. Eventually, the time series is recon-
structed from the grouped modes by diagonal averaging
of the Hankel matrix. Here, we describe SSA in two steps:
decomposition and reconstruction (Golyandina and
Zhigljavsky 2013).

Consider a time series y = (y1, … ym)T by the length of
m, which m > 2 and y is a non-zero series, that is, there is

at least one i such that yi ≠ 0. Let L(1 < L < N) be an integer
number as the length of the window and K =m − L + 1 (the
number of lagged vectors).

2.1.1 First stage: Decomposition

Step 1: Embedding
At the start, the time series should be arranged in a

Hankel matrix form, where the original time series is
mapped into a sequence of lagged vectors. Consider
matrix X as a Hankel matrix, constructed from the main
time series. This matrix would be formed as follows:

( ) ( )= … ≤ ≤
+ −

Y y y i K, , , 1 ,i i i L
T

1 (1)

where Yi are so-called lagged vectors. There are K lagged
vectors in the Hankel matrix. The length of each lagged
vectors equals L. The L-trajectory matrix, constructed
from the original time series is
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1 , 1
,

1 2 3

2 3 4 1

3 4 5 2

1 2

(2)

The lagged vectors are the columns of the trajectory
matrix. Each rows and columns are a subset of the ori-
ginal time series (Golyandina and Zhigljavsky 2013).
Step 2: SVD

This step deals with the implementation of SVD on
the trajectory matrix, where the matrix is decomposed to
the left and right patterns and singular values. The imple-
mentation of SVD on matrix X results in:

=X USV .T (3)

The previous equation consists of U, the left pattern, V
the right pattern, and S, the singular values including the
square roots of eigenvalues of S = XXT, i.e. λ1, … λL. The
aforementioned decomposition can be written as follows:

= + ⋯+X X X ,d1 (4)

where =X λ U Vi i i i
T , = /V X U λi

T
i i and d is the rank of the

trajectory matrix X. The matrices Xi have rank 1; such
matrices are so-called elementary matrices. The collection
of ( λi , Ui, Vi) is called ith eigentriple of the SVD of X.

2.1.2 Second stage: reconstruction

Step 3: Eigentriple grouping
In this step, the power of each mode is calculated as:
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( )=

∑

×

=

P λ
λ

100 % .i
i

i
d

i1
(5)

In this way, eachmode is associated to its corresponding
eigentriple with its calculated power. The time series can
then be divided into d groups, where each of these groups
has the power of Pi, i ∈ {1,…, d}. Now, considering the modes
up to a special power r < d, it is possible to reconstruct the
original time series. Here, one can interpret that the indivi-
dual modes greater than a specific power value are taken as
signals, and therefore, the remainingmodes are noise andhave
no contribution to the reconstructed time series. Therefore, the
reconstructed time series gets the following form:

= + ⋯+X̃ X X .r1 (6)

The aforementioned grouping is called elementary
grouping.
Step 4: Diagonal averaging

From the nature of Hankelized trajectory matrices
related to each eigentriples, a special procedure should
be applied to a Hankel matrix to extract the modes or
reconstruct the time series from a trajectory matrix. This
is called diagonal averaging. Using this method, the tra-
jectory matrix is transformed into a time series. Diagonal
averaging operator is defined as follows (Golyandina and
Zhigljavsky 2013, Rodrigues and De Carvalho 2013):

� ( )
| |

( )

∑ ∑=

=

−

∈

X h
y
A

,
w

K

w
i j A

i j

W2
1

,

,

W

(7)

where { }
=

hl l
m

1 denotes the canonical basis ofℝm. If X = [yi,j]
∈ ML×K, then the mapping operator � (.) is defined as
� (.):ML×K →ℝm. Here |. | stands for cardinal operator, and

{( )| }= + =A i j i j w, .w (8)

Hence, we can decompose the time series to dmodes,
related to each eigentriple or reconstruct the time series
from the first to the rth mode. For more information, the
reader refers to Golyandina and Zhigljavsky (2013), Rodri-
gues and De Carvalho (2013).

2.2 Recurrent singular-spectrum-based
procedure

2.2.1 Recurrent forecast method

To fill the gaps in a time series, different methods to pre-
dict the missing values are being introduced. First of all, a
singular-spectrum-based forecasting method is explained,
and in the next step a RIM is provided.

Let yi as an out-of-sample data forecast, as a linear
combination of l − 1 preceding observations:

( ) ( )= + ⋯+ ≥
−

−
− −

− −

y a y a y i, 1,i i i i l i l1 1 1 1 (9)

for a suitable choice of coefficients a = (a1, …, ai−1)T. To
choose a suitable set of the aforementioned coefficients,
consider the matrix constituted by eigenvectors of XXT,
suitably subdivided as follows:

⎛
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|

|
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u u
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(10)

where U1 consists of the first L − 1 components of eigen-
vectors corresponding to the signal, and u1 contains
the last components of those eigenvectors. Similarly, U2

and u2 are defined, although they correspond to the
remainder d − r components associated with the noise.
According to Golyandina and Osipov (2007), the above-
mentioned coefficients are computed as follows:
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where ‖.‖ denotes the Euclidian norm, ⊙ and ⊗ respec-
tively denote component-wise Hadamard and the Kronocker
products, and
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Based on this algorithm, the one-step-ahead forecast
of out-of-sample data series can be written as a linear
combination of l − 1 reconstructed values of the time
series:

∑

→

=
+

=

−

−

y a ỹ ,m
i

L

i m i1
1

1
(13)

where the coefficients are taken from equation (11) and
the tildes are used to denote reconstructed time series
from the original and oscillatory signals. In general, for
further forecasts of out-of-sample values, the following
algorithm is proposed:
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for 2,…, L − 1 steps-ahead, respectively. In this article, the
notation →y implies the forecast values.

2.2.2 RIM

In this subsection, a recurrent method to fill the missing
values in a time series of interest is introduced. This
method is based on a weighted average between forecast
and hindcast, where the forecast is performed according
to subsection 2.2.1. Furthermore, the hindcast values are
computed analogously, although in the reverse order of
the time series. That means, hindcast is in fact a forecast,
but in reverse order (Rodrigues and De Carvalho 2013).

Consider the time series y = (y1, …, ym)T with a block
of k sequential missing values. Let the decomposition of
the time series as the following equation to known and
missing values:

⎛

⎝

⎜

⎞

⎠

⎟=y
y
y
y

,
n

k

n⁎

(15)

where n* = m − n − k. yn is the n-vector of known values
before the missing values, yk is a k-vector of missing
values and yn* is the n*-vector of known values after
missing values. By prediction and estimation of missing
values, the filled time series will be as follows:

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=ŷ
y
y
y
ˆ ,
n

k

n⁎

(16)

with ŷk as the estimation of missing values. For the pur-
pose of prediction, at the first step, SSA is applied on the
first block and the forecast values are computed based on
2.2.1. Simultaneously, the hindcast is performed according
to a forecast from the third block in the reverse order of
time. The procedure is done by multiplication yn* to an
operator similar to (12). The forecast and hindcast values
are defined as:

( )
→

=

→

…

→y y y, , ,k k
T

1 (17)

( )
←

=

←

…

←y y y, , ,k k
T

1 (18)

where →yk represents the forecast and ←yk stands for the
hindcast values. The estimation values for missing values
ŷk would be then a weighted average between→yk and←yk.
The “RIM” intends to establish an equilibrium between
forecast and hindcast derived from recurrent forecast
method. Especially, this method employs the following
formula to estimate k missing values in the time series:

( )
→ ←

= ⊙ + − ⊙ŷ θ y l θ y ,k k k k (19)

where

( )= …θ θ θ, , ,k
T

1 (20)

denotes the weighting coefficients related to the forecasts
achieved by recurrent forecast algorithm. For more details
about this method, the readers refer to Rodrigues and De
Carvalho (2013).

In this contribution, we use several weighting schemes.
In the next subsection, these weighting strategies are
described in more detail.

2.2.2.1 Linear weighting scheme

Linear weighting strategy is based on the distribution of
the missing values in a time series. In fact, the method
makes use of the closeness of missing values to the dataset
for forecast or hindcast; i.e. if a missing value is closer to
the forecast value, the weighting number for forecast is
greater than the weighting value for hindcast and vice
versa. The weighting function is defined as (Rodrigues
and De Carvalho 2013, Mahmoudvand and Rodrigues 2016):

= −

+

= …θ i
i

i k1
1

, 1, , .i (21)

2.2.2.2 Modified weighting strategy

In some cases, the number of data points of a time series
used to forecast does not equal the number used for hind-
cast. In this way, the number of data points to forecast or
hindcast would affect the prediction, and therefore, the
linear weighting scheme is not appropriate. In such
cases, Rodrigues and De Carvalho (2013) suggested a
new weighting scheme to address this problem. This
weighting strategy makes use of:

( )

( )
=

+ −

+ − +

θ k i n
k i n in

1
1 ⁎

.i (22)

Or in vector notation:

⎛
⎝

⎞
⎠

=

+

⋯

+

θ kn
kn n

n
n n⁎

, ,
⁎

.
T

(23)

In a special case, where the number of observations
used to forecast and hindcast is equal (n = n*), the equa-
tion above becomes the linear weighting scheme of equa-
tion (21).
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2.2.2.3 Stochastic weighting

In this part, we introduce an innovative stochastic weighting
scheme for the data gap-filling by SSA. If we have some
information about the stochastic properties of time series,
it is possible to define a weight function based on the var-
iance of the data used to forecast or hindcast. For this pur-
pose, at first, the variance of forecast and hindcast should be
derived according to error propagation law.What it means is
based on recurrent forecast (or hindcast) method. In this
method, if l is considered as the window size of the trajectory
matrix in SSA, l − 1 number of coefficients is calculated and
multiplied into the l − 1 data series before the missing value
(in the case of forecast). Therefore, it is easy to use error
propagation law to calculate the variance of the forecast
value (and also the hindcast value in the sameway). In order

to reach this goal, consider →y as a forecast of a missing
value, a as the vector of coefficients multiplied into the l −
1 data points before missing values, and y as the (l − 1) × 1
vector of l − 1 of those data points. Therefore, we have:

( )= …
−

y y y, , ,l
T

1 1 (24)

( )= …
−

a a a, , ,l
T

1 1 (25)
→

=y a y,T (26)

( )= …
−

Q σ σdiag , , ,y y yl1
2

1
2 (27)

where Qy is the covariance matrix of the vector y. Therefore,
according to error propagation law, we will have:

=
→

σ a Q a.y
T

y2 (28)

Note that →y in equation (26) is not a vector of a few
missing values, but it is a scalar (one value), i.e. a fore-
cast for one missing value. In a recurrent procedure
described in subsection 2.2.1, the missing values are filled
one by one, where at the end, the recurrent procedure
generates the vector of forecast. Such a procedure is also
performed to create a vector of hindcast. Finally, the
weighted average of the forecast and hindcast is taken
for the purpose of gap-filling. It should be noted that the
variance in equation (28) is for one missing value as a
scalar and not a vector.

From the discussion earlier, it is possible to calculate
the variance of each forecast of the missing values.
Consider yf as the n-vector of forecasts for missing values
and yh as the n-vector of hindcasts (in one gap). Now,
using the covariance matrix of yf, yh we can take a Best
Linear Unbiased Estimation (BLUE) of the missing values.
Let Qyf and Qyh be the covariance matrices of yf and yh,
their diagonal elements are computed by using the error
propagation law, equation (28). Therefore, we have:

( )= …y y y, , ,f f fn
T

1 (29)

( )= …y y y, , ,h h hn
T

1 (30)

( )= …Q σ σdiag , , ,y y y
2 2

f f fn1 (31)

( )= …Q σ σdiag , , .y y y
2 2

h h hn1
(32)

The model of observation equations are:

{ } { }= =E y y D y Q˜; ,f f yf (33)

{ } { }= =E y y D y Q˜; ,h h yh (34)

where E{.} and D{.} are expectation and dispersion opera-
tors, respectively. By a combination of (33) and (34), the
Gauss–Markov model will be as follows:
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h

y
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f (35)

Based on the Least-Squares theory, we have

( )=

− − −x A Q A A Q yˆ .T
y

T
y

1 1 1 (36)

Then, ỹ̂ is estimated
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(37)

As we can see, equation (37) is a weighted average.
This equation is used to predict the missing values by use
of stochastic weighting.

2.2.2.4 Linear-stochastic weighting

In this subsection, an innovative combination of linear
weighting methods based on data distribution in a time
series with stochastic properties of missing values is dis-
cussed. The approach is utilized to have a combined
weighted average between forecast and hindcast, where
the weighted average is according to equation (37), but
the covariance matrices are different as follows:

1 Linear part

⎛
⎝

⎞
⎠

=

+ −

…

+ −

…

+ −

Q
n n i n n

diag 1
1 1

, , 1
1

, , 1
1

,f1 (38)

⎛
⎝

⎞
⎠

= … …Q
i n

diag 1
1

, , 1 , , 1 ,h1 (39)

2 Stochastic part

( )= …Q σ σdiag , , ,y y y
2 2

f f fn2 1 (40)

( )= …Q σ σdiag , , .y y y
2 2

h h hn2 1
(41)
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For the final covariance matrix, we have

= ⊙Q Q Q ,f f f1 2 (42)

= ⊙Q Q Q .h h h1 2 (43)

Using the covariancematrices for forecast and hindcast
according to equation (42) and (43), the LS estimation of ỹ
is then computed based on LS theory and equation (37).

2.3 Zero-filling SSA

Here, we employ a gap-filling algorithm based on an
iterative SSA procedure. The zero-filling SSA method has
been introduced by Kondrashov and Ghil (2006) and was
later employed by Zscheischler and Mahecha (2014). The
method provided in these studies is based on setting zero
or mean values of time series for the missing values. In the
literature mentioned above, an iterative gap-filling proce-
dure was proposed to fill the missing values in a time
series. At first, the missing values are replaced by zero
(or mean values of the time series). In the second step,
in the inner loop, SSA is implemented on the zero-filled
time series. After the reconstruction of the time series,
extracted from SSA, the missing values (zero values) are
then replaced by the values from the first mode. In this
loop, the temporal correlation (in a univariate time series)
or spatiotemporal correlation (in a spatiotemporal dataset)
is utilized to validate the gap-filling procedure where a
threshold for the loop is introduced.

In this study, 2.5% of RMSE is used as a criterion. That
means when the new RMSE is smaller than 2.5% of the
previous RMSE, the inner loop is stopped. After replacing
the missing values, SSA is applied to the new time series
and the loop continues until it reaches the threshold. The
outer loop aims to separate the signal from the noise. After
using the first mode in the inner iteration and filling the
gaps, the reconstruction of the data is now continued by
using the second mode added to the reconstructed missing
values from the first mode. In the next iteration of the outer
loop, another mode is added to reconstruct the time series.
The added modes may represent the noise; therefore, the
procedure may increase the RMSE value. If RMSE increases,
we stop the outer iteration. Formore details, you can refer to
the study by Kondrashov et al. (2010).

2.4 LS-HE

LS-HE is a parametric stationary method based on the
LS principles and Fourier expansion of a time series,

developed by Amiri-Simkooei (2007). In this way, a
Gauss-Markov model is considered for the time series,
which consists of a functional model and a stochastic
model. There is a duality between these two parts that
the periodic signals in a time series such as trend,
annual, semi-annual, and diurnal frequencies are cap-
tured by the functional model, while different types of
noise in the time-series such as white noise, flicker noise,
or random walk noise are taken in the stochastic part.

Consider a time series in a m-vector y. It can be
expressed as a summation of a linear trend and some
periodic terms such as in the following equation:

{ ( )} ( ) ( )∑= + + +

=

E y t y rt a ω t b ω tcos sin .
k

q

k k k k0
1

(44)

In a matrix notation, it could be written as:

{ ( )} { }∑= + =

=

E y t Ax A x D y Q, .
k

q

k k y
1

(45)

The equation earlier is called the Gauss–Markov
model, where A is the design matrix, for example, con-
tains the linear trend terms, and Ak consists of two col-
umns related to the frequency ωk of the periodic terms:

⎛

⎝

⎜

⎜
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⎞

⎠

⎟

⎟
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⎛

⎝
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⋮ ⋮
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ω t ω t

ω t ω t

x
a
b

cos sin
cos sin

cos sin

and ,k

k k

k k

k m k m

k
k

k

1 1

2 2 (46)

with ak, bk, and ωk are the (un)known real numbers. In
fact, if the frequencies ωk are known, the harmonic coef-
ficients ak and bk can be estimated based on the linear LS
principles, although in most cases, we do not have exact
information about the frequencies existing in a time
series. In this situation, in addition, to estimate the har-
monic coefficients according to the current linear LS
model, the frequencies should be also detected and esti-
mated in the time series. This is the so-called harmonic
estimation and is the task of LS-HE.

To find a set of frequencies ω1,…, ωq, and a particular
value of q in equation (45), the following null and alter-
native hypothesis is considered (to start, set i = 1):

{ } ∑= +

=

−

H E y Ax A x: ,.
k

i

k ko
1

1
(47)

versus

{ } ∑= +

=

H E y Ax A x: .
k

i

k ka
1

(48)

The detection and validation of ωi are performed in
two steps:
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Step I: In the first step, the frequency ωi and the
corresponding design matrix Ai are looked for. The pro-
cedure follows the solution to the minimization problem:

∥ ∥ ∥ ∥
[ ]

= =
⊥

− −
ω P y earg min arg min ˆ ,i

ω
A A Q ω

a Q¯
2 2

j
j y

j
y

1 1 (49)

where∥ ∥ ( ) ( ) [ ]⋅ = ⋅ ⋅ = ⋯

−

−−
Q A A A A, ¯

Q
T

y i2 1
1 1

y
1 and êa is the

least-squares residuals under the alternative hypothesis.
The matrix Aj has the same structure as equation (46).
The frequency, which minimizes the criterion mentioned
earlier, is set to be ωi. This minimization problem can be
provided in an equivalent maximization form as the fol-
lowing equation (Teunissen 2003):

∥ ∥= =
⊥

−
ω P y A P Aarg max , with ,i

ω
A Q j A j¯ 2

j
j y

1 (50)

with ( )=

− − −P A A Q A A Q¯ ¯ ¯ ¯A j j
T

y j j
T

y¯ 1 1 1
j . Therefore, equation (50)

simplifies to:

( )=

− −
⊥ − −ω e Q A A Q P A A Q earg max ˆ ˆ ,i

ω
o
T

y j j
T

y A j j
T

y o
1 1

¯
1 1

j
(51)

with êo the least-squares residuals under the null hypothesis.
Step II: In order to test the null hypothesis against the

alternative hypothesis Ho, the following statistic is used:

∥ ∥ ( )
= =

− −
⊥ − −

−

T
P y

σ
e Q A A Q P A A Q e

σ2 ˆ
ˆ ˆ

2 ˆ
,

A Q

a

o
T

y j j
T

y A j j
T

y o

a
2

¯ 2

2

1 1
¯

1 1

2

i y
1

(52)

where =
⊥A P A¯ i A i¯ and the variance factor σ̂a

2 is estimated
under the alternative hypothesis. Under Ho, the pre-
ceding test statistic has a central Fisher distribution:

( )∼ − −T F m n i2, 2 ,α2 (53)

where α is the level of significance in the central Fisher
test. After the detection of unknown frequencies, the
design matrix is formed by a linear trend and periodic
signals. For the sake of brevity, we name the final design
matrix A. The harmonic coefficients are then estimated
based on the linear least-squares principles:

( )=

− − −x A Q A A Q yˆ .T
y

T
y

1 1 1 (54)

Based on the two steps earlier, the periodic terms and
sinusoidal frequencies in the time series are detected.
After detection and validation of the functional model,
i.e. finding the frequencies of interests in the time series,
the missing values in the time series are estimated using a
suitable detected functional model. In fact, the detected
frequencies are introduced to the functional model and
the time argument is updated by adding the time argument
of missing values into the design matrix. Afterwards, the
reconstructed time series, including (now) filled-values, is
estimated through the following equation:

=y A xˆ ˆ,New new (55)

where Anew is the new design matrix, including rows
associated with the missing values, although the same
column size as A in equation (54) is kept. In this way,
ŷNew is the reconstructed time series, in which the missing
values are filled and predicted by the linear trend and
harmonic functions. Amiri-Simkooei and Asgari (2012)
used LS-HE and Multivariate LS-HE (MLS-HE) to analyse
the time series of TEC and extracted interpretable fre-
quencies from the aforementioned data set. Moreover,
Rajabi et al. (2020) used LS-HE and MLS-HE to model
and predict the ionosphere TEC maps in their studies.

3 Data and study areas

3.1 Data

3.1.1 GRACE L3 data

In this contribution, we use JPL mascon level-3 grid dataset
RL06 version 2 processed by NASA Jet Propulsion Laboratory
(JPL). This dataset is derived from mass concentration
(mascon) solution based on surface spherical cap basis
functions rather than spherical harmonics. The solutions
aim to make improvements by using a priori information
derived from near-global geophysical models and prevent
striping in the solutions (Watkins et al. 2015). In order to
reduce the leakage error and separation of land area
from oceans, a Coastline Resolution Improvement (CRI)
filter was applied to JPL-mascon RL06 v02 dataset (Wiese
et al. 2016). The grid time series consist of GRACE and
GRACE-FO data. GRACE-FO processing strategy is similar
to GRACE, although there are a few differences in sensor
analysis and processing of the GRACE-FO data. For more
details see Landerer et al. (2020).

The dataset is available to download from https://
podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON
_CRI_GRID_RL06_V2.

3.1.2 Swarm L2

Another dataset, used in this article, is the spherical har-
monic coefficients derived from the kinematic orbit of the
Swarm satellite mission. Several analysis centers provide
gravity field solutions from Swarm. In this study, we
use the spherical harmonic coefficients, provided by the
Astronomical Institute, Czech Academy of Science (ASU),
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Figure 1: Geographical boundaries of (a) Amazon, (b) Congo, (c) Gavkhouni, (d) Aravalli, (e) Rhine, and (f) Tigris river basins.
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Figure 1: (continued)
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where the processing strategy is based on Bezděk et al.
(2016). The gravity field was derived from 3 Swarm satellites
(Swarm-Alpha, Swarm-Charlie, and Swarm-Bravo), through
the acceleration approach (Guo et al. 2015). The product
is solved up to spherical harmonic coefficients degree
and order of 40, although they are only significant up to
degree and order 15 (Bezděk et al. 2016 and Da Encarnação
et al. 2016, 2019, 2020). The solutions can be downloaded
from http://www.asu.cas.cz/∼bezdek/vyzkum/geopotencial/
index.php.

3.2 Study areas

We choose five river catchments and one sub-catchment,
where our introduced gap-fillingmethodologies are imple-
mented. The time series are in the form of TWSC, extracted
from JPL mascon grid data introduced in Section 3. One of
the main reasons for selection of these study areas is that
we tend to capture different hydrological signal character-
istics by the use of different methods explained in the
previous section. The selected case studies are five hydro-
logical basins and a sub-basin with different behaviours
either stationary or non-stationary from various regions
that are distributed around the globe. The study areas of
this research article are as follows:
1. Amazon basin is located in South America with geo-

graphical coordinates of about 20S-5N in latitude and
80W-55W in longitude (Figure 1a).

2. Congo river basin in Central Africa is a sedimentary
basin of the Congo river. Its geographical extension
is about 15S-10N in latitude and 12E-35E in longitude
(Figure 1b).

3. Gavkhouni (or Gavkhuni) sub-basin is located in the
Iranian Plateau in Central Iran, where Gavkhouni wet-
land is the terminal basin of the Zayandehrud River,
east of the city of Isfahan. Its geographical coordinates
are limited to about 31N–34N in latitude and 50E–54E
in longitude (Figure 1c).

4. Aravalli (India) basin which is located in India that its
geographical coordinates are limited to about 2N–28N
in latitude and 68E–76E in longitude (Figure 1d).

5. Rhine river basin is a catchment of Rhine river, located
in the west of central Europe and its geographical
coordinates are limited to about 46N–52N in latitude
and 4E–12E in longitude (Figure 1e).

6. Tigris river basin is located in Western Asia by the
geographical coordinates of about 33N–39N

7. in latitude and 39E–48E in longitude (Figure 1f).

Amazon basin is located in South America with a
tropical climate regime. Congo basin, the basin of Congo
River, located in west-central Africa, is the world’s second-
largest river basin (next to that of Amazon). Its climate is
approximate as the same as the Amazon basin i.e. tropical.
In fact, these two basins have almost similar climatological
behaviour. The Rhine river basin including German Rhine,
French Rhine, Dutch Rijn, Celtic Renos, and Latin Rhenus,
lies in Central Europe with humid and mild climate. The
Aravalli Mountain Range, located in South Asia, has a
complex climate regime. Hence, its climate cannot be gen-
eralized into a single exact climatological behaviour. However,
the dominant climate in the selected location in this research
work is arid, steppe and hot. Gavkhouni sub-basin and Tigris
river basin, located in the Middle-East, southwestern Asia,
have arid and semi-arid climate regime; however, the higher
part of Tigris river basin could be categorized as subtropical.

4 Results

Mascon level-3 data series provides information about
time variable total water storage on the continental scale
and ocean areas. Originating from time-to-time instru-
mental problems in GRACE and GRACE-FO measuring
devices, the time series include missing values, causing
sparse temporal gaps in GRACE and GRACE-FO dataset.
The most serious gap in the time series, however, is the
long gap between GRACE and GRACE-FO satellite mis-
sions. In order to report the data gaps, GRACE missing
months are respectively June and July 2002, June 2003,
January and June 2011, May andOctober 2012, March, August
and September 2013, February, July and December 2014,
June, October and November 2015, April, September and
October 2016 and February 2017. Then, there is a long 11-
months gap between GRACE and GRACE-FOmissions, which
started on July 2017 and ended in June, 2018. GRACE Follow-
On gaps happened in August and September 2018.

Concerning the gap-filling problem, we here employ
several methodologies, described in Section 2. However,
lacking reliable information for validation of our gap-
filling procedures, we design different artificial gap sce-
narios, similar to the gaps which exist in the main time
series. These scenarios also include a long artificial gap,
similar to the long gap between GRACE and GRACE-FO, to
simulate the real long gap between two satellite missions.
It should be mentioned here that we only make use of
GRACE time series to validate the gap-filling methodolo-
gies using artificial gaps. Those artificial gaps are chosen
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between the years 2003 and 2011 in which there is no real
gap, and the time span is long enough to derive the main
signal signatures. The real gaps outside the validation
time span are then filled from the results of the artificial
gap-filling procedure where the best filling performance
for each specific gap type is taken.

Our artificial gaps include the following:
i) Short gaps:

- at the start of time series (2 data points gap);
- at the end of time series (2 data points gap);
- sparse gaps in the middle of time series (8 data points
gap);

- on a peak in the middle of time series (3 data points gap);
- on a valley in the middle of time series (5 data points
gap).

ii) A long gap similar to the gap between GRACE and
GRACE-FO:

- In the middle of the time series (13 data points gap)
It would be of importance to note that our short gaps

scenarios consist of different schemes including “contin-
uous a few months” and “sparse individual” missing
values in the time series. On the other hand, based on
the fact that there is a long gap (about one year) between
GRACE and GRACE-FO measurements, we also simulate
this gap scenario via a long artificial gap in the middle of
time series where there is no data gap, i.e. between the
years 2003 and 2011. Concerning these two sectors of
missing values, i.e. short gaps and a long gap in the
GRACE and GRACE-FO time series, we tackle the issue
in two different manners; one is the scenarios for different
types of short artificial gaps as previously mentioned,
and another one is the long artificial gap.

To review our gap-filling approaches, we employ:
• SSA – Linear weighting,
• SSA – Stochastic weighting,
• SSA – Linear + Stochastic,
• SSA – Equation (22) weighting,
• LS-HE,
• Zero-filling SSA.

It should be noted that the length of the window
through SSA data processing is set to 23 months which
was determined by the trial-and-error method. However,
wherever there are not enough data to choose 23-month
window for the case of modified weighting strategy, we
select 12-month window length as the other optimal case
in our trial-and-error. This selection illustrates the cap-
ability of the modified weighting strategy in choosing

various window lengths. It is noticeable that the number
of data points used for gap-filling procedure depends on
the length of the window in RIM-SSA (subsection 2.2.1,
equation (9)). Moreover, the level of significance α in
Fisher test through LS-HE analysis; i.e., equation (53) is
considered α = 0.01.

The focus of this research study is on analysing the
time series of GRACE and GRACE-FO in the scales of the
hydrological catchment. In fact, we expect that different
catchments on the globe show different regional and local
hydro-climatological behaviours. To this end, it might be
of interest to localize time series analysis, i.e. the gap-
filling procedure. We expect that through the global ana-
lysis, some information in the data related to a specific
catchment or basin might be lost. Therefore, in this con-
tribution, we focus on the performance of a few gap-filling
algorithms for particular basins where their particular
temporal hydro-climatological variations may play a role.

The results for the selected river basins of this research
work are provided in the form of Root Mean Square Error
(RMSE), shown in the tables below. In those tables, the
numbers identified with “*” and “**” respectively show
the maximum and minimum RMSE. Those values are
brought for the long gap scenario as well as the mean of
the short gap scenarios.

Through our results from the error values for different
artificial gap scenarios, for each catchment or the sub-
catchment, we fill the real gaps by the best methodology,
i.e. the approach which provides the minimum average
RMSE for similar short artificial gap scenarios. Similarly,
the long gap between GRACE and GRACE-FO is filled
by using the methodology that provides minimum
RMSE for the artificial long gap. We also try to validate
the results in the Amazon basin where coarse-resolution
Swarm satellite mission dataset is available. That com-
parison is employed for the long gap between GRACE
and GRACE-FO missions.

As it can be seen in Table 1 for the Amazon catch-
ment, according to RMSE values, for both short artificial
gaps and long gap, LS-HE outperforms the other methods.
In Table 2, related to Congo basin, for both short and
long artificial gaps, the SSA-based methods have the
best performance in comparison to LS-HE. For the short
gap, the minimum RMSE value happens for the linear
weighting scheme, while for the long gap, it is for the
modified weighting strategy (equation (22)). Similarly, for
Gavkhouni sub-basin in Table 3, the SSA-based algorithms
perform better than the LS-HE method. In contrast, in the
Aravalli basin (Table 4), the LS-HE method outweighs
the SSA algorithms, based on RMSE values. Considering
the Rhine river basin in Table 5, the LS-HE algorithm also
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outperforms the SSA-based methods for the gap-filling of
both short- and long-gap scenarios. In Table 6, related to
the Tigris river basin, SSA-based methods outperform the
LS-HE approach. In fact, a linear weighting scheme for
short gaps and zero-filling SSA for long gap are the
selected gap-filling algorithms in this river basin.

To summarize the procedure, the missing values of
GRACE and GRACE Follow-On are categorized in two
types of gap scenarios, namely short gaps and a long
gap scenario. According to the results in Tables 1–6 and
the final results in Table 7, for each artificial gap scenario,
a specific gap-filling method outperforms the others (i.e.
minimum RMSE). Those results are then taken as the cri-
teria for the gap-filling procedure. The results of the table
also show that LS-HE is the most successful methodology
among all, which may come from the fact that the total
water storage anomaly from the GRACE and GRACE
Follow-On data have dominant parametric and stationary
behaviour. Studying the LS-HE method, one recognizes
that the method is a parametric and stationary approach
for time series analysis and signal processing. This factmay
explain the results of Table 7, where in half of the cases LS-
HE outperforms the other algorithms. However, it is likely
that there are catchments and sub-catchments with non-
stationary or even randombehaviours. In this contribution,

Figure 2: Time series of TWSC for Amazon catchment where the gaps were filled.

Table 7: The outperforming methodologies for the artificial short-
and long-gap scenarios in different study areas

Study area Methodology by minimum RMSE

Short gaps Long gap

Amazon LS-HE LS-HE
Congo Linear SSA weighting Equation (22)
Gavkhouni Equation (22) Linear SSA weighting
Aravalli LS-HE LS-HE
Rhine LS-HE LS-HE
Tigris Linear SSA weighting Zero-SSA

Figure 3: Time series of TWSC for Congo catchment where the gaps were filled.

A gap-filling algorithm selection strategy for GRACE and GRACE Follow-On time series  17



wehave employed six types of gap-filling methodologies
on six catchments and sub-catchments which may pos-
sess different behaviours.

Finally, we perform the gap-filling procedures on the
real gaps of the GRACE and GRACE Follow-On data. For
each scenario (i.e., short or long gaps) and for each river
basin, the corresponding outperforming method from the
studied artificial scenarios is chosen to fill the real data
gaps. Figures 2–8 illustrate the results of the real (nat-
ural) data gap-filling procedure for TWSC time-series,
expressed artificial gap-filling procedure, presented in
the tables earlier. That means, for the real gaps in the
Amazon catchment of Figure 2, LS-HE algorithm is uti-
lized for the gap-filling of short and long data gaps.
For the Congo catchment in Figure 3, we utilize SSA-
based methods, i.e. linear weighting scheme and modi-
fied weighting strategy for gap-filling of short gaps and
long gap, respectively. In the Gavkhouni sub-catchment
of Figure 4 with its apparent change point around the

year 2008, a modified weighting strategy and linear
weighting scheme for gap-filling of short gap and long
gap are, respectively, employed. For the Aravalli basin
(Figure 5), we make use of LS-HE for data gap-filling for
both short gaps and long gaps. That is again based on the
results from the artificial gap-filling procedure, here from
Table 4. In the Rhine river basin, shown in Fig. 6, LS-HE is
the utilized method for the gap-filling procedure. Figure 7
represents the case in Tigris river basin, where we respec-
tively employ linear weighting scheme and zero-filling
SSA for gap-filling of the short and long gaps, based on
the results from the artificial gap-filling scenarios for the
basin. It might be of interest to note that Tigris TWSC time
series shows similar behaviour to Gavkhouni sub-basin
case, i.e. the alternation of amplitude and a change point
around the year 2008. That may come from this fact that
Tigris and Gavkhouni river basins are close to each other,
both located in the Middle-East with almost similar cli-
mate regime and water management policy.

Figure 4: Time series of TWSC for Gavkhouni sub-catchment where the gaps were filled.

Figure 5: Time series of TWSC for Aravalli catchment where the gaps were filled.
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In this research work, we also make use of gravity field
recovery derived from Swarm kinematic orbit to validate
the result of our gap-filling procedure for the Amazon catch-
ment. Because of the coarse spatial resolution of Swarm
gravity field recovery, we only employ the data for the
Amazon catchment, where the area and the hydrological

signals are large enough to be studied by Swarm. The
results of Figure 8 indicate a good correlation between
our gap-filling procedure for the missing data between
GRACE and GRACE-FO time series and the time series
derived from the Swarm satellite mission. It should be
also noted that we here focus on the visualized data

Figure 7: Time series of TWSC for Tigris river basin where the gaps were filled.

Figure 6: Time series of TWSC for Rhine river basin where the gaps were filled.

Figure 8: Time series of TWSC for Amazon catchment compared with the corresponding time series from Swarm satellite mission.

A gap-filling algorithm selection strategy for GRACE and GRACE Follow-On time series  19



correlation rather than the data match, since the data from
those missions are processed in different ways and are not
completely comparable.

It should be mentioned that, in this research study,
we proposed a RIM-SSA weighting strategy to use the
stochastic properties of the time series in the gap-filling
procedure. However, this methodology did not provide a
good performance compared to the other methods. The
poor performance of our RIM-SSA approach might be
influenced by the fact that we only used the uncertainties
provided by the mascon level-3 dataset where the error
propagation law was employed to propagate the uncer-
tainties for the estimation of the missing value. We expect
that a more realistic stochastic model of the dataset
would increase the performance of the method.

5 Summary and conclusion

In this research study, several methodologies have been
employed to fill the missing values in the GRACE and
GRACE-FO time series. The methodologies have been
implemented on the JPL mascon level-3 data series of
TWSC derived from GRACE and GRACE-FO satellite mis-
sions, where the datasets are provided in a grid form
of the spatial resolution of 0.5° and temporal resolution
of 1 month. Here, we have focused on the analysis of
the datasets for 6 study areas, named Amazon, Congo,
Gavkhouni, Aravalli, Rhine and Tigris. Because of the
lack of reliable datasets for validation of our gap-filling
procedure, we have created artificial gaps in the time
series similar to the original existing gaps in the GRACE
and GRACE-FO datasets. In general, the gaps were cate-
gorized into two main scenarios: (i) different types of short
gaps and (ii) a long gap. For each river basin, each gap
scenario, and each gap-filling algorithm, we have formu-
lated the error as RMSE derived from filling the artificial
gaps. In this way, it was interesting to observe that each
catchmentor sub-catchmenthas shownaspecial behaviour.
Therefore, based on the results from the artificial gap-filling
procedures, a special gap-filling methodology for each river
basin and each gap scenario, i.e. short gaps and long gap,
has beenemployed for real data gap-filling.We found that in
half of all cases of the artificial gaps, the LS-HEapproachhas
outperformed the other gap-filling methods. We therefore
think that those hydrological basins show a parametric
and stationary behaviour, seen in the TWSC derived from
the GRACE and GRACE-FO datasets. However, in several
study areas and scenarios, the other methodologies out-
performed a bit better or they may have also acceptable

performance in comparison with the LS-HE algorithm.
That may mean not all the river basins and study areas
have dominant parametric and stationary behaviour.

As a result, we may conclude that if we want to fill
the gaps and missing values in the GRACE and GRACE-FO
time series, it would be preferable to create artificial gaps
for each study area and detect its temporal behaviour;
afterward, based on the results from the artificial gap-
filling procedures, we may employ the most appropriate
method, i.e. the least RMSE scenario, to fill the missing
values. That might be, in particular, a valid statement for
filling the long gap between GRACE and GRACE-FO.

For future research studies, we propose to employ the
methods described in this article for more study areas,
where a more diverse selection of the hydrological basins
and their corresponding behaviours can be analysed.
Furthermore, one can think of other methodologies for
time series analysis and signal processing to improve the
gap-filling procedure. Those methodologies may differ in
performance speed and the way they model the signals. It
is also important to mention that in the current research
study, we did not make use of external datasets for our
gap-filling procedures. Obviously, one can also think of
using other data sources such as hydrological models or
GNSS Earth deformation information, in a so-called data
fusion approach. That was, however, beyond the scope of
our current research study, where we focused on a self-
validating data gap-filling approach. Another outlook for
the current study might be achieved through the improve-
ment of the stochastic model of the time series where sig-
nals are tried to be separated from the noise. The employ-
ment of an appropriate functional model to identify the
deterministic behaviour of the time series and a realistic
stochastic model is expected to influence the performance
of the gap-filling procedures.
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